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We study the ordering of two-qubit states with respect to the degree of bipartite entanglement using the
Wootters concurrence—a measure of the entanglement of formation—and the negativity—a measure of the
entanglement cost under the positive-partial-transpose-preserving operations. For two-qubit pure states, the
negativity is the same as the concurrence. However, we demonstrate analytically on simple examples of
various mixtures of Bell and separable states that the entanglement measures can impose different orderings on
the states. We show which states, in general, give the maximally different predictions(i) when one of the states
has the concurrence greater but the negativity smaller than those for the other state and(ii ) when the states are
entangled to the same degree according to one of the measures, but differently according to the other.
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The entropy of entanglement is essentially the unique
measure of entanglement for pure states of bipartite systems
[1] . By contrast, a generalization of the entropy of entangle-
ment to describe mixed states is by no means unique(even
for two qubits), leading to various entanglement measures
(for a review see[2]), including entanglement of formation,
distillable entanglement[3,4], and relative entropy of en-
tanglement[5]. The quantification of mixed-state entangle-
ment is still in early stages with many open questions.

Eisert and Plenio[6] raised an intriguing problem of or-
dering the density operators with respect to the amount of
entanglement. Specifically, certain two entanglement mea-
suresE8 andE9 are defined to give the same state ordering if
the condition[6]

E8sr1d , E8sr2d ⇔ E9sr1d , E9sr2d s1d

is satisfied for any density operatorsr1 andr2. No counter-
example to Eq.(1) can be found by comparing pure states
only or pure and Werner states[6]. However, the standard
entanglement measures do not give the same ordering in the
sets of two-qubit mixed states, as first observed by applying
Monte Carlo simulations by Eisert and Plenio[6] and then
investigated by others in Refs.[7–12]. Counterexamples to
Eq. (1) can also be constructed ford-level qudit pure states if
dù3 as shown byŻyczkowski and Bengtsson[9] . Virmani
and Plenio[8] proved that all good asymptotic entanglement
measures, which reduce to the entropy of entanglement for
pure states, are either equivalent or do not have the same
state ordering. The property that ordering of some states de-
pends on the applied measures of entanglement “in itself is a
very surprising conclusion”[8] but is physically reasonable
as these incomparable states cannot be transformed to each
other with unit efficiency by any local operations and classi-
cal communication(LOCC).

In this paper, we present an analysis of different orderings
of two-qubit states induced by concurrence and negativity.
The ordering of two-qubit states by the same measures has
already been studied by Eisert and Plenio[6], but by using
only a numerical simulation(of 104 pairs of entangled states
hr1,r2j). For three qubits, analytical counterexamples to Eq.
(1) are known even for pure states[9,11].

First, we briefly describe the entanglement measures im-
portant for our comparison.

The entanglement of formationEF of a mixed stater,
according to Bennettet al. [3,4] , is the minimized average
entanglement of any ensemble of pure statesucil realizingr:

EFsrd = info
i

piEsucilkciud, s2d

where the infimum is taken over all pure-state decomposi-
tions r=oi piucilkciu and Esucilkciud is the entropy of en-
tanglement easily determined by the von Neumann entropy.
In a special case of two qubits, Wootters[14] proved that the
entanglement of formation of a stater is given by a simple
formula

EFsrd = HS1

2
f1 +Î1 − C2srdgD , s3d

where Hsxd=−x log2 x−s1−xdlog2s1−xd is the binary en-
tropy with the argument related to the Wootters concurrence
defined by

Csrd = maxh0,l1 − l2 − l3 − l4j, s4d

where theli’s are (in nonincreasing order) the square roots
of the eigenvalues ofrssy ^ sydr*ssy ^ syd; sy is the Pauli
spin matrix and complex conjugation is denoted by an aster-
isk. Both EFsrd andCsrd range from 0 for a separable state
to 1 for a maximally entangled state.

