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Abstract

Past evidence suggests that a large-scale orderly pattern may exist

in the noi-e-producing regicn of a jet. Using several methods to visu-

alize the flow of round subsonic jets, we watched the evolution of

orderly flow with advancing Reynolds number. As the Reynolds number

increases from order 100 to 1000, the instability of the jet evolves from

a sinusoid, to a helix, and finally to a train of axisymmetric waves. At

a Reynolds number around 10,000, the boundary layer of the jet is thin,

and two kinds of axisymmetric structure can be discerned: surface ripples

on the jet column, thoroughly studied by previous workvrs, and a more

tenuouc train of large-scale vortex puffs. The surface ripples scale on

the boundary-layer thickness and shorten as the Reynolds number iihcreases

toward 100,000. The structure of the puffs, by contrast, remains much

the same: they form at an average Strouhal number of about 0.3 based on

frequency, exit speed, ana diameter.

To isolate the large-scale pattern at Reynolds numbers around

100,000, we destroyed the surface ripples Iy tripping the boundary layer

inside the nozzle. We imposed a periodic sorging of controllable fre-

quency and amplitude at the jet exit, and studied the response downstream

by hot-wire anemometry and schlieren photography. The forcing generates

a fundamental wave, whose phase velocity accords with the linear theory

of temporally growing instabilities. The fundamental grows in amplitude

downstream until nonlinearity generates a harmonic. The harmonic retards

the growth of the fundamental, and the two attain saturation intensities



roughly independent of forcing ampli.ude. The saturation amplitude depends

or. the Strouhal nimber of the imposed surging and raaches a maximum at a

Strouhal number of 0.30. A root-mean-square %inusoidal surging only 2%

of the mean exit speed brings the preferred mode to seturation four diam-

eters downstream from Ohe nozzle, at which point the entrained volume flow

has increased 32% over the unforced case. When forced at a Strouh,.l num-

ber of 0.60, the jet seems to act as a conipounJ amplifier, forming a

violent 0.30 subharmonic and suffering a large increase of spreading angle.

We concl, 3 with tile con ecture that the preferred mode having a Strouhal

number of 0.30 is in some sense the most dispersive wave on a jet column,

the wave least capable of generating a harmonic, and therefore the wave

m.;st capable of reaching a large amplitude before saturating.



1. Introduction

We set out to find whether jet turbulence is orderly in any sense.

and whether che order can be enhanced and controlled by a slight periodic

surging imposed at the jet exit. The technological motivation for the

study was jet noise. To the extent that turbulent mixing can be accom-

plished by an orderly process, a new range of noise-suppression techniques

becomes available, and the problem of predicting jet noise becomes much

simpler.

How does the disorder usually attributed to turbulence originate?

One approach to an answer is to consider why a vorticity-free potential

flow is not necessarily random. An incompressible potential flow is

determined at each instant by conditAons on the boundary. In principle,

an experimentallst could establish or annihilate an: incompressible poten-

tial flow instantaneously by a suitable change in the boundary conditions.

He need not reach within the boundary to control the motion. Further-

more, the potential at an interior point is a weighted average of the

potential over the boundary, so a local irregularity on the boundary has

only a local effect inside. From instant to instant, the gross features

of the boundary conditions control the gross character of an incompress-

ibie potential flow within.

The situation changes fundamentally if vorticity sheds from the

boundary into the flow, as occurs continuously from a jet orifice. The

flow no longer depends strictly upon instantaneous surface conditions,

ana the experimentalist cannot control the rotational part of the veloeity
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field by taking action at the boundary. He has lost con.trol ovcr the flow.

The velocity at an ice:ior point, moreover, cani depend sensitively on a

nearby element of vorticity and is no longer a smooth average. The flow

now deyeuids not merely on instantaneous strface conditions, but on the

entire history of vortex shedding from the boundary in all detail. In

order to restore control, the experimentalist must either control the three-

dimensional vorticity field directly by means of bcdy forces, or control

the entire history of the boundary conditions, which is the alternative

adopted in this study. Usually neither is attempted, and the flow gives

way to chaos.

Despite the loss of control, the boundary conditions and mean-flow

characteristics may still dispose the turbulence to acquire a somewhat

orderly pattern, at least with respect to the largest scales of motion.

Some classical theories of turbulent shear flow are based on that idea.

Reynolds (1894) derived the origival criterion for turbulence in a channel

by calculating the exc'iange of energy between the mean flow and a train of

sinusoidal eddies. Malkus (1956) based his channel-flow theory on the

eigenmodes of the stability problem for the mean flow rather than an ad

hoc sinusoidal eddy shape. The theoty bearing most directly on the present

work is that of Landahl (1967), who argued that the random component of

boundary-layer turbulence excites relatively coherent and long-lived waves,

the most lightly damped eigenmodes of the linear stability problem. The

turbulence plays two roles, as a random exciter of waves, and as an ensem-

ble of the waves themselves.

There is also a body of experimental evidenr- for orderly structure



-3-

in tuctilent flows, even at extremely large Reynolds numbers. The Karman

vortex street disintegrates at Reynolds numbers above 200,000 and was

thought to be associated with moderate leynolds numbers only. At a

Reynolds number of 3,500,000, however, Roshko (1961) found that the vortex

street behind a circular cylinder reappears with much the same structure

as at moderate Reynolds numbers. In their fiow-visualization experiments

on turbulent boundary layers, Kline, Reynolds, Schraub & Runstadler (1967)

discovered that turbulence production occurs in definite bursts near the

wall. Presumably the bursts i. vol-;e rapid stretching of vortex loops shed

from the viscous sublayer. In any case, the b,:.rsts have a common structure

and are random chiefly with respect to their origin in space and time.

The study of orderly jet fluctuations began during an evening of

chamber music in the mid-nineteenth century. Aaong the audience was a

medical doctor knowledgeable in acoustics, who noticed a gas flame dance

in response to the violoncello so that "a deaf man might have seen the

haymony" (Leconte 1858). The phenomenon attracted the attention of Tyndall

(1867), who showed that ignition is not essential; aLy jet on the verge of

becoming turbulent is sensitive to musical notes. The explanation of sen-

sitive jets is due to Rayleigb (1896). The vortex sheet surrounding a jet

column is unstable, so a sound wave passing the jet exit excites a train

of interfacial waves on the column. The waves promote transition 'o tur-

bulence and enhance mixing. Rayleigh could draw no certain conclusion

about the precise shape of the weves, whether the column becomes sinuous or

pulsatile, and the question has remained open since (cf. Reynolds 1962).

Questions of detail aside, it was clear by the turn of the centur.,



that sensitivity resides in an orderly osrillation of the jet column. The

nineteenth-century workers dealt vith Reynolds numbers around 1000, how-

ever, and i.. may be wondered whether any order persists at the far greater

Reynolds numbers of current technological interest. A degree of order can

be Inferred from casual observations of turbojet exhausts, which often

appeai to disintegr ite into trains of loosely packed juffs of smoke. More

reliable evidence is a schlieren photograph of a turbulent jet published

by Bradshaw, Ferriss & Johnson (1964) and reproduced here with their kind

permission as figure 1. The jet emerged with a speed of 280 ft/sec, uni-

form across the two-inch diameter exit plane. The corresponding Reynolds

number was about 300,000 based on diameter, ard the Mach number was suffi-

ciently low that the flow can be considered incompressible. The change in

refractive index -as achieved by injecting Freon-12 gas into the plenum

upstream of the jet. Beneath the stippled chaos of the fine mixing-layer

turbulence, one can discern a train of large-scale puffs or waves.

Jet noise itself provides some evidence for natural organized struc-

ture. Mollo-Christensen (1967) observed that pressure fluctuations out-

side a fully turbulent jet column come in rather well defined wave packets,

as though the column were undergoing sporadic oscillations. Unlike most

turbulent velocity spectra, the jet-noise spectrum has a distinct peak, at

a Strouhal number of about 0.3 based on frequency, exit speed, and diame-

ter, the exact Stroubal number depending on angle from the jet axis (Mollo-

Christensen, Kolpin & Martuccelli 1964). The existence of a peak suggests

that an underlying wave structure may be responsible for much of the sound.

Encouraged by the available evidence, we undertook experiments on
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Figure 1. Gas-injection schlieren photogravh of a 2-inch diameter air jet

at a speed of 280 ft/sec (courtesy of Bradshaw et al 1964). The Reynolds

number is 300,000.
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round turl'ent jetc. The Mach number was always very smal' --not so

severe a restriction, because compressibility does not alter the structure

of jet turbulen,e until the mean flow greatly exceeds the speed of sound

(Ffowcs Williams 1963). We began with the flow-visualization experiments

reported in §2. An orderly axisymmetric pattern was evident for Reynolds

numbers between several hundred and perhaps 70,000, above which no method

of visualization gave results better than those of Eradshaw et al (figure

1). The next step was to modify the apparatus as described in 93 so that

a sinusoidal surging could be imposed at the exit plane. We thereby

assumed partial control over the history of the boundary conditions in the

hope of overriding the natural tendency toward chaos at high Reynolds num-

bers. Even when the boundary layer at the exit was tripped and fully tur-

bulent, axisymmetric modes of organized flow could be excited and raised

to high amplitude above the random background. The mode having a Strouhal

number of 0.30 could attain an especially high amplitude. The structure

of that preferred mode is discussed in §4, and §§5-7 explain how a non-

linear cascade establishes the Strouhal-number preference. The influence

of the preferred mode on the mean field and on uncontrollable background

turbulence is described in §8.

When no periodic surging is imposed, then background turbulence may

trigger organized modes at random in the spirit of Landahl (1967), but the

mechanism for selecting the dominant mode is different. All modes in a

turbulent boundary layer are damped according to linear stability theory,

so Landahl assumed that the most lightly damped mode would prevail. in

the case of a round jet with a top-hat exit ?rofile, all modes am- ."



-7-

and the higher the frequency, the faster the amplification. But all

modes saturate owing to a nonlinear cascade, and the mode having a Strouhal

number of 0.30 has the highest accessible amplitude.

The relation between the orderly structure and linear stability

theory is discussed in §9, and some speculations about nonlinear amplitude

saturation are offered in §10, which concludes the paper. It is worthwhile

laying to rest a question here, whether the phenomenon under study consists

of eddies or waves (cf. Moffatt 1969). We shall move freely between both

kinds of description, sometimes calling the orderly structure a vortex

train, and sometimes waves on a jet column. The two descriptions are

entirely complementary as far as jet turbulence is concerned. Wave termi-

nology conveys the fact that the periodic structure obeys the dispersion

relation for linearized waves on a jet column (Batchelor & Gill 1962),

whereas eddy terminology emphasizes the amplitude saturation resulting

from a nonlinear cascade.

