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Ordinal Comparison of Heuristic Algorithms
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Abstract—The performance of heuristic algorithms for com-
binatorial optimization is often sensitive to problem instances.
In extreme cases, a specialized heuristic algorithm may perform
exceptionally well on a particular set of instances while fail to
produce acceptable solutions on others. Such a problem-sensitive
nature is most evident in algorithms for combinatorial opti-
mization problems such as job shop scheduling, vehicle routing,
and cluster analysis. This paper proposes a formal method for
comparing and selecting heuristic algorithms (or equivalently,
different settings of a same algorithm) given a desired confidence
level and a particular set of problem instances. We formulate
this algorithm comparison problem as a stochastic optimization
problem. Two approaches for stochastic optimization, Ordinal
Optimization and Optimal Computing Budget Allocation are
applied to solve this algorithm selection problem. Computational
testing on a set of statistical clustering algorithms in the IMSL
library is conducted. The results demonstrate that our method
can determine the relative performance of heuristic algorithms
with high confidence probability while using a small fraction of
computer times that conventional methods require.

Index Terms—Algorithm comparison, cluster analysis, com-
puting budget allocation, manufacturing scheduling problems,
ordinal optimization, stochastic optimization.

I. INTRODUCTION

M ANY specialized algorithms and heuristics have been
developed for combinatorial problems such as produc-

tion scheduling and vehicle routing. The performance of these
specialized algorithms is often sensitive to problem instances.
As a common practice, researchers “tune” their algorithm to its
best performance on the test set reported. This causes problem
when the algorithms are to be used in industry applications
where the algorithm configured for today’s problem may
perform poorly for tomorrow’s instances. It is not practical
to conduct massive experiments in a regular basis for the
selection of a more effective algorithm setting. The same
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situation applies when a number of alternative algorithms are
available to the decision-maker for selection.

The testing and comparison of heuristic algorithms have
been a subject of much discussion in recent years. A familiar
approach of algorithmic testing is to show that a proposed
algorithm is better, at least in some aspect, than the cur-
rent incumbent using either standard benchmark problems or
randomly generated ones. Shortcomings of this approach are
highlighted in a 1995 article by Hooker who argued that “Most
experimental studies of heuristic algorithm resemble track
meets more than scientific endeavors [33, p. 33].” Among other
problems of this “track meets” approach is how much should
an algorithm developer tune his/her own algorithm versus the
competing algorithm, and whether such comparison is possible
to generalize. He suggested that the approach of controlled
experimentation is the way to alleviate potential biases and
unfairness in algorithm comparison.

Empirical testing of algorithms has been the focus of
research in a variety of contexts. In a recent article, [6] pro-
vide a comprehensive view to the computational experiments
for heuristic algorithms. [1] suggest methods for comparing
computational efficiency of network algorithms using the
concept of operation counts. In the context of mathematical
programming, the issue of conducting computational exper-
iments has been addressed since the late 70’s. [19], [35],
[36] have provided important guidelines for computational
experiments. [20], [28] discuss performance measures such
as algorithm robustness, reliability, and solution accuracy
when comparing algorithms. Most relevant to this paper are
statistical methodologies for the design and analysis of com-
putational experiments. [38], [9], [26], [2], [7] suggest various
statistical techniques for this purpose. Of special interest is
the approach suggested by [39], [40] which uses variance
reduction techniques to reduce the size of the computational
experiments when analyzing sorting algorithms.

In this paper, we focus our attention on heuristic algo-
rithms whose performance is sensitive to special structures of
different problem instances while the algorithm performance
can be improved through parametric tuning. We believe this
represents a large class of algorithms including exact meth-
ods whose efficiency relies on particular search heuristics
(e.g., branching rules in a branch and bound algorithm).
This problem-sensitive nature is most evident in algorithms
for combinatorial optimization problems such as job shop
scheduling, vehicle routing, and cluster analysis. Clearly, given
a set of problem instances one can find a parameter setting of a
particular algorithm that is at least as good as all others under
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consideration. The ability to make this decision effectively has
great practical importance. For example, scheduling problems
in a manufacturing plant may vary in a frequent basis due to its
highly dynamic nature. Due-date tightness, seasonality of order
volumes and mixes, machine or tooling status, and changing
operating policies may all alter the structure of the scheduling
problem to be solved. As a result, the “best” algorithm or
algorithm setting for solving a preconceived static problem
may perform poorly in a day-to-day basis.

In this paper, we propose a stochastic optimization method
designed to compare algorithms or algorithm settings in a
timely and efficient fashion when a new set of problem
instances arise. The purpose of this method is two fold: to
provide a means for algorithm comparison and to provide
a “self-tuning” mechanism for heuristic algorithms, i.e., to
identify appropriate parameter settings of an algorithm given
problem instances at hand.

