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ABSTRACT:

Detection of crop stress from hyperspectral images is of high importance for breeding and precision crop protection. However, the

continuous monitoring of stress in phenotyping facilities by hyperspectral imagers produces huge amounts of uninterpreted data. In

order to derive a stress description from the images, interpreting algorithms with high prediction performance are required. Based on

a static model, the local stress state of each pixel has to be predicted. Due to the low computational complexity, linear models are

preferable.

In this paper, we focus on drought-induced stress which is represented by discrete stages of ordinal order. We present and compare five

methods which are able to derive stress levels from hyperspectral images: One-vs.-one Support Vector Machine (SVM), one-vs.-all

SVM, Support Vector Regression (SVR), Support Vector Ordinal Regression (SVORIM) and Linear Ordinal SVM classification. The

methods are applied on two data sets - a real world set of drought stress in single barley plants and a simulated data set. It is shown,

that Linear Ordinal SVM is a powerful tool for applications which require high prediction performance under limited resources. It is

significantly more efficient than the one-vs.-one SVM and even more efficient than the less accurate one-vs.-all SVM. Compared to the

very compact SVORIM model, it represents the senescence process much more accurate.

1. INTRODUCTION

Crop stress is induced by environmental factors (e.g. drought,

out-of-range temperatures or pathogens) which exceed a critical

level (Gaspar et al., 2002, Taiz and Zeiger, 2010). Under pro-

longed stress, crop productivity is impaired significantly (Gas-

par et al., 2002). In order to meet the demand of agricultural

output for an increasing world population (FAO, 2009), agricul-

tural science is challenged to enhance crop productivity by im-

proving methods of crop management (Davies et al., 2011) and

by breeding crops with higher stress tolerance levels (Tester and

Langridge, 2010). Breeding and crop management will benefit

from phenotyping information: the detection, quantification and

visualization of a plant’s stress responses.

In this paper, we focus on drought stress, one of the biggest

challenges in global crop production (Pennisi, 2008, Tuberosa

and Salvi, 2006). If water shortage exceeds a critical level, a

plant initiates stress responses which result in biochemical and

morphological adaptations. An important response process, in

which resources are reallocated within the plant, is leaf senes-

cence. Leaf senescence denotes the final phase of leaf develop-

ment and may be induced prematurely under drought stress (Lim

and Nam, 2007). It is a spatiotemporal process, which allows the

plant to attain the reproductive state under drought conditions.

The process is characterized by a degradation of pigments and

the relocation of nutrients. It develops continuously and proceeds

in patterns from older to younger leaves and, within a leaf, from

the tip towards the leaf base (Guiboileau et al., 2010, Lim and

Nam, 2007). Furthermore, the senescence process forms an or-

dinal order mainly related to pigment degradations (Merzlyak et

al., 1999).

In contrast to some plant diseases, drought stress induced senes-

cence does not manifest itself in local symptoms. The reallo-

cation of resources involves the entire plant - and occurs in all
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Figure 1: RGB visualization and labeling of a hyperspectral im-

age of an barley plant.

plants, even the well watered, to a specific degree. Drought stressed

plants are characterized by early and accelerated leaf senescence

(Munné-Bosch and Alegre, 2004). The aforementioned degra-

dation of pigments (particularly chlorophyll) alters the ratio be-

tween reflected, absorbed and transmitted radiation (Blackburn,

2007). These changes in spectral characteristics can be observed

non-invasively by hyperspectral sensors - even in early stages.

The detection and distinction from normal variations requires spec-

tral information with high degrees of temporal and spatial resolu-

tion.

The analysis of such series of hyperspectral images is challenging

- especially in real-time applications. The occurrence of differ-

ent degrees of leaf senescence in a single plant requires analysis

methods which predict the stress state for each pixel. The aggre-

gation of these local states compose a global pattern which allows

conclusions about a plant’s health state (Fig. 1). On pixel scale

the early stress stages are invisible for the human eye and, there-

fore, labels are extracted by an unsupervised labeling (Behmann

et al., 2014). The continuous senescence process is discretized

into classes which are ordered on an ordinal scale. The contex-

tual knowledge about this ordinal scale can be integrated into the
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model selection resulting in adapted and more efficient prediction

methods.

