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Ordinal Comparison of Heuristic Algorithms
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Abstract—The performance of heuristic algorithms for com-  situation applies when a number of alternative algorithms are
binatorial optimization is often sensitive to problem instances. gvajlable to the decision-maker for selection.
In extreme cases, a specialized heuristic algorithm may perform The testing and comparison of heuristic algorithms have

exceptionally well on a particular set of instances while fail to b biect of h di L t A famil
produce acceptable solutions on others. Such a problem-sensitive €en a subject of much discussion In recent years. amiliar

nature is most evident in algorithms for combinatorial opti- @pproach of algorithmic testing is to show that a proposed
mization problems such as job shop scheduling, vehicle routing, algorithm is better, at least in some aspect, than the cur-
and cluster analysis. This paper proposes a formal method for rent incumbent using either standard benchmark problems or
comparing and selecting heuristic algorithms (or equivalently, randomly generated ones. Shortcomings of this approach are

different settings of a same algorithm) given a desired confidence . . . M
level and a particular set of problem instances. We formulate Nighlighted in a 1995 article by Hooker who argued that “Most

this algorithm comparison problem as a stochastic optimization experimental studies of heuristic algorithm resemble track
problem. Two approaches for stochastic optimization, Ordinal meets more than scientific endeavors [33, p. 33].” Among other
Optimization and Optimal Computing Budget Allocation are problems of this “track meets” approach is how much should

applied to solve this algorithm selection problem. Computational : : .
testing on a set of statistical clustering algorithms in the IMSL an algorithm developer tune his/her own algorithm versus the

library is conducted. The results demonstrate that our method competing_algorithm, and whether such comparison is possible
can determine the relative performance of heuristic algorithms to generalize. He suggested that the approach of controlled

with high confidence probability while using a small fraction of experimentation is the way to alleviate potential biases and
computer times that conventional methods require. unfairness in algorithm comparison.

Index Terms—Algorithm comparison, cluster analysis, com- Empirical testing of algorithms has been the focus of
puting budget allocation, manufacturing scheduling problems, research in a variety of contexts. In a recent article, [6] pro-
ordinal optimization, stochastic optimization. vide a comprehensive view to the computational experiments

for heuristic algorithms. [1] suggest methods for comparing
|. INTRODUCTION computational efficiency of network algorithms using the

M ANY specialized algorithms and heuristics have bee%oncept of operation counts. In the context of mathematical

developed for combinatorial problems such as produggogrammmg, the issue of conducting computational exper-

, . : . Iments has been addressed since the late 70’s. [19], [35],
tion scheduling and vehicle routing. The performance of the 6] have provided important guidelines for computational
specialized algorithms is often sensitive to problem instanc P P 9 P

As a common practice, researchers “tune” their algorithm to Eg(perlmgnts. [20], [28] d|scu§s .p.erformance measures such
algorithm robustness, reliability, and solution accuracy

best performance on the test set reported. This causes prob??m

when the algorithms are to be used in industry applicatiox\; int_colmpa;lr?g dallgo_rlthrps.ﬂl\]/lozt rc_alevan'ijto thl's _pap;ar are
where the algorithm configured for today’s problem ma austical methodologies for the design and analysis ot com-

perform poorly for tomorrow’s instances. It is not practica utgtiqnal exper_iments. [38]! [91, [26], [2], [7] sug_ges.t variou;
to conduct massive experiments in a regular basis for t E"“St'cal techniques for this purpose. Of _speC|aI mtere;t 'S
selection of a more effective algorithm setting. The santd® approach s_uggested by [39], [49] which uses variance
reduction techniques to reduce the size of the computational
experiments when analyzing sorting algorithms.
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consideration. The ability to make this decision effectively hagpproximated by the value

great practical importance. For example, scheduling problems n

in_ a manufact_uring plant may vary_in a frequent basis_ duetoits E, [hi(w)] = 1 Z hi(w;).

highly dynamic nature. Due-date tightness, seasonality of order ni

volumes and mixes, machine or tooling status, and changing

operating policies may all alter the structure of the schedulidgwe conduct independent sampling and the variance is finite,
problem to be solved. As a result, the “best” algorithm @S the strong law of large numbers dictates, the following
algorithm setting for solving a preconceived static probleroperty holds with probability 1:

may perform poorly in a day-to-day basis. Lo
In this paper, we propose a stochastic optimization method - Z hi(w;) — Ey[hi(w)], asn — oc.
designed to compare algorithms or algorithm settings in a et

timely and efficient fashion when a new set of problem. o _ o
instances arise. The purpose of this method is two fold: ®NCe it is not possible to get an infinite number of test
provide a means for algorithm comparison and to provi@mplesv the best algorithm must be chosen without k_now_ln_g
a “self-tuning” mechanism for heuristic algorithms, i.e., téh€ exact value of the performance measure. The main diffi-
identify appropriate parameter settings of an algorithm giv@#"tyn's that with traditional sampling methods the estimate
problem instances at hand. %2 =1 hi(w;) converges slowly. In general, the rate of
In the next section, we formulate algorithm comparison &9nvergence for such a value estimate is at et/ \/n)
a stochastic optimization problem. In Sections Il and 1V, wEB7]- The largen required for a good approximation implies
present two optimization techniquesrdinal optimizationand that each algorithm must be repeated with a large number of
optimal computing budget allocatiorfor the solution of the Samples, which translate to long computer time. In this paper
problem. Section V gives two numerical examples for confve present a new approach for algorithm comparison using