2. Flow-Visualization Experiments

Viscosity influences jet turbulence primarily by affecting the bound-

ary layer shed from the nozzle (Bradshaw 1966). The boundary layer depends

on the contraction upstream of the nozzle, as well as on the Reynolds num-

ber based on exit speed and diameter. At a sufticiently low Reynolds num-

ber, however, the boundary layer of any nozzle is so thick that the exit

profile resembles a Poiseuille pipe flow. We therefore began with quali-

tative experiments on a water jet having Poiseuille-flow exit conditions.
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The jet issued from a horizontal 9-inch long glass tube submerged

several inches in a large water ttough. The inside diameter of the tube

was 0.25 inches, and the flow rates were of order 1 ft/sec. Water for the

jet was drawn from a tap and sent through a fluorescein-dye injector before

entering the tube, so the jet could be seen as a bright yellow column

against the black bottom of the trough. To prevent the trough filling with

dye under continuous operation, a cup-shaped collector was located several

inches downstream from the jet and connected to a drain. Except at tae

lowest flow rates, he jet appeared chaotic under normal illumination, but

a stroboscope revealed the underlying order for Reynolds numbers up to

about 2500, where the pipe flow itself became turbulent.

The first sign of instability was the sinuous, whiplAsh motion

sketched in figure 2(a). The remaining parts of the figure show how the

instability evolves with advancing eynolds number. Flow rates were not

measured accurately, and the drawings cannot be associated with specific

Reynolds numbers. It is sufficient to note that the evolution from

sinuous to pulsatile flow is complete at a Reynolds number of order 1000.

As the Reynolds number advances toward that value, the sinuous column

coils into a corkscrew shape (b), then tightens and forms bulbous lobes

rather like a crankshaft (c), and finally breaks into a train of axisym-

metric puffs (d). The helical types of instability could have either

sense of revolution and would switch at random from one to the other when

the tap was turned on and off. The evolution from a sinuous to a pulsatile

instability was smooth and continuous, without the variety of motion seen

by Reynolds (1962), whose vertical dye jet may have been slightly buoyant.
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(a)

(c)

Figure 2. Evolution of jet instability with advancing Reynolds number.

Parts (a)-(d) span the Reynolds-number interval from around 100 to 1000.
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By moving our horizontal jet up toward the surface, we could see water

waves radiating outward from above the region of puff formation. The

chaotic turbulence further aownstream did not appear to be a strong source

of waves. Pres..ably because of their dispersive character, the waves were

confined to narrow sectors at 458 to the jet axis. The dye jet and the

synchronized waves on the surface above were beautiful under stroboscopic

illumination and can be recommended as a lecture-room anclogue of jet-

noise production.

The Reynolds number of the dye jet could not be driven far above order

1000 before the pipe flow itself became turbulent, so we turned to the air

jet shown schematically in figure 3. Not shown are an air conditioner

capable of holding the jet temperature to within 1F of the room tempera-

ture for hot-wire studies, a primary air filter, and a 1.5 hp centrifugal

blower. Air from the blower enters a short diffuser S, is cleaned by an

electrostatic precipitator P, passes through a throttle valve V and into

a 46-inch long wooden box B, then passes through a 5C-inch diffuser of 60

half angle into a plenum chamber C 36 inches long and 12 inches in diame-

ter. The wooden box contains two plastic grids for mixing purposes, and

there are two fine screens in the plenum as shown. The use of the loud-

speaker L is described in §3. A noz:zle N having a 12:1 diameter contrac-

tion was used for the present flow-visualization experiments, the exit

diameter D of the jet being 1 inch (the schematic shows a 2-inch jet used

for later hot-wire studies). A laminar boundary layer surrounds the jet

column, which emerges with a top-hat velocity profile and a 0.1% turbulence

level. The jet can be driven up to a speed Ue of about 220 ft/sec.
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Figure 3. Schematic of the jet facility, which is about 16 ft long. The

dotted lines represent grids or screens, and the labeled parts are

described in the text.
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In consideration of ambient room drafts, we decided not to run the jet

below 20 ft/sec, corre&ponding to a Reynolds number Re of about 10,000,

where Re = U eD/, and %- is the kinematic viscosity of air. We therefore

could not explore the Reynol&-number range 1000-10,000, but fortunately

excellent photographs have been taken in that range by Brown (1935) of a

two-dimensional jet and by Becker & Massaro (1968) nf the axisymmetric

case. Becker & Massaro observed axisymmetric waves on the jet column for

Reynolds numbers up to about 10,000, beyond which the flow appeared to

degenerate into chaos. Their nozzle was fed by a long pipe, however,

having a diameter only 3.8 times that of the jet. It is easy to show from

continuity that the Reynolds number of the pipe would have been

10,000/3.8 = 2600 L .:'-A on mean flow speed, when the Reynolds number of the

jet itself was 10,000. Natural transition in a pipe occurs at a Reynolds

number of about 2600, so the loss of order may have been caused by tran-

sition upstream of the nozzle.

Figure 4(a) is a schlieren spark photograph of our air jet under the

conditions D = 1 inch, U = 36 ft/sec, and Re = 18,700. The photographice

technique was similar to that of Bradshaw et aZ (figure 1) except that the

jet was seeded with CO2 rather than Freon a d the knife edge was vertical

Instead of horizontal. The spark duration was about :usec, and high con-

trast Type 51 Polaroid film was used. The flow within the first four

diameters of the nozzle is dominated by organized axisymmetric structure,

including short interfacial waves near the nozzle, and two large-scale

puffs further downstream. The puffs look rather like the underlying

structure one seems to discern in figure 1. If orderly structure exists

I
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1" ~V (a)

Figure 4. Schlieren photopraphs of the 1-inch air jet, made visible by

CO. at Reynolds numbers of (a) 18,700 and (b) 52,700.
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beyond the first four diameters, it is obscured by a finely textured

sheath of CO). Figure 4(b) is a similar photograph taken under the con-

ditions U e 102 ft/sec and Re = 52,700. The ripples on the laminare

boundary layer have shortened but are still clearly visible. Any large-

scale structure that may exist downstream, however, is masked by a fine-

grained mixture of CO2 and air surrounding the jet. A schlieren Image

emphasizes fine detail, though not nearly so much as a shadowgraph. Jet-

noise production, on the contrary, is heavily biased toward large-scale

eddies (Ffowcs Williams 1963). We needed another method of visualization

to search for large-scale order at higher Reynolds numbers.

After investigating several types of smoke, each of which was

noxious, corrosive, or dirty, we settled upon fog as the flow-visualization

medium. The fog was made by injecting steam into the airflow and passing

the mixture over pans cf liquid nitrogen in the box B of figure 3. By a

judicious choice of the pan area and grid geometry inside the box, we

could produce a light fog without freezing the plenum screens. The tem-

perature of the fog was about 50'F. Air saturated at 50OF is 1.03 times

denser than dry room air at 70*F, so the jet column was only about 3%

denser than its surroundings. Figure 5 is a photograph of the facility,

as outfitted for high-speed motion picture photography. The 1-ft diameter

jet plenum is suspended inside a 2-ft diameter chamber containing several

more pans of liquid nitrogen. They served to refrigerate the skin of the

plenum, for otherwise the jet would emerge with a warm and fog-free bound-

ary layer. Note The crossed lighting and blackened screens, necessary

because fog scatters light efficiently only in directions more-or-less
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Figure 5. The fog-seeded jet, as outfitted for high-speed motion picture

photography.
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forward. The arrangement for stills was similar except that a single xenon

flash lamp provided the illunination. The duration of the flash was mea-

sured as 20 usec, brief enough for an unblurred image at the highest speeds

tested.

Figure 6 comprises seven photographs of Hoe 1-inch tog jet at exit

speeds ranging from 20 ft/sec to 147 ft/sec. The corresponding Reynolds

numbers advance from 10,500 to 75,700 in roughly equal increments. Some

idea of the relation between the schlieren and light-scattering methods of

visualization can be gained by comparing figures 4(b) and 6 (e), both of

which were taken around Re = 52,000. The schlieren picture 4(b) clearly

shows the short waves that grow on the vortex sheet immediately downstream

of the nozzle, but large-scale structure further down is left mainly to

the imagination of the viewer. The fog picture 6(e) shows two dramatic

large puffs 2-5 diameters downstream but cannot resolve the fine ripples

near the nozzle. The large-scale puffs 4ere photographed regularly up to

the Reynolds number of 65,200, were infrequent at 75,700, and were not

observed in such a striking form above that.

Using the lighting arrangenent shown in figure 5, we made motion pic-

tures of the fog jet at frame rates ranging from 5000 to 11,003 per second.

After a careful study of the motion pictures and of the fog and schlieren

stills, we came to the tentative conclusion that a jet experiences two

kinds of orderly process within the rangw. of Reynolds numbers under con-

sideration: an instability of the thin laminar boundary layer leaving the

lip, and a much larger-scale process of puff formation further downstream.

The instability scales on the thickness of the boundary layer, whereas puff
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~ (b)

Figure 6. Spark photographs of the 1-inch fog jet. The Reynolds numbers

range from 10,500 to 75,700 as flollo-ws: (a) 10,500, (b) 39,500,

(c) 30,900, (ax) 43,500, (e) 51,400, (f) 65,200, and (g) 75,7C
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Figure 6 continued.
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formation involves the whole jet column arid scales on its diameter.

The boundary-layer instability has been studied extensively, in par-

ticular by Sato (1960) ard Browand (1966), and especially in a definitive

sequence of papers put forth by Wille (1952) and his colleagues at the

Deutsche Versuchsanstalt fUr Luft-und Raumfahrt in Berlin. Bibliographies

of that work are given in a review by Michalke & Wille (1966) and in one

of the later papers in the sequence by Freymuth (1966), who presents photo-

graphs obtained by a method suited especially for visualizing short waves

downstream of a lip.

The work of the Berlin school concerns a free boundary layer suffi-

ciently thin that the diameter D of the jet has no influence on the insta-

bility. In that limit the boundary layer behaves much like the two-

dimensional vortex sheet of classical inviscid stability theory. The

finite thickness of the boundary layer, however, distinguishes a wave-

length at which the instability grows at a maximum rate. For a hyperbolic-

tangent velocity profile having a thickness 6 based on maximum slope,

Michalke (1964, 1965) showed theoretically that the wavelength A for

maximum temporal growth is 7.07 6, and that the wavelength for maximum

spatial growth is 7.80 6. The phase velocity of the preferred temporally

growing wave is exactly one-half U, whereas the phase velocity in the case

of spatial growth is 0.513 U .e

We made hot-wire surveys of the laminar boundary layer leaving our

jet at various Reynolds numbers and found that the profile relaxes quickly

into a hyperbolic-tangent form. Results for the thickness 6 based on

maximum slope at a distance 0.02 inches downstream are presented in the
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table below, together with values of the wavelength A measured from the

photographs:

Table 1. Boundary-layer thicknesses and instability

wavelengths in dimensionless form.

Re 6/D (Re) 6/D A/6

10,500 0.041 4.16 0.44 10.9

19,500 0.031 4.34 0.24 7.7

30,900 0.025 4.36 0.19 7.6

51,400 0.020 4.47 -0.14 -7

It is clear from the second column of the table that the boundary layer is

thin compared with the diameter of the jet, so the work of the Berlin

school would be expected to apply. The third column shows that 6/D varies

approximately as (Re)- - in accord with simple viscous boundary-layer con-

cepts. The constant of proportionality, -4.4, of course depends on the

geometry of the nozzle and should decrease with decreasing contraction

ratio (cf. equation 1 of Becker & Massaro 1968). The fourth column of

table 1 shows that A is fairly small compared with D except possibly at the

lowest Reynolds number studied. Save at that Reynolds number the waves are

approximately two-dimensional, and the fifth column shows that X/6 does

indeed have values between 7 and 8 in accord with the stability theories

of Michalke (1964, 1965). Phase velocities measured from the motion pic-

tures were about 0.5 U as well. These data are not nearly so accurate ase
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those of Freymuth (1966), who used a loudspeaker to drive the instability

so that phase velocities and growth rates could be measured accurately.

