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Abstract. Methods of proving that a term-rewriting system terminates are presented. They are
based on the intuitive notion of ‘simplification orderings’, orderings in which any term that is
syntactically simpler than another is smaller than the other. As a consequence of Kruskal’s Tree
Theorem, any nonterminating system must be self-embedding in the sense that it allows for the
derivation of some term from a simpler one; thus termination is guaranteed if every rule in the
system i< 2 reduction in some simplification ordering.

Most of the orderings that have been used for proving termination are indeed simplication
orderings; using this notion often allows for much easier proofs. A particularly useful class of
simplification orderings, the ‘recursive path orderings', is defined. Examples of the use of
simplification orderings in termination proofs are given.

1. Introduoction

It is sometimes convenient to express programs in the form of term-rewriting
systems. Such programs are easy to understand and have a simple, elegant syntax
and semantics. For example, the following system of five rewrite rules transforms
logical formulae [containing the operators v (disjunction), A (conjunction), and
— (negation)] into equivalent formulae in disjunctive normal form:

TTa ra

a v )= (1 AB)

(e AB)>(na vB) (A)
an(Bvy)>(arB)vianry)

(Bvy)ra>(Bra)viyna)

The first rule indicates that double negations may be eliminated; the second and
third rules apply DeMorgan’s laws to push negations inward; the last two rules
apply the distributivity of conjunction over disjunction. Such systems are becoming

* Research supported in part under NSF grants MCS 77-22830 and MCS 79-04897. A previous

version of this paper appeared in the Proceedings of the Twentieth IEEE Symposium on Foundations of
Computer Science, October 1979.

0304-3975/82/0000-0000/3$2.75 © 1982 North-Holland



280 N. Dershowitz

increasingly popular in automated simplification and theorem-proving applications;
some examples are Iturriaga [11], Moses [20), Griesmer and Jenks [7], Hearn [8],
Ballantyne and Bledsoe [1], Boyer and Moore {2], Carter et al. [3], Weyhrauch [28],
and Musser [21].

The above program is executed for a given input term by repeatedly replacing
subterms of the form of the left-hand side of some rule with the corresponding
right-hand side, until no further rewrites are possible. Thus, the second rule in the
above system may be applied to the input term a A =(b v ¢) by replacing —(b v ¢)
with (—6 A —c), thereby obtaining a A —(1b A —c). The computation iterates in this
manner, at each stage choosing some applicable rule and applying it to some
subterm. Continuing with our example: By applying the third rule, we get a
{(—b v —i—c). Two applications of the first rule then vield a A (b v ¢). Finally, an
application of the fourth rule gives (a A b) v (a A ¢) which is in disjunctive normal
form. At this point, no rule is applicable and the system is said to have ‘terminated’
with the final result (a A b) v (a A ).

To verify the correctness of such a program, one must show

(1) that it always terminates, i.e. given any input term, execution will always
reach a stage for which there is no way to continue applying rules, and

(2) that it is "partially correct’, in the sense that if it does terminate, then the
final result is what was desired.

In this paper, we deal only with the termination aspect of correctness.

The difficulty in proving the termination of a system such as the one for disjunctive
normal form above stems from the fact that while some rules may decrease the
size of a term, other rules may increase its size and duplicate occurrences of
subterms. Furthermore, applving a rule to a subterm not only affects the structure
of that subterm, but also changes the structure of its superterms. Any proof of
termination must take into consideration the many different possible rewrite sequen-
ces generated by the nondeterministic choice of rules and subexpressions. Various
methods for proving termination of term-rewriting systems have been suggested
in recent vears, including Iturriaga [11], Knuth and Bendix [13], Manna and Ness
[19], Lankford [15], Lipton and Snyder [ 18], Plaisted [23], Plaisted [24], Dershowitz
and Manna [6], and Lankford [16]. In this paper we present new methods of proving
termination. One can show (Huet and Lankford [10]} that termination is in general
an undecidable property of such systems.

The partial correctness of term-rewriting systems, on the other hand, is often
easy to verify. One usually shows that each rule is ‘value-preserving’, i.e. if [>r is
a rule in the system, then / = r in the intended interpretation. (In the above example,
each rule preserves logical equivalence.) Furthermore, one must verify that all
possible final resuits have the desired properties, for example by showing that were
a final result not of the desired form, then some rule could still be applied to it.
(By the definition of disjunctive normal form, no compound formula may be
negated, nor may a disjunction be conjoined with another formula.) Hence, proving
partial correctness is in many cases formally quite simple.
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Another property of term-rewriting systems that is often desirable is ‘confluence’,
i.e. that there be a unique final result for all rewrite sequences beginning with the
same term. The above system, for example, is not confluent: applying DeMorgan’s
Jaws to —Wa a(bve)) yields (a v (—b A—c)), while first distributing leads to
{((ma ama)v{—a ace)) v ((mb ama) v (—b A ). Confluent term-rewriting sys-
tems are used as decision procedures for equational theories: see, among others,
Knuth and Bendix [13], Slagle [25], Lankford (15], Huet [9], Lankford and Ballan-
tyne [17], and Sticke! and Peterson {26]. Termination is frequently a prerequisite
for demonstrating confluence.

To illustrate the difhculty of determining if and why a system terminates we
present four variations on system (A):

The first variation is

—a > a
—a v B)=> (e A —8)
“la AB)= (e v ——8) (B)

ar{Bvy)>anrBiviany)
(Bvylrna=>{Bra)viyra).

Here the second and third rules have been modified to introduce additional double
negations (that can be eliminated by the first rule).