In the next section, we formulate algorithm comparison as
a stochastic optimization problem. In Sections III and IV, we
present two optimization techniques,ordinal optimizationand
optimal computing budget allocation, for the solution of the
problem. Section V gives two numerical examples for com-
putational testing. Section VI address several implementation
issues and Section VII concludes the paper.

II. PROBLEM STATEMENT

Suppose we wish to compare several different heuristic
algorithms and each algorithm has different parameter settings.
There are a total of different algorithm-parameter combi-
nations. For convenience we will call these combinations
different algorithms indexed by, where . Our
objective is to find an algorithm (or more accurately, an algo-
rithm with a particular parameter setting) which performs the
best over a particular problem instance as well as a specified
range of variations for that instance. We further assume that
there existsa priori statistical information regarding the vari-
ations. Thus, a particular problem instance and its variations
form the set of problem instances under consideration. We
define abest algorithmas one that provides the best expected
performance for the current set of problem instances. Denote

as the result of applying algorithmgiven the variations
of the current problem instances characterized by. is
a random variable characterized by the variation of the current
problem instances. Specifically

(1)

where can be viewed as an estimation uncertainty
or noise. (1) implies that has zero mean. A good
example for could be a Gaussian noise, i.e.,

. Thus a best algorithm can be chosen based
on the expected performance measure , i.e.,

.
For most real-life problems, neither the closed-form ex-

pression of nor that of exists. To estimate
, one may take a sample of, say , and apply

algorithm to solve the problem based on this sample.
Then this is repeated for samples. Thus, is

approximated by the value

If we conduct independent sampling and the variance is finite,
as the strong law of large numbers dictates, the following
property holds with probability 1:

as

Since it is not possible to get an infinite number of test
samples, the best algorithm must be chosen without knowing
the exact value of the performance measure. The main diffi-
culty is that with traditional sampling methods the estimate

converges slowly. In general, the rate of
convergence for such a value estimate is at best
[37]. The large required for a good approximation implies
that each algorithm must be repeated with a large number of
samples, which translate to long computer time. In this paper
we present a new approach for algorithm comparison using
the notion of Ordinal Optimization and Optimal Computing
Budget Allocation. Given a specified confidence interval, our
method seeks to identify the best algorithm among a group of
algorithms using a fraction of the computing effort required
for traditional methods.

III. ORDINAL OPTIMIZATION

Although the estimate converges very slowly as
goes to infinity, recent research has shown that comparing

relative orders of performances measures converges much
faster than the performance measures themselves do. This
is the basic idea ofordinal comparison. [21] showed that
under certain conditions the rate of convergence for ordinal
comparison can be exponential. This result has important
implications as it means that in many cases we could have a
good estimate on the relative performance of algorithms while
the value estimate on the actual algorithm performance is still
poor.Ordinal optimizationrefers to the general approach that
selects a subset of alternatives from the design space based
on a certain criteria and a specified confidence level [30].
Ordinal comparisoncan be used as a means for solvingordinal
optimizationif our goal is to find a good alternative in a group
rather than to find an accurate estimate of the performance
value. This idea is applicable not only to problems with
discrete design space, but also to problems over a continuous
design space [12], [16], [18], [25], [41]. If our goal is to find
the best or a subset of good designs rather than to find an
accurate estimate of the best performance value (as is true in
many practical situations) it is advantageous to use ordinal
comparison for selecting the best design.

Suppose we select an algorithm using the following
criterion
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Given the fact that we use only a finite number of testing sam-
ples, is an approximation to the true expected
performance . An algorithm with the smallest
value of is not necessarily the true best algorithm
(i.e., its true expected performance may not be the
best).

Definition 1: Define correct selection (CS) as the event
that the selected algorithm is actually the best algorithm.
Define theconfidence probability The current
top-raking algorithm is actually the best algorithm.

Based on the results fromordinal comparison, it is possible
to establish therelative orderof efficiently (i.e., to
make the probability sufficiently high) although the
value of may converge slowly.

Theorem 1: Suppose the testing samples for each algorithm
are i.i.d. and the testing samples between any two algorithms
are independent. Assume that (or ) has a finite mo-
ment generating function. The ordinal comparison confidence
probability converges to 1 exponentially. More specifically,
there are 0, 0 such that

Proof: [21] Theorem 5.1.
Since most statistical distributions (for example, normal,

exponential, Erlang, and uniform distributions) have finite
moment generating functions and therefore, Theorem 1 is
applicable to most cases.