Table I is intended to show that the boundary-layer instability seen in

our photographs is the two-dimensional phenomenon studied by the Berlin

school and that the maximally amplified mode arises without artificial

excitation.

The short waves quickly steepen and combine pair-by-pair into longer

wav., the subharmonics measured by Browand (1966) and Freymuth (1966).

That terminates the evolution of orderly structure at a Reynolds number of

10,500, and the subharmonic waves propagate on downstream, gradually losing

their coherence without much change in overall shape [figure 6(a)]. As the

Reynolds number advances toward 20,000, a second and rather more violent

combination follows the first so that four waves become packed, so to

speak, into a puff. As the Reynolds number advances still higher, a cas-

cade of pair-by-pair combinations occurs, initiated by surface waves of

decreasing length, and terminated by a train of puffs as seen in figure 6.

The structure of the train is relatively insensitive to Reynolds number,

ab though the cascade seeks a terminal state defined only by U and D.e

The puffs are more sporadic than the initial ripples. Three or four

puffs form and induct themselves downstream, an interval of confused flow

ensues, several more puffs form, and so on. Formation is not periodic,

but average frequencies f could be found simply by counting puffs during

screenings of the flow-visualization motion pictures. A count depends to

a certain extent on what one chooses to interpret as a "puff", but the

results have some objectivity as demonstrated by the table of timed counts
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below:

Table 2. Average Strouhal numbers of puff formation.

Re Subject SCC Subject SFC St

10,500 50 48 0.29

19,500 55 51 0.32

30,900 60 63 0.28

Subject SCC was one of us, and subject SFC was an observer without tech-

nical training, Instructed briefly beforehand about the nature of a

"puff". The agreement between the counts presented in the second and

third columns is limited evidence that the puffs exist as an objective

terminal state of orderly flow. Average Strouhal numbers based on the

puff counts, St = fD/Ue, are shown in the fourth column and are seen to

have values around 0.3 independent of the Reynolds number over the very

limited range considered. Accurate counts at higher Reynolds numbers

could not be obtained, because lighting limitations and the high frame

rates required to avoid blurring (8000 per second and above) resulted in

films of poor quality, lacking some of the visual cues that facilitated

the counts shown. The still pictures of figure 6 imply that structural

similarity extends to Reynolds numbers much higher than 30,900.

In the course of watchin, the motion pictures, we came to understand

why a conventional shadowgraph reveals no large-sc le structure in jet tur-

bulence. Some foggy air is thrown out of the jet column as each puff
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forms. While the puff inducts itself downstream, the ejected fog reniains

behind as a passive sheath around the column. Although dynamically

unimportant, the sheath shows up clearly in a schlieren picture and would

dominate a shadowgraph completely. A final observation from the motion

pictures: for the Reynolds numbers under consideration, the conical

potential core of the jet is the interior envelope of the waves growing

on its surface.

3. Means of Forcing the Jet

The photographs led us to imagine turbulence in the transitional

region of a jet as a vortex train, a train of loosely packed vortex rings

only weakly dependent on the circumstances of their origin. The idea is

attractive, because a vortex ring is a much more stable state of flow

than a columnar vortex sheet. The sheet can plausibly be expected to

wrap into a train of vortex rings carrying the same momentum, each ring

maintaining its identity some distance downstream from its point of

origin. One can easily show that a train of vortex rings would distort

a fog column into spade-shaped puffs of the kind seen in figure 6.

The wake of an aircraft is known to follow a similar course (Crow

1970). An aircraft generates a pair of trailing vortices, which undergo

a symmetric instability driven by their mutual induction, until they

connect at points to form a train of vortex rings oriented parallel to

the ground. The rings are quasi-stable, preserving a degree of order

intermediate between the original vortex pair and the chaos that finally
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unfolds. Because of its stability, the vortex ring may be a common if not

universal mode of transitional flow.

The visual evidence for order in jet turbulence becomes ambiguous at

a Reynolds number around 70,000, beyond which we were unable to produce a

photograph better than figure 1. The vortex puffs seen in figure 6, more-

over, are fed by a laminar instability, and the question remains whether

they would exist in the absence of a laminar boundary layer. The Strouhal

number 0.3 associated with puff formation is affirmative evidence, since

the peak of the jet-noise spectrum lies between 0.25 and 0.30 depending on

angle from the jet axis. The coincidence suggests that the vortex train

is latent in jet turbulence at high Reynolds numbers and contributes to

the emission of sound.

The hypothesis of latent order can be tested in at least two ways.

One way would be to extract the mode of greatest likelihood from hot-wire

signals, along the line advocated by Lumley (1966) and commonly used by

electrical engineers to extract signals from non-white noise. We adopted

the alternative, however, of forcing the jet periodically and measuring

the response. If there were no latent order in the unforced case, then

the result cf forcing would be damped waves analogous to those studied by

Hussain & Reynolds (1970) in turbulent channel flow. If there is a natural

tendency toward order, then periodic forcing may raise the latent structure

above background turbulence and permit measurements without complicated

signal-extraction procedures.

For the purposes of such experiments, the apparatus was modified in

three ways: the diameter of the jet was increased to 2 inches, the
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boundary layer was tripped just upstream of the exit, and a loudspeaker was

attached to the wooden box previously used for mixing fog. Doubling the

exit diameter raised the operational Reynolds number of the jet to 100,000,

corresponding to an exit speed of about 100 ft/sec. The blower can drive

the 2-inch jet up to 145 ft/sec, but the higher speed was reserved for hot-

wire calibration. The jet has a top-bat velocity profile and a 0.3% tur-

bulence level, higher than in the 1-inch jet, because the nozzle contraction

is halved. In the absence of a trip, the boundary layer surrounding the

2-inch jet column is laminar and has a thickness 6 = 0.022 inches at an

exit speed U = 100 ft/sec.e

We tripped the boundary layer to achieve a measure of Reynolds-

number independence and especially to destroy short interfacial waves

immediately downstream of the nozzle. The trip ring fits tightly into the

2-inch nozzle about 1 inch upstream from the exit. Deep axial notches cut

into the ring forestall any organized vortex shedding on its part. The

ring is 0.140 inches long and 0.020 inches thick, about as thick as the

laminar boundary layer just upstream of the ring when U = 100 ft/sec. Ate

that speed the tripped boundary layer is intensely turbulent, with a peak

root-mean-square axial fluctuation of 0.079 U . The thickness of the tur-

bulence intensity distribution at half its peak value is 0.062 inthes,

about 6% of the nozzle radius. The boundary layer becomeL untripped at an

exit speed of about 40 ft/sec, much lower than any used in the present

experiments. Above 40 ft/sec, the jet is invariant to Reynolds number with

respect both to mean and to root-mean-square quantities, as far as zan be

determined from the limited range of accessible Reynolds numbers.
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Figure 7 is a plot of the mean axial speed U measured on the center-

line at various positions x and at four Reynolds numbers Re. The coordi-

nates represent the dimensionless quantities U/Ue and x/D. The circles are

data at Re = 103,000, and data at other Reynolds numbers are plotted wher-

ever they do not overlap the circles. The mean axial profiles are prac-

tically indistinguishable in the Reynolds-number interval 62,000 to

124,000. Figure 8 is a similar plot of the turbulence intensity u, the

root-mean-square axial component of turbulent velocity as measured on the

centerline. A factor-of-two change in Reynolds number is seen to have

little effect on the ratio u/U . The curves in figures 7 and 8 are super-

posed on later plots to represent the unforced state. Hopefully che

tripped boundary layer resembles conditions at the exit of a turbojet

engine, but certainly the boundary layer is fully turbulent and sustains

no orderly oscillations of its own. Any large-scale structure that can be

evoked has nothing to do with details of the boundary layer shed from the

nozzle.

The loudspeaker L sketched in figure 3 provided the forcing. The 12-

inch diameter loudspeaker was inscalled upstream of the plenum to keep the

exit conditions clean. As a result, the transmission of energy between

the loudspeaker and the exit plane is efficient cnly at certain discrete

forcing frequencies, which are the organ-pipe resonances of the cavity. As

far as internal acoustic waves are concerned, the highly contracted nozzle

presents a closed face and is therefore a pressure maximum at resonance.

The oscillating pressure upstream of the contraction results in an oscil-

lating speed at the exit, since the jet must attain the constant ambient
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Figure 7. Profile of the mean axial speed on the centarline at several

Reynolds numbers, as denoted by the following data symbols: A 62,000,

0 83,000, 0 103,000, and 0 124,000.

.15 -

.010

U"

0 4 12 16

x/D

Figure 8. Profile of the root-mean-square axial fluctuation on the center-

line The data symbols are defined in the caption of figure 7.
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Figure 9. Spectrum of the jet cavity, measured in terms of the root-mean-

square surging in the exit plane.
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pressure downstream of the contraction. Figure 9 is a spectrum of the jet

cavity, measured at an exit speed Ue = 60 ft/sec, with a root-mean-square

potential W = 10.5 V across the terminals of the loudspeaker. The abscissa

is frequency f, ana the ordinate is ue /Ue' where ue is the root-mean-square

sinusoidal speed fluctuation at the jet exit, as measured by a hot-wire

anemometer. The spectrum has resonance peaks at f = 113 Hz, 185 H1z,

262 Hz, and so on. The resonance frequencies are Independent of U e but

the surging amplitude u e/Ue at a particular resonance is proportional to

W/U e2, a result that can be deduced by assuming the fluctuating pressure

upstream of the contraction to be proportional to W and applying

Bernoulli's equation to the contraction piocess itself.

We wanted to find how the iet responds to periodic surging at

Strouhal numbers ranging from 0.15 to 0.60, from half to twice the

Strouhal number of G.3 derived from puff counts. Among the quantities

in the definition St = fD/U , D was fixed at 2 inches, f could take one

discrete values, and Ue could be varied continuously. Varying Ue, how-

ever, would result in simultaneous changes of the Reynolds number

Re = U D/v. Although the boundary-layer trip makes the flow insensitive

to Reynolds number, we chose to hold Re near 100,000 by skipping from one

resonance to the next according to the following schedule:
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Table 3. Forcing frequencies, exit speeds, and

Reynolds numbers of the hot-wire experiments.

St f (Hz) Ue (ft/sec) Re

0.15 113 126 130,000

0.20 113 94 96,900

0.25 113 75 77,500

0.30 185 103 106,000

0.35 185 88 90,700

0.40 262 110 112,700

0.45 262 97 99,800

0.50 262 87 89,800

0.55 262 79 81,700

0.60 337 94 96,400

Each of the experiments described in subsequent sections was performed at

the conditions specified in a row of table 3. The Reynolds-number varia-

tions are unimportant, and the periodic surging can be described in terms

o! a Strouhal number St and dimensionless root-mean-square amplitude ue/U e .

Notice that 'he frequencies in table 3 correspond to sound waves 3-10 ft

long inside the cavity. The jet turbulence outside does not interact

directly with such waves and remains incompressible. The effect of the

internal waves is to impose a periodic fluctuation on the strength of the

vortex layer leaving the nozzle.