The next variation is the same as System (B) with the two rules for distribution
removed:

—a 2o
—(avB)> (e A —8) )
—la A B)> (e v —I8).

This system pushes negations into disjunctions or conjunctions and eliminates
double negations.
The third variation is

“Ta > a

e v )= ((mTa A B) A (C—a A ——8)

e A B) = ((m—a v ) v (e v B (D}
lana)>a

(@ va)->a.

Here the second and third rules have been further complicated to duplicate con-
juncts and disjuncts. To compensate, two rules for their elimination have been
added.
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The last variation is the same as System (D), except that the extra negations
have been removed from the second and third rules:

M- a

e vB)=> ((ma A=1B) A (Da A7B))

A AB)=> (e vB) v (Ra v —B)) (E)
(xra)=a

(ava)sa.

The reader is invited to determine which of these five systems do terminate and
which do not.

In the next section we characterize nontermination and show how ‘simplification
orderings’ may be used to prove termination. (This extends the result reported in
Dershowitz [5].) We explain why most of the orderings previously used for proving
termination have in fact been simplification orderings. In Section 3 similar methods
are described for using quasi-orderings to prove termination or the weaker concept
‘quasi-termination’. Then, in Section 4, we apply these methods to several orderings;
in particular, we define a class of ‘recursive path orderings’ and show that they are
simplification orderings. Finally, in Section 5, the use of these orderings in several
termination proofs is illustrated.

2. Termination and nontermination

Given a set of operators F, we consider the set T(F) of all terms constructed
from operators in F. In general, we shall assume that all operators have variable
arity; thus, if f is an operator in F and #;, ..., t, (n=0) are terms in T(F), then
flt1,...,1,) is also a term in T(F). The results of this paper apply to any subset T
of T(F) with the property that f(f;,...,,) is a term in 7, only if f is an operator
in Fand t,,...,1!, are also terms in 7. For example, T may restrict an operator f
to a fixed arity, in which case f(r;,...,t,)€ T only if f is of arity n.

A term-rewriting system P over such a set of terms T is a finite set of rewrite
rules, each of the form /;(a) > r;(&), where /;(a) and r;(a) are ‘open terms’, i.e. terms
constructed from operators in F and from variables « (ranging over T). Such a
rule may be applied to a term r€ T if ¢ contains a subterm /{4) with the terms
a € T substituted for the variables a. The rule is applied by replacing the subterm
li(@) in t with the term r;(@). (The variables appearing in r; must therefore be a
subset of those in /..) The choice of which rule to apply is made nondeterministically
from amongst the applicable rules; similarly, the choice of which subterm to apply
a rule to is nondeterministic. We write t=>¢' (and say ‘¢ derives ¢”’) to indicate that
the term t'€ T may be obtained from the term ¢ € T by a single application of some
rule in P.
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For example, the one-rule system
(@anB)nys>an(Bnry) (F)

reparenthesizes a conjunction by associating to the right. Applying that rule to the
term ! =({a Ab)Ac)A(dne), we get

t(@nrlbacHa(dre)Dan(brc)raldre)=an(balcaldnae)),

or alternatively,
t=>(anb)rlcanldnre))=an(bnricaldnae))).

In either case, no further applications of the rule are possible. We say that a
term-rewriting system P terminates for a set of terms T, if there exist no infinite
sequences of terms f; € T such that t;,=t,=>1,=>+ - - ; conversely, a system is non-
terminating if there exists any such infinite derivation.

The homeomorphic embedding (‘syntactically simpler’) relation <2 on terms in
T(F) is defined as follows (viewing terms as ordered trees):

S=(51, 82, -, Sm)2(0, 13, .. L, 1) S

if and only if

(a) f=gands, <5, foralli,1<ism where I, <j,<' - -<j,<n,or

(b) s<at; forsome j, 1<j<n.
Thus, s <2f 1f s may be obtained from ¢ by deletion of operators. For example,
——a A (avb))<(c A—({(na v a)a(—a v b))

We shall say that a derivation 11=>£,=>- - - is self-embedding if t;<at, for some
j < k. With this notion, we can characterize nontermination in the following manner:

Nontermination Theorem. If a term-rewriting system P does not terminate, then
there exists an infinite self-embedding derivation.

Proof. If P does not terminate, then by definition there exists at least one infinite
derivation ;== : . There can be only a finite number of operators appearing
in the derivation (those in £, and in P) and, by the Tree Theorem (Kruskal [14], see
next section), in any infinite sequence of terms fy, 14, ... with a finite number of
operations, 1; <1, for some j<k.

Note that homeomorphic self-embedding does not, however, imply nontermina-
tion. For example, the term-rewriting system consisting of the single rule f(f(a))—~>
f(g{f(@))) is both self-embedding and terminating. But we can use homeomorphic
embedding to give a sufficient condition for termination. First, we will need the
following concepts:

A partially-ordered set (S, >) consists of a set § and a transitive and irreflexive
binary relation > defined on elements of §. (Asymmetry of a partial ordering
follows from transitivity and irreflexivity.) A partially ordered set is said to be
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totally ordered if for any two distinct elements s and s’ of §, either s> ¢' or ">«
For example, both the set Z of integers and the set N of natural numbers are totally
ordered by the ‘greater-than’ relation >. The set 22(Z) of all subsets of the integers
1s partially ordered by the subset relation <.

A partial ordering > on a set § is said to be well-founded if it admits no infinite
descending sequences s; > 52> 55> - - of elements of S. Thus, > is a well-founded
ordering of N, since no sequence can descend beyond 0, but > is not a well-founded
ordering of Z, since —1>—-2>—-3>- .- is an infinite descending sequence.