In this paper, we present an evaluation of five supervised pre-

diction methods for deriving the local stress levels: One-vs.-one

Support Vector Machine (SVM), one-vs.-all SVM, Support

Vector Regression (SVR), Support Vector Ordinal Regression

(SVORIM) and Linear Ordinal SVM classification. In order to

compare their accuracy and efficiency, the methods are applied

on two data sets - a real world set of drought stress in barley

(Hordeum vulgare) and a simulated data set. In the barley data

set, the spectra are represented by the values of five Vegetation

Indices (VIs).

The rest of this paper is organized as follows: In Section 2 we will

describe the data sets used; the aforementioned prediction algo-

rithms will be introduced in Section 3. In the fourth section, the

results of applying the algorithms on the data sets are presented

and discussed. The paper ends in Section 5 with a conclusion.

2. DATA SET

In this study, we compare the performance of different predic-

tion algorithms on two data sets. The first data set consists of

simulated features and partial overlapping classes with a perfect

ordinal order. The second data set consists of VIs derived from

hyperspectral images of barley plants under drought stress. The

selection of these data sets intends to show the theoretical advan-

tages of ordinal classification and how much benefit remains in

real world applications.

2.1 Simulated ordinal data

Figure 2: The simulated ordinal data set consists of six Gaussian

distributed classes. Each class is represented by a different color,

the centroids of the classes are represented by black squares.

The simulated data set consists of six classes and represents a pro-

totype of ordinal ordered data. It is used to visualize the discrim-

inant functions of the applied prediction algorithms and to show

their relevant differences. In order to enable the visualization of

the whole feature space, it contains only two features. The ordinal

structure is realized by arranging the classes on an arc as shown

in Fig. 2. The class centers ci have the same pair-wise distance

of 1 and the samples are Gaussian distributed by ∼ N(ci, 0.2).

The standard deviation of 0.2 maintains the ordinal order of the

classes and, on the other hand, allows distinguishing different re-

sult qualities. The data set consists of 5000 labeled instances;

10% are used as training data, the remaining as test data.

Figure 3: Centroids of the cluster for the labeling of the bar-

ley data set. The transition from blue to magenta represents the

senescence states of the corresponding spectra.

2.2 Hyperspectral features of drought stressed barley plants

The real-world data set is derived from time series of hyperspec-

tral images which have been described in detail in (Behmann et

al., 2014). In that study, we aimed to detect drought stress in-

duced changes in single barley plants as early as possible. Hy-

perspectral images were recorded daily for a period of 20 days

by a SOC700 hyperspectral imager (Surface Optics, USA). The

SOC700 observes the reflectance characteristics from 430 nm to

890 nm in 120 bands; each hyperspectral image has a spatial

resolution of 640 x 640 pixels. The images were preprocessed

by removing the background using a combination of clustering

and setting a threshold as described in (Behmann et al., 2014).

Furthermore, the spectral range is reduced due to noise effects

at spectral border regions. Examples of hyperspectral images

and the spatial variability of the senescence process are shown

in Fig. 1 and Fig. 9.

The pixels are labeled by an unsupervised labeling, introduced in

(Behmann et al., 2014). The unsupervised labeling uses k-Means

to extract k ordinal ordered classes whose centroids represent the

ordinal order mainly related to chlorophyll degradations of the

senescence process. The classes are labeled in ascending order

from 1 to k and the labels are assigned to single pixels.

In this study, the labeling uses k = 10 classes and the instances

were sampled without spatial context. The final barley data set

comprises 211500 test and 21150 training instances, each repre-

sented by the values of five Vegetation Indices (VIs). The used

VIs were selected by the ReliefF algorithm (Kononenko, 1994)

from a basic feature set of 20 VIs (Exelis Visual Information So-

lutions, 2012) to reliably exclude irrelevant features and are given

in Tab. 1.

Name Formula Reference

ARVI
R800−2(R670−R490)
R800+2(R670−R490)

(Kaufman and Tanré, 1996)

RGRI
Mean(R500−600)

Mean(R600−700)
(Gamon and Surfus, 1999)

RENDVI
R750−R705

R750+R705
(Gitelson and Merzlyak, 1994)

SumGreen 1
n

∑599
i=500 Ri (Gamon and Surfus, 1999)

PSRI
R680−R500

R750
(Merzlyak et al., 1999)

Table 1: The selected VIs included in the barley data set ordered

descending by their ReliefF score
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Figure 4: Decision boundaries of the one-vs.-one SVM classifi-

cation model for the simulated data set

3. PREDICTION ALGORITHMS

In machine learning, various supervised algorithms are available

for the deduction of models from annotated/labeled training data

and the prediction of target variables for unlabeled test data. Clas-

sification algorithms predict discrete classes whereas regression

algorithms predict continuous target values. Ordinal classifica-

tion relies on the assumption of ordinal ordered but discrete classes

with a corresponding structure in the feature space.