putational testing. Section VI address several implementatiit¢ notion of Ordinal Optimization and Optimal Computing
issues and Section VII concludes the paper. Budget Allocation. Given a specified confidence interval, our

method seeks to identify the best algorithm among a group of
algorithms using a fraction of the computing effort required
for traditional methods.

Suppose we wish to compare several different heuristic
algorithms and each algorithm has different parameter settings. m
There are a total of: different algorithm-parameter combi- .
nations. For convenience we will call these combinatiens Although the estimaté’,,[1;(w)] converges very slowly as
different algorithms indexed by, wherei = 1,2, -, k. Our 7 90€s 10 infinity, recent research has shown that comparing
objective is to find an algorithm (or more accurately, an algéelative ordersof performances measures converges much
rithm with a particular parameter setting) which performs th@ster than the performance measures themselves do. This
best over a particular problem instance as well as a specifigdthe basic idea obrdinal comparison [21] showed that
range of variations for that instance. We further assume thgRder certain conditions the rate of convergence for ordinal
there existsa priori statistical information regarding the vari-cCOmparison can be exponential. This result has important
ations. Thus, a particular problem instance and its variatiofplications as it means that in many cases we could have a
form the set of problem instances under consideration. \W80d estimate on the relative performance of algorithms while
define abest algorithmas one that provides the best expecte@le value estimate on the actual algorithm performance is still
performance for the current set of problem instances. Den®@0r- Ordinal optimizationrefers to the general approach that
hi(w) as the result of applying algorithirgiven the variations Selects a subset of alternatives from the design space based
of the current problem instances characterizediby:;(w) is ©ON & certain criteria and a specified confidence level [30].
a random variable characterized by the variation of the currépfdinal comparisorcan be used as a means for solvardinal

Il. PROBLEM STATEMENT

. ORDINAL OPTIMIZATION

problem instances. Specifically optimizationif our goal is to find a good alternative in a group
rather than to find an accurate estimate of the performance
hi(w;) = Ey[hi(w)] + ei(w;) (1) wvalue. This idea is applicable not only to problems with

) o _ discrete design space, but also to problems over a continuous
where g;(w;) can be viewed as an estimation uncertaintyesign space [12], [16], [18], [25], [41]. If our goal is to find
or noise. (1) implies that;(w;) has zero mean. A goodhe pest or a subset of good designs rather than to find an
example fore; (w;) could be a Gaussian noise, i.&i(w;) ~  accurate estimate of the best performance value (as is true in
N(0,07). Thus a best algorithm™ can be chosen basedmany practical situations) it is advantageous to use ordinal
on the expected performance measéiglhi(w)], i.e..i" = comparison for selecting the best design.

arg min; Ew[hi(w)]_. ) Suppose we select an algorithin using the following
For most real-life problems, neither the closed-form eXyiierion

pression ofh;(w) nor that of E,,[h;(w)] exists. To estimate

E[hi(w)], one may take a sample af, sayw,, and apply .

algorithm ¢ to solve the problem based on this samplg b=arg m}nEw[hi(w)] =
Then this is repeated fon samples. Thusk,,[h;(w)] is

S|

Z hi(w;)
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Given the fact that we use only a finite number of testing sarfer a maximization problem
ples,n, F,[h;(w)] is an approximation to the true expected

performance£,[h;(w)]. An algorithm b with the smallest i -

value of E,,[h;(w)] is not necessarily the true best algorithm PiCs) 2 ‘ H P{Jy > Jij (2.2)
(i.e., its true expected performanéi[h,;(w)] may not be the i=1Lii7b

best).

Definition 1: Define correct selection (CS) as the everﬁ]rOOf of Theorem 2 is given in the Appendix. Note that

that the selected algorithrh is actually the best algorithm.
Define theconfidence probability?{CS} = P {The current
top-raking algorithmb is actually the best algorithjn

Based on the results froordinal comparisonit is possible
to establish theelative orderof £, [h;(w)] efficiently (i.e., to

make the probability>{CS} sufficiently high) although the mance given the prior knowledge and the test results. To give

value of £, [h;(w)] may converge slowly. lici del for.j i G . S
Theorem 1: Suppose the testing samples for each algorith"rinn.eXIO Icit model for./;, we consider a aussian espmanon
S ' : . noise &;(w;) ~ N(0,02). Then the testing output is also
are i.i.d. and the testing samples between any two algorithms !

7 : ‘ ! 7
are independent. Assume thigfw) (or ;(w)) has a finite mo- norm_ally distributed WIFh mean}ff‘w [hz(w)]. and variances; .