The following definition and theorem (see [19], and also [15]) are often used to
prove the termination of term-rewriting systems:

Definition 1. A relation R over a set of terms T is monotonic if
tRt implies f(...t. . ORf(...1"...) (replacement)

foranyterms f(...7...0, fl...t'..)eT.

Theorem 1 (Manna and Ness [19]). A term-rewriting system P ={l;»r;}{_ | over a
set of terms T terminates, if there exists a monotonic well-founded ordering > over
T such that

L>r, I=1,...,p, (reduction)

for any substitution of terms in T for the variables of .

The reduction condition asserts that applying any rule reduces the subterm to
which the rule is applied in the well-founded ordering. The replacement condition
allows for this ‘local’ measure by guaranteeing that reducing subterms also reduces
the top-level term. Thus, 1=>¢" implies > ¢'. Since by the nature of a weli-founded
ordering there can be no infinite descending sequences, there can aiso be no infinite
derivations.

Our method for proving termination is based on the following

Definition 2. A transitive and irreflexive relation > (a partial ordering) is a
simplification ordering for a set of terms T if it possesses the following three
properties:

(1) r>rt"implies f(...t..)>f(...t"...), (replacement)

(2) ft...t..)>1, (subterm)
(3) fC..r..0)>f(.. ... ) (deletion)
foranyterms f...¢..0, f(..¢" .0, Ff(L.. ... ye T.

By iterating the subterm property, any term is also greater than any of the {not
necessarily immediate) subterms contained within it. The deletion condition asserts
that deleting subterms of a (variable arity) operator reduces the term in the ordering;
if the operators f have fixed arity, the deletion condition is superfluous. Together
these conditions imply that ‘syntactically simpler’ terms are smaller in the ordering:
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Embedding Lemma. Lersand tbe termsin T. If s St, then s < tin any simplification
ordering > over T.

In other words, the relation <0 {s contained in the relation <. As usual, s </
means ¢ >s5 or =,

Proof. The proof is by induction on the size {number of occurrences of operators)
of 1. Assume that s’ <¢' implies s’ <1’ for any ¢ smaller than r and for any s'. By the

definition of =, if s =f(s;,...,5,)<g(l1,...,1,)=1 (m or n may be zero), then
either

(a) f=g and s5;<2y4; for all /, 1 <i=<m, in which case s5; <1, by the induction
hypothesis and therefore s =< f(z,, ..., )=<1t by the replacement and deletion

properties; or else
(b) s<ir;forsomej, 1</<n,inwhichcases < <g{...f...)=rbytheinduction
hypothesis and the subterm property.

The following theorem gives a sufficient criterion for proving that a term-rewriting
system terminates for all inputs.

First Termination Theorem. A term-rewriting system P ={l;>r}{_, over a set of
terms T terminates if there exists a simplification ordering > over T such that

L>r, i=1,...,p, (reduction)

for any substitution of terms in T for the variables of I

Proof. If P does not terminate, then by the Nontermination Theorem there exists
a derivation 1,=>- - =1, {j <k) such that ;<94 and by the Embedding Lemma
;< £, in the given simplification ordering >. On the other hand, if [;>r;, then it
follows by the replacement property that ¢;>- - - >, and by transitivity that ¢ > .
This contradicts the asymmetry of the partial ordering >.

Most of the well-founded orderings that have been used to prove the termination
of term-rewriting systems are in fact simplification orderings. The following prop-
osition explains why.

Proposition. Any roral monotonic ordering > on aset T(F) of terms over a finirte set F
of fixed-arity operators is well-founded, if and only if it possesses the subterm property.

Proof. If > is monotonic and has the subterm property, then it ts a simplification
ordering (the deletion property is vacuously true for fixed-arity operators). As is
implicit in the preceding proof, a simplification ordering is well-founded when the
set of operators is finite.
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On the other hand, were the subterm property not to hold, i.e. t>f(...¢...) for
some term f(...1...)e T{F), then (by monotonicity) there would exist an infinite
descending sequence > f(...t.. . )>f(...f(...t...)...)>--- of terms in T(F).

At the end of the next section a sufficient condition for the well-foundedness of
a simplification ordering is given.

3. Quasi-orderings

In this section we investigate methods for proving termination that use quasi-
orderings. A quasi-ordered set (S, =) consists of a set S and a transitive and reflexive
binary relation > defined on elements of S. For example, the set Z of integers is
quasi-ordered under the relation ‘greater or congruent modulo 10°. Given a quasi-
ordering = on a set §, define the equivalence relation = as both = and =<, and
the partial ordering > as = but not <.

We say that a term-rewriting system P is quasi-terminating for a set of terms T,
if all (infinite) derivations contain only a finite number of different terms.
Equivalently, any infinite derivation must contain some term twice. Thus, termina-
tion of a quasi-terminating system for a given input term is decidable (construct all
derivations initiated by that term until they terminate or repeat). The foliowing
theorem may be used to prove termination for all inputs.

Theorem 2. A quasi-terminating term-rewriting system P ={l;» r,}/—y over a set of
terms T terminates if there exists a monotonic quasi-ordering = such that

L>rn, i=1,...,p (reduction)

for any substitution of terms in T for the variables of I;.

