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Abstract

In order to develop fast and robust methods for extracting qualitative information

from non-linear time series, Bandt and Pompe have proposed to consider time series

from the pure ordinal viewpoint. On the base of counting ordinal patterns, which

describe the up-and-down in a time series, they have introduced the concept of

permutation entropy for quantifying the complexity of a system behind a time series.

The permutation entropy only provides one detail of the ordinal structure of a time

series. Here we present a method for extracting the whole ordinal information.

Key words: time series, complexity, ordinal patterns, permutation entropy

PACS: 05.45.Tp

1 Ordinal Patterns

The quantification of the complexity of a system is one of the aims of non-linear
time series analysis. Complexity is related to complicated intrinsic patterns
hidden in the dynamics of the system; if however there is no recognizable
structure in the system, it is considered to be stochastic. Because of the oc-
currence of noise and artefacts in various forms, it is often not easy to get
reliable information from a series of measurements. In order to overcome this
problem, Bandt and Pompe (1) have proposed an interesting robust approach
to time series analysis. They consider the order relation between the values
of a time series instead of the values themselves. Their permutation entropy,
which is strongly related to the Kolmogorov-Sinai entropy in the case of one-
dimensional dynamical systems (see (2)), is based on the distribution of ordinal
patterns. This paper provides a method for a closer look at this distribution.

Consider a one-dimensional time series (xt)t∈Z of real values. For simplicity
we take time domain Z, in the case of real-world time series, however, the
following considerations must be adapted to a finite time domain. Further, fix
some time delay τ . By the ordinal pattern of order d at time t we understand
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Fig. 1. Ordinal pattern

the permutation πτ

d
(t) = (r0, r1, . . . , rd) of (0, 1, . . . , d) satisfying

xt−r0τ ≥ xt−r1τ ≥ . . . ≥ xt−rd−1τ ≥ xt−rdτ .

In order to get a unique result, we set rl−1 > rl in the case xt−rl−1τ = xt−rlτ
.

Example. Fig. 1 illustrates the definition of ordinal patterns for a fictive time
series. To get π4

4(30) one has to compare the values xt−0τ = x30 = 2.5, xt−1τ =
x26 = 1.9, xt−2τ = x22 = 3.3, xt−3τ = x18 = 2.2 and xt−4τ = x14 = 4. Clearly,

xt−4τ > xt−2τ > xt−0τ > xt−3τ > xt−1τ ,

implying π4
4(30) = (4,2,0,3,1).

2 Efficient Coding

For reasons becoming clear later, it is useful to code ordinal patterns other
than above. Here we omit the mathematical proofs, but we refer to (6).

For l = 1, 2, 3, . . ., let

iτ
l
(t) = #{r ∈ {0, 1, . . . , l − 1} | xt−rτ ≤ xt−lτ},

i.e. iτ
l
(t) counts the inversions (see (7; 4)) of < in time to ≥ for the correspond-

ing amplitudes. Now πτ

d
(t) is uniquely coded by the sequence (iτ1(t), i

τ

2(t), . . . ,
iτ
d
(t)). The way from from (iτ1(t), i

τ

2(t), . . . , i
τ

d
(t)) to πτ

d
(t) is provided via a se-

quence of permutations π0, π1, . . . , πd = πτ

d
(t) of {0}, {0, 1}, . . . , {0, 1, . . . , d}:

(1) π0 = (0) is the trivial permutation of the single set {0}.

(2) When πl−1 = (ρ0, ρ1, . . . , ρl−1); 0 < l ≤ d is already given, πl is obtained
from πl−1 by inserting l into (ρ0, ρ1, . . . , ρl−1) right to ρl−1 if iτ

l
(t) = 0,

and left to ρl−il
else.

In the above example, (i41(30), i42(30), i43(30), i44(30)) = (0, 2, 1, 4), and the in-
sertion process π0 → π1 → π2 → π3 → π4 is

(0) → (0, 1) → (2, 0, 1) → (2, 0, 3, 1) → (4, 2, 0, 3, 1).
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Fig. 2. Ordinal EEG analysis

Remark: According to

iτ
l
(t) =











iτ
l−1(t − τ) + 1 if xt ≤ xt−lτ

iτ
l−1(t − τ) else

(iτ1(t), i
τ

2(t), . . . , i
τ

d
(t)) can be computed by d comparisons and (with iτ0(t) := 0)

by at most d incrementations when (iτ1(t−τ), iτ2(t−τ), . . . , iτ
d−τ

(t−τ)) is given.
(In the above example (i41(30), i42(30), i43(30), i44(30)) = (0, i41(26) + 1, i42(26) +
0, i43(26) + 1) = (0, 1 + 1, 1 + 0, 3 + 1) = (0, 2, 1, 4).) With this, computing
the ordinal patterns for a time series of length l and given order d needs
approximately ld comparisons and ld incrementations.

3 The ordinal transformation

Clearly, there are (d + 1)! ordinal patterns of some given order d. On the base
of the following statement, the inversion representation (iτ1(t), i

τ

2(t), . . . , i
τ

d
(t))

of πτ

d
(t) can be used for enumerating all patterns (see (6)):
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Background I: The map (i1, i2, . . . id) 7→ nd =
∑

d

l=1 il
(d+1)!
(l+1)!

is a bijection from

{0, 1} × {0, 1, 2} × . . . × {0, 1, . . . , d} onto {0, 1, . . . , (d + 1)! − 1} turning the
lexicographic order into the usual one.