We measured several kinds of response downstream, each based on
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the axial component of velocity: the mean speed U; the root-mean-square

axial fluctuation u; root-mean--square fluctuations u0.30, u0 .60, filtered

around Strouhal numbers denoted by the subscr.ipts; the spectrum F(f) of

the axial fluctuation; the length X and phase velocity c of organized

waves. Most measurements were made on the centerline of the jet. In more

general cases the cylindrical coordinates (x,r) of the hot wire are given,

r = 0 being the centerline of the jet and x = 0 the exit plane.

Signals were obtained by means of a linearized, constant temperature

Disa anemometer. The mean speed U resulted from analogue integration over

an interval typically 100 sec. The root-mean-square fluctuation u was

measured with a Disa r.m.s. voltmeter, having a response flat to within 1%

of full scale for all frequencies between 1 and 100,000 Hz. The core of

the experiments is to relate the dimensionless turbulence intensity u/Ue

to the axial location x/D and to the input variables u e/Ue and St. The

jet is to be regarded as a "black box", a nonlinear oscillator whose

properties are to be understood in terms of the inputs ue /Ue, St and

response u/U -

Now that the relevant parameters have been defined, it is worth noting

exactly how this study fits with previous work involving loudspeaker exci-

tation of jets. We deal with Reynolds numbers Re z 100,000, about ten

times higher than those explored by Becker & Massaro (1968). We deal with

Strouhal numbers St - 0.30, about ten times Zower than those explored by

Freymuth (1966), who confined his study to high-frequency waves, much

shorter than the diameter D of the jet. Freymuth defined his Stiouhal

number in terms of boundary-layer thickness, but the lowest value of fD/U
e
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he reached was about 0.9 (f6/U e  0.002, figure 16, Freyinuth 1966). A

fundamentally new phenomenon arises as St descends below about 0.45: the

forced wave becomes highly dispersive and attains an amplitude large enough

to disintegrate the jet column.

4. Structure of the Preferred Mode

We begin by explaining the consequences of forcing at St = 0.30,

which table 2 suggests as the Strouhal number of natural oscillation.

Except for a large accessible amplitude, the mode driven at St = 0.30 is

typical and serves as a useful introduction to the quantitativ- work.

The vortex puffs appear in the motion pictures to grow abruptly about

four diameters downstream, just ahead of the tip of the potential core.

On that basis, a strong response u/Ue would be expected at a point

x/D = 4, under a surging imposed at St = 0.30. Figure 10 is an amplitude-

response function measured under those conditions on the centerline of the

jet. The abscissa is the t'orcing amplitude u e/Ue measured at x/D = 0 and,

incidentally, found to be uniform over the exit plane. The ordinate is

the response u/Ue measured by moving the hot wire back along the jet axis

to x/D = 4. The value u/Ue = 0.038 at u e/Ue = 0 is the natural turbulence

intensity near the tip of the potential core. The amplitude response is

shaped like many response functions occurring in engineering, for example

the stress-strain diagraa. for a ductile metal: the curve rises almost

linearly with small forcing amplitudes, then yields, or saturates, under

some nonlinear effect (of course the figure represents time-averaged rather
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Figure 10. Amplitude response at the preferred Strouhal number 0.30. Tha

response u/U is measured on the centerline four diameters downstream of

e

the jet exit.
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than instantaneous relationships). Under a forcing amplitude of 1%, that

is Ue/Ue = 0.01, the response u/Ue is 13.9%, only a small part of which is

aperiodic background turbulence (cf. figure 12). Under a forcing amplitude

Ue /Ue = 2%, the response u/Ue has risen to 17.2%, and it cannot be driven

past 19% under any reasonable level of forcing.

One might have thought the waveform at x/D = 4 simply falls apart

under forcing amplitudes above 1-2%, but quite a different process under-

lies saturation. Figure 11 shows four oscilloscope photographs of the

wavefons upon which figure 10 is based. The forcing amplitudes ue/U e are

0.005, 0.01, 0.u2, and 0.04, doubling from one photograph to the next. The

amplitude and time scales are arbitrary but the same in all pictures; the

axial component of velocity increases toward the vertical, and time

increases from left to right. The signal at a forcing amplitude of 0.5%

is a sine wave, distorted at random by ambient turbulence. As ue/U e

advances to 1%, the signal becomes cleaner and almost doubles in amplitude,

but still resembles a sine wave. The amplitude has increased only slightly

at ue/U e = 2%, but now the waveform has steepened along its rising front;

a significant harmonic has arisen from the fundamental being forced. Since

the Strouhal number of forcing is 0.30, the Strouhal number of the harmonic

must be 0.60. Little change takes place as u e/Ue increases from 2% to 4%,

though some fine-scale turbulence begins to appear during the relaxing part

of the wave cycle. The wave does not become disordered at forcing ampli-

tudes above 1%, but instead saturates under the action of its harmonic.

Those remarks are given quantitative form in figure 12, which is a

plot of . ter-- amplitude-response data. The curve witnout data points
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(a) (c)

(b) (d)

Figure 11. Waveforms of the preferred mode, measured on the centerline

four diameters downstream of the exit. The Strouhal number is 0.30 and

th~e forcirg amplitudeu e/Ue are (a) 0.5%, (b) 1%, (c) 2%. and (d) 4%.
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Figure 12. Filtered response functions of the preferred mode. The

experimental conditions are the same as for figure 10, from which the

curve without data points is taken, representing the total intensity u/U ee

The square data symbols denote the fundamental response u0. 3 0/U, a-id the

triangular symbols denote the harmonic response u0.60/Ue .
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is the total amplitude response u/U taken from figure 10, the curvee

defined by the square data symbols is the fundamental response u0.30/U e

obtained by filtering the hot-wire output around the forcing frequency

185 Hz, and the curve with triangular symbols is the harmonic response

u /U obtained by filtering around 370 Hz. The filter was a Dytronics
0.60 e

Model 720, with a band-pass width about 7% of the center frequency. The

fundamental is accurately linear up to a forcing amplitude ue/U e = 0.5%,

then curves over as u /U increases from 0.5% to about 1.5%. The harmonic
e e

builds up in the same interval, and the two come into equilibrium around

u/U e = 2%. The fundamental saturates at a value u0.0/U = 17.9%,

and the harmonic at u 0.60/U e = 3.5%.

All the data presented so far were obtained on the centerline at

x/D = 4, which was deemed likely to be the point of maximum response on

the basis of the flow-visualization experiments. The conjecture can be

verified by fixing ue/Ue and varying the het-wire location x/D. Figure

13 is an axial profile of the fluctuation intensity u/U e, measured along

the centerline under the forcing conditions u e/Ue = 2% and St = 0.30. The

intensity profile for the unforced ca,e is superposed from figure 8 with-

out data points. The slight but well chosen surging at the exit plane is

seen to drive a powerful wave, which indeed reaches a peak amplitude near

x/D = 4, more precisely, at x/D = 3.7. The intensity profile decreases

from x/D = 4 to 6 and there merges with the profile that exists in the

absence of forcing. The natural turbulence intensity profile reaches a

peak at x/D = 9.5 on the cent-rline, and forcing under the conditions

u /U = 2%, St = 0.30 draws that peak inward to x/D = 8.5.
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Figure 13. Axial profile of the turbulence intensity, measured along the

centerline under 2% forcing at a Strouhal number of 0.30. The curve with-

out data points represents the unforced case and is taken from figure 8.
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Axial profiles of the root-mean-square filtered fundamental u0.30/U e

and harmonic u0. 6 0/Ue are presented in figure 14 for the same forcing con-

ditions. The fundamental and harmonic rise and fall together, with no

apparent tendency for the spatial growth of the harmonic to lag the growth

of the fundamental. Together they dominate the first six diameters of the

jet and then fall toward zero. The experimental points do not quite reach

zero, because the finite filter window admits some background turbulence

not being driven by the periodic surging, especially in the intensely tur-

bulent region around x/D = 8. The total intensity u/Ue is reproduced

without data points in figure 14 as a solid line. The dashed line is the

residual obtained by subtraction of squares:

u 2 0. ( 30) 2 U0.60)2 1,
__r = _U _ (u0.0

e e C e

The intention was to Lnclude only the periodic parts of the filtered

tcris, so the fundamental and harmonic curves in figure 14 were extrapo-

lated sensibly to zero near x/D = 8 before the subtraction.

If the remaining harmonics of the forced wave are small, as seems

likely, the ur/U e can be regarded as the intensity of background turbulence

not under the control of the surging at the exit plane. The level of

uncontrolled fluctuations on the centerline is essentially zero from

x/D = 0 to 3 and reaches the level of the controlled structure only at

x/D = 6 under the forcing conditions u e/U = 2%, St = 0.30. The energy in

the curious ramp-like portion of the natural intensity prof4 le, seen in
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Figure 14. Filtered axial profiles of the preferred mode. The solid

curve without data points repre.cents the total intensity u/U e nd is 1k ~n

Ie

from figure 13. The square data symbols denote the contribution u
0.0e

of the fundamental, and the triangular symbols denote the contribution

ii /U of the harmonic. The dashed curve represents the intensity of

e

t-.irbulenc- not bound in the fundamental or harmonic.
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figure 8 between x/D = 0 and 5, is boL I into the strictly periodic flow.

Presumably that ramp is the potential-core signature of big eddies in the

mixing layer, in which case one can say that big eddies within thq first

five diameters of the jet can be controlled by a slight surging applied

in the exit plane at a Strouhal number of 0.30. Moreover, no control is

possible beyond eight dimneters. By control, we mean that the surging

fixes the frequency and phase of big-eddy formation.

The forced wave naturally has an effect on the mean flow. A complete

discussion is deferred to §8, but an idea of the effect can be gained from

figure 15, which is a profile of the dimensionless mean speed U/Ue mea-

sured on the centerline under the conditions u /U = 2%, St = 0.30. The

line without data points denotes the unforced case, this time taken from

figure 7. Forcing draws the asymptotic decay curve beyond x/D = 8 in

toward the origin about two diameters. The reason for the shift in virtual

origin is that forcing increases the entrainment between x/D = 0 and 8, so

the jet passes out of the controlled region with a volume flux appropriate

to an unfcrced jet leaving an exit two diameters upstream from the actual

exit.

5. Amplitude Response at Various Strouhal Numbers

In what sense is the mode studied in the foregoing section preferred?

We first considered the question during the flow-visualization experiments,

when it became apparent that puffs tend to form at an average Strouhal

rumber of 0.3. An obvious possibility is that St = 0.30 char-'Lerizes a

L
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Figure 15. Effect of the preferred mode on the decay of mean speed along

the centerline. The forcing level is 2%, and the Strouhal number is 0.30.

The profile without data points represents the unforced case and is based

on figure 7.



-44-

maximally amplified mode of linear instability, but the possibility does

not survive analysis. Batchelor & Gill (1962) have treated the temporal

instability of doubly infinite jet columns. For a top-hat velocity pro-

file, they found that axisymmetric waves become progressively more unstable

as the Strouhal number increases. Nothing seems to distinguish the mode

at St = 0.30. If the column is presumed to have a boundary layer of

finite thinkness, then a two-dimensional mechaivism (Michaike 1964, 1965)

takes over and establishes a preference as the wavelength becomes compa-

rable to the boundary-layer thickness. The fastest growing short waves

are pitched much higher than St = 0.30, however, and in any case the

boundary-layer trip has eliminated them from the present experiments.