Proof. In any infinite derivation of a quasi-terminating system there must
be a segment t=>t.,,=> =t =t (i<j). Now, it must be that for some (not
necessarily proper) subterm s; of f, there is a self-derivation
D81 DR D= =5 =45 in which a rule is applied to a top-level
term s;.. By the monotonicity property, if 1=+ then f(...7.. )= f(...t'...), and
thus t=>¢ implies ¢+=1. But then 5 X 8.1 =- X8>S = ' 2§ =85;, and by
transitivity si > sy +1 = i, Which is a contradiction.

To prove that a system is quasi-terminating, one can use the following

Quasi-termination Theorem. Let the quasi-ordering x be a monotonic extension of
a simplification ordering > on a set of terms T. A term-rewriting system P = {I; > r;}]a,
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over T is quasi-terminating if
I,'Zfi, i=1,...,p,

for any substitution of terms in T for the variables of I..

Proof. By the Nontermination Theorem and the Embedding Lemma, if P does
not terminate, then in any infinite derivation t;=>6=- -+, t; <t for some j <k.
On the other hand, if /; = r, then it follows by monotonicity and transitivity that
ti = 1, and consequently ¢, < #. It must be then that ¢, = ; the system therefore
quasi-terminates.

Analogous to the definition of a simplification ordering, we have

Definition 3. A transitive and reflexive relation > (a quasi-ordering) is a quasi-
simplification ordering for a set of terms T if it possesses the following three
properties:

(1) r=¢t"implies f(...r..)=f(...1"...), (replacement)

2) f(...t..0)=1, (subterm)
3) fl..e..0=f(... ... ) (deletion)
foranyterms f(...¢...), f(...¢t' .. ), f(... ... )g T.

The Embedding Lemma also holds for quasi-simplification orderings, i.e. s <t
implies s < ¢.
We generalize the termination theorem of the previous section with a

Second Termination Theorem. A term-rewriting system P ={l; > r;}{_1 over a set of
terms T terminates if there exists a quasi-simplification ordering = such that

L>rn, 1=1,...,p, (reduction)

for any substitution of terms in T for the variables of I,.

Proof. If no rules are applied to the top-level terms ¢, of an infinite derivation
1 =>1,=>- - -, thensome proper subterm of ¢; must also initiate an infinite derivation.
Thus, for any infinite derivation r;=>f,=>- - -, some (not necessarily proper) subterm
s1 of £, must initiate an infinite derivation §;=>5,=> « *=>5;=>5;,1=>" - * in which
a rule is applied to a top-level term s;. Under the assumptions of the theorem,
t; =5, (subterm property), s1=s5;=- - -z s; (replacement property), and s; >s;.,
(reduction). By transitivity, then, #, > s;.;.

Accordingly, were P not to terminate, then an infinite descending sequence of
terms u, would exist, beginning with u, = t; and u;, = s;.1, and then continuing with
the descending sequence extracted from the remaining infinite derivation
Si+1=>S5;+2=> -+ . Since this sequence u;>wuy>-->u;>+->y,>--- is con-
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structed from a finite number of operators, u; < u, for some <k (Tree Theorem
and Embedding Lemma). But u, > «, and u; < u is a contradiction.

We conclude this section with a sufficient condition for the restriction > of a
quasi-simplification ordering = to be well-founded.

Definition 4 (Kruskal [14]). A set S is well-quasi-ordered under a quasi-ordering
< if every infinite sequence s, 52, . .. of elements of § contains a pair of elements
s; and sy, j <k, such that s, < .

Note that any finite set is well-quasi-ordered under any quasi-ordering {(including
equality). It follows from the definitions that a set is well-founded under the partial
ordering > when it is well-quasi-ordered under <; the converse is true for total
orderings, i.e. if a set is well-founded under a total ordering >, then it is well-quasi-
ordered under <.

Well-foundedness Theorem. Let > be a quasi-simplification ordering for a set of
terms T(F). If there exists any well-quasi-ordering =< of the ser of operators F such that

fxgimplies f(t1, ..., t.)Zg(ty, ..., 1) (operator replacement)

forallterms f(t\... ., 1.), glt1, ..., t,)€ T(F), then T(F) is well-quasi-ordered under
=< and well-founded under rhe partial ordering > .

Corollary. If = is a quasi-simplification ordering for a set of terms T (F) over a finite set
of operators F, then T(F) is well-founded under the partial ordering >.

To prove this theorem, we first need the full version of Kruskal's Tree Theorem.
A quasi-ordering =< of a set of operators F can be extended to a homeomorphic
embedding relation <. on the terms T (F), as follows:

S=F51,S2, oo Sm) <D g, 12, - -, L) =1,
if and only if

(a) f<gand ;<. foralli, 1<ism, where 1<, </, < - -<j,<n, or
(b) st forsome j, 1<j<n.
For example,
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where =< i1s the ‘less than or equal” ordering of numbers. Note that <3, as defined
in the previous section, is the homeomorphic extension of equality.

Tree Theorem (Kruskal [14]). A set F of operators is well-quasi-ordered under a
quasi-ordering <. if and only If the set of terms T(F) is well-quasi-ordered under
the embedding relation <.

As a special case: if F is finite, then T (F) is well-quasi-ordered under <3, since
F is well-quasi-ordered under =. A simple proof of the general theorem may be
found in Nash-Williams [22].

Proof of Well-foundedness Theorem. If F is well-quasi-ordered under =, then
T(F) is well-quasi-ordered under 9. (Tree Theorem). It is easy to see (along the
lines of the Embedding Lemma) that s <. ¢ implies s < r. Thus, T(F) is well-quasi-
ordered under < and is therefore well-founded under >.

4. Applications

In this section, we give a recursive definition of an ordering on terms and show
that it is a simplification ordering and also that (under suitable conditions) it is
well-founded.

Given a partial ordering > on a set S, it may be extended to a partial ordering
> on finite multisets of elements of S, wherein a multiset is reduced by removing
one or more elements and replacing them with any finite number of elements, each
of which is smaller than one of the elements removed. For example, if > is the
‘greater than' ordering on the natural numbers, then {3, 3, 4, 0}>»{3,2, 2,1, 1, 1,
4} in the multiset ordering, since an occurrence of 3 has been replaced by five
smaller numbers and in addition an occurrence of 0 has been removed (i.e. replaced
by zero elements). Such a multiset ordering > is well-founded, if and only if § is
well-founded under > (see [6]). We use this multiset ordering in the following

Definition 5. Let > be a partial ordering on a set of operators F. The recursive
path ordering >* on the set T(F) of terms over F is defined recursively as follows:

s=f(sq,. ..,sm)>*g(t1; e ) =1,
if and only if |

f=gand{sy,...,$mt>*{t5,. .., ta}
or

f>gand{s}>*{r,... 1.}
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or
fZgand{si,...,sm}=*{1},

where >* is the extension of >* to multisets and >* means >* or =.

Two terms shall be considered equal if they are the same except for permutations
among subterms. This definition is stmilar to a characterization of the ‘path of
subterms’ ordering given in [24].

To determine, then, if a term s is greater in this ordering than a term ¢, the
outermost operators of the two terms are compared first. If the operators are equal,
then those (immediate) subterms of ¢ that are not also subterms of s must each be
smaller (recursively in the term ordering) than some subterm of s. If the outermost
operator of s is greater than that of 1, then s must be greater than each subterm
of ¢; while if the outermost operator of s is neither equal to nor greater than that of 1,
then some subterm of s must be greater than or equal to ¢, For example, representing
terms as trees, we have

3
I |
2 /1\
3/\1 >* 2 2 =t
| /7 N\ /7 N\ VRN
A G
0 0 0 0

in the recursive path ordering over T(N) with the operators ordered by >: By the
definition of >*, to compare two terms with the same outermost operator, in our
case 3, we must compare (the multisets of) their subterms, viz.

2 1
N and 2T,
| /7 N\ PARN RN
LR

0 0 0 0

2
PN /7 N\ 7 N\
3 1 >*3 3 .
f 7\ | | l
0 0
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Since 2 =2, we must now compare

3 1 3 3 3
RN with <[, 0 and <[, |
’-‘() 0 3 0 0 0

| 0

in the multiset ordering »*. Finally, since

is greater than both
3
!
0

0 and

»

we indeed have s >*1.
We have

Theorem 3. The recursive path ordering >* is a simplification ordering.

Proof. We must show that the relation >* is irreflexive and transitive and that it
satisfies the replacement, subterm, and deletion conditions of simplification
orderings.

Irreflexivity: We wish to prove that 1 #* ¢ for any term . The proof is by induction
on the size (number of operators) of r. If 7 is of the form f(f;,...,t,), then by the
inductive hypothesis, the relation >* is irreflexive for its subterms . It follows
from the definition of the multiset ordering that {r,, ..., .} »*{r,...., t.}. Thus,
by the definition of the recursive path ordering, f(¢;,..., L) **f(1;, ..., 1)

Subterm: We show instead that if s >* for two terms s and ¢, then

(a) s>*1, for any immediate subterm ¢ of ¢ and

(b) f{...s...)>%¢ for any superterm f(...s...)of s.

Since s=*s, it follows from (b) that f(...s...)>%s, as desired.

Let g and A be the outermost operators of s and ¢, respectively. We prove (2)
and (b) simultaneously by induction on the (combined) size of s and 1.

For (a), s >*1;, consider three cases:

(1) g=h. By the definition of >*, if s =*¢ then s, >*¢; for some subterm s; of s,
and by the inductive hypothesis (b) it follows that s >* 1,

(2) g> k. In this case, it follows directly from the definition of >* that s >*¢;

(3) g # h. From the definition of >*, we have s; >*r for some subterm s, of s,
By the inductive hypothesis (a), s; >* ¢, and by hypothesis (b), we get s >* ¢,
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For (b), f(...s...)>%1, we again consider three cases:

(1) f=h. We already know (a} that s >*1; for any subterm #; of r. Thus, by the
definition of the multiset ordering, {...5...}>*{... ...} and by the definition of
N 4 PO S El S

(2) f>h. Since s>*¢, it follows from the inductive hypothesis (b) that
fl...s..)>%1, and therefore {f(...s.. )}y>*{ ..¢...} in the multiset ordering.
Thus, by the definition of >*, f(...s..)>*r.

(3) fZh. We are given that s =%/, [t follows from the definition of the multiset
ordering that {...s...}>*{r} and from the definition of >* that f(...5...)>*1

Transitivity: We must show that s>*; and r>*u together imply s>*u.
Note that by the subterm condition, s >*1; and r>*u, for any immediate sub-
terms f; of 1 and w; of u. Let f, g, and A be the outermost operators of s, ¢, and v,
respectively. The proof is by induction on the size of s, 1, and u and considers five
cases:

{1) f> h. By the definition of s >* u, we must show that s >* u; for all subterms
u, of . But we are given that s >*¢>% 4, and the result follows by the induction
hypothesis, since uy, is smaller than u.

(2) f#g. h. We are given that §; =z*¢>*u for some subterm s, of 5. By the
induction hypothesis, s; >* 1, since s; is smaller than s. and by the definition of >*,
§>%u.