An ordinal pattern is now coded by the number

nτ

d
(t) =

d
∑

l=1

iτ
l
(t)

(d + 1)!

(l + 1)!

being 0, 1, 2, . . . or (d+1)−1. The higher d is, the better the obtained number
anticipates the past at time t, the scale of of the numbers however is different.
We overcome this disadvantage by a linear scaling to the interval [0, 1]. So let

ντ

d
(t) =

nτ

d
(t)

(d + 1)!
=

d
∑

l=1

iτ
l
(t)

(l + 1)!
.

The interesting point is that ντ

d
(t) (theoretically) converges for d → ∞ due to

the following statement (see (6)):

Background II: The map (i1, i2, i3, . . .) 7→ limd→∞

nd

(d+1)!
=

∑

∞

l=1
il

(l+1)!
is a

surjection (‘near’ to a bijection) from {0, 1}× {0, 1, 2}× {0, 1, 2, 3}× . . . onto
the interval [0, 1] turning the lexicographic order into the usual one.

We call the assignment of a (xt)t∈Z to the time series (ντ

d
(t))t∈Z with

ντ

d
(t) =

d
∑

l=1

iτ
l
(t)

(l + 1)!
∈ [0, 1]

ordinal transformation of order d ∈ {1, 2, 3, . . . ,∞}. Roughly speaking, the
ordinal transformation extracts the ordinal information contained in a time
series, the more of it the higher the order is, and in the (theoretical) case of
infinite order all information is extracted. Note that it preserves a part of the
geometry of the ‘ordinal patterns space’ (see (6)).

For the above example, we have n4
4(30) = 0 · 60 + 2 · 20 + 1 · 5 + 4 · 1 = 49 and

ν4
4(30) = 0

2
+ 2

2·3
+ 1

2·3·4
+ 4

2·3·4·5
= 49

120
.

Remark: By nτ

1(t) = iτ1(t) and the obvious equality

nτ

d+1(t) = (d + 1)nτ

d
(t) + iτ

d+1(t),

the computation of nd from (iτ1(t), i
τ

2(t), . . . , i
τ

d
(t)) can be done by d− 1 multi-

plications and d−1 additions. νd is obtained by multiplying nd with 1/(d+1)!.
So, according to the above remark, the ordinal transformation of order d of a
(long) time series of length l needs about 5dl logic-arithmetic operations.
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Fig. 3. Feigenbaum and ‘ordinal’ Feigenbaum diagram

4 Demonstration

We illustrate the ordinal transformation by an EEG example and by consid-
ering the celebrated family of quadratic maps fr(x) = rx(1 − x) on [0, 1] (see
(3)) for r ∈ [2.8, 4]. In both cases d = 7, giving 8! = 40320 possible ordinal
patterns, and τ = 1. Other delays τ provide other details of a the time series.

The EEG data set behind Fig. 2, recorded with a sampling rate of 256Hz from
a scalp electrode, reflects 252 seconds of brain activity. There is an epileptic
seizure beginning at 152 sec and ending at 217 sec. The upper plot accompa-
nied with four 3 sec long parts of the original EEG data shows the transformed
data. The extremely truncated representation in time direction allows to dis-
tinguish different parts. In particular, the extremely ‘thin’ (attractor-like) part
is related to the epileptic seizure. There are however parts where the first in-
spection of the truncated transformed data gives more information than a
close look at the original data, even for different time-scales. (For example,
compare the data between 5 and 8 seconds and 27.5 and 30.5 seconds.)

In order to show details of the transformed data, we have added two plots
based on a sliding time window analysis (window length 512) for order 3. The
first shows the time-dependent pattern distribution in the following way: The
spaces between succeeding curves represent the relative frequencies of ordinal
patterns, where the pattern n3 = 0 is associated to the bottom space, n3 = 1 to
the space between the first and the second curve from below, . . ., and n3 = 23
to the top space. Differences between distributions at two times coincide with
qualitative differences between the original signals at these times (compare
the four EEG parts). In particular, a vaster occurrence of the ‘bottom’ and
‘top’ patterns n3 = 0 and n3 = 23, respectively, indicates a vaster occurrence
of monotone parts within the original signal. The second plot provides the
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permutation entropy (normalized to maximum one). Here compare also (5).

Fig. 3 shows the Feigenbaum diagram and an ordinal version of it. In the first
a set of successive large iterates of a random point are drawn in vertical direc-
tion for each r, giving an impression how a ‘typical’ orbit of fr looks like. The
‘ordinal’ Feigenbaum diagram contains the analogue sets for the transformed
data. The degree of complexity of the sets correspond, but the ‘ordinal’ di-
agram usually shows thinner structures. For example, ‘typical’ orbits for f4

are dense in the interval [0, 1], and the ordinal variant fills only a rare part
of it. Roughly speaking, the ordinal transformation is able to decide between
determinism and stochasticity. Here note that the ‘patterns’ obtained from
discrete white noise by ordinal transformation of order ∞ are equidistributed.

5 Conclusions

Ordinal time series analysis seems to be a promising approach for investigating
complex systems. As a base for data analysis on the ordinal level, we have
introduced the ordinal transformation. The given examples illustrate that this
method allows to recognize structure and to discriminate and classify different
states. In order to get reliable statements, it is necessary to develop models
and ‘ordinal’ statistical characteristics beyond the permutation entropy.
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