We also consider another entanglement measure referred
to as the negativity, which can be considered a quantitative
version of the Peres-Horodecki criterion[15] . The negativity
for a two-qubit stater can be defined as[16,6,17]

Nsrd = maxh0,− 2mminj, s5d

wheremmin is the minimal eigenvalue of the partial transpose
of r. Similarly to the concurrence, the negativity, given by
Eq. (5), ranges from 0 for a separable state to 1 for a maxi-
mally entangled state. As shown by Vidal and Werner[17] ,
the negativity is an entanglement monotone(including con-
vexity) and thus can be considered a useful measure of en-
tanglement. The logarithmic negativity defined by[17]
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ENsrd = log2fNsrd + 1g s6d

measures the entanglement cost of a quantum stater for the
exact preparation of any finite number of copies of the state
under quantum operations preserving the positivity of the
partial transpose(PPT) as proposed by Audenaertet al. [18]
and proved by Ishizaka[19] for any two-qubit states. More-
over, the logarithmic negativity determines upper bounds on
the teleportation capacity and the entanglement of distillation
[17].

In the following, we will analyze two-qubit states violat-
ing the condition(1) induced by the concurrence(the en-
tanglement of formation) and negativity (the PPT-
entanglement cost) only. And thus by referring to Eq.(1) we
always meanE8=C andE9=N.

For an arbitrary two-qubit pure state, given by

uCl = c00u00l + c01u01l + c10u10l + c11u11l, s7d

wherecij are the normalized complex amplitudes, the con-
currence and negativity are the same and simply given by

NsuCld = CsuCld = 2uc00c11 − c01c10u. s8d

Nevertheless,Nsrd andCsrd can differ for a mixed stater. In
general, as shown by Verstraeteet al. [13] , the negativity
Nsrd of a two-qubit stater can never exceed its concurrence
Csrd and

Nsrd ù Îf1 − Csrdg2 + C2srd − f1 − Csrdg, s9d

as presented in Fig. 1. The states corresponding to these
lower and upper bounds have the minimal and maximal
negativity for a fixed concurrence. The class of the maximal
negativity states can be characterized by the condition that
the eigenvector corresponding to the negative eigenvalue of
the partial transpose ofr is a Bell state[13] . Apart from
pure states(7), the class of the maximal negativity states
includes the Bell diagonal states[13,14] with the celebrated
Werner states defined by[20]

rWspd = pucBlkcBu +
1 − p

4
I ^ I , s10d

where the parameterpP k0,1l, I is the identity operator of a
single qubit, anducBl is the singlet state:

ucBl =
1
Î2

su01l − u10ld. s11d

The negativity and concurrence ofrWspd are equal to each
other for any value ofp as given by

NsrWspdd = C„rWspd… = maxH0,
3p − 1

2
J . s12d

Since both pure and Werner two-qubit states are the maximal
negativity states, it is clear why they do not violate condition
(1), which is another explanation of the Eisert-Plenio result
[6].

The structure of the class of the minimum negativity
states was given by Verstraeteet al. [13] as a solution of the
Lagrange constrained problem for the manifold of states with
constant concurrence. They found that the minimum negativ-
ity states have two vanishing eigenvalues and the other two
corresponding to eigenvectors which are a Bell state and
separable state orthogonal to it. As an example of the mini-
mum negativity state, we analyze the state[2]

rHspd = pucBlkcBu + s1 − pdu00lk00u, s13d

where 0øpø1 anducBl is the Bell state given by Eq.(11).
The concurrence and negativity ofrH are given by

CsrHd = p,

NsrHd = Îs1 − pd2 + p2 − s1 − pd, s14d

respectively, being equal to each other forp=0 and p=1
only. The state, given by Eq.(13), is a mixture of a maxi-
mally entangled state and a separable state orthogonal to it as
required by the condition of Verstraeteet al. for the mini-
mum negativity states[13] . Thus, by replacingu00l in Eq.
(13) by another separable state orthogonal toucBl [e.g., by
u11l or su00l+ u01l+ u10l+ u11ld /2] , other minimum negativ-
ity states satisfying Eq.(14) can be obtained.