3.1 Multiclass SVM classifiers

The Support Vector Machine (SVM) (Cortes and Vapnik, 1995)

is an established classification method that determines the opti-

mal, linear discriminant function between two classes based on

the maximum margin principle. Extensions of this method han-

dle overlapping classes and even non-linear discriminant func-

tions. Multi-class tasks are handled in general by decomposing

the multi-class problem in multiple binary class problems (Duan

and Keerthi, 2005). The most common decomposing approaches

are the one-vs.-one and the one-vs.-all approach.

3.1.1 One-vs.-one SVM The one-vs.-one SVM is the most

common multiclass approach. It is based on pairwise classifica-

tion, separating all classes from each other (Fürnkranz, 2002). An

example of the decision boundaries for the simulated data set is

shown in Fig. 4.

In the learning step, a discrimination function is optimized for

each class pair resulting in
n∗(n−1)

2
discrimination functions for

n classes. Each optimization uses only the training samples of

the regarded pair of classes. The optimization is quite efficient

because the amount of training data for a single optimization is

small (Duan and Keerthi, 2005). However, the number of opti-

mization procedures increases quadratically with the number of

classes. A high number of classes result in many, potential un-

necessary, discriminate function.

The classification follows the max wins voting principle in which

each discrimination function is applied to the sample (Duan and

Keerthi, 2005). Every winning class gets a vote and the class

with the highest number of votes is selected as predicted class.

This principle is very robust because the contribution of a single,

probably misleading discriminant function, is limited. However,

for each prediction all of the
n∗(n−1)

2
discrimination function

have to be evaluated. For an improved prediction performance,

approaches which can reduce the application of discrimination

functions (e.g. directed acyclic graph SVM) were proposed (Platt

et al., 1999).

3.1.2 One-vs.-all SVM The one-vs.-all approach consists of

discrimination functions which separate one class from all other

classes, wherefore it is also called one-vs.-the-rest approach. The

discriminant functions are determined by separating the training

samples of one class from the aggregated training samples of all

other classes. An example of the decision boundaries for the

simulated data set is shown in Fig. 5. The model is more com-

pact as only n discriminant functions are needed to separate n

classes (Duan and Keerthi, 2005). The classification is based on

the winner takes all principle, where the instance is assigned to

the class with the maximum probability (Platt, 1999) or, alterna-

tively, the highest classification score (normalized distance to the

discriminant function). Using posterior probabilities, a stochastic

interpretation is enabled and in some applications accuracy im-

provements are possible. On the other hand, the determination

of the sigmoid functions is computational expensive and addi-

tional parameters are required. Therefore, the use of the classi-

fication score is preferred in this study focusing the prediction

performance.

Figure 5: Decision boundaries of the one-vs.-one SVM classifi-

cation model for the simulated data set

The one-vs.all multiclass approach is less common than the one-

vs.-one. It is less robust against outliers because a single mis-

leading discriminant function can impair the result quality sig-

nificantly (Duan and Keerthi, 2005). However, using well-tuned

SVM classifiers comparable result qualities are achievable (Rifkin

and Klautau, 2004). Each of the binary discriminant functions

suffers from a class imbalance since one class is separated from

all the others. Moreover, the usage of all training data for each op-

timization can reduce the performance in the training step (Duan

and Keerthi, 2005). Whereas in the one-vs.-one approach only

two classes contribute to a discriminant function, in the one-vs.-

all approach all classes contribute to all discriminant functions.

However, the number of SVM evaluations is lower than in the

one-vs.-one approach: each of the discriminant functions has to

be evaluated for a prediction but the number of functions is lower,

especially for higher numbers of classes.

3.2 Support Vector Regression

The main difference between Support Vector Regression (SVR)

and SVM is the type of target variable. Regression algorithms

predict continuous, real-valued labels in contrast to the discrete

classes of classification models (Smola and Schölkopf, 2004).

This is reflected in the optimization algorithm which adapts the
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Figure 6: Decision boundaries of the Support Vector Regression

model at the simulated data set. The continuous predictions are

rounded to an integer to extract the decision boundaries.

basic principle of the binary SVM and results in similar formulas

(Vapnik et al., 1997). The formulation is generalizable to non-

linear applications by the well-known kernel trick which implic-

itly maps the feature vectors xj to a higher dimensional feature

space and determines their distance K(xi, xj) in this space.

The regression function is parameterized by the support vectors

(SVs) xi, the Lagrangian coefficients α∗

i and αi and the offset b

to

y = f(x, α, α
∗) =

l∑

i=1

(α∗

i − αi)K(x, xi) + b. (1)

The primal optimization function shows the regression approach

of the SVR. It is searched for a function that deviates up to a

distance ǫ for most of the trainings samples and is as flat as pos-

sible (Smola and Schölkopf, 2004). The flatness maximizes the

robustness against variations of single features of the input vector

xi. The complexity of the regression model is controlled by the

parameters: tolerance ǫ, error weight C and potentially additional

kernel parameters.

The SVR was designed to find a regression function based on

training instances which are continuously distributed in the fea-

ture values as well as the labels (Smola and Schölkopf, 2004).

The discrete classes of the ordinal data sets aggregate a high num-

ber of instances to a single label value and request a step function.

The SVR may approximate the function but its smoothness condi-

tion will smooth out the step borders. The SVR is able to model

also ordinal data sets but the approximation errors will reduce

the prediction quality for ordinal classification data sets. On the

other hand, the smooth transition between the classes can be used

to represent the uncertainty at the class borders without explicit

probability modeling.

The kernels provide linear and non-linear model types. The linear

SVR is an extremely compact model but achieves an inferior ac-

curacy for both data sets. Therefore, we applied the SVR with a

radial basis function (rbf) kernel. This model is able to represent

the ordinal transition with a competitive accuracy (Fig. 6). The

increased accuracy is accompanied by a higher model complexity

due to the non-linear kernel function.

3.3 Ordinal classification

The ordinal classification is applicable in scenarios with discrete

labels and known class order (Dembczyński et al., 2008). As it

is a special case of the general multi-class scenarios, the intro-

duced general prediction methods can be used. Prediction meth-

ods which are more adapted to the ordinal structure utilize the

additional knowledge about the data set (Behmann et al., 2014)

and achieve higher performance measurements. In general, the

information about the ordinal data structure is used to reduce the

model size by omitting model parts which are not required (Chu

and Keerthi, 2007). Different approaches were developed which

differ in specific assumptions on data characteristics and the ro-

bustness against non-ordinal aspects.

3.3.1 Support Vector Ordinal Regression Support Vector Or-

dinal Regression (SVORIM) was developed by (Chu and Keerthi,

2007) in an explicit and an implicit formulation. Both formula-

tions determine c − 1 parallel hyperplanes that separate c classes

and preserves the natural ordinal ordering. The parallelism of

the hyperplanes reduces model size and complexity significantly.

The linear model comprises only a single weight vector w for

the whole model and a threshold bi for each of the c − 1 hyper-

planes. The optimization is conducted by an adapted sequential

minimal optimization (SMO) algorithm, optimizing the ranking

of the training instances (Chu and Keerthi, 2007).

Figure 7: Support Vector Ordinal Regression is characterized by

parallel discriminant functions resulting in a very compact model.

Fig. 7 shows the position and the orientation of the discriminant

functions for the simulated data set. In this context, it becomes

apparent that the model is limited regarding non-linear ordinal

processes or non-ordinal aspects. However, the SVORIM pre-

diction step is extremely efficient and comprises only a multi-

plication with the weight vector and the application of the c − 1
thresholds. The Support Vector Ordinal Regression represents the

most compact model with the lowest model complexity but the

low complexity is accompanied by a low adaptability to deviat-

ing data characteristics. This may reduce the prediction accuracy

on real-world data sets.

3.3.2 Linear Ordinal SVM classification The Linear Ordi-

nal classification is defined by discriminant functions between

classes which are neighboring on the ordinal scale like at the Sup-

port Vector Ordinal Regression (Chu and Keerthi, 2007). Deviat-

ing from this approach, the hyperplanes are not forced to be par-

allel but are optimized locally (Dembczyński et al., 2008). The

number of discriminant function remains at c− 1 but the number

of model parameter is significantly higher because each discrimi-

nant function has an individual weight vector wi (Behmann et al.,

2014).

Figure 8 shows the discriminant functions for the simulated data

set. The improved flexibility of the model is apparent but in the
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Figure 8: Decision boundaries of the Linear Ordinal SVM clas-

sification model for the simulated data set. The overlapping dis-

criminant functions are combined by a decision tree for an unam-

biguous result.

regions without training instances, the discriminant functions in-

tersect each other. Without additional information, these regions

of intersections are undefined. Therefore, a tree structure is intro-

duced to unambiguously assign a class for each part of the feature

space (Behmann et al., 2014). In the tree structure a hierarchy

of classes is established by an interval bisection approach. The

discriminant functions can be represented by various classifica-

tion approaches, e.g. SVM, random forests, logistic regression or

naive Bayes.