We thought about other linear mechanisms outside the theory of

Batchelor & Gill. Their theory was revised for spatially growing waves,

purely oscillatory in time, but the amplification rate again was found to

grow monotonically with Strouhal number (cf. §9). Spatial instability of

a vortex sheet leaving a semi-infinite plate was studied (Orszag & Crow

1970), in the hope that an instability downstream of a je: might interact

with the nozzle to produce a large local surging when St = 0.30. The

interaction between a two-dimensional vortex sheet and an adjoining

boundary was found to be disappointingly weak, however, and the interaction

between a jet column and nozzle is probably even weaker. Every appeal to

linear dynamics failed to establish a preference for the Strouhal number

of 0.30. The reason is that noplinearity establishes the preference.

Figure 16 is a plot of amplitude-response functions measured on the

centerline at x/D = 4. The total response u/Ue is plotted against the
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Figure 16. Amplitude-response functions measured on the centerline four

diameters downstream of the jet exit. The response functions are labeled

with Strouhal numbers, which range from 0.15 to 0.30.
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root-meat.-square surging u e/Ue in the exit plane at four Strouhal numbers:

St = 0.15, 0.20, 0.25, and 0.30, the accessory experimental conditions

being listed in table 3. As the Strouhal number rises from 0.15 to 0.30,

the response at each level of forcing rises progressively. Within the

range of small u e/Ue where the fundamental (not shown) depends linearly

on forcing, the slope du/du rises monotonically in accord with stability
e

theory. The amplitude u/U at which nonlinear saturation begins to set

in rises as we1l.

Figure 17 illustrates the consequences of forcing at higher Strouhal

numbers. The amplitude tesponse at St = 0.30 appears once again, together

wi:h response functions at St = 0.35, 0.40, 0.45, and 0.50, each measured

on the centerline at x/D 4. The slope du/'du continues-to rise mono-

tonically with Strouhal-, number in the linear region, near u /U S _, bit
e e-

nonlinearity imposes'an increasingly powerful restraint on the maximum

attainable response. The saturation limit of u/U decreases continuously

as the Strouhal number Increases from 0.30 to 0.50. The mode having a

5:rouhaZ number of 0. 30 is preferred in the sense that it can attain the

highest possible ampitude under the combined effects of linear amplifica-

tion and nonlinqar saturation.

We measured response functions at St - 0.55 and 0.60, but they fall

too near the St = 0.50 curve to be plotted in figure 17. The maximum

attainable response becomes very nearly constant at u/Ue " 10% for the

hahest Strouhal numbers we investigated. That result accords with an

observation of Freymuth (1966). that waves on a free laminar boundary

layer tend to saturate at a constant amplitude ar the Zowe.t Strc:-ia
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Figure 17. Amplitude-response functions continued through the Strouhal-

number interval 0.30 to 0.50.
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numbers he investigated, which were mostly greater than 3.0 based on jet

diameter, and never below 0.9. It therefore Peems likely that u/Ue = 10%

persists as the upper limit of response at x/D = 4 for Stroulial numbers

ranging from 0.5 up to values so high that the thickness of the laminar

boundary layer, if any, becomes involved.

The curves in figures 16 and 17 can be regarded as cuts through an

amplitude-response surface above the plane of forcing parameters (St,

u e/U e). Figure 18 is a contour map of the response surface, constructed

from the original response curves and their cross-plots against St. The

abscissa of figure 18 is the Strouhal number St, the ordinate is the

forcing amplitude ue/Ue, and the contGurs are levels of constant response

u/Ue measured on the centerline at x/D-= 4. The higher contours point

like daggers to the Strouhal ntber 0.30. Looking along a cut at a con-

stant and very small ue/Ue? one would find no Strouhal-number preference.

Linear stability theory applies only along such cuts, so its failure to

explain the Strouhal-number preference was inevitable. One must look

along a horizoatal cut at higher ue/Ue, say Ue/Ue - 1%, to find a mode of

maximum amplitude. Note that the Strouhal number of the mode preferred

along a horizontal cut decreases somewhat with increasing u e/U . A a

forcing amplitude U/U e - 0.52, che response attains a maximum at

St - 0.37. When u /Ue - 1%, the maximum occurs at St - 0.34, and the

maximum occurs at St - 0.30 exactly, when ue/Ue - 2%. Thereafter the

variation of preferred St with increasing ue/Ue is slow. The assertion

that 0.30 is the preferred Strouhal number must be qualified slightly,

because it involves the tacit assumption that the forcing amplitude uei e
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Figure 18. Contour map of the total response four diameters downstream

on the centerline, as a fun:tion of Strouhal number and amplitude of

forcing. The contours are labeled with u/U e, which rises by 0.02 from one

curve to the next. The abscissa is the contour u/Ue a 0.04 approximately,

the turbulence intensity in the absence cf forcing.
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is 2% or more. The precise Strouhal-number preference for any given level

of forcing can be deduced from figure 18.

Imagine a round jet in a turbulent state having no orderly structure

of the kind under study. The turbulence excites waves on the jet column

just as our exit-plane surging does, except that the turbulent forcing is

not confined to one frequency. The turbulence hunts over the (St, ue /U e

plane, so to speak, triggering wavetrains at random. Those triggered at

a Strouhal number of 0.30 reach an especially high amplitude, sporadically

overthrowing the chaos assumed as the initial state of turbulence. The

structure of big eddies can be expected to pull in around the mode at

St = 0.30, which attains the highest possible amplitude under nonlinear

saturation.

6. Axial Profiles at Various Strouhal Numbers

We showed in the foregoing section that the Strouhal number of maxi-

mum response at x/D = 4 varies somewhat with u e/U e , having no finite value

at ue/U e = 0 and acquiring values around 0.30 for ua/U e > 2%. As might

be expected, the preferred Strouhal number also depends to some extent on

x/D. The waves all amplify with distance dcwnstream, so a high x/D cor-

responds in a loose way to a high ue /U e . Here we examine the correspond-

ence by presenting axial profiles of the total response u/Ue for the same

Strouhal numbers as in §5, but for a forcing amplitude u e/Ue fixed at 2%.

Figure 19 shows centerline profiles of response to 2% forcing at the

Strouhal numbers 0.15, 0.20, 0.25, and 0.30 (cf. figure 16). The curve
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Figure 19. Centerline profiles of turbulence intensity, under 2% forcing

in the Strouhal-number interval 0.15 to 0.30. The Strouhal numbers are

given on the plot.
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Figure 20. Centerline profiles continued through the Strouhal-number

interval 0.35 to 0.50.
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pertaining to St - 0.30 has already appeared in figure 13, which shows how

the data points were generally spaced. The effect of forcing at St = 0.1.5

is very slight, and the axial intensity profile nearly coincides with the

unforced case in figure 8. As St rises from 0.15 to 0.30, the ramp-like

part of the intensity profile bulges upward in the interval x/D = 0 to 5.

When St = 0.30, the amplitude of the forced wave attains a sharp maximum

around x/D - 4 and then decays downstream into the secondary maximum due

to natural turbulence.

Figure 20 shows the primary peak collapsing as the Strouhal number

advances through the values 0.35, 0.40, 0.45, and 0.50 (cf. figure 17).

At small distances x/D, the spatial growth rate d(u/U e)/d(x/D) increases

monotonically with Strouhal number throughout the range 0.15 to 0.50, cs

one would expect from linear stability theory. The peak response u/Ue is

realized on the St = 0.30 profile, near x/D = 4. The location x/D = 4

was therefore the correct choice for defining the Strouhal-number pre-

ference in §5, because the mode cf maximum response at x/D = 4 is also

the mode of maximum response over all values of the parameters St and x/D.

By analogy with §5, the curves in figures 19 and 20 can be regarded

as cuts through a response surface above the (St, x/D) plane. A contour

map of the surface is presented in figure 21, which is analogous to figure

18. The contours are again levels of constant response u/Ue, and the

abscissa is still the Strouhal number St. The ordinate this time is x/D,

the forcing amplitude u e/Ue being fixed at 2%. The peak within the

perimeter u/Ue = 16% defines the Strouhal number of the mode preferred

under 2. forcing an the locatLon at which it attains maximum amplitude.
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Figure 21. Contours of centerline turbulence intensity as a function of

Strotthal number of forcing and distance downstream. The forcing amplitude

is fixed at 2%. The contours are labeled with U/Ue, which changes by 0.02

from one curve to the next.
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Note that a clear Strouhal-number preference cannot be discerned by looking

along a horizontal cut at small x/D. All waves are linear sufficiently

close to the nozzle even when driven by a 2% surging, and the higher the

Strouhal number in the linear regime, the greater the rate of spatial

amplification.

Axial profiles at St = 0.60 were also measured and deserve special

comment. Figure 22 is a plot of the root-mean-square centerline response

u/Ue measured under the conditions u e/Ue = 2% and St = 0.60, twice the

Strouhal number of the prefezred mode. The curve without data points is

the intensity profile for the unforced case, taken from figure 8. The

response profile at St = 0.60 has two curious attributes: an abrupt

change of slope at x/D = 4, and a shift of the background-turbulence pro-

file a full three diameters upstream toward the nozzle. The corresponding

profile of mean centerline speed U!Ue is plotted in figure 23, which con-

firms the powerful effect of forcing at St = 0.60. The potential core has

shortened by two diameters, and the asymptotic decay profile has drawn

inward three diameters. The mean-speed profile may be compa-ed with

figure 15, which shows the more moderate changes produced by driving the

preferred mode directly. The virtual origin of the decay profile shifts

only two diameters upstream, as explained in S4.

Judged solely on the basis of figures 22 and 23, the consequences of

driving the jet at a Strouhal number of 0.60 seem paradoxical: the mode

saturates at a relatively modest amplitude, say u/Ue = 7.5%, yet deforms

the jet more powerfully than the preferred mode having more than twice the

saturation amplitude. The resolution of the paradox was apparent from
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Figure 22. Centerline profile of turbulence intensity under 2% forcing

at a Strouhal number of 0.60. The curve without data points represents

the unforced case and is taken from figure 8.
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Figure 23. Mean-speed decay along the centerline under 2% forcing at a

Strouhal number of 0.60. The curve without data points is the unforced

profile taken from figure 7.
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oscilloscope traces of the hot-wire signal: the St - 0.60 mode survives

only up to x/D = 4, at which point a violent St = 0.30 subharmonic arises,

presumably by the process of engulfment seen in figure 6(a). The changes

in the jet are not wrought by the St = 0.60 raode directly, but instead by

its subharmonic at the preferred Strouhal number of 0.30. The St = 0.60

fundamental merely serves as an amplifier between the 2% surging in the

exit plane and the 7.5% surging downstream at the point of subharmonic

formation.