By analyzing Fig. 1 for a given stater1 corresponding to
some point(Csr1d ,Nsr1d), it is easy to identify all other
statesr2, corresponding to points(Csr2d ,Nsr2d), which lead
to a violation of Eq.(1). E.g., the stater1 described by point
OsXd and the other statesr2 corresponding to an arbitrary
point in regionsOPRandOSTsXYZd violate condition(1).
Clearly, maximal violation of Eq.(1) holds if one of the
states(say,r1) is the maximum negativity state and the other
sr2d is the minimum negativity state. To analyze the degree
of violation of Eq. (1), we will calculate DChr1,r2j
;Csr1d−Csr2d, DNhr1,r2j;Nsr1d−Nsr2d, and

dhr1,r2j ; − mins0,DChr1,r2jDNhr1,r2jd. s15d

In Fig. 2, the functiondsr1,r2d is plotted versus all possible
values ofCsr1d of the maximum negativity states andCsr2d

FIG. 1. Negativity versus concurrence. Interpretation of the
marked regions is given in the text.
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of the minimum negativity states. A closer look at Eq.(9)
leads us to the conclusions

max
r1,r2

Nsr1d=Nsr2d

uDChr1,r2ju = DChrX,rYj = 1 −
Î2

2
, s16d

max
r1,r2

Csr1d=Csr2d

uDNhr1,r2ju = DNhrZ,rXj = 1 −
Î2

2
, s17d

max
r1,r2

dhr1,r2j = dhrV,rXj =
k2

2
, s18d

wherek=sÎ2−1d /2, rJ sJ=V,Y,Zd are the maximum nega-
tivity states andrX is the minimum negativity state having
the following concurrences and negativities:CsrVd=NsrVd
=Î2/4, CsrZd=NsrZd=CsrXd=1/2, and CsrYd=NsrYd
=NsrXd=k, as depicted by the corresponding points in Fig. 1.
As an explicit example of states maximally violating Eq.(1),
one can chooserX=rHs1/2d, given by Eq.(13), and the fol-
lowing Werner states(10): rY=rWsÎ2/3d, rZ=rWs2/3d, and

rV=rWs1/3+Î2/6d. Alternatively, instead of the Werner
states, one can take the following pure states(7):

uCspdl = Îpu01l + Î1 − pu10l, s19d

which implies thatrY can be given byuCspdlkCspdu for

p=1/2±Î1+2Î2/4, rZ for p=1/2±Î3/4, and rV for p
=1/2±Î14/8.

Let us also consider the two-qubit states

r̄sp,qd = pucBlkcBu + s1 − pducqlkcqu, s20d

being a mixture of the Bell state, given by Eq.(11), and the
separable state

ucql = Î1 − qu00l + Îqu01l, s21d

where the parametersp,qP k0,1l. The negativity ofr̄sp,qd
depends on bothp andq according to

N„r̄sp,qd… = Î1 − 2ps1 − pds1 − qd − s1 − pd, s22d

while the concurrence, given by

C„r̄sp,qd… = p, s23d

is clearly independent ofq. In a special case forq=0, Eq.
(20) goes over into Eq.(13) describing the minimum nega-
tivity state, while forq=1, Eq.(20) describes the maximum
negativity state asNsp,1d=Csp,1d.

In the following, we will analyze three classes of the
states given by Eq.(20).

(i) The first class is formed by those states with the same
negativity—say,N8. From Eq.(22), one finds that the states
r8= r̄sp,q8d, given by Eq.(20) for

q8 =
N8fN8 + 2s1 − pdg − p2

2ps1 − pd
, s24d

have thep-dependent concurrence,Csr8d=p, but constant
negativity, Nsr8d=N8=const, for all pP kN8 ,Î2N8sN8+1d
−N8l. This result is confirmed graphically in Fig. 3sad for
a few choices ofN8. In particular, forN8=k, one gets the
p-parametrizedskøpø1/2d states

FIG. 2. Contour plot ofdsr1,r2d vs Csr1d and Csr2d for the
maximum negativity statesr1 and the minimum negativity states
r2.