(3) f=h g We must show that {_..5.. }>*{.. . w....} and are given that
s >*1>* 1, for some s; and for all i;. The result follows by the induction hypothesis.

(4) g2 h. We are given that s >, for any subterm 1; of ¢, while by the definition
of =%y, we have ;=" u for some . Thus, s>%1,>%u, and s >*u follows from
the induction hypothesis, since ¢; is smaller than .

(5) f=g=h. We must show that {...s5...}>"{.. . wu....} and are given that
{(..sioo 3> ... )>*{ . .u....}. By the induction hypothesis, s;>*¢>%u,
implies 5; >% u, for all s, £, and u,, and since the extension of a transitive relation
to multisets is also transitive, it follows that {{ .. s,.. . }=>*{ . ...}

These five cases cover all possible relations between f, g, and A (if f# g, then
cases 1, 2, and 3 cover f>h, f# h, and = h, respectively; if /> g, then cases 1,
4, and 5 cover g=h #f, g h, and g=h =/, respectively). Thus, our proof of
transitivity is complete.

Replacement: By the definition of a multiset ordering. {...s...}>*{ .. s ..}
if §>%s". Therefore, by the definition of the recursive path ordering,
flo o s . )="ft... 8. ... .

Deletion: By the definition of a multiset ordering, {...s...}>%{... ...}. Thus.
by the definition of the recursive path ordering, f{...s...)>"f(... ...).

Since the recursive path ordering is a simplification ordering, it may be used in
conjunction with the First Termination Theorem to prove the termination of
term-rewriting systems. The following theorem gives a necessary and sufficient
condition for the ordering to be well-founded.
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Theorem 4. The recursive path ordering >* on the set of terms T(F) is well-founded,
if and only if the partial ordering > on the sei of operators F is well-founded.

Proof. The “only-if” direction follows trivially from the fact that for f, ge F, f>g
implies [ >* g.

The proof of the "if’ direction is an application of the Well-foundedness Theorem:
If > is well-founded, then (using Zorn’s Lemma) tt can be extended to some total
well-founded ordering >_ on F. Since F is then well-quasi-ordered under =, and
the recursive path ordering >* satisfies the operator replacement condition, i.e.
f=_gimplies f(t5,..., t,)=%g(1,..., 1) (by the subterm property), it follows (by
the Well-foundedness Theorem) that >Z is well-founded. But >Z contains >*
(t>*r implies ¢>*¢ by a straightforward induction); therefore, >* must be
well-founded as well.

It turns out that when > is a total ordering, the recursive path ordering >* js
in effect the same as the ‘path of subterms’ ordering defined in Plaisted [24]in a more
complex manner. When > is partial, the recursive path ordering is contained in (an
obvious extension of) the ‘path of subterms’ ordering. Our proof of well-foundedness
extends to the latter as well; Plaisted’s proof is considerably longer and requires that
> be total.

The ‘multiset” and ‘nested multiset” orderings in [6] and the *simple path’ ordering
in [23]) are special cases of this recursive path ordering in which the multiset
constructor is greater than other operators. Their well-foundedness follows as a
corollary of this theorem.

One way of extending the recursive path ordering is to allow some function of
aterm f(r, ..., t,) to serve the role of the operator f. For example, we can consider
the kth operand 1, t0 be the operator, and compare two terms by first recursively
comparing their kth operands. This yields a simplification ordering for the same
reasons that the original definition does. Furthermore, this new ordering satisfies
the operator replacement condition, i.e. & =%r, implies f(ry, ..., fo..., L)=™
fllis ooty ooy ).

To prove that this extended ordering 1s well-founded, we appeal to the Well-
foundedness Theorem. Define the depth d(¢) of a term ¢ to be the maximum nesting
of kth operands. It is easy to show that s >*¢, for two terms s and 1, if d(s)>4d(1).
Thus, it suffices to show for all / that terms of depth i are well-quasi-ordered and
consequently well-founded. This follows immediately from the Well-foundedness
Theorem by induction on the depth /.

Further extensions of the recursive path ordering may be found in Kamin and
Levy [12].

Other examples of simplification orderings are the (‘linear’} ordering in [13] and
the ‘polynomial’ ordering in [16]. Whereas these methods require that terms be
mapped onto the well-founded nonnegative integers, using stmplification orderings
allows the methods to be extended to domains that are not themselves well-founded.
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For example, in Dershowitz [5] we suggest associating a polynomial F(x, . .., x,)
over the reals with each n-ary operator f. This mapping extends to a morphism ¢
on terms by letting @(f(ty,...,4))=F(e(t),...,¢(1)). For any choice of
polynomials ¥, ore must have that x;=x; implies F(xy, ..., X5..., X,)=
F(xy,..., Xiy..., X,)and F(xy, ..., X, ..., X,)=x; for all positions i and for all
real-valued x’s, and that @(f;)>¢(r;) for all rules /,»>r; and for ail real value
assignments ¢(a) to the variables a in /. (Allowing the x’s to take on any real
value is usually too strong a requirement; instead one may show that terms always
map into some subset R’ of the reals, i.e. x;, .. ., x, € R' implies F(x4,...,x,)eR’.
Then one need only show that the conditions hold for all x's in R'.)

These conditions are all decidable (albeit in superexponential time) for poly-
nomials over the reals (Tarski [27]; see Cohen [4] for a much briefer decision
procedure). Thus, the polynomial ordering can be effectively ‘lifted’ to open terms.
It is similarly decidable if there exist polynomials £ (and predicate R’) of a given
maximum degree that satisfy the conditions and thereby prove termination. (The
procedure, however, cannot point to the appropriate polynomials.) For polynomials
over the natural numbers, these conditions are not decidable (see [16]).