7. Summary Description of the Modes

In the two previous sections we studied the response u/Ue, first by

setting x/D = 4 and allowing ue/Ue and St to vary, and then by setting

Ue/U e = 2% and allowing x/D and St to vary. He:e we bring the response

study to its logical completion by setting St = 0.30 and varying ue/Ue

and x/D. The reason for doing so is that the other procedures have left

open questions about the eventual decay of orderly structure. Why do the

intensities in figures 19 and 20 decay beyond the primary peaks? What

effect does the damping have on the choice of a preferred mode? The

nature of the problem can best be judged from figure 14, which shows the

evolution of fundamental and harmonic amplitudes under the forcing con-

ditions St = 0.30, ue/U e = 2%. The growth of the fundamental is caused

by linear instability, and the peak amplitude is determined mainly by

nonlinear saturation. The nature of the decay from x/D = 4 to 8 remains

to be studied, together with its effect on the precise location and
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amplitude of the peak.

Figure 14 conveys the impression that the fundamental u0. /Ue

would peak at some x/D and thereafter decay, even if the mode were forced

so slightly that nonlinear saturation never took hold. At least two

linear decay mechanisms are available. One possibility is that fine-scale

background turbulence acts as an eddy viscosity and grinds the wave down.

A second and less conjectural possibility is that the wave, as it propa-

gates downstream, encounters mean velocity profiles which are progres-

sively more stable with respect to axisymmetric disturbances. All axi-

symmetric modes amplify on a top-hat velocity profile, but all decay on

a bell-shaped profile of the kind a turbulent jet assumes downstream of

the potential core (Batchelor & Gill 1962). An axisymmetric mode could

be expected to grow around the potential core, then lose its grip on the

mean field in the transition region and die away. A similar mechanism

terminates the growth of waves on a spreading two-dimensional laminar

wake (Ko, Kubota & Lees 1970).

Figure 24 shows centerline profiles of the fundamental u0.30/U e

driven at a Strouhal number of 0.30. The lowest curve represents the

case u e/U = 0 and is included to show the root-mean-square background

fluctuations admitted through the finite filter window. The remaining

profiles are associated with the forcing amplitudes u e/Ue = 0.25%, 0.5.,

1%, 2%, and 4%, doubling from one value to the next. The profile for

u e /Ue = 2% is based on the same data as figure 14. The profiles here are

plotted in semi-logarithmic coordinates to distinguish linear and non-

linear mechanisms. If the jet were a linear system, than the axial
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Figure 24. Centerline intensity profiles of the fundamental wave driven

at a Strouhal number of 0.30. The data symbols denote the following

forcing amplitudes ue/U e: Vno forcing, 0 0.25% forcing, 0 0.5%, 0 1%,

O 2%, and A4%. The ordinate u .30/U e is logarithmic, so the forced

profiles would have had the same shape had the jet been linear.
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response profiles would have the same shape regardless of forcing ampli-

tude, which would merely locate each profile along the logarichoic ordinate

u/U . Indeed the axial intensity profiles for the two lowest forcing

levels, u /U e 0.25% and 0.5%, differ only by a constant vertical dis-e

placement out to the region x/D = 6 or 7 where background turbulence takes

over. Those profiles show hot! a forced wave behaves in the absence of

nonlinear saturation: the wave grows more-or-less exponentially with

distance downstream, grows less rapidly near the tip of the potential

core, reaches a peak proportional to forcing amplitude at x/D = 5.5, and

thereafter decays under the action of a changing mean field or eddy

damping. The total armplification u/ue at x/D = 5.5 is about 18.

At higher levels of forcing, the jet behaves a- a linear system only

within the first diameter or two of the exit. The peak of the u e/Ue = 1%

profile is only 47% higher than the peak of the ue/U e = 0.5% profile.

The fractional increase of the peak intensity drops to 27% as ue/U
e e

doubles from 1% to 2%, and to 14% under the final doubling. The main

effect of increasing the root-mean-square surging b,:yond 1% is to draw

the point at which the wave saturates inward toward the nozzle. At a

forcing ampiltude of 0.25%, the fundamental amplitude u 0.30/U e Deaks at

x/D = 5.5, which is therefore the point where the linear mechanisms of

growth and decay just balance. At a forcing level of 1%, the peak occurs

at x/D = 4.2, and it drops to ::/D = 3.4 when the forcing level reaches

4%. Notice how thze curves associated with the two highest levels of

forcing, u e/Ue = 2% and 4%, knit together into a common decay profile

after saturating.
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Figure 25. Centerline profiles of the harmonics associated with the funda-

mentals of figure 24. The Strouhal number of forcing is 0.30, and the data

symbols denote the same forcing amplitudes as in the previous figure. The

ordinate u 0.60/Ue is again logarithmic.
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Pigure 25 is a semi-logarithmic plot of the harmonic 110.60/Ue under

the six forcing conditions of figure 24: the lowest curve is the filter-

window background, and the other five are harmonic profiles under forcing

amplitudes u e/J that double sequentially from 0.25% to 4%. Agaia the

e edat; '*or u e/U e = 2% are taken from figure 14. The harmonic profiles have

the character one wou.d expect from the associated fundamentals. Forcing

at u /U = 0.5% or below evokes only a slight harmonic response, which ise

why the fundamental is free :C nonlinear saturation in that range. As the

forcing level increases beyond 1%, a stronger and stronger harmonic arises

to inhibit the growth of the fundamental. Raising the forcing amplitude

from 2X to 4% brings the harmonic forth at a smaller x/D but does not

greatly enhance its amplitude.

Figures 24 and 25 pertain to the St - 0.30 mode, but the qualitative

understanding we have drawr from them is general: a forced axisymmetric

:ave amplifies owing to the linear instability ui a top-hat jet column,

saturates under the nonlinear action of a harmonic, and finally decays

owing to an essentially linear process, either mean-field changes or eddy

damping.

Having reached an understanding from the hot-wire data, we returned

to flow-visualization experiments for confirmation. The changes made

since the photographs of §2 were taken should be recalled: figures 4 and

6 show a 1-inch jet with a lamiiar boundary layer and without artificial

surging, whereas the forced jet has a diameter of 2 inches and a fully

turbulent blundiry layer. Because the volume flow quadrupled i the

transition from a 1-inch to a 2-inch jet, we could not retain fog as a



means of visualization. Boundary-layer turbulence and higher Reynolds

numbers put the schlieren method to even greater disadvantage than before,

but schlieren photography was the only option. Happily the effects of

forcing are spectacular enough to show through fine boundary-layer tur-

bulence.

Three of the schlieren photographs are presented in figure 26. They

were taken much the same way as those of figure 4, except that Type 52

Polaroid film of moderate contrast was used to suppress irrelevant detail.

Photography under forced conditions required special care, because the

introduction of CO2 causes the resonance frequencies of the plenum to

shift slightly. If the loudspeaker were tuned in the absence of CO2,

then ue/U e would fall off the resonance peak when CO2 was introduced. The

problem was easily circumvented by tuning the system while maintaining a

flow of CO appropriate for photography. The 185 Hz resonance of table 3,2

for example, shifted to 181.4 Hz, which was used as the frequency for

driving the St = 0.30 mode. The shaft entering from the right in figures

26(b) and (c) is the hot-wire probe, located at x/D = 4 and left in the

flow to monitor the tuning.

Figure 26(a) shows the 2-inch COy-seeded jet without forcing. The

usual hints of orderly structure appear, with the usual ambiguity (cf.

figure 1). Figures 26(a) and (b) were taken at the same Reynolds number,

Re = 106,000, but the flow seen in 26(b) was forced under the conditions

St = 0.30, u e/Ue = 2%. Figure 26(c) was taken under the forcing condi-

tions St = 0.60, u e/Ue = 2%. Figures 26(b) and (H) illustrate the

kinematics of forced waves in a striking manner. The St = 0.60 mode
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(a)

Figure 26. Schlieren photographs of the 2-inch jet seeded with CO 2. Part

(a) shows the unforced jet at an exit speed of 103 ft/sec and a Reynolds

number of 206,000. Trhe remaining parts show the jet under 2% forcing at

Strouhal numbers of (b) 0.30 and (c) 0.60.
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growa quickly near the nozzle but saturates 1-2 diameters downstream, in

accord with the measured intensity profile of figure 22. A train of three

saturated waves propagates toward x/D = 4 and there suffers a violent

transformation, leading to the enormous spreading angle evident in figure

26(c). The St = 0.60 mode contorts the surface of the jet column into

steep waves but cannot penetrate deep enough to disintegrate the column as

a whole. The St = 0.30 mode shown in figure 26(b) grows more gradually

downstream of the nozzle but eventually causes contortions as steep as

those of the St = 0.60 mode. Because of its greater wavelength, the

St = 0.30 mode penetrates deep into the jet column and causes its virtual

disintegration.

8. Influence of Forcing on Entrainment

and Background Turbulence

We have concencrated so far on the structure of the forced waves

themselves, and now we turn to their effect on the mean flow and on back-

ground turbulence. The work presented in this section concerns the

St = 0.30 mode alone. It would have been interesting to carry the study

of the St - 0.60 mode beyond the centerline profiles of figures 22 and 23,

but time fell short.

Figures 27 and 28 display the results of radial hot-wtre traverses

at five stations along the jet, namely x/D = 0.025, 2, 4, 6, and 8. Part

(a) of each figure shows radial profiles in the absence of forcing, and

part (b) the corresponding profiles under the forcing conditions ue/U e = 2%,
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Figure 27. Radial mean-speed profiles at five stations along the jet axis:

(a) without forcing, and (b) with 2%0 forcing at a Strouhal number of 0.30.

The statiors x/D are specified near the ordinates of the profiles, which

are arranged to suggesLthe spatial. structure of the jet.
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Figure 28. Radial intensity profiles of the axial component of turbulent

velocity: (a) unforced, and (b) forced At a level of 2% and a Strouhal

number of 0.30.
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St = 0,30. Figure 27 shows U(x,r)/U e, the axial component of mean velocity,

and figure 28 shows u(x,r)/Ue, the root-mean-square axial component of tur-

bulent velocity. The ordinate in each case is r/R, R being the 1-inch

radius of the jet. The profiles are staggered along the abscissas to sug-

gest the spatial structure of the jet and global effects of forcing. Note

that the axial spacing is compressed by a factor of four relative to the

radial.

According to figure 27, forcing makes no dramatic change in the mean

field. The mean profile spreads somewhat faster under forcing, so entrain-

ment is enhanced, but the consequences of forcing appear much more clearly

in the radial intensity profiles of figure 28. Forcing is seen to inflate

the turbulence level out to x/D = 6, especially on the outskirts of the

jet and inside the potential core, which can be taken as the cone generated

by a straight line running from x/D = 0, r/R = 1 down to x/D = 6, r/R = 0.

The turbulence level in the mixing layer around r/R = 1 is not so strongly

affected.

The most interesting property of the mean flow is its volume flux,

whose derivative with respect to axial location is entrainment. The

volume flux 3(x) is defined by an area integral over the axial component

of mean velocity:

Q(x) f Ui (x,r) 2vr dr

0

The subscript i directs attention to the fact that volume flux makes sense

rly when one has *n mind inner and outer solutions of a comprehensive
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velocity field. The notions of volume flux and entrainment are creatures

of theory, in the case of a jet, rather than experiment. In order to

appreciate that important but subtle point, suppose that an expression is

known for the mean axial flow Ui(x,r) within the turbulent region of a

jet. Then the volume flux Q can be calculated at each station x, provided

the radial integration of rUi. converges. The local entrainment is dO/dx,

which means that the jet induces an external potential flow as though it

were a line sink of strength dQ/dx. One can show on the basis of simi-

larity arguments that dQ/dx must approach a constant value k Q /D farQe/

downstream, where 0 is the volume flux out the exit and k is a dimension-*e

less constant (cf. Wygnanski 1964). As a result, the axial component of

induccd potential flow, say U0(x,r), approaches k Qe/4nDr at great dis-

tances r from the Jet axis. The quantity rU does not fall to zero as r0

approaches infinity, and the volume flux in the induced potential flow is

in.inite. The flux Q therefore cannot be defined in terms of the net

flow U = Ui + Uo, but only in terms of the inner rotational part Ui.