While theconfidence probability could converge at
an exponential rate inordinal comparison, a critical issue in
applying it to ordinal optimization is the estimation of the

itself. Reference [27] provide an excellent survey on
available approaches to estimating simulation confidence level.
Reference [8] give a systematic and more detailed discussion
on this issue. Unfortunately most of these approaches are only
suitable for problems with a small number of designs (e.g., [27]
suggest two to 20 designs). For real-life problems, the number
of designs under consideration can be quite large. Using a
Bayesian model, [14] developed an estimation technique to
quantify the confidence level for ordinal comparison when
the number of designs is large. In addition to the confidence
probability, this approach also provides sensitivity information
for each algorithm. The sensitivity information is useful if
incremental computing effort is to be allocated during the
comparison. We will make use of this particular feature in
Section IV to develop a computing budget allocation algo-
rithm. The computation of in this paper is a special
case discussed in [14].

Theorem 2: Let ,
denote the random variable whose probability distribution is
the posterior distribution of the expected performance for
algorithm under a Bayesian model. For a minimization
problem

Approximate Probability of

Correct Selection(APCS). (2.1)

For a maximization problem

(2.2)

Proof of Theorem 2 is given in the Appendix. Note that
the computation ofAPCS is simply a product of pairwise
comparison probabilities, which is much easier to compute.

Under the Bayesian model, the posterior distribution
consists of information from both prior distribution and the
test samples . In other words,
summarizes the statistical properties of algorithm’s perfor-
mance given the prior knowledge and the test results. To give
an explicit model for , we consider a Gaussian estimation
noise . Then the testing output is also
normally distributed with mean and variances .
In this paper, we consider noninformative prior distributions.
This implies that no priori knowledge is given about the
performance of any algorithm before the comparison starts.
If is known [10]

for

If the variance is unknown, can be replaced by the sample
variance

and becomes -distributed with degrees of freedom
[34].

In Theorem 2 we establish the lower bound of
[in (2)] as the approximate probability of correct selection
(APCS). While is very difficult to obtain,APCScan
be computed easily, for instance, in the case that variances are
known and for a minimization problem

APCS

where is the standard normal cumulative distribution. Nu-
merical testing in [14] shows thatAPCS provides a good
approximation to . We will therefore useAPCS to
approximate in this paper.

Intuitively, APCSprovides a convenient stopping criterion
for the process of algorithm comparison usingordinal op-
timization. As the number of test samples increases, the
variance decreases and more confidence can be given to the
sample mean. Using theAPCSmeasure and the basic property
of , we design an iterative algorithm comparison experiment
as follows.
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Consider a set of algorithms for comparison. Allocate a
small number of test samples for each algorithm, then
rank the algorithms according to their estimated relative
performance. Select the “best” (highest ranked) algo-
rithm. Compute the approximate probability of correct
selection (APCS) for the current ordinal comparison.
If the current selection reaches the desired level of
confidence, stop; otherwise, allocate more test samples
to the algorithms and repeat the process. Continue until
the desired level of confidence is reached.

The algorithm comparison procedure is stated more formally
as follows.

Algorithm Selection using Ordinal Optimization (OO)
Step 0. Specify a satisfactory confidence level

Perform testing samples for all algorithms,

.
Step 1. CalculateAPCS .

If APCS , stop; Otherwise,
go to Step 2.

Step 2. Perform additional testing samples for algorithm
.

for
Go to Step 1.

The key to the above algorithm is theAPCSmeasure which
takes advantage of the exponential convergence property of
ordinal comparison. As the number of test samples increases,
the probability of selecting the correct top-ranking algorithm
increases rapidly. In Section V, we will demonstrate computa-
tionally the performance of this algorithm selection procedure
using ordinal optimization.

To apply the algorithm, we need to select the initial number
of testing samples, , and the one-time increment,. It is
well understood that cannot be too small as the estimates
of the mean and the variance may be very poor, resulting in
terminating the comparison too early. A good choice foris
between 10 and 20 [8]. The selection ofis straightforward
here. A large can result in wasting computation time to
obtain an unnecessarily high confidence level. On the other
hand, if is small, we need to computeAPCS(in Step 1) many
times. Since the cost of computingAPCS is much cheaper
than runs of the algorithm testing, it is advisable to select a
smaller , which is 1 in this setting.

IV. OPTIMAL COMPUTING BUDGET ALLOCATION

While ordinal optimizationcould significantly reduce the
computational cost for algorithm selection, there is potential to
further improve its performance by adjusting in each iteration
the amount of additional samples (i.e.,) based on the relative
performance of algorithm. In this section, we present a
technique called optimal computing budget allocation (OCBA)
which makes use of this idea. The OCBA approach can be
summarized as follows: Start the algorithm selection proce-
dure usingordinal optimization. In each iteration, compute
a “promising index” for each algorithm under consideration,
allocate incremental computing budgets to “more promising”

algorithms while a subset of algorithms may be declared
inferior and allocated no additional budget. As the experiment
continues, the relative-performance estimations improve and
promising algorithms are re-determined for further testing.
This procedure continues until a pre-specified confidence level
is obtained for the algorithm ranking.