5. Examples

We return, in this section, to the six examples (A-F) of term-rewriting systems
that have been presented in the previous sections. We prove that four of them
terminate, as do two additional examples (G-H).

(A) Our first example was the following system for computing the disjunctive
normal form of a logical formula:

e sa
(e vB)=> (e rB)
“a AB)—> (T vg)
arBvy)>(aaB)viary)
Bvy)ra>Bra)vivyra).

We wish to prove that this system terminates for all inputs. It can be shown that
no polynomial ordering reduces for all five rules. We can, however, use a recursive
path ordering on terms with operators —1, A, and v ordered by =1> A > v. Since
this is a simplification ordering on terms, by the First Termination Theorem, we
need only show that

—a >*a,
e Vﬁ)>;(—|a AB),

“a A B)>*(a vB),
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an(Bvy)>*(arB)vianry),
Bvy)ra>=*(Bra)viyra),

for any terms a, 8, and v.

The first inequality follows from the subterm condition of simplification orderings.
By the definition of the recursive path ordering, to show that (e v 8) >*(—a A 18)
when —1> A, we must show that —(a v 8)>* ¢ and —(a A 8)>*—8. Now, since
the outermost operators of —i(a v 8), 7@, and 8 are the same, we must show that
avfB>*a and a v B >*B. But this is true by the subterm condition. Thus the
second inequality holds. By an analogous argument, the third inequality also holds.

For the fourth inequality, we must show a A (B Vv y)>*(a AB) Vv (a A y). Since
A>v,we must showa A{BVvy)>*a A8 and a A (8 Vv v)>*a A y. By the definition
of the recursive path ordering for the case when two terms have the same outermost
operator, we must show that {a, 8 v y} >*{a, 8} and {a, B8 v v} >*{a, y}. These two
inequalities between multisets hold, since the element 8 v y is greater than both 8
and y with which it is replaced. Thus the fourth inequality holds. Similarly the fifth
inequality may be shown to hold. Therefore, by the First Termination Theorem,
this system terminates for all inputs.

(B) The variant

T > a
“(a v B)=> (" A )
e AB)-> (ma v IB)
ar(Bvy)>(arB)vianry)
Bvy)ra->(Bra)viyra)

of System (A) does not in fact terminate for all inputs, though whenever it does
terminate, the resulting expression is in disjunctive normal form.
To see that it does not terminate, consider the following derivation:
~anr(avb)=((ara)v(anrb))
S ara)r T aab)= - = (ara)a{a n b))
= - =>((a v oma) A(mma v b))
=---=2(("a va) A (—a v b))
=((ma A (ma v b)) v (ma A (—a v b))

S((-aa(—avb) A (naa(a v b)) .

Thus, beginning with a term of the form ——(a A (a v 8)), a term containing a
subterm of the same form is derived, and the process may continue ad infinitum.
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(C) Our third example was
—Ta o«
avBy>(——ar—8)
—HaarB)>i——a v 1B

We cannot order the operators so as to enable the use of a recursive path ordering
to prove the termination of this system. Instead, we use the Second Termination
Theorem and define the following quasi-simplification ordering: ¢ > ¢' for two terms
t and 1, if and only if

[t]=][r] and
{{a]: m« appears in t} 2 {[a]: —a appears in ¢},

where [a] denotes the number of occurrences of operators other than — in «. and
» means either » in the multiset extension of the ordering > on numbers, or
else =.

It is easy to see that this quasi-ordering satisfies the replacement and subterm
properties of quasi-simplification orderings on fixed-arity terms. It remains to show
that each rule reduces the subterm it is applied to under the ordering >. For all
three rules the number of operators other than — is the same on both sides. To
see that

—Ta o,

note that there are two less elements in the multiset of numbers of operators for
the right-hand side than for the left-hand side. To see that

~avB)>im—a A B) and —(aAB)>("ma v T8,

note that the number of operators other than — in o v 8 and « » 8 is greater than
that of =, —a, a, 718, 78, and 8. Thus the multisets corresponding to the
left-hand sides are strictly greater than those for the right-hand sides.

(D) The system

——a >a
AavB)I=> (e A1 B)A (e A T I8))
o AB)> (e v o BivIiCGTTa vy 8

(e ra)>a
lava)>a,

however, does not terminate. The following derivation demonstrates this:
—a rb)D> (g v b)) viTra y b)) =

=S —(lmav—=b)vi—a v b))
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=S (7 —(Ta v b)) A~ (—a v b))
Alm A —a v b)) A —(na v b)) -
=S (e v Tb)=- > (a AT b= -
(E) The proof of the termination of the system

“a >«
HavB)=>{(1ar—=B)A (e A8))
Tla A B)=>((tavp)vina v—B))
(x ha)=>a
(ava)->a.

is similar to that of System (A). We use the recursive path ordering with the
operators partially ordered by —> A and =>v.
We have
—a >Fa, (ara)>*a and (ava)>*a,
by the subterm condition; we have
~(a v B)=*((=a r—B) A (ma A—B)) and  —(a AB)=* (i v —B)vi=a v —B)),

since — is greater than both A and v, and the subterms « v 8 and @ » 8 are greater
than either a or 8 by the subterm condition.

