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Ordering two-qubit states with concurrence and negativity
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We study the ordering of two-qubit states with respect to the degree of bipartite entanglement using the
Wootters concurrence—a measure of the entanglement of formation—and the negativity—a measure of the
entanglement cost under the positive-partial-transpose-preserving operations. For two-qubit pure states, the
negativity is the same as the concurrence. However, we demonstrate analytically on simple examples of
various mixtures of Bell and separable states that the entanglement measures can impose different orderings on
the states. We show which states, in general, give the maximally different predi@liarieen one of the states
has the concurrence greater but the negativity smaller than those for the other st@itevelinen the states are
entangled to the same degree according to one of the measures, but differently according to the other.
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The entropy of entanglement is essentially the unique First, we briefly describe the entanglement measures im-
measure of entanglement for pure states of bipartite systenmortant for our comparison.
[1] . By contrast, a generalization of the entropy of entangle- The entanglement of formatioB: of a mixed statep,
ment to describe mixed states is by no means unjguen according to Bennettt al. [3,4] , is the minimized average
for two qubity, leading to various entanglement measuresentanglement of any ensemble of pure statgsrealizingp:
(for a review sed?2]), including entanglement of formation,

distillable entanglemenf3,4], and relative entropy of en- EF(P)=inf2 pE( (i), 2
tanglement5]. The quantification of mixed-state entangle- :
ment is still in early stages with many open questions.  where the infimum is taken over all pure-state decomposi-

Eisert and PIgnic[G] raised an intriguing problem of or- tjons p=3, il i)y and E(|¢5){y)) is the entropy of en-
dering the density operators with respect to the amount ofanglement easily determined by the von Neumann entropy.
entanglement. Specifically, certain two entanglement mean g special case of two qubits, Woottéisl] proved that the

surest’ andE” are defined to give the same state ordering ifentanglement of formation of a stapeis given by a simple
the condition[6] formula

E'(p1) <E'(p2) = E"(p1) <E"(po) 1

is satisfied for any density operatgsgs and p,. No counter-
example to Eq(1) can be found by comparing pure states . .
only or pure and Werner statés]. However, the standard Where H(x)=-xlog, x-(1-x)logx(1-x) is the binary en-
entanglement measures do not give the same ordering in tAEPPY With the argument related to the Wootters concurrence
sets of two-qubit mixed states, as first observed by applying€fined by

Monte Carlo simulations by Eisert and Plerji§] and then C(p) =max0,\; — Ay — Az — As}, (4)
investigated by others in Refg/—12. Counterexamples to

Eq.(1) can also be constructed fdrlevel qudit pure states if Wwhere the;'s are(in nonincreasing ordgithe square roots
d=3 as shown byZyczkowski and Bengtssof®] . Virmani  Of the eigenvalues op(oy® ay)p (0 ® ay); oy is the Pauli

and Plenig[8] proved that all good asymptotic entanglementSpin matrix and complex conjugation is denoted by an aster-
measures, which reduce to the entropy of entanglement fdgk. Both Ex(p) andC(p) range from O for a separable state
pure states, are either equivalent or do not have the sanie 1 for a maximally entangled state.

state ordering. The property that ordering of some states de- We also consider another entanglement measure referred
pends on the applied measures of entanglement “in itself is # as the negativity, which can be considered a quantitative
very surprising conclusion[8] but is physically reasonable version of the Peres-Horodecki criterifitb] . The negativity

as these incomparable states cannot be transformed to edel a two-qubit statep can be defined agl6,6,17

other with unit efficiency by any local operations and classi-

cal communicatior(LOCyC).y g P N(p) = max0, = Zumin}, ®)

In this paper, we present an analysis of different orderingsvhereun, is the minimal eigenvalue of the partial transpose
of two-qubit states induced by concurrence and negativityof p. Similarly to the concurrence, the negativity, given by
The ordering of two-qubit states by the same measures hdsy. (5), ranges from 0 for a separable state to 1 for a maxi-
already been studied by Eisert and Plefi§y but by using mally entangled state. As shown by Vidal and Werfief] ,
only a numerical simulatiofof 10* pairs of entangled states the negativity is an entanglement monotdireluding con-
{p1,p2}). For three qubits, analytical counterexamples to Eqvexity) and thus can be considered a useful measure of en-
(1) are known even for pure statgs,11]. tanglement. The logarithmic negativity defined [dy]

Er(p) = H(%[l +V1- Cz(p)]) : 3
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! 7 1 - p
g pudP) = Ple)yl + — 1 @1, (10
08 R ,'/ | where the parametgre (0, 1), | is the identity operator of a
p 0 é single qubit, andys) is the singlet state:
= 0.6 1
2 z e |ve) = —=(loD) - 10). (11)
b / V2
< 04t , )
v The negativity and concurrence pji(p) are equal to each
2 other for any value op as given by
0.2 Y, K .
el 3p-1
N(pw(P) = Clpw(P)) =max) 0,——— . (12)
% oz 04 06 08 1

Since both pure and Werner two-qubit states are the maximal
negativity states, it is clear why they do not violate condition

FIG. 1. Negativity versus concurrence. Interpretation of the(1), which is another explanation of the Eisert-Plenio result
marked regions is given in the text. [6].