The quantity measured experimentally is U, so a somewhat arbitrary

judgment must be made to isolate U . The judgment was not very difficult

in practice. We replotted the data of figure 27 and others downstream in

the form of dimensionless flux profiles (r/R) U(x,r)/U . The potential

tails of the flux profiles were obvious, and we simply faired the curves

to zero before performing planimeter integrations. Hopefully the faired

profiles were good representations of (r/R) Ui(x,r)/U e , which could perhaps

be measured objectively by conditioning the velocity mean on the presence

of turbulence.
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Figure 29. Axial profiles of volume flux, normalized on the flux out the

jet exit. The round data symbols denote the unforced case, and the squaTe

symbols represent comparable data from Sami et aZ (1967). The triangular

symbols denote the case of 2% forcing at a Strouhal number of 0.30.



-71-

The resulting normalized flux profiles Q/Qe are presented in figure

29. The circular data points represent the unforced jet, and the tri-

angular points represent the jet under the forcing conditions u /U = 2%,
e e

St - 0.30. The square points were obtained by integrating the velocity

profiles published by Sami, Carmody & Rouse (1967), the same standard

being used for fairing the outer part of their curves as for ours. The

agreement between theii data and our own for the unforced jet is impres-

sive, especially since their Reynolds number was 220,000.

In the absence of forcing, the volume-flux profile is seen to be

linear for x/D both large and small, with slopes

0.136 Qe/D (x/D . 2)

dx

0.292 Qe/D (x/D Z 6)

measured from figure 29. The entrainment dQ/dx is therefore constant both

near to and far from the jet exit, in accord with similarity arguments

(Wygnanski 1964). Wygnanski cited figures implying that dQ/dx - 0.128 Qe/D

in the mixing-layer region near the jet and 0.456 Qe /D far downstream. The

latter value is much higher than we measure and is found to result from an

assumed functional form of U(x,r) inappropriate for calculating volume

flux. To make sure of the downstream limit, we calculated the volume flux

of the asymptotic jet profile measured by Wygnanski & Fiedler (1969), with

the result that dQ/dx = 0.263 Qe/D. The constant is only 10% short of the

value 0.292 measured from figure 29 and is probably more reliable, because
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Wygnanski & Fiedler took pains to mitigate room drafts. The entrainment

rates dQ/dx = 0.13 Qe/D near the exit and 0.27 Qe/D Zar downstream should

both b, accurate to within ±0.01 Qe/D.

Forcing under the conditions ue/Ue = 2%, St = 0.30 is seen from

figure 29 to enhance entrainment in the interval x/D = 0 to 6 and particu-

larly in the last two diameters of that interval, beyond the point x/D = 4

where the vortex puffs attain their maximum intensity. Further downstream

the volume-flux profile attains the same slope as the unforced case, the

virtual origin having been drawn upstream about twc diameters. The shift

of virtual origin was discussed in connection with figure 15 and can now

be understood as the result of enhanced entrainment in the interval

x/D = 4 to 6.

We now take up the second topic of this section - the influence of

forcing on background turbulence, which means any fluctuations not bound

into the driven fundamental or its harmonics. Periodic forcing might

reasonably be expected to suppress the larger scales of background tur-

bulence, because big eddies would tend to become locked into the forcing

frequency. The simplest statistical quantity bearing on that conjecture

is F(f), the spectrum of axial velocity fluctuations at a fixed point

(x,r). In the unlikely event that forcing bound up aZZ background tur-

bulence, then F(r) would comprise a sequence of spikes at the forcing

frequency and its harmonics. If forcing had no effect on the background,

then F(f) would consist of spikes superposed on a broad-band component

identical to the spectrum that exists in the absence of forcing. The

measured spectrum should lie between t.e extremes.
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An on-line computer determined the spectra by means of fast Fourier

transformation (Pao, Hansen & MacGregor 1969). The program uses the raw

linearized hot-wire signal for computing the mean and a high-pass filtered

version for computing fluctuation quantities; filtering trims off the

direct current to imp-ove resolution. The window of the Krohn-Hite Model

330 band-piss filter lay between 0.2 Hz and a high frequency selected to

control aliaying. Both the raw and filtered signals were sent through

Dynamics Model '514 amplifiers and shielded coaxial cables to an IBM Model

1827 analogue-to-digital converter and Model 360-44 computer, the trans-

mission system being free of distortion up to 20,000 Hz. The continuous

signals were converted to 18,000 samples per second with a resolution of

14 bits plus a sign bit, and the samples were processed in lots of 8192

dictated by the computer memory capacity. Three hundred lots were

typically processed to insure convergence, which was monitored through

intermediate print-outs. Since only the larger scales of turbulence were

of interest, the spectra could be confined below 9000 Hz and in some cases

below 1000 Hz. Spectral windows of 0.078 Hz and 0.24 Hz were used to

resolve the forcing frequency and its first two harmonics, and the results

were overlapped with broad-band spectra obtained with a 2.18 Hz window.

Each time a spectrum was measured, the root-mean-square fluctuationou was

obtained both from thL spectrum and by the usual analogue method. The

results always agreed within ±2%. Analogue checks of several spectral

points fell within ±10% of the digital values.

Six spectra are presented in figure 30. Each was measured at the

axial station x/D = 4, and parts (a), (b), and (c) of the figure correspond



-74-

0.12 1

0.08 I

ft2/sec 2  
(a)

0.04--

0 100 200 300 40U 500 600

f, Hz

Figure 30. Turbulence spectra at x/D = 4 ana (a) r/R = 0, (b) r/R = 1.0,

and (c) r/R = 1.5. The square data symbols denote the unforced case, and

the round symbols denote the case of 2% forcing at a Strouhal number of

0.30. The computer evaluated many more data than are shown. The dashed

spike in part (a) represents a pure sine wave with the power of the funda-

mental.
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to the radial locations r/R = 0, 1.0, and 1.5. The square data points

represent the unforced jet, and the round data points show the spectral

consequences of forcing under the conditions u e/Ue = 2%, St = 0.30. The

data pointo are spaced for visual convenience and represent only a frac-

tion of the computer output. The dashed spike in figure 30(a) has the

same power content as the turbulence fundamental but was generated by

feeding a 185 Hz sine wave through the digital system. The artificial

spike is included to show that the digital filter window is narrow com-

pared with the width of the broad-band spectrum underneath.

Each forced spectrum has definite peaks at the forcing frequency

185 Hz and its first two harmonics. For the most part forcing does sup-

press background turbulence, the exception being at r/R = 1.5 in the

frequency interval 20-160 Hz, as shown in figure 30(c). Figure 30(b),

obtained with the hot-wire probe at x/D = 4, r/R =1 ii the midst of the

mixing layer, shows that the 185 Hz fundamental attracts both higher and

lower frequency eddies, though the effect is not so pronounced as one

might have wished. Suppression of the background is most evident in

figure 30(a), whose ordinate is expanded by a factor of ten relative to

the others. Figure 30(a) was obtained with the hot-wire probe at x/D = 4,

r/R = 0, just inside the tip of the potential core. Forcing is seen to

diminish and gather up the naturally occurring bell-shaped spectrum, almost

fixing the phase of the big eddies that leave their signature in the poten-

tial core.

With respect to aerodynamic sound production, the important question

is whether forcing imposes order on thLi potential flow outside the mixing
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region, because a fluctuating exterior potential gives rise to sound.

Unfortunately a hot-wire anemometer is useless outside the rotational

core of the jet, the steady component of flow is toc weak to sweep away

the hot-wire wake, and the signal is meaningless. The appropriate mea-

surement could be made outside a high-speed subsonic jet, where the

strength of pressure fluctuations would permit the use of a microphene

in the near field. We hope such an exper4 ent will be taken up in the

future.

9. Comparison with Stability Theory

The reader may have noticed the omission of one easily measured

property of the forced waves, namely their lengths. Wavelength measure-

ments have been deferred to this section so that they could be set into

a theoretical framework. They have some surprising implications for the

stability theory of waves on a jet column.

In order to compare theory and experiment, we suppose that the

instantaneous axial component u*(x,t) of velocity on the centerline has

the form

ax

u* = e cos k(x-ct)

k is the wavenumber, a the spatial amplification rete, and c the phase

velocity of the forced wave, all three parameters being real. The wave-

length ' is defined as the distance between everv other zero intercept of

u*, or as the distance between consecutive peaks. The two definitions



-78-

give the same length A, related to k by the formula k - 2ff/. The phase

velocity c equals fA, f being the known forcing frequency. The amplifi-

cation rate a can be taken as proportional to the slope of the straight

segment of a semi-logarithmic amplitude profile like those of figure 24.

Admittedly the straight intervals are not extensive, and one could question

whether exponential growth occurs anywhere. The profiles curve upward

just downstream of the exit, probably because the uniform surging in the

exit plane relaxes into the shape of a linear eigenmode. The profiles

curve downward beyond x/D = 3 as the jet ceases to resemble a uniform

column. Within a restricted interval, however, the forced mode may

behave like a linear wave on a doubly infinite jet column, and that is

the issue which measurements of A can clarify.

We carried out the measurements by positioning the hot wire on the

centerline, noting the location of a wave peak on the screen of an oscil-

loscope triggered by the loudspeaker input, then translating the hot wire

downstream without changing the phase of the trigger, until a new peak

coincided with the location of the old. The net translation of the hot

wire was the wavelength A, which is tabulated below for Strouhal numbers

St ranging from 0.15 to 0.80:
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Table 4. Wavelengths of the forced modes.

St 0.15 0.20 0.25 0.30 0.35 0.40

X/D 5.75 3.87 3.17 2.38 1.83 1.69

St 0.45 0.50 0.55 0.60 0.70 0.80

A/D 1.44 1.23 1.13 1.06 0.91 0.81

The signal displayel on the oscilloscope screen was unfiltered, since no

filtering was needed for repeatable measurements. The forcing amplitude

was chosen at each Strouhal number so that the wave was linear over most

of the hot-wire displacement interval, which bracketed the station x/D = 4

except in the cases of very long and very short waves. The measured wave-

length was found to depend only weakly on the initial position of the hot

wire.

The linear stability theory of waves on a uniform jet column was

developed by Batchelor & Gill (1962) and extended to compressible flows

by Lees & Gold (1966). For purposes of analysis, the wave is conveniently

expressed in complex form,

u* = u* ei( ax - Wt)

where c is the complex wavenumber ar + iat, and w is the complex fre-

quency wr + iwi. By solving for velocity potentials within and without

the jet column and matching displacements and pressures across its bound-

ary, Batchelor & Gill derived the following eigenvalue equation for axi-

symmetric waves:
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'Uc a K0 (aR)_1I(R)e - )

W K;(aR) I0 (czR)

U is the jet speed and R its radius, in line with the notation of thise

paper. 10 and K0 are modified Bessel's functions of the first and second

kinds.