In this study, we used linear SVMs to enable a reliable compara-

bility to the other approaches. In the training step, each discrimi-

nant function is optimized on its own with its individual SVM pa-

rameter Ci

(Behmann et al., 2014). The Linear Ordinal SVM classification is

represented by the aggregate of all discriminant functions and the

tree structure is used for class prediction. In the prediction, the

number of evaluation steps is reduced by using the tree structure.

Starting from the tree root, the classification is done in log(c)
steps.

The concept of Linear Ordinal SVM lies between the flexible

one-vs.-one multi-class approach and the extreme compact but

inflexible Support Vector Ordinal Regression (Chu and Keerthi,

2007). It is able to represent also non-linear ordinal processes

but it still relies on the ordinal data characteristics. Non-ordinal

aspects cannot be represented due to the reduced number of dis-

criminant functions compared to the generic multi-class approaches.

The Linear Ordinal SVM classification results in much more com-

pact models compared to one-vs.-one classification and may adapt

to real-world data sets with only slight losses in accuracy.

4. RESULTS AND DISCUSSION

We evaluate the presented prediction algorithms on two differ-

ent data sets. The simulated data set contains ordinal classes in

a two-dimensional visualizable feature space. The barley data

set contains pixel values with five VIs as features and a ordinal

senescence class. This real world data may contain minor non-

ordinal aspects and the prediction algorithms have to deal with

significant noise effects.

4.1 Simulated ordinal data

For the simulated data set, the results of the prediction algorithms

are very close with the exception of the one-vs.-all SVM (Fig.

Figure 9: Confusion matrix and predicted labels by the Linear

Ordinal SVM for a hyperspectral image of a barley plants

10 and Tab. 2). The visualization in Fig. 5 shows that the un-

derlying linear model is not able to separate a single class from

the remaining classes. As a result, only the classes 1 and 6 are

classified correctly, whereas the remaining classes are classified

at random. This effect appears always, if a class is not linearly

separable from the remaining classes which is in many cases re-

lated to a disproportion between the number of features and the

number of classes (2 against 6 in the simulated data set). Slight

drawbacks are visible at the SVORIM classification which is not

flexible enough to follow the arch-shaped ordinal class distribu-

tion. The limitation to parallel decision functions requires data

with a linear development in each of the features over the whole

ordinal structure. The SVR achieves good results for the simu-

lated data set due to the flexible rbf kernel. However, the model

size increases drastically which impedes the competitiveness to

the other prediction methods regarding prediction efficiency (Tab.

2). The one-vs.-one SVM and the Linear Ordinal SVM are simi-

Figure 10: Confusion matrix of the prediction algorithms for the

simulated data set with a pure ordinal structure.

lar regarding accuracy and also the positions of class boundaries

(Fig. 4 and 8). This is caused by the characteristic of both meth-

ods to use pairwise discriminant functions. In case of the Linear

Ordinal SVM the unneeded discriminant functions are omitted

whereas the one-vs.-one approach derives discriminant functions

between all pairs of classes. Different characteristics appear in

the overlapping parts of the feature space. Here, the one-vs.-one

approach decides based on class voting whereas the Linear Ordi-
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Method Accuracy [%] MSE # evaluation functions # model parameter

one-vs.-one SVM 78 0.22 15 45

one-vs.-all SVM 54 0.49 6 18

Support Vector Regression (rbf) 76 0.18 1 793

Support Vector Ordinal Regression 74 0.26 5 7

Linear Ordinal SVM 78 0.23 5 15

Table 2: Performance overview on the simulated data set

Method Accuracy [%] MSE # evaluation functions # model parameter

one-vs.-one SVM 83 0.80 45 270

one-vs.-all SVM 46 1.90 10 60

Support Vector Regression (rbf) 66 0.72 1 43986

Support Vector Ordinal Regression 47 1.02 9 14

Linear Ordinal SVM 70 0.82 9 54

Table 3: Performance overview on the barley data set

nal SVM uses a predefined tree structure.

The simulated data set is suitable to compare the different pre-

diction algorithms and to highlight specific characteristics. As it

shows a pure ordinal process the algorithms are compared under

perfect conditions. In contrast, real world data sets contain noise,

irrelevant processes and non-ordinal aspects. The performance

of the algorithms depends significantly on the robustness against

such deviations from perfect conditions.