The structure of the class of the minimum negativity
_ states was given by Verstraadeal. [13] as a solution of the

En(p) = 10g[N(p) + 1] ) Lagrange constrained problem for the manifold of states with

measures the entanglement cost of a quantum gtigethe ~ constant concurrence. They found that the minimum negativ-
exact preparation of any finite number of copies of the statdly States have two vanishing eigenvalues and the other two
under quantum operations preserving the positivity of thecorresponding to eigenvectors which are a Bell state and
partial transpos€PPT) as proposed by Audenaet al.[18] ~ Separable state orthogonal to it. As an example of the mini-
and proved by Ishizakgl9] for any two-qubit states. More- MUM negativity state, we analyze the stgg

concurrence

over, the logarithmic negativity determines upper bounds on - 1- 1
the teleportation capacity and the entanglement of distillation pu(P) = PlY) e + (1 - pI00X00), (13
[17]. where O<p=1 and|g) is the Bell state given by Eq11).

In the following, we will analyze two-qubit states violat- The concurrence and negativity gf are given by
ing the condition(1) induced by the concurrenaghe en-

tanglement of formation and negativity (the PPT- Clpw) =p,
entanglement cogbnly. And thus by referring to Eql) we
always mearE’=C andE"=N. N(py) =V(1-p)2+p?>-(1-p), (14)

For an arbitrary two-qubit pure state, given by ) )
respectively, being equal to each other for0 and p=1

| W) = Cyol00) + Cgq/01) + C10/10) + C14/11), (7) only. The state, given by Eq13), is a mixture of a maxi-
mally entangled state and a separable state orthogonal to it as
wherec;; are the normalized complex amplitudes, the con-required by the condition of Verstraegt al. for the mini-
currence and negativity are the same and simply given by mum negativity state§l3] . Thus, by replacind00) in Eq.
(13) by another separable state orthogona|ig) [e.g., by

N(|¥)) = C(|P)) = 2|CoeC11— CoiCig - (8)  |11) or (|00)+|01)+|10)+|11))/2] , other minimum negativ-
) _ ity states satisfying Eq.14) can be obtained.
NeverthelesaN(p) andC(p) can differ for a mixed statg. In By analyzing Fig. 1 for a given stajg corresponding to

general, as show_n by Verstraete al. [13] , the negativity  gome point(C(py),N(py)), it is easy to identify all other
N(p) of a two-qubit statgp can never exceed its concurrence statesp,, corresponding to point&C(p,) ,N(p,)), which lead
C(p) and to a violation of Eq(1). E.g., the stat@, described by point
O(X) and the other states, corresponding to an arbitrary
N(p) =\[1-C(p)I* + C*(p) = [1 - C(p)], (9 point in regionsOPRand OST(XY2) violate condition(Z).

as presented in Fig. 1. The states corresponding to the?CIearIy, maximal violation of Eq(1) holds if one of the

lower and upper bounds have the minimal and maxima ‘?ates(say,pl) is the maximum negativity state and the other

- . . is th ini tivity state. T I the d
negativity for a fixed concurrence. The class of the maX|maq‘;2)\;;|at?0rr1n”g;mg n(elg);a |\\I/v|ey 3vf|i| ecal(():jgtaeyZeC{pep e}:gree
. ’ 1:P2

negativity states can be characterized by the condition tha

the eigenvector corresponding to the negative eigenvalue of Clpy) = Clpa). AN{p1 p2}=N(p1) ~N(p2), and

the partial transpose qgf is a Bell state[13] . Apart from Sy, po} = — Min(0,AC{py, pt AN{p1, po}) . (15)
pure stateq7), the class of the maximal negativity states

includes the Bell diagonal stat¢$3,14 with the celebrated In Fig. 2, the functiond(p,, p,) is plotted versus all possible
Werner states defined §20] values ofC(p;) of the maximum negativity states a@{p,)
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FIG. 2. Contour plot ofd(py,ps) vs C(py) and C(p,) for the
maximum negativity statep; and the minimum negativity states

p2-

of the minimum negativity states. A closer look at Ef)
leads us to the conclusions

—

V2
max |AC{p1’p2}| = AC{pX:PY} = 1 A (16)
P02 2
N(p1)=N(p5)
2
max [AN{py,p2}| = AN{pzpx} =1-—, (17)
pLP2 2
C(pp)=Clpp)
K2
max&{py, po} = Hpy,pxt = P (18

P1:P2
wherex=(12-1)/2, p3; J=V,Y,2Z) are the maximum nega-
tivity states andpy is the minimum negativity state having
the following concurrences and negativitieStpy) =N(py)
=\2/4, C(p)=N(p)=C(px)=1/2, and C(py)=N(py)

=N(px) =k, as depicted by the corresponding points in Fig. 1.negativity, N(p’)=N’=const, for allpe(N’,