Using the recursive path ordering to prove the termination of systems in this
manner, generalizes the conditions for termination in [11]. The cases where
Iturriaga’s method works are those for which the operators are partially ordered
so that the outermost (‘virtual’) operators of the left-hand side of the rules are
greater than any other (‘complementary’) operators on the left-hand side, which
in turn are greater than any other operators.

(F) To prove the termination of the one-rule system

(@ ABIAY=>anr(Bay),

we again use the Second Termination Theorem. We define the quasi-ordering 7 > 7',
if and only if

> 1]
or else (7 and ¢’ are conjunctions and)
ti=it'l and 1, =1y,

where | denotes the total number of occurrences of operators in o and ¢; and ¢}
are the left conjuncts of 7 and ', respectively.

To see that this is a quasi-simplification ordering, note that ¢ =’ implies 7l =/l
Replacing a right conjunct ¢> with a smaller or equivalent one {under =) can only
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decrease the total size of a conjunction £ = £, A 1> and cannot change the size of ¢y,

replacing r; with a smaller or equivalent left conjunct cannot increase the size of

t or t;. The subterm condition t; A 1; = Iy, 1> obviously holds since [t; A t2}>|t4], |t2].
It remains to show that

(@anBiny>ar(BAry).

But (e A 8) A vl =la A (8 Ay}, while |a A 8]>]a}, and the proof is complete.

This example illustrates how the conditions for termination required by the
methods of Knuth and Bendix [13] and Lankford [16] may be relaxed: Given a
quasi-ordering = on (fixed arity) operators and a quasi-simplification ordering >t
on terms, such that

f(...t...)=1t implies f unary and
>rg for all operators g, ()

we define the quasi-simplification ordering

$=f(51, .- Sm)Zg(ty, ..., 1) =1,

if and only if

(& £,81 - s Sm)Z(t, 8ty - -4 tn),

where the two tuples are compared lexicographically, first according to the terms
s =rt, then according to the operators f =gg, and finally according to the subterms
s; Z1t; (or, alternatively, s; > t; recursively). The condition (*) ensure that = possesses
the subterm property. To prove termination, one must find appropriate quasi-
orderings >f and X+ for which /; > r; for all rules /; > r; in the given system. In the
above example: s =1 if and only if |s| = |¢|, and X is equality. (This method applies
also to example (C) with s> if and only if [s]=[t], - >F¢g for all other g, and
subterms compared recursively.

The method of Knuth and Bendix assigns a positive integer weight to each zeroary
operator and a nonnegative integer weight to each other operator, with >y compar-
ing terms according to the sum of the weights of their respective operators, > a
total ordering of operators, and subterms compared recursively. Thus, (*) requires
that a unary operator have zero weight only if it is the largest operator under >¢.
Lankford replaces the linear sum of weights function with monotonic polynomials
having nonnegative integer coefficients. Since both these methods use total
monotonic orderings, the subterm condition is both necessary and sufficient for the
orderings to be well-founded; the integer requirements are not themselves
necessary. Thus, instead of using a specific linear or polynomial ordering to orient
rules generated by the Knuth-Bendix ‘completion’ algorithm [13], one could use a
decision procedure for real polynomials to determine, at each step of the algorithm
and for both possible orientations, whether there exists any ordering of a specific
degree that reduces for all the rules obtained.
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This example also illustrates the use of quasi-termination: The quasi-ordering
>, where ¢ = ¢ if and only if |t' =|1'|, is 2 monotonic extension of the simplification
ordering ¢t >¢'. Since (@ A B8) Ay =a A (B A y), the system quasi-terminates. To com-
plete the proof of termination, the monotonic quasi-ordering =', where r='r" if
and only if || =[] and |#;|=|¢}], may be used.

The method of Lipton and Snyder [18] is somewhat similar in its use of quasi-
termination. Whereas they require that > be a well-founded w-ordering, we require
it to be monotonic; without monotonicity they must insist that /, =r; and not [; = r,.
For 1 ="t they use |f| <t .

(G) Toillustrate the use of an operand as an operator in a recursive path ordering,
consider the one-rule system

iflifla, B, v), 8, e) > ifla, if( B, 8, €), If(v, &, €)).

The conditional expression “if(a, 8, v)" stands for “if a then 8 else 4’ and this
system ‘normalizes’ conditional expressions by repeatedly removing nested if's from
the condition a.

To see that this system terminates we consider the condition to be the operator.
The condition if(a, B, v) of the left-hand side is greater (by the subterm property)
than the condition « of the right-hand side. Thus, we need to show that the left-hand
side is greater than both right-hand-side operands if( 83, 8, £) and if(y, 8, £). Again,
if(a, B, v) is greater than both operators 8 and y, and now the left-hand side is
clearly greater than the remaining operands § and ¢.

This method would work for system (F) as well.

(H) Finally, consider the system

——a-a
—avfB)>—ar—f)
“Ha AB)->(—a v—B)
anr(Bvy)>larB)viany)
(Bvylra—=>(Bra)viyra)
(anBlry=>an(BAry)
aviBvy)>lavBivy
lava)>a
(aral>a,
combining the rules for disjunctive normal form of system (A) with associativity

of conjunction and disjunction as in system (F). Unfortunately, the orderings used
for each of those two systems can increase for the other system.



300 N. Dershowitz

Nevertheless, we can combine the recursive path idea used for (A} with the
lexicographic idea of (F) by using operands as operators in a recursive path ordering.
Welet —> A > v as for (A), but use the first operand as the operator when comparing
two conjunctions and the second operand as operator when comparing disjunctions.
(This is similar to the use of lexicographic recursive path orderings in Kamin and
Levy[12].)
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