4.2 Data set: Senescence in barley

The results for the barley data set represents the performance in

real world applications (Fig. 11). The differences between the

prediction algorithms increase compared to the simulated data

set, presumably due to non-ordinal aspects (Tab. 3).

Figure 11: Confusion matrices for the described barley data set.

The prediction algorithms can be separated in two groups: a good

accuracy is achieved by the on-vs.-one SVM (83%), the SVR

(66%) and the Linear Ordinal SVM (70%); an inferior accuracy

is achieved by the on-vs.-all SVM (46%) and the Support Vector

Ordinal Regression (47%).

The loss of accuracy of the SVORIM compared to the remain-

ing methods is significant and is related to the data characteris-

tics. The real-world data incorporating non-linear development

of features over the ordinal scale cannot be described by parallel

five-dimensional hyperplanes.

Again, the lowest accuracy is achieved by the one-vs.-all SVM.

This effect is most probably related to the low number of fea-

tures (five features and ten classes). Linear discriminant functions

seem not to be able to separate one of the ten senescence classes

from the others. This effect can be faced by using more features

but this would increase data volume as well as model complexity.

The rbf SVR reaches competitive accuracy comparable to the

one-vs.-one SVM and the Linear Ordinal SVM. The MSE value

is the lowest of all methods related to the continuous predictions.

Such output enables further evaluations like probability extrac-

tion and a more detailed visualization. However, its non-linear

kernel increases the model size up to an factor of 800. Such a

model size prevents a high-throughput prediction as it is required

for the efficient evaluation of hyperspectral images. Therefore,

it is not suited to be applied for the introduced phenotyping sce-

nario.

The one-vs.-one SVM and the Linear Ordinal SVM reach an al-

most identical MSE value. However, the accuracy of the one-vs.-

one approach is 13% higher. The combination of both result qual-

ity measurements reveals the classification characteristics. The

one-vs.-one classifies more test samples correctly but if a test

sample is misclassified it is more likely assigned to a more distant

class. In contrast, the Linear Ordinal SVM assigns the misclas-

sified samples in the most cases to one of the two neighboring

classes. For the detection of disperse drought stress effects, the

overall impression is most important (Fig. 9). It is not or only lit-

tle affected by misclassifications to neighboring classes because

these classes have nearly the same meaning with regard to the

senescence level. Therefore, the higher accuracy of the one-vs.-

one SVM approach has only slight positive effects on real-world

applications but this advantage is at the expense of a five times

higher number of model parameters.

4.3 Prediction efficiency for high-throughput phenotyping

This study focuses the prediction efficiency needed for high through-

put phenotyping systems. Such systems measure continuously

the reflection characteristics of plants generating huge amounts

of data. They require methods to compress quickly the observed

data to valuable information. Fig. 12 opposes the reached accu-

racy to the number of model parameters related to the required

prediction effort. The one-vs.-one method reaches the highest ac-

curacy but needs 5 times more model parameters for 13% more
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accuracy compared to the Linear Ordinal SVM. Therefore, the

user has to choose which characteristic is in the focus. The SVORIM

approach is extremely fast but has significant drawbacks in ac-

curacy whereas the one-vs.one SVM approach reaches the best

accuracy using 20 times more model parameter. The Linear Or-

dinal SVM is a compromise between these extrema using a low

number of model parameters and reaching an accuracy suitable

for many applications (Behmann et al., 2014).

Figure 12: Accuracy related to model size at the example of the

barley data set.

5. CONCLUSION

We compared the ordinal classification with established algorithms

for classification and regression. The ordinal classification turns

out to be a high performant method for the classification of or-

dinal data. The one-vs.-one multiclass SVM is the only method

with higher accuracy but this is accompanied by a much higher

model complexity resulting in 15 times more evaluation steps.

The linear regression methods do not reach a comparable accu-

racy but they are very compact and fast applied. This example

of ordinal data demonstrates that an adaptation of classification

algorithms to the specific data characteristics improves the per-

formance drastically. Linear Ordinal SVMs have the potential

to be applied in upcoming high-throughput phenotyping facilities

which will observe a higher number of plants with a larger spatial

and temporal resolution. Especially under limited resources like

on unmanned aerial vehicles (UAV) or on mobile devices, it will

demonstrate the advantages of including knowledge for compact

models.
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Römer, Agim Ballvora and Jens Léon for providing the barley
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