The real and imaginary parts of the eigenvalue equation constitute

two relations among the four quantities a r, ai, Wr Wi" Before solving

the eigenvalue equation, one usually assumes a restriction on the physical

nature of the wave, the conventions being that it grows in time but is

purely oscillatory in space, a, 0, or that it grows in space but is

purely oscillatory in time, wi 0. The first case, temporal instability,

is easier to treat, because the arguments of the Bessel's functions are

real and the eigenvalue equation can be solved directly for w r(a r) and

i(cr). Batchelor & Gill have carried out that analysis. The second

case, spatial instability, is complicated by the fact that the eigenvalue

equation cannot ba solved analytically for wr (a r) and a i(a r). It Is neces-

sary to solve for w over the complex plane a, determine the locus ai(ar)

along which w = 0, and finally evaluate w r(a r) along that locus. We

executed that program on an IBM 360-44 computer, in the belief that

spatial instability would bear directly on the orderly structure of jet

turbulence.

The quantities of physical interest are k, c, and a, which have the

fo rms
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k= a
r

c W r/a r (spatial)

a = - i

in the case of spatial instability. The temporal case would seem incom-

patible with experiment, because the hot-wire signal u*(x,t) is indeed

periodic in time but inhomogeneous in space. The definitions of k and c

are the same, but the spatial grwth rate a is foreign, strictly speaking,

to the hypothesis of temporal instability. If temporal growth is assumed

to occur locally in coordinates moving with the phase velocity, however,

then the temporal growth rate wi can be transformed into a spatial growth

rate w i/c - a w i/. The result is a temporal-instability model of the

forced modes, capable of being compared to experiment through the pre-

scription

k=

r

c = r /ar (temporal)

a = a rW Wr

Of course we believed that temporal instability would be irrelevant, but

the belief proved wrong.

The eigenvalue equation cannot be solved in general without numerical

work, but the asymptotic forms of Bessel's functions yield analytical

solutions in the limits kR - 0 and kR - -. The limits are worth studying,

because they embody the essential differences between spatial and temporal
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instability. Thus, in the limit of short waves as kR - ,

kR - 2 (temporal)

aR -

kR + O(kR)-l 
(spatial)

and

+ 1 (temporal)
2 4kR

c

e i+4kR 
(spatial)

In the limit of long waves as kR - 0,

aR - (kR)2  I log (temporal or spatial)

and

+ M 2 log kR (temporal)

Ue
1 (k 2  

k R
3log -+ I (spatial)

where A = 1.1229, a constant involved in the asymptotic expansion of K0 .It is immediately apparent from the limits above that the spatial theory

and its temporal analogue predict broady similar values for the
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dimensionless growth rate aR, but that the dimensionless phase velocities

c/Ue behave very differently. As kR increases from zero, the phase

velocity c/Ue of a temporally growing instability decreases from unity and

tends toward an asymptote c/Ue = 1/2. The phase velocity of a spatially

growing instability rises abooe unity and eventually settles back toward

an asymptote c/Ue = 1. Short spatially growing waves propagate at the

centerline speed U while short temporally growing waves propagate at

the average of the speeds inside and outside the jet column, which is

Ue /2.

The dimensionless amplification rate aR and phase velocity c/Ue are

plotted against the dimensionless wavenumber kR in figures 31 and 32.

The solid curves are the dispersion relations for spatially growing waves.

The dashed curves apply to the temporally growing analogue and are taken

from the work of Batchelor & Gill (1962). The data points were obtained

from table 4 through the relations k = 27/A and c = fA explained earlier

in this section.

The theoretical dispersion relations behave as anticipated from the

asymptotic formulas. For both spatial and temporal instabilities, the

amplification rate aR rises monotonically with wavenumber kR. In accord

with the discussion if §5, neither the spatial nor temporal theory singles

a mode of maximum growth rate. Figure 31 shows an unexpected consequence

of spatial theory, namely a band of highly unstable but very long waves

(X > 14 D) lying above the main sequence in the (kR, aR) diagram. Those

waves correspond to a gross surging of the jet column but are probably
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Figure 31. Spatial amplification rate as a function of wavenumber. The

solid curves result from the theory of spatially growing waves, and the

dashed curve results from a transformation of temporal theory. The

experimental datum is the maximum amplification rate of the preferred

fundamental, as determined from figure 24,
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Figure 32. Phase velocity as a function of wavenumber, The solid curve

represents spatial theory and the dashed curve temporal. The data are

computed from table 4.
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too long to have meaning in any physical context. Figure 32 shows that

the dimensionless phase velocity c/Ue of temporally growing waves decreases

monotonically from I to 1/2 as kR increases from 0 to -. The phase

velocity of spatially growing waves, by contrast, always sati'-fies the

inequality c/Ue > I and reaches a maximum of 1.31 at kR = 1.15.

The surprising aspect of figures 31 and 32 is the relation of the

experimental data to the theories. The bleak point in each figure denotes

the preferred mode, St = 0.30, and is based, in the case of figure 31,

upon the maximum slope of the lowest filtered profile in figure 24. No

other accurate amplification rates are available. The amplification rate

predicted by temporal instability theory is 47% high, and the prediction

of spatial theory is much higher. Neither theory predicts the amplif.ca-

tion rate at St = 0.30 correctly, but the data plotted in figure 32 do

coincide with one of the theoretical dispersion relations c(kR)/Ue, the

one corresponding to temporal instability. The agreement is excellent up

to kR = 2.5, beyond which the measured phase velocities lie somewhat

above the theoretical. The dispersion relation c(kR)/U e for spatially

growing waves is wholly inconsistent with the data. Plausible as it seems

a prto.ri, a- exponential spatial instability must be ruled out as the

mechanism of vortex puffs.

We are faced with a curious anomaly. The temporal instability theory

of Batchelor & Gill should be irrelevant to the experimental situation

but appears, in an important sense, to be right. Our own spatial insta-

bility theory, tailored especially for the experiments, seems to be wrong.

The issue is important, because spatial instability theory has lately
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come to be regarded as logically superior to temporal theory. Usually the

two are compared for slowly growing waves, in which case their predictions

are similar. Here :he waves grow rapidly, the dispersion relations are

distinct, and the data point unambiguously to the temporal instability

theory.

The failure of spatial instability theory may be connected with the

boundary conditions at downstreim infinity. The waves are supposed to

diverge exponentially to infinity, but in practice nonlinearity inhibits

the divergence. However small the perturbation at x/D = 0, the departure

of spatial instability theory from a practical flow becomes exponentially

large toward downstream infinity. The departure may induce large dis-

tortions over the whole field, even where the original wave is weak

enough to be linear. Because the problem is elliptic, an exponential

divergence downstream is inconsistent with linearity everywhere. A tem-

porally unstable wave at least has the merit of being rigorously linear

for small times. Apparently it is more advantageous to preserve reason-

able boundary conditions than to simulate spatial growth by means of an

exponential divergence.

10. Concluding Remarks

An incompressible turbulent jet can sustain orderly modes of axi-

symmerric flow, including a preferred mode of frequency f = 0.30 Ue/D ,

wavelength X = 2.38 D, phase velocity c = 0.71 Ue, and maximum rate of

spatial amplification a = 0.58/R.
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The modes obey the dispersion relation c(k) derived by Batchelor &

Gill (1962), but nothing in linear stability theory seems to distinguish

the mode at k = 1.32/R, which attains the highest possible amplitude under

nonlinear saturation. Indeed the preference is lost at sufficiently low

amplitudes of forcing, according to the contour maps of figures 18 and 21.

The prefe.ence arises outside the scope of linear theory, yet linear

theory should not be irrelevant. The hot-wire signal of figure 11 is

nearly sinusoidal even at the highest forcing amplitude, and the harmonic

plotted in figure 12 saturates at only one-fifth the amplitude of the

fundamental.

Batchelor & Gill's eigenvalue equation contains a hint of the con-

nection between linear stability theory and the nonlinear selection

mechanism. The real limits presented in §9 were taken from the following

complex limits of the eigenvalue equation:

-1 + (aR)- !  as IaRl

(Ue a 1)2 _

2 log as IciRI 02 asT

Whatever assumption is made about spatial or temporal growth, it is clear

that w/ approaches a complex constant in either limit IaRj - c or

IaR) - 0, which means that eigenmodes of very long or very short wave-

lengths tend to be nondispersive. Modes having wavelengths comparable to

the jet diameter are highly dispersive.
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To appreciate the dynamical role of dispersion, consider a growing

eigenmode u* exp i(cx - wt). The jet column is nonlinear, so the funda-
I

mental eigenmode drives a first harmonic of the form u* exp i(2ax - 2wt).
2

If the fundamental is highly dispersive, then the harmonic is not an eigen-

mode, and ut is a constant and relatively small fraction of u*. The ratio

u*/u* involves a resonance denominator, however, which falls to zero when
2 1

2a and 2w themselves satisfy the eigenvalue equation. a,w and 2c,2w can

be simultaneous solutions of the eigenvalue equation only in regimes of

aR where the ratio w/a is constant, two such regimes being the limits

IQRJ - - and laRi - 0. Waves of extreme lengths are nondispersive,

resonate with their harmonics, and driv, them to large amplitudes. Waves

of intermediate lengths produce harmonics that are far from being eigen-

modes, so the harmonics are weak.

At the next level of interaction, u* exp i(ax - wt) and

u* exp i(2ax - 2wt) couple to drive a higher harmonic and also a wave

u* exp i(ax - wt) having the form of the fundamental. To account for
3

nonlinear selection, one need only assume that u* subtracts from u*, in
3 1

other words, that the harmonic reacts back on the fundamental to inhibit

its growth. The fundamental able to attain the largest amplitude is then

the wave that generates a harmonic least effectively, the wave furthest

removed from resonance with its harmonic, the most highly dispersive wave

on the jet column. It cannot have an extreme length, since extrentely

long or short waves are almost nondispersive. It must have an inter-

mediate length proportional to the jet diameter, presumably the lengch

A = 2.38 D of the mode preferred in the experiments.
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The foregoing ideas fit the general theory of Stuart (1960) and

I.atson (1960) for the evolution of nonlinear dispersive waves. If the

assumption is retained that the jet is a uniform column surrounded by a

vortex sheet, then the radial eigenfunctions are Bessel's functions, and

one comes immediately to the core of Stuart and Watson's theory - the

derivation of coupled, first-order ordinary differential equations for

the fundamental amplitude, the harmonic amplitude, and a property of the

mean field, which in this case is the radius of the jet. Work is already

under way on the temporal version of the theory, in which the eigenfunc-

tion amplitudes and ;.ean radius depend strictly on time. The temporal

theory has the ad':antagte of a dispersion relation c(k) in accord with

experiment, because the theo-etical phase velocity does not vary with

wave amplitude. It may be possible to account for the fact of spatial

growth by means of an integral fo.mulation (cf. Ko et -.Z 1969). In any

event, we can reasonably look forward to a theoretical model of axisym-

metric vortex trains, with the preferred Strouhal number of 0.30 emerging

by calculation.

j
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