FIG. 3. Negativity vs concurrence for the three classes of states(20) for the parameterp=0.1,0.2, ... ,0.9:(a) r8 whereN8=NsrHd, (b) r9,
and (c) r- wherer=rH.
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rXYspd ; r̄Sp,
s1 − 2pds2Î2 + 2p − 1d

8ps1 − pd
D , s25d

which are visualized by the points on theXY line in Fig. 1.
The statesrXYspd for p=k scorresponding to a maximum
negativity stated and p=1/2 sminimum negativity stated
have maximally different concurrences and the same
negativity:

DChrXYs1/2d,rXYskdj = 1 −
Î2

2
. s26d

(ii ) To the second class belong thoser9= r̄sp9 ,qd having
the same concurrence. This condition is easily fulfilled by
fixing p=p9 in Eq. (20); then, the concurrenceC9
;Csp9 ,qd=p9=const for all values ofq, while the negativity
Nsp9 ,qd ranges fromÎs1−p9d2+sp9d2−s1−p9d to p9 as
shown in Fig. 3(b) for a few choices ofp9. In particular, for
p9=1/2, we get theq-parametrizedsqP k0,1ld states

rXZsqd ; r̄s1/2,qd =
1

2
sucBlkcBu + ucqlkcqud, s27d

which are described by the points on theXZ line in Fig. 1.
The statesrXZsqd for q=0 scorresponding to the minimum
negativity stated and q=1 smaximum negativity stated have
maximally different negativities for the same concurrence:

DNhrXZs1d,rXZs0dj = 1 −
Î2

2
. s28d

(iii ) Finally, we analyze such statesr-= r̄sp,q-d of the
form (20) for which predictions concerning negativity and
concurrence are exactly opposite to those for a given stater,
i.e.,

DChr,r-j = − DNhr,r-j. s29d

This condition is fulfilled if the parameterq- is given by

q- = 1 +
fNsrd + Csrd + 1 − 2pg2 − 1

2ps1 − pd
s30d

for 1
2fCsrd+NsrdgøpøCsrd,1 as shown in Fig. 3scd. In

particular, if Nsrd=k and Csrd=1/2, one arrives at the
p-parametrizedsÎ2/4øpø1/2d states

rXVspd ; r̄Sp,
s1 − 2pds2Î2 + 1 − 2pd

4ps1 − pd
D , s31d

exhibiting N(rXVspd)=Î2/2−p and, as usual,C(rXVsp)d
=p, which are described by the points on theXV line in
Fig. 1. Predictions of the concurrence and negativity for
the statesrXVspd with p=1/2 scorresponding to the mini-
mum negativity stated and p=Î2/4 smaximum negativity
stated are maximally different, as given by

dHrXVX1

2
C,rXVXÎ2

4
CJ =

k2

2
, s32d

which is the upper bound determined by Eq.s18d.
We analyzed ordering of density matrices of two qubits

with respect to the bipartite entanglement quantified by the
Wootters concurrenceC, a measure of the entanglement of
formation, and by the negativityN, a measure of the PPT-
entanglement cost. We have presented simple two-qubit
statesr1 andr2 (where one of them can be pure) having the
entanglement measures different in such a way that(i)
Nsr1d=Nsr2d but Csr1dÞCsr2d, (ii ) Csr1d=Csr2d but
Nsr1dÞNsr2d, or (iii ) the concurrenceCsr1d is smaller than
Csr2d but the negativityNsr1d is greater thanNsr2d. Using
the bounds of Verstraeteet al. [13] , we have also found
analytically to what degree the concurrence and negativity
can give different orderings of two-qubit states.
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