As an explicit example of states maximally violating Et),
one can choospyx=py(1/2), given by Eq.(13), and the fol-
lowing Werner state$10): py=pw(v2/3), p,=pw(2/3), and
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p\,:p\,\,(l/3+\s§/ 6). Alternatively, instead of the Werner
states, one can take the following pure st&#®s

[W(p)) = ploD) + 1 -p|10), (19

which implies thatp, can be given by|W(p){W¥(p)| for
p=1/2+\y1+2y2/4, p, for p=1/2+\3/4, and py for p

=1/2+J14/8.
Let us also consider the two-qubit states

(P, ) = plihe) (| + (1 =) 1hg)thql (20)

being a mixture of the Bell state, given by E41), and the

separable state
b = V1 =0[00) + \g[0D), (2D

where the parameters, g (0, 1). The negativity ofp(p,q)
depends on botph andq according to

N(p(p,a) =V1-2p(1-p)(1-a)-(1-p), (22
while the concurrence, given by
C(p(p,9) =p, (23)

is clearly independent af. In a special case foq=0, Eq.
(20) goes over into Eq13) describing the minimum nega-
tivity state, while forq=1, Eq.(20) describes the maximum
negativity state adl(p,1)=C(p,1).

In the following, we will analyze three classes of the
states given by Eq20).

(i) The first class is formed by those states with the same
negativity—sayN’. From Eq.(22), one finds that the states

p'=p(p,q’), given by Eq.(20) for
_NI[N'+2(1-p)]-p°

' : (24)
2p(1-p)
have thep-dependent concurrenc€&(p’)=p, but constant
2N'(N'+1)

—N’). This result is confirmed graphically in Fig(& for
a few choices oN’. In particular, forN’'=«, one gets the
p-parametrized k <p=<1/2) states
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FIG. 3. Negativity vs concurrence for the three classes of s(a@d$or the parametep=0.1,0.2,...,0.9¢a) p’ whereN’ =N(py), (b) p”,
and(c) p"” wherep=py.
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(1-2p)(2\2+2p- 1)) [N(p) +C(p) +1-2p° -1
= i 3 25 = l +
pxv (P) E(p 8p(1-p) (25 q 20(1-p)
which are visualized by the points on the/ line in Fig. 1. for 3[C(p)+N(p)]<p=C(p)<1 as shown in Fig. @). In

The statesoyy (p) for p=« (corresponding to a maximum particular, if N(p)=« and C(p)=1/2, onearrives at the
negativity statg and p=1/2 (minimum negativity state  p-parametrized\2/4<p=<1/2) states

(30)

have maximally different concurrences and the same =
L 1-2p)(2V2+1-
negativity: pxv(p) = p p,( P)(2y ao)), (31)
_ 4p(1-p)
”2 Lty IS
AC{ oy (1/2), py (1)} = 1 — = (26)  exhibiting N(pxy(p))=v2/2-p and, as usualC(pxy(p))
2 =p, which are described by the points on tK¥ line in

i iy 0 ; Fig. 1. Predictions of the concurrence and negativity for
To th I I h h - ; e
(i) To the second class belong thgsep(p",q) having the statesyy(p) with p=1/2 (corresponding to the mini-

the same concurrence. This condition is easily fulfilled by tivity stateand p=y2/4 ( . tivit
fixing p=p” in Eqg. (20); then, the concurrenceC” mum negativity stateand p=y maximum negativity
statg are maximally different, as given by

=C(p”,q)=p"=const for all values of, while the negativity -
N(p”,q) ranges from(1-p")2+(p")?>-(1-p") to p" as 1 V2 K2
Pxv 1Pxv

2

shown in Fig. 8b) for a few choices op”. In particular, for iR} (32

p’=1/2, we get they-parametrizedq € (0, 1)) states 2
which is the upper bound determined by E§8).

We analyzed ordering of density matrices of two qubits
with respect to the bipartite entanglement quantified by the
Wootters concurrenc€, a measure of the entanglement of
which are described by the points on tK& line in Fig. 1. formation, and by the negativitil, a measure of the PPT-
The statespx,(q) for g=0 (corresponding to the minimum entanglement cost. We have presented simple two-qubit
negativity stateandg=1 (maximum negativity stajehave  statesp,; andp, (where one of them can be pieaving the
maximally different negativities for the same concurrence: entanglement measures different in such a way {hat

\5 N(p1)=N(py) bUtu_C(Pl) #Cl(py), (i) C(P_l):C(Pz) but
AN{py~(1), px(0)} =1 5 (28)  N(py) #N(py), or (i) t_he conc_urrencé:(pl) is smaller than
C(p,) but the negativityN(p,) is greater tharN(p,). Using

(i) Finally, we analyze such statg&=p(p,q”) of the the bqunds of Verstraetet al. [13] , we have also foun(_i _
form (20) for which predictions concerning negativity and analyt_lcally to what degree the concurrence and negativity
concurrence are exactly opposite to those for a given ptate €N give different orderings of two-qubit states.
ie.,

— 1
pxz(Q) = p(1/2,0) = §(|¢B><ws| +ue), (27
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