Suppose we could find the allocation of testing samples
to all algorithms, which minimizes total computation cost
while obtaining the desired confidence level. Then we can
optimally decide which algorithm will receive how many
computing budgets in each iteration of the experiment. Let

be the number of testing samples of algorithm. If
comparison is performed on a sequential computer and the
difference of computation costs using different algorithms is
negligible, the total computation cost can be approximated by

. The goal is to choose for all such
that the total computation cost is minimized, subject to the
restriction that the confidence level defined byAPCSis greater
than some satisfactory level. This optimization problem in its
simplest form can be stated as follows:

s.t. APCS (3)

where is a user-defined confidence level requirement.
Some difficulties in solving (3) include the following.

1) There is no closed-form expression for the confidence
level APCS.

2) The confidence levelAPCS can be
computed only after all testing samples
for algorithm 1 through , respectively, are performed.

3) are integers and the number of combi-
nations for is large even for moderate
.

In general, solving (3) as ana priori optimization problem
is difficult due to a typically large and the fact that the
information required for calculatingAPCSis poor. Since the
very purpose of OCBA is to reduce the computation cost of
algorithm comparison, there is little incentive to exert too
much effort in solving (3) itself. The additional cost of solving
(3) must be properly balanced with the benefits of budget
allocation.

As a heuristic for the solution to OCBA (i.e., to find
the best ), we sequentially select a subset of
“promising” algorithms in each iteration of the computational
experiment. This procedure continues untilAPCS .
We define promising algorithmsas those which maximize
the estimated improvement ofAPCS. A critical issue in this
approach is the determination of a set of promising algorithms,
or more specifically, the estimation of the new if
additional testing samples are performed on algorithm.

Definition 2: Define EPCS
as an estimated if additional testing

samples are performed on algorithm. EPCS is computed
using the statistical information after testing
are completed for algorithms , respectively.

To minimize the efforts of reaching a desired confidence
level, in each iteration we test the algorithm that has a
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maximum promising index (PI) defined as follows:

PI EPCS

APCS

Reference [17] suggests a simple and effective way to esti-
mate theEPCS(without loss of generality we only consider
minimization problems here).
If

EPCS

where

And if

EPCS

where

Note that the expression ofEPCSis similar to that ofAPCSin
(2). In fact,EPCScan be obtained by substituting with in
APCS. The only difference between the two is their variances,
i.e., the former is and the latter is . In effect, we use
the statistical information on to estimateAPCSat by
decreasing the sample variance from to . Thus,EPCS
provides sensitivity information about howAPCSwill change
if additional testing samples are performed on algorithm.

Under the above framework, “promising” refers to high
improvement of the overall comparison confidence level. Since
we intend to minimize the total number of testing samples,
we select and test a subset of most promising algorithms in
each iteration, then repeat the process untilAPCSachieves the
desired level, .

It is worthwhile to compare our OCBA with the well-known
computing budget allocation techniques such as the two-stage
procedures given in [23] and [42], andMulti-Armed Bandit
Problem [31]. Reference [15] gives detailed comparison and
shows that the OCBA is more than ten times faster than the
aforementioned techniques for two 10-design discrete-event
simulation problems.

Using the concepts of ordinal optimization and optimal
computing budget allocation we develop an iterative experi-
mentation procedure for algorithm comparison. The procedure
is first summarized as follows. We assume that at the beginning
of the experiment there is no knowledge aboutAPCS, nor is
there any other basis for allocating computing budget. We first
test all algorithms with samples. Apromising indexis then
calculated for all algorithms and a subset ofalgorithms are
selected for further testing based on theirPI’s. Since there
is a natural limit on how much efforts one should put on
calculatingPI and the determination of promising designs, we
heuristically determine the value of , attempting to balance
the extra computation with the potential saving in overall
computer time. The procedure is summarized as follows.

A Sequential Approach for Optimal Computing Budget
Allocation (OCBA)

Step 0. Perform testing samples for all algorithms,

.
Step 1. If APCS , stop, otherwise,

go to Step 2.
Step 2. CalculatePI for all algorithms .
Step 3. Find the set PI is among the

highest
Step 4. Perform additional testing samples for algorithm

.
Set , for , and

, for ,
, go to Step 1.

Selection of the parameters and has been discussed in
the OO algorithm previously. The selection of is trivial.
is the number of promising designs for further simulation. A
large is definitely a bad choice. Consider an extreme case
that . This means that we simulate all designs every
time, which is equivalent to no use of OCBA. On the other
hand, [17] have shown that the performance of OCBA is not
sensitive to the size of provided that is small. However,
we don’t want is too small because small means that we
need to perform Steps 2 and 3 many times. A good choice for

is any number between to .

V. COMPUTATIONAL EXPERIMENTS

In the computational experiments, we use the machine
clustering problems to test our algorithm comparison proce-
dure. Specifically, we test our approach on the selection of
a clustering algorithm from a group of well-known heuristic
algorithms available from the IMSL software library. These
algorithms have the desired characteristics of being both
parametric and sensitive to problem instances. Since they
are developed and managed by the same organization, im-
plementation differences in terms of memory management,
data structures and coding techniques are minimal. Given the
task of selecting a best heuristic algorithm for the problem
instances under consideration and a specified confidence level,
we focus our analysis on the actual savings in computer time
over traditional methods.
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TABLE I
(a) MACHINE-PART INCIDENCE MATRIX FOR EXAMPLE 1. (NOTE THAT

VALUES NOT SHOWN ARE 0’s). (b) A SOLUTION TO THE PROBLEM

IN TABLE I(a) AFTER REORDERING ITS ROWS AND COLUMNS

(a)

(b)

Cluster analysis has been used to solve machine-grouping
problems in manufacturing environments [3]. Many clus-
ter analysis approaches have been proposed over the years.
Among them are hierarchical clustering techniques [4], opti-
mization algorithms [24], fuzzy logic approaches and neural
network based algorithms. Without complicating the issues
in algorithm comparison, we will compare only hierarchical
clustering algorithms in this study.

Hierarchical clustering utilizes a machine-part incidence
matrix with 0–1 entries. The incidence matrix provides infor-
mation about which parts are processed on which machines.
Table I(a) gives an example of such machine-part incidence
matrix. Conventionally, rows of the incidence matrix corre-
spond to machines while columns correspond to parts. In a
matrix , element is equal to 1 if part visits machine

at some point of its process, and 0 otherwise. The objective
of a clustering algorithm is to reorder the rows and columns
of the matrix such that blocks of 1’s appears, as much as
possible, along the diagonal direction of the matrix. In this
case, adjacent parts in the resulting matrix tend to use the
same set of machines (i.e., the matrix defines machine cells).
Ideally we would like to transform the matrix in Table I(a)
into a block diagonal matrix, in which 1’s are located only in
the diagonal blocks. In practice, this may not be possible to
achieve, i.e., some of the 1’s may not belong to any blocks
[as shown in Table I(b)].

Before starting the hierarchical clustering algorithm, the
machine-part incidence matrix is transformed into a similarity
matrix so that the clustering algorithms can be used for
the machine-grouping problems. A similarity matrix contains
information about the degree to which each machine is related
to the other machines according to the parts they process. More
specifically, each entry to the similarity matrix is asimilarity
coefficient, one for each machine pair. Let be the number
of parts that visit machine and be the number of parts
that visit machine and machine . We define three different
similarity coefficients , as follows:

norm:

norm:

norm:

Hierarchical clustering algorithm forms machine groups
by processing the similarity matrix obtained from the
incidence matrix. Initially, each machine belongs to a cluster of
its own. In each succeeding iteration, the algorithm combines
individual machine or groups of machines into clusters based
on some (heuristic) criterion. The columns and rows for the
cluster members are removed from the matrix and replaced
by similarity coefficients aggregated from the clusters. This
forms a reduced similarity matrix among machine clusters.
The clustering algorithm continues to reduce similarity matrix
until all machines are in a specified number of clusters. This
procedure produces a range of clustering solutions, which is
summarized in a “dendogram.” A dendogram is a tree in which
the root and the leave levels represent the trivial one-cluster,
and no-cluster solutions, respectively. The levels between
the root and the leaves represent all nontrivial solutions
found in the algorithm. Given a specified number of clusters,
a solution can be found at a corresponding level of the
dendogram. A detailed description of general hierarchical
clustering algorithms can be found in [3].

A number of hierarchical clustering algorithms has been
developed and widely used. Main differences between these
heuristic algorithms include the criterion used for combining
clusters, or the way similarity coefficients are updated. To
demonstrate our proposed algorithm comparison procedure,
we implemented six well-known hierarchical clustering algo-
rithms [4] as follows:



50 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 1, FEBRUARY 1999

1) single linkage (SGL): Combine a pair ofsimilarity co-
efficientsby saving the maximum for further iterations;

2) complete linkage (CPL): Combine a pair ofsimilarity
coefficientsby saving the minimum for further itera-
tions;

3) average between linkage (ABL): Combine a pair of
similarity coefficientsby saving their average for further
iterations;

4) average within linkage (AWL): Combine a pair of
similarity coefficientsby re-calculating the average of
similarity coefficientsof all machines within the merged
cluster for further iterations;

5) centroid method (CTD): Suppose clusters and
are being merged as a new cluster. The number
of parts that visit machine group is calculated by

. Then thesimilarity coefficients
between the newly merged cluster and all other clusters
are re-calculated;

6) Ward’s method (WAR): Combines those machine
groups whose merger produces the minimum increase
in the total sum of squares of similarity coefficients
within the merged cluster.

Since the three different ways of calculating similarity
coefficient can be considered a parametric element of hierar-
chical clustering algorithm, we combine them with each of
the above hierarchical clustering algorithm. This results in
18 distinct “heuristic algorithms” to be tested. We repeat the
computational experiments on two distinctly different sets of
problem instances.

To produce a more realistic set of problem instances we
assume some portion, say, of the elements in this machine-
part incidence matrix will be perturbed from “1” to “0,” or
from “0” to “1.” Further, we assume that the exact instance of
the matrix after all the changes is not knowna priori. Thus, the
objective is to find a clustering algorithm (out of the 18) which
has the best expected performance given the base problem
instance and its variations.

Performance Measures:To determine the performance of
different clustering algorithms we use three performance mea-
sures: average similarity (CR), total number of outliners (OL),
and a linear combination ofCR and OL. OL is a count of
the total number of 1’s which do not belong to any of the
blocks along the main diagonal, i.e., outliners [an example is
shown in Table I(b)]. On the other hand,CR measures the
system-wide similarity or the similarity among all clusters.
More specifically

CR

where

number of clusters;
total number of members
in cluster ;
similarity between clus-
ter and the rest of clus-
ters;

similarity between clus-
ters and ;
dispersion of cluster;
centroid of the cluster;
is a member associated
with each “one” in
the resulting machine-
part-incidence matrix
after applying a cluster
algorithm;
distance between two
centroids and ;
centroid of the cluster.

For the third performance measure, we consider a linear
combination ofCR and OL and assume bothCR and OL
are equally important. Since they are on different scales, we
have to choose appropriate scaling factors. We first conduct
a numerical experiment (with %) to estimate CR
and OL for each algorithm . Then we take an average
over all algorithms and use their reciprocals as the scaling
factors. More specifically, the third performance measure in
our testing is

CR

CR OL OL

which is CR OL and will be used for different
values of .

The 18 algorithms (six heuristics and three ways to compute
similarity coefficients) are applied to solve the clustering
problem where we set the perturbation parameterat 5%.
To establish a benchmark for comparison we first use the
“traditional” approach to select the best algorithm without
any attempt to reduce the computation time. We iteratively
increase the number of testing samples for each algorithm
until the value estimation of the mean performance measure

is sufficiently stable, i.e., the variation of the
estimator is sufficiently small as compared with the
absolute value of . In this testing, we assume that a
good approximation to can be obtained when the
relative standard error (i.e., the ratio of the standard deviation
of to is less than 0.1%.

Experiment 1. Base Testing on the First Set of Problem
Instances: We consider the matrix in Table I(a) as a base
for the first set of problem instances (from [29]). 5% of the
elements in this matrix will be perturbed from “1” to “0,” or
from “0” to “1” (i.e., %). The resulting rankings for each
performance measure are shown in Table II.

Comparing different performance measures in Table II, we
see that the Average Within Linkage heuristic (with
similarity coefficient) performs better than other algorithms if
we are minimizingCR. However, its performance is ranked
at 14 if we are interested inOL. On the other hand, Av-
erage Between Linkage with similarity coefficient has
the best performance forOL and is very poor forCR. This
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TABLE II
RANKING OF ALGORITHMS USING DIFFERENT

PERFORMANCE MEASURES (
 = 5%)

interesting result shows that the performance of heuristic
algorithms could be sensitive not only to parameter settings
but also to performance measures. Furthermore, as we will
show in the second set of problem instances later, the heuristic
performance is also sensitive to different problem instances.
The above observations are well-known in the performance
of dispatching heuristics for scheduling problems. In some
sense, developing efficient techniques that identify which
algorithm performs well under which specific conditions is
at least as important as developing new efficient algorithms.
In the following, we will test two such techniques developed
earlier,ordinal optimizationand OCBA and demonstrate their
effectiveness.

Experiment 2. Testing the Efficiency of Ordinal Optimiza-
tion and OCBA—Instance One:We consider three differ-
ent percentages of variations: % 5%, and 15% in
forming the set of test instances. We consider two ways of
applying the stochastic optimization techniques. In the first
configuration we applyordinal optimizationto the algorithm
comparison process described above, and measures the degree
of saving achieved. In the second configuration we apply
ordinal optimization and optimal computing budget allocation
(OCBA) in sequence. We stop the comparison procedure when
the confidence probabilityAPCS is no less than , which
means that the required confidence level is achieved. Different
confidence level requirements are tested at 90%, 95%, 99%,
and 99.5%. We repeat this testing 100 times, each run uses a
different random seed. Since the total numbers of test samples
are different from one run to another run due to different
random seeds, we compute their average as the computation
cost. Tables III–V contain the testing results forCR, OL,

CR OL performance measure, respectively. We
compare the total numbers of test samples using different
approaches for different cases.

From the three tables, we see that with the application
of ordinal optimization, the “best algorithm” can be identi-
fied with high probability within a much shorter time when
compared to the traditional method. The time savings factors

TABLE III
COMPUTATION COST FORCR PERFORMANCE MEASURE WITH DIFFERENT

CONFIDENCE LEVEL REQUIREMENTS.1) THE AVERAGE OF THETOTAL NUMBERS

OF TEST SAMPLES OVER THE 100 INDEPENDENTEXPERIMENTS; 2) T.S.F. IS THE

TIME SAVING FACTOR AS COMPARED TO THETRADITIONAL METHOD; 3) S.F.O.O.
IS THE SPEEDUPFACTOR OF OO+OCBA AS COMPARED TO USING OO ONLY

TABLE IV
COMPUTATION COST FOR OL PERFORMANCE MEASURE

WITH DIFFERENT CONFIDENCE LEVEL REQUIREMENTS

range from 23 to 739. If the OCBA is used, the factors
can be as high as 1656. The required computation cost of
our approach depends heavily on how close the performance



52 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 15, NO. 1, FEBRUARY 1999

TABLE V
COMPUTATION COST FOR0:0113CR+ 0:0147OL PERFORMANCE

MEASURE WITH DIFFERENTCONFIDENCE LEVEL REQUIREMENTS

measure of the best algorithm is to that of other algorithms.
Intuitively, the closer in performance the best algorithm is
comparing to other algorithms, the harder it is to identify the
best algorithm. Clearly, the confidence level requirement
affects the required computation as well. In general, a higher
confidence level requirement requires longer computation time
for ordinal optimization. However, the speedup of OCBA over
ordinal optimization (i.e., S.F.O.O.) increases asincreases.
This is because a higher computational requirement on ordinal
optimization offers more opportunity for OCBA to manipulate
the budget allocation.

Larger implies larger variation of testing problems. As
a result, the performance measures in our experiments,CR,
OL, and their combination, become larger asincreases.
Since the stopping criterion for the traditional approach is
that the standard deviation of is less than 0.1% of

, the computational cost of the traditional approach
is lower for larger . However, when using this approach the
confidence level of identifying the best algorithm can not be
guaranteed. On the other hand, our approaches tend to take
longer computation time as increases, since the variances of
the performance measure becomes larger and it becomes more
difficult to isolate the best algorithm.

Experiment 3. Base Testing on the Second Set of Problem
Instances: We test our approaches using another base instance
shown in Table VI(a) [13]. We again consider three perfor-
mance measures:CR, OL, and a linear combination ofCRand
OL. Similarly, we conduct a pre-testing in order to obtain the
appropriate scaling factor for the combination ofCR andOL,
which is 0.0068CR OL in this case. All settings in
the numerical experiment are the same as those in Experiment

TABLE VI
(a) MACHINE-PART INCIDENCE MATRIX FOR EXAMPLE 2. (b) A SOLUTION TO

THE PROBLEM IN TABLE VI(a) AFTER REORDERING ITS ROWS AND COLUMNS

(a)

(b)

TABLE VII
RANKING OF ALGORITHMS USING PERFORMANCEMEASURE CR

1. The resulting rankings for each performance measure with
5% are shown in Table VII.

Comparing different performance measures in Table VII,
we see that the Average Between Linkage heuristic with
similarity coefficient performs better than other algorithms if
we are minimizingOL. However, its performance is among
the worst if we are interested inCR. In addition, comparing
Table VII with Table II, Average Within Linkage heuristic
is the best heuristic forCR in example 1. However, the
best heuristic forCR in example 2 is the Single Linkage
heuristic. The performance of heuristic algorithms can be
highly sensitive not only to the performance measure, but also
to the problem instances.

Experiment 4. Testing the Efficiency of Ordinal Optimization
and OCBA—Instance Two:Same as Experiment 2, we
consider three different percentages of variations:
% % % in the test problems. Tables VIII–X contain the
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TABLE VIII
COMPUTATION COST FORCR PERFORMANCE MEASURE WITH DIFFERENT

CONFIDENCE LEVEL REQUIREMENTS.T.S.F. IS THE TIME SAVINGS FACTOR

WHEN OUR TECHNIQUES ARE APPLIED AS COMPARED WITH

THE TRADITIONAL APPROACH.S.F.O.O.IS THE SPEEDUPFACTOR OF

USING OO+OCBA OVER USING OO ONLY. THUS S.F.O.O. CAN

BE AN INDICATOR OF THE EFFECTIVENESS OF THEOCBA TECHNIQUE

TABLE IX
COMPUTATION COST FOR OL PERFORMANCE MEASURE

WITH DIFFERENT CONFIDENCE LEVEL REQUIREMENTS

TABLE X
COMPUTATION COST FOR0:0068CR+ 0:0411OL PERFORMANCE

MEASURE WITH DIFFERENTCONFIDENCE LEVEL REQUIREMENTS

testing results forCR, OL, CR OL performance
measure, respectively.

Again, we see that usingordinal optimizationcan obtain
a time savings factor as high as 8881, and the OCBA can
further pushes the saving factor up to 19 648 in this example.
While the time saving factors of using our approaches could be
problem-dependent, we believe that the proposed techniques
provide a very efficient approach to compare algorithms and
isolate the best algorithm using relatively short computer time.

VI. GENERAL APPLICABILITY OF THE METHOD

As previously suggested, the proposed scheme could be used
to compare different algorithms or different parameter settings
of an algorithm. On the other hand, the approach could be used
on a variety of combinatorial problems including the well-
known vehicle routing, and job-shop scheduling problems.
This is because the method makes no use of the special struc-
ture of the combinatorial problem under consideration, neither
does it assume any special relationships among the heuristics
under comparison. The comparison scheme is essentially a
means to implementing a designed computational experiment,
assuming each algorithm as a capsulated module that takes the
problem input and provides a solution that can be evaluated
by a certain performance measure.

However, from an implementation point of view, several
issues must be addressed when setting up heuristic algorithms
for comparison. First, the method assumes the existence of
a problem instance and its statistical variations. In practice,
this information must be made available from historic data
or other a priori knowledge of the problem. For example,
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for production scheduling problems, static information on
job routing and processing time distributions are typically
available in the information system. Givena priori information
on the incoming job orders, a problem instance could be
constructed with proper statistical variations. The sources
of statistical variations may include processing times, setup
requirements, job routings and the presence of alternative
machines. With the capability of current information systems,
constructing a problem instance and its statistical variations for
a specified planning period should not be difficult. A similar
setting can be applied to vehicle routing problems where
incoming customer demands over the near-term planning
periods are analyzeda priori, providing a statistical basis for
the algorithm selection test instances.

Another issue involves the testing of a diverse set of
algorithms. While comparing different parameter settings of
an algorithm or a set of “standardized” algorithms (such is
the case in the IMSL library) is straightforward, comparing
independently developed algorithms remains difficult. As well
illustrated by [6] and [32], the difficulties are due to the wide
variety of programming options available (e.g., data structures,
memory management scheme), presumed computing plat-
forms, and the vary interpretations ofalgorithm comparison.
Clearly some effort on setting up the ground rules, or even
standardizing the heuristic algorithms is necessary before a
fair comparison can start. As specialized software libraries
(e.g., class libraries in C , or Java) becomes common
place for mathematical and statistical algorithms, it is not
unreasonable to assume that the algorithms under comparison
are standardized under a common set of assumptions.

VII. CONCLUSION

In this paper, we demonstrated that the performance of
algorithms could be highly sensitive to problem instances,
parameter settings and performance measures. In extreme
cases, an algorithm may perform exceptionally well on a
particular set of instances while fail to produce acceptable
solutions on others. Furthermore, as we have shown in our
experiments, a heuristic algorithm may be superior on a partic-
ular performance measure while performing poorly on another
performance measure. Two methods of ordinal comparison
presented in this paper offer an efficient scheme for selecting
heuristic algorithms given a desired confidence level and a
particular set of problem instances. Computational testing on
a set of statistical clustering algorithms demonstrates that our
method can effectively compare and select algorithms that are
expected to perform the best on given problem instances. The
time savings factors of usingordinal optimizationin the com-
putational testing range from 23 to 8881. The application of
optimal computing budget allocation on ordinal optimization
can further push the savings factor up to as high as 19 648.

Our proposed approach for algorithm comparison is quite
general with a few mild assumptions. A major assumption
is that the variation/noise of the testing result has a finite
moment generating function, which is true for most real-world
distributions. The restriction of a finite moment generating
function is to ensure the exponential convergence property of

ordinal optimization. However, even if this assumption is not
valid and thus, the exponential convergence property is not
ensured, the OCBA scheme is still applicable and could still
reduce computation cost significantly.

APPENDIX

The computation ofAPCS in this paper is a special case
discussed in [14]. In the following we give the proof of
Theorem 2. Let be random variables, and

are mutually independent.
Lemma 1:

1.

is the density fun.

(independence)

because

Lemma 2

(According to Lemma 1).

As the same way

Proof of Theorem 2:Under the Bayesian model

The current top-raking algorithm

is actually the best algorithm

Apply Lemma 2
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