; . . : .. In this paper, we consider noninformative prior distributions.
ment generating function. The ordinal comparison confiden

. . MAeNERis implies that no priori knowledge is given about the
probability converges to 1 exponentially. More specifically . .
there area > 0, 3 > 0 such that performance of any algorithm before the comparison starts.

If o2 is known [10]

e computation ofAPCSis simply a product of pairwise
comparison probabilities, which is much easier to compute.
Under the Bayesian model, the posterior distributigt;)
consists of information from both prior distribution and the
test sampleg h;(w;),j = 1,2,---,n}. In other wordsp(J;)
summarizes the statistical properties of algoritfimperfor-

P{CS} > 1— ae "™, . ,
Ji~N EZhi(wj),ﬂ , fori=1,2,-- k.
Proof: [21] Theorem 5.1. O et 7
Since most statistical distributions (for example, normal,
exponential, Erlang, and uniform distributions) have finitg the variance is unknowny? can be replaced by the sample
moment generating functions and therefore, Theorem 1 \igriance
applicable to most cases.

While the confidence probability?{CS} could converge at n n 2
i gl )P{- ! e S2 = ! E hi(w;) — EE hi(ws)
an exponential rate iordinal comparisona critical issue in e i\Wj n i\Ws
applying it to ordinal optimizationis the estimation of the i=1 s=1

P{CS} itself. Reference [27] provide an excellent survey on  _

available approaches to estimating simulation confidence levatd Ji becomes-distributed withn — 1 degrees of freedom
Reference [8] give a systematic and more detailed discussl8fl-

on this issue. Unfortunately most of these approaches are onlyn Theorem 2 we establish the lower bound BfCS}
suitable for problems with a small number of designs (e.g., [2f (2)] as the approximate probability of correct selection
suggest two to 20 designs). For real-life problems, the numd&PCS. While P{CS} is very difficult to obtain,APCScan

of designs under consideration can be quite large. Usingbﬁ computed easily, for instance, in the case that variances are
Bayesian model, [14] developed an estimation technique kBown and for a minimization problem

quantify the confidence level for ordinal comparison when N

the number of designs is large. In addition to the confidence . = =

probability, this approach also provides sensitivity information APCS= H PAdy = Ji < O}

for each algorithm. The sensitivity information is useful if =L

incremental computing effort is to be allocated during the B b o S hi(w,) — 23577 hy(w,)
comparison. We will make use of this particular feature in - H o2 | o

Section IV to develop a computing budget allocation algo- i=L.izb s

rithm. The computation o?{CS} in this paper is a special ] ] o

case discussed in [14]. where @ is the standard normal cumulative distribution. Nu-

Theorem 2:Let J;, i € {1,2,---,b— 1,b,b+1,.--,k}, Merical testing in [14] shows thahPCS provides a good

denote the random variable whose probability distribution fPProximation toP{CS}. We will therefore useAPCS to
the posterior distribution of the expected performance f@PProximater{Cs} in this paper. _ _ o
algorithm < under a Bayesian model. For a minimization Intuitively, APCSprovides a convenient stopping criterion

problem for the process of algorithm comparison usiogdinal op-
timization As the number of test samples increases, the
k o variance‘%‘2 decreases and more confidence can be given to the
P{CSs} > H P{J, < J;} = Approximate Probability of sample mean. Using thtPCSmeasure and the basic property
i=1,i#b of J;, we design an iterative algorithm comparison experiment

Correct SelectiofAPCS. (2.1) as follows.
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Consider a set of algorithms for comparison. Allocate a algorithms while a subset of algorithms may be declared
small number of test samples for each algorithm, then inferior and allocated no additional budget. As the experiment
rank the algorithms according to their estimated relative continues, the relative-performance estimations improve and
performance. Select the “best” (highest ranked) algo- promising algorithms are re-determined for further testing.
rithm. Compute the approximate probability of correct This procedure continues until a pre-specified confidence level
selection APCS for the current ordinal comparison. is obtained for the algorithm ranking.

If the current selection reaches the desired level of Suppose we could find the allocation of testing samples
confidence, stop; otherwise, allocate more test samplesto all algorithms, which minimizes total computation cost

to the algorithms and repeat the process. Continue until while obtaining the desired confidence level. Then we can

the desired level of confidence is reached. optimally decide which algorithm will receive how many
The algorithm comparison procedure is stated more formaf@mputing budgets in each iteration of the experiment. Let
as follows. N, be the number of testing samples of algorithm If
comparison is performed on a sequential computer and the
Algorithm Selection using Ordinal Optimization (OO) difference of computation costs using different algorithms is

negligible, the total computation cost can be approximated by

Step 0. Specify a satisfactory confidence levet ) X
N1+ Ny + -+ + Ng. The goal is to chooséy; for all < such

Performn, testing samples for all algorithms,

[ — 0, that the total computation cost is minimized, subject to the
Nl =Ny =...= Nzi = 1. restriction that.the confidence Ie\(el defingd@CSis great(_ar _
Step 1. CalculateAPCSN!, N, - - NY). than some satisfactory level. This optimization problem in its
If APCSN!, NI .- N) > P* stop; Otherwise, simplest form can be stated as follows:
go to Step 2.
Step 2. Perform additional- testing samples for algorithm A,ilﬁilk,k{Nl + Ny +---+ Ny} St APCS> P, (3)
i i=1,---, k. T

NFY =N 47, fori=1,-- -,k

[ —1+1, Go to Step 1.
The key to the above algorithm is tPCSmeasure which
takes advantage of the exponential convergence property o

where P* is a user-defined confidence level requirement.
Some difficulties in solving (3) include the following.

il) There is no closed-form expression for the confidence

: 4 . level APCS
ordinal comparison. As the number of test samples mcreasesz) The confidence leveAPCSN:, Ny, ---, Ny) can be
the probability of selecting the correct top-ranking algorithm computed only after alN;, N o Nk tésting samples
increases rapidly. In Section V, we will demonstrate computa- for algorithm 1 throught ’resr;ecti’vely are performed
tionally tge plerformance of this algorithm selection procedure 3) Ny Ny, -+, Ny are inteéers and the |'1umber of comt;i—
using ordinal optimization. e i
To apply the algorithm, we need to select the initial number zanons forNy, N, -+, Ny s large even for moderate

of testing samplesyo, and the one-time increment, It is , . oo

well understood thabo cannot be too small as the estimates '" 9eneral, solving (3) as aa priori optimization problem

of the mean and the variance may be very poor, resulting f difficult due to a typically largek and the fact that the
terminating the comparison too early. A good choicerfgfis information required for _calculatlngPCS|s poor. Sl_nce the
between 10 and 20 [8]. The selection afis straightforward V€Y PUrpose of OCBA is to reduce the computation cost of

here. A larger can result in wasting computation time toalgorithm comparison, there is little incentive to exert too

obtain an unnecessarily high confidence level. On the otHBHCH effortin solving (3) itself. The additional cost of solving
hand, if+ is small, we need to compufePCS(in Step 1) many 3) mqst be properly balanced with the benefits of budget
times. Since the cost of computingPCSis much cheaper llocation.

thank runs of the algorithm testing, it is advisable to select a As a heuristic for the solution t(_) OCBA (i.e., to find
smaller 7, which is 1 in this setting. the bestVy, No,---, N;), we sequentially select a subset of

“promising” algorithms in each iteration of the computational
experiment. This procedure continues umdiPCS > P*.
We define promising algorithmsas those which maximize
While ordinal optimizationcould significantly reduce the the estimated improvement &PCS A critical issue in this
computational cost for algorithm selection, there is potential &pproach is the determination of a set of promising algorithms,
further improve its performance by adjusting in each iteratiaor more specifically, the estimation of the nel#{CS} if
the amount of additional samples (i.e),based on the relative additional+ testing samples are performed on algoritbm
performance of algorithmi. In this section, we present a Definition 2: Define EPCS§Ny, Na,---, Ny 1, Ny + T,
technique called optimal computing budget allocation (OCBAY+1, -+, N ) as an estimated{CS} if additional r testing
which makes use of this idea. The OCBA approach can bamples are performed on algorithsn EPCSis computed
summarized as follows: Start the algorithm selection procesing the statistical information aftéy;, /N5, .- -, IV}, testing
dure usingordinal optimization In each iteration, compute are completed for algorithms, - - - | &, respectively.
a “promising index” for each algorithm under consideration, To minimize the efforts of reaching a desired confidence
allocate incremental computing budgets to “more promisingével, in each iteration we test the algorithm that has a

IV. OPTIMAL COMPUTING BUDGET ALLOCATION
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maximum promising index (PI) defined as follows: Using the concepts of ordinal optimization and optimal
computing budget allocation we develop an iterative experi-
Pl(s) = EPCEN1, Na, -+, Ny_1, Ny + 7, Nyy1,- -+, Ny) mentation procedure for algorithm comparison. The procedure
— APCSNy, Noy -+, Ny 1, Ny Noyy, -+, Ni). is first summarized as follows. We assume that at the beginning

of the experiment there is no knowledge ab&lRCS nor is

Reference [17] suggests a simple and effective way 10 e§fjgre any other basis for allocating computing budget. We first
mate theEPCS(without loss of generality we only considerigg; g algorithms witt, samples. Apromising indess then
minimization problems here). calculated for all algorithms and a subsetofalgorithms are
If s # b selected for further testing based on thBifs. Since there
EPCSN., No, -+, No_1, Ny + 7, Noy1, -, N) is a nafcural limit on how m_uch efforts on_e_should_ put on
X calculatingPl and the determination of promising designs, we
_ P{jb < js} ) H P{jb < ji} heuristically determ|.ne th(_e value af, attgmptlng to _balance
i1 i it the extra gomputanon with thg potentlal' saving in overall
computer time. The procedure is summarized as follows.
where
g ) A Sequential Approach for Optimal Computing Budget
J~N 1 3" hi(ony), i Allocation (OCBA)
Ni = i Step 0. Performng testing samples for all algorithms,
~ [ — 0,
. 1 <= a? Nl =N =-.. = Nl = n,.
' No+71 | Step 1. If APCSNY, N,--- N}) > P*, stop, otherwise,
go to Step 2.
And if s = b Step 2. CalculatePI(s) for all algorithmss =1,2,---, k.
Step 3. Find the setS(m) = {s : Pl(s) is among the
EPCSQNl, NQ, EEIN Nb—l; Ny + T, Nb+1, EEIN Nk) highestm}
k R . Step 4. Perform additional testing samples for algorithm
= [I Pih<a i, i € S(m).
i=1,izb SetN/™t — N! 4, for i € S(m), and N7t
N{, for i € S(m),
[l —1+1, go to Step 1.
z 1 & o? Selection of the parameterg and 7 has been discussed in
Ji~ N N; Zhi(wﬁ)’ N, the OO algorithm previously. The selectionafis trivial. m
=t / is the number of promising designs for further simulation. A

where

. 1 N o large m is definitely a bad choice. Consider an extreme case
Jy~ N A Zhb(wj), N—j-r . that m = k. This means that we simulate all designs every
b= b time, which is equivalent to no use of OCBA. On the other

Note that the expression &PCSis similar to that ofAPCSin handl,.[17] have ghown that Fhe performance of OCBA is not
sensitive to the size of: provided thatn is small. However,

(2). In fact,EPCScan be obtained by substituting with J; in we don’t wantm is too small because small means that we

APCS The only difference between the two is their variances, . 1o perform Steps 2 and 3 many times. A good choice for

ie., the_ fo_rme_r is&_and the Iatte_r |sj‘\—2 In effect, we use . is any number betweeh/20 to &/10.
the statistical information oV, to estimateAPCSat V,+7 by
decreasing the sample variance fr%% to ,\"—; Thus,EPCS
provides sensitivity information about hawWPCSwill change
if additional 7 testing samples are performed on algoritem  In the computational experiments, we use the machine

Under the above framework, “promising” refers to hightlustering problems to test our algorithm comparison proce-
improvement of the overall comparison confidence level. Sindere. Specifically, we test our approach on the selection of
we intend to minimize the total number of testing samplesg, clustering algorithm from a group of well-known heuristic
we select and test a subset of most promising algorithmsadlgorithms available from the IMSL software library. These
each iteration, then repeat the process WRBCSachieves the algorithms have the desired characteristics of being both
desired level,.P*. parametric and sensitive to problem instances. Since they

It is worthwhile to compare our OCBA with the well-knownare developed and managed by the same organization, im-
computing budget allocation techniques such as the two-stgdementation differences in terms of memory management,
procedures given in [23] and [42], ardulti-Armed Bandit data structures and coding techniques are minimal. Given the
Problem[31]. Reference [15] gives detailed comparison antsk of selecting a best heuristic algorithm for the problem
shows that the OCBA is more than ten times faster than thestances under consideration and a specified confidence level,
aforementioned techniques for two 10-design discrete-eveve focus our analysis on the actual savings in computer time
simulation problems. over traditional methods.

V. COMPUTATIONAL EXPERIMENTS
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TABLE | + at some point of its process, and 0 otherwise. The objective

(@) MACHINE-PART INCIDENCE MATRIX FOR EXAMPLE 1. (NOTE THAT of a clustering algorithm is to reorder the rows and columns

VALUES NoT SHowN ARE 0's). (b) A SOLUTION TO THE PROBLEM f th tri h that block f1 h
IN TABLE I(a) AFTER REORDERING ITs Rows AND COLUMNS 0 e matrix suc _a oc S_ 0 - S appears, as_’ muc _as
Parts possible, along the diagonal direction of the matrix. In this
_ 1‘2]3|4|5|6|7|8I9|]]]|I|l|1|l|l|l|l|l‘2 case, adjacent pa_rts m_the resultlng mat_r|x tend tq use the
Machines 1 0j112[3]4]516]7 ? ’19 0 same set of machines (i.e., the matrix defines machine cells).
11

2 i b } : : Pt Ideally we would like to transform the matrix in Table I(a)

-— ! L into a block diagonal matrix, in which 1's are located only in

I T 1 1 the diagonal blocks. In practice, this may not be possible to
g ! achieve, i.e., some of the 1's may not belong to any blocks
8 [as shown in Table I(b)].

Before starting the hierarchical clustering algorithm, the

[ 1 machine-part incidence matrix is transformed into a similarity
2 ! . L ' matrix so that the clustering algorithms can be used for
14 1 1 the machine-grouping problems. A similarity matrix contains
e s EE information about the degree to which each machine is related
};7 1 1 1 1 L 1 to the other machines according to the parts they process. More
T | T specifically, each entry to the similarity matrix issamilarity
;Oi 1 ] 1 11 1 1 coefficient one for each machine pair. Let be the number
22 |t o111 11 1 i of parts that visit maching andn;; be the number of parts
23 L 1 1 1 that visit machine: and machingj. We define three different
) similarity coefficientss;;, as follows:
Parts s N3
_ 6|3|1‘1|1’1|51|1|7|][2|1|1|8‘1‘2419 Ly norm: s;; = =2 +
Machines 208) 131 [1]7] [6] Jol9l |4]o]| |5 g nj
[ SR I A S U B U B | 111 11 ) >
2 111 1 1 n“ n“
3 1 R Ly norm: s;; = — ) + | —
I S— 11 n; n;
10 1 1111 11 n n
1 11 1 1 . . ij ij
15 1111 1] 1 1 11 Loo norm:  s;; = max <fv _>
5 1 T 1| 1 1 Ny Ny
6 1 1
7 1111 1|1 1 . . . . .
3 | ! Hierarchical clustering algorithm forms machine groups
e ol by processing the similarity matrifs;;] obtained from the
14 11 incidence matrix. Initially, each machine belongs to a cluster of
— Lo its own. In each succeeding iteration, the algorithm combines
21 1 11 individual machine or groups of machines into clusters based
= bl . S ER on some (heuristic) criterion. The columns and rows for the
17 1 1 cluster members are removed from the matrix and replaced
= b ! b . by similarity coefficients aggregated from the clusters. This
20 ! 1 ! forms a reduced similarity matrix among machine clusters.
() The clustering algorithm continues to reduce similarity matrix

until all machines are in a specified number of clusters. This
procedure produces a range of clustering solutions, which is

Cluster analysis has been used to solve machine-group§iinmarized in a “dendogram.” A dendogram is a tree in which
problems in manufacturing environments [3]. Many clushe root and the leave levels represent the trivial one-cluster,
ter analysis approaches have been proposed over the yegd. no-cluster solutions, respectively. The levels between
Among them are hierarchical clustering techniques [4], opthe root and the leaves represent all nontrivial solutions
mization algorithms [24], fuzzy logic approaches and neurfdund in the algorithm. Given a specified number of clusters,
network based algorithms. Without complicating the issues solution can be found at a corresponding level of the
in algorithm comparison, we will compare only hierarchicalendogram. A detailed description of general hierarchical
clustering algorithms in this study. clustering algorithms can be found in [3].

Hierarchical clustering utilizes a machine-part incidence A number of hierarchical clustering algorithms has been
matrix with 0-1 entries. The incidence matrix provides infordeveloped and widely used. Main differences between these
mation about which parts are processed on which machinkeuristic algorithms include the criterion used for combining
Table I(a) gives an example of such machine-part incidenckisters, or the way similarity coefficients are updated. To
matrix. Conventionally, rows of the incidence matrix corredemonstrate our proposed algorithm comparison procedure,
spond to machines while columns correspond to parts. Inn@ implemented six well-known hierarchical clustering algo-
matrix X, elements;; is equal to 1 if partj visits machine rithms [4] as follows:
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1) single linkage (SGL): Combine a pair similarity co- R;; = S}'\Zfﬂ' similarity between clus-
efficientsby saving the maximum for further iterations; ters¢ and j;

2) complete linkage (CPL): Combine a pair similarity S; = Ti Zjecmste” |IY; — A;|l2 dispersion of clustet;
coefficientsby saving the minimum for further itera- 4. = + > icClusters Y3 centroid of the clustei;
tions; Y; ' is a member associated

3) average between linkage (ABL): Combine a pair of with each “one” in
similarity coefficientdy saving their average for further the resulting machine-
iterations; part-incidence matrix

4) average within linkage (AWL): Combine a pair of after applying a cluster
similarity coefficientsby re-calculating the average of algorithm;
similarity coefficientof all machines within the merged M;i; = || A; — Ajll2 distance between two
cluster for further iterations; centroidsé and j;

5) centroid method (CTD): Suppose clustersand y A; centroid of the clustet.

are being merged as a new cluster The number o the third performance measure, we consider a linear
of parts that visit machine group is calculated by compination of CR and OL and assume botitR and OL
n. = (ne +ny)/2. Then thesimilarity coefficients are equally important. Since they are on different scales, we

between the newly merged cluster and all other clustgfgye to choose appropriate scaling factors. We first conduct

are re-calculated; . _a numerical experiment (with = 5%) to estimateE[CR]

6) Ward's method (WAR): Combines those machingng gOL;] for each algorithmi. Then we take an average
groups whose merger produces the minimum increagger a|l algorithms and use their reciprocals as the scaling
in the total sum of squares of similarity coefficient§aciors. More specifically, the third performance measure in
within the merged cluster. our testing is

Since the three different ways of calculating similarity

coefficient can be considered a parametric element of hierar- 18

chical clustering algorithm, we combine them with each of 0.5 ZE[CRi]

the above hierarchical clustering algorithm. This results in =t s

18 distinct “heuristic algorithms” to be tested. We repeat the g

computational experiments on two distinctly different sets of TCR+ <O'O/{;E[0Li]}> oL
problem instances. =

To produce a more realistic set of problem instances wehich is0.0113CR+ 0.01470L and will be used for different

assume some portion, say of the elements in this machine-values of-.

part incidence matrix will be perturbed from “1” to “0,” or The 18 algorithms (six heuristics and three ways to compute
from “0” to “1.” Further, we assume that the exact instance similarity coefficients) are applied to solve the clustering
the matrix after all the changes is not knoapriori. Thus, the problem where we set the perturbation parameteat 5%.
objective is to find a clustering algorithm (out of the 18) whicAo establish a benchmark for comparison we first use the
has the best expected performance given the base problémditional” approach to select the best algorithm without
instance and its variations. any attempt to reduce the computation time. We iteratively

Performance MeasuresTo determine the performance ofincrease the number of testing samples for each algorithm

different clustering algorithms we use three performance messtil the value estimation of the mean performance measure
sures: average similarityCR), total number of outliners@L), £y [hi(w)] is sufficiently stable, i.e., the variation of the
and a linear combination ofER and OL. OL is a count of estimatorE,,[h;(w)] is sufficiently small as compared with the
the total number of 1's which do not belong to any of thabsolute value ofs,,[h; (w)]. In this testing, we assume that a
blocks along the main diagonal, i.e., outliners [an example good approximation td,,[h;(w)] can be obtained when the
shown in Table I(b)]. On the other han@R measures the relative standard error (i.e., the ratio of the standard deviation
system-wide similarity or the similarity among all clustersof E,[i;(w)] to |Ey[h:(w)]|) is less than 0.1%.
More specifically Experiment 1. Base Testing on the First Set of Problem
Instances: We consider the matrix in Table I(a) as a base
L 1/2 for the first set of problem instances (from [29]). 5% of the
CR= <Z Rf) elements in this matrix will be perturbed from “1” to “0,” or
i=1 from “0” to “1” (i.e., v = 5%). The resulting rankings for each
performance measure are shown in Table II.
where Comparing different performance measures in Table Il, we

L number of clusters; see that the Average Within Linkage heuristic (wifh,,

T; total number of members similarity coefficient) performs better than other algorithms if
in clusterq; we are minimizingCR However, its performance is ranked
similarity between clus- at 14 if we are interested i®L. On the other hand, Av-
ter ¢ and the rest of clus- erage Between Linkage witi.1 similarity coefficient has
ters; the best performance fdDL and is very poor forCR This

R; = [y RY|V?
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TABLE I
RANKING OF ALGORITHMS USING DIFFERENT
PERFORMANCE MEASURES (7 = 5%)

Ranking of Algorithms Ranking of Algorithms Ranking of Algorithms

TABLE 1l

CoMPUTATION CosT FORCR RERFORMANCE MEASURE WITH DIFFERENT
CONFIDENCE LEVEL REQUIREMENTS. 1) THE AVERAGE OF THE TOTAL NUMBERS
OF TEST SAMPLES OVER THE 100 INDEPENDENTEXPERIMENTS; 2) T.S.F. b THE
TIME SavING FACTOR As COMPARED TO THE TRADITIONAL METHOD; 3) S.F.O.0O.

Using CR Using OL Using Combinati
ung n noE oL Sog o ""Cq{;f::z“ Is THE SPEEDUP FACTOR OF OO4OCBA As CoMPARED TO UsING OO OnLY

1 AWL-Le  32.18 ABL-L1 44.12 AWL-Leo 0.62 - -

2 AWL-L2 34.55 ABL-L2 45.58 SGL-Loo 0.64 Y =2%. The comp. cost using traditional approach is 75092.

3 AWL-L] 3478 ABL-Leo 4587 AWL-LI 0.64 . NN .

N SGL Lo 1167 WAR Lo 83 AWLL2 064 ) Ordinal O[])tlmlzatlo? Ordl?al Opt + 7()CBA

5 SGL-L2 4023 WAR-L1 49.30 SGL-L2 0.64 P Comp. Cost T.S.F. Comp. Cost TSE?> S.F0.0’

6 SGL-LI 4220 WAR-L2  49.37 SGL-LI 0.65 90.0% 1015 739.8 63.8 1177.0 16

7 CTD-Leo  43.38 SGL-L1 55.63 CTD-Loo 0.73

8 CTD-L2  61.05 SGL-L2 56.37 CTD-1.2 0.79 95.0% 120.4 623.7 72.2 1040.0 1.7

9 CTD-L1 64.70 SGL-Leo 57.84 CTD-LI 0.81 99.0% 183.2 409.9 933 804.8 2.0

10 WAR-L2  101.28 CTD-L1 60.03 WAR-1.2 0.94

11 WAR-Leo  105.38 AWL-LI 60.27 WAR-Leo 0.95 99.5% 220.3 340.9 106.5 705.1 2.1

12 WAR-LI 105.40 AWL-L2 60.64 WAR-LI 0.96 ¥ = 5%. The comp. cost using traditional approach is 72993.

13 ABL-L2 13591 CTD-L2 60.66 ABL-L2 1.10

14 ABL-L1 139.46 AWL-Les 6100 ABL-LI 1.11 Ordinal Optimization Ordinal Opt + OCBA

15 ABL-Leo  143.03 CTD-Leo 6551 ABL-Leo 115 «

6 CPLALso 152.31 CPlloo 130,56 CPlLeo 182 P Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.0.0.

17 CPL-L2 156.58 CPL-L2 136.28 CPL-L2 1.89 90.0% 341.2 213.9 107.8 677.1 32

18 CPL-LI 157.44 CPL-L1 139.41 CPL-LI 1.92 05.0% 469.7 155.4 1419 S14.4 33
99.0% 883.2 82.6 228.1 320.0 3.9

1031.4 70.8 243.0 3004 4.2

interesting result shows that the performance of heuristic?2:3%

algorithms could be sensitive not only to parameter settings
but also to performance measures. Furthermore, as we will
show in the second set of problem instances later, the heuristic 7’

Y= 15%. The comp. cost using traditional approach is 63327.

performance is also sensitive to different problem instances90.0%
The above observations are well-known in the performancess.o%
of dispatching heuristics for scheduling problems. In some99.0%
sense, developing efficient techniques that identify whichog 59

algorithm performs well under which specific conditions is
at least as important as developing new efficient algorithms.
In the following, we will test two such techniques developed
earlier,ordinal optimizationand OCBA and demonstrate their

Ordinal Optimization Ordinal Opt + OCBA
Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.0.0.
326.8 193.8 98.1 645.5 3.3.
4283 147.9 130.3 486.0 33
846.3 74.8 209.1 302.8 4.0
1163.1 54.4 219.8 288.1 53

TABLE IV

COMPUTATION CosT FOROL PERFORMANCE MEASURE
WITH DIFFERENT CONFIDENCE LEVEL REQUIREMENTS

effectiveness.
Experiment 2. Testing the Efficiency of Ordinal Optimiza-
tion and OCBA—Instance Oneéle consider three differ- P

Y= 2%. The comp. cost using traditional approach is 36231.

ent percentages of variations: = 2%, 5%, and 15% in
forming the set of test instances. We consider two ways 0fgs g,
applying the stochastic optimization techniques. In the firstyg g
configuration we applhordinal optimizationto the algorithm

comparison process described above, and measures the degreé
of saving achieved. In the second configuration we apply
ordinal optimization and optimal computing budget allocation .

(OCBA) in sequence. We stop the comparison procedure when
the confidence probabilitAPCSis no less thanP*, which

means that the required confidence level is achieved. Differen
confidence level requirements are tested at 90%, 95%, 9996 0%
and 99.5%. We repeat this testing 100 times, each run uses-22%

Ordinal Optimization Ordinal Opt + OCBA
Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.0.0.
90.0% 175.1 206.9 74.0 489.6 24
284.7 1273 90.0 402.6 32
466.7 71.6 130.2 273.3 3.6
99.5% 592.0 61.2 1523 2379 3.9
Y= 5%. The comp. cost using traditional approach is 29126.
Ordinal Optimization Ordinal Opt + OCBA
Comp. Cost  T.S.F. Comp. Cost  T.S.F. S.F.0.0.
90.0% 408.9 712 113.5 256.6 3.6
%5.0% 650.8 447 146.2 199.2 4.5
1137.5 25.6 2478 117.5 4.6
1248.6 23.3 281.6 1034 4.4

different random seed. Since the total numbers of test samples
are different from one run to another run due to different
random seeds, we compute their average as the computation?

Y= 15%. The comp. cost using traditional approach is 35941,

cost. Tables llI-V contain the testing results f@R OL,
0.0113CR+0.01470L performance measure, respectively. We 95.0%
compare the total numbers of test samples using differento.o%
approaches for different cases.

Ordinal Optimization Ordinal Opt + OCBA
Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.0.0.
90.0% 241.3 148.9 87.6 410.3 2.8
374.9 95.9 108.7 330.6 3.4
677.8 53.0 150.2 239.3 4.5
99.5% 864.7 41.6 183.8 195.5 4.7

From the three tables, we see that with the application

of ordinal optimization the “best algorithm” can be identi- range from 23 to 739. If the OCBA is used, the factors
fied with high probability within a much shorter time whercan be as high as 1656. The required computation cost of
compared to the traditional method. The time savings factarar approach depends heavily on how close the performance
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TABLE V TABLE VI
CompuTATION CosT FOR0.0113CR+ 0.01470L PERFORMANCE (a) MACHINE-PART INCIDENCE MATRIX FOR EXAMPLE 2. (b) A SOLUTION TO
MEASURE WITH DIFFERENT CONFIDENCE LEVEL REQUIREMENTS THE PROBLEM IN TABLE VI(a) AFTER REORDERING ITS Rows AND COLUMNS
. B - - Parts
¥ =2%. The comp. