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NEWS AND VIEWS 

to elucidate earthquake occurrence12 is, 
sadly and perhaps shamefully, rare. Muir
Wood and D. Giardini (Univ. Roma) 
remonstrated with the profession for 
devoting so few resources to seeking and 
husbanding our trove of historical earth
quakes. These documents bear strongly 
on the issues of characteristic earth
quakes, clustering and blind events, and 

because teasing science from diaries and 
church archives demands skills that few 
today possess, the historical treasure may 
be far more perishable than the strata in 
a trench. D 
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NONLINEAR DYNAMICS-------------------

Ordering chaos with disorder 
Steven H. Strogatz 

SYNCHRONIZATION of an array of non
linear oscillators - for instance, coupled 
Josephson junctions or semiconductor 
lasers - is most easily achieved if all the 
oscillators are identical. Or so one might 
have thought. On page 465 of this issue, 
Braiman, Lindner and Ditto provide an 
intriguing counterexample. They start 
with an array of periodically forced pen
dula that lapses into spatiotemporal 
chaos if the pendula are identical. 
Yet when disorder is introduced into 
the array, the system snaps into peri
odic behaviour. In a sense, chaos has 
been tamed by disorder. 

Oscillator arrays and spatiotem
poral chaos are both relatively recent 
themes in nonlinear dynamics. In the 
late 1970s and throughout the 1980s, 
theorists focused on systems with few 
degrees of freedom. This was the 
heyday of the single damped driven 
pendulum, the Lorenz equations, 
and other small systems of ordinary 
differential equations, along with the 
logistic map, the Henon map, and 
other simple iterated mappings. The 
key discovery from this era, due to 
Feigenbaum and others, was that 
there are universal laws governing 

degrees of freedom, so they naturally 
obeyed universality theory. 

The outstanding problem today (and it 
will be with us for decades to come) is to 
develop techniques for understanding sys
tems with many degrees of freedom, such 
as turbulent fluids or fibrillating hearts. 
As a first step, one approach is to investi
gate idealized caricatures of such complex 
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the transition from periodic to 
chaotic behaviour: roughly speaking, 
diverse physical systems can go 
chaotic in the same way. This univer
sality was beautifully explained by 
renormalization group ideas bor
rowed from statistical mechanics, 

The motion of a single periodically driven pendulum 

depends on its length L. Both short and long pen
dula settle into periodic motions, either whirling 
(top panel) or libration (bottom panel), whereas a 

pendulum of intermediate length displays a chaotic 
sequence of whirling and libration. 

and was later confirmed in experi
ments on fluids, electronic circuits, oscil
lating chemical reactions, semiconductors 
and mechanical systems (see, for example, 
P. Cvitanovic (ed.) Universality in Chaos 
2nd edn; Hilger, Bristol, 1989). 

Some of these successes seemed too 
good to be true. How could a spatially 
extended system, such as a fluid undergo
ing thermal convection, be governed by 
laws derived from simple mappings that 
contained none of the physics? The catch 
is that all the successful experimental tests 
were done on highly dissipative, spatially 
constrained systems. By design, these sys
tems acted as though they had only a few 
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systems. It is in this spirit that Braiman et 
al. have turned their attention to arrays of 
nonlinear oscillators. 

Each of their oscillators is an under
damped pendulum driven periodically by 
a combined d.c. and a.c. torque (the net 
torque is always positive, but it varies sinu
soidally). In response to such a drive, a 
single pendulum exhibits three types of 
long-term motion, depending on its length 
(see figure). For the parameters used by 
Braiman eta!. , a pendulum of dimension
less length 0.9 rapidly settles into a peri
odic whirling motion, completing exactly 
one full rotation for each cycle of the dri-

ving torque. Frequency-locking to the a.c. 
part of the drive also occurs if the pendu
lum has length 1.1, but now the pendulum 
hangs downwards at all times, librating 
once about the downward vertical per 
drive cycle. For intermediate length 1.0, 
the pendulum's motion is chaotic; irregu
lar librations are sporadically interrupted 
by rotations over the top. 

Braiman et al. consider a chain of such 
pendula coupled to their nearest neigh
bours by torsional springs. In a homo
genous chain where all the pendula have 
length 1.0 (as in Fig. 1a of Braiman et al.), 
the chaos of the individual oscillators per
sists in the coupled array; all the pendula 
whirl and librate, but with no repeating 
spatial or temporal structure. However, if 
the lengths of the pendula are randomly 
distributed across the chain, say with a 10 
or 20 per cent uniform spread, the array 
breaks up into well defined domains that 
are frequency-locked (at various ratios) to 
the a.c. drive. An explanation given by 
Braiman et al. seems entirely plausible, in 
light of our discussion - the disorder cre
ates subpopulations of long and short pen
dula that can easily frequency-lock to the 
a. c. drive. It does not matter whether these 
locked pendula are librating or whirling; 
they impose their rhythm, via the coupling, 
on those that would otherwise be chaotic, 
thus taming the chaos in the entire array. 

A much more dramatic effect would be 
to tame chaos through disorder while 
keeping all the pendula in their chaotic 
regimes. Braiman et a!. claim that they have 
observed this too, in which case a more 
subtle mechanism must also be at play. 

Future work should test whether disor
der-induced taming is common in spatially 
extended systems, and quantify the likeli
hood of its occurrence. Regarding poten
tial applications, Braiman et al. argue that 
disorder might be used to 'control' spa
tiotemporal chaos, but that seems opti
mistic, given that no one knows what 
complex periodic pattern will arise after 
disorder is introduced. Nevertheless, tam
ing might still be useful in mode-locking 
applications where any kind of periodic 
behaviour is preferred to chaos. For 
instance, superconducting Josephson 
arrays or semiconductor laser arrays are 
two systems in which collective locking is 
technologically desirable, but notoriously 
difficult to achieve. Normally the difficulty 
is blamed on the inevitable inhomo
geneities, but now we have to wonder 
whether better results might be achieved 
by disordering the systems even further. 
Admittedly, the result will not be coherent 
oscillation, but perhaps a complex spatial 
pattern of frequency-locking is better than 
no locking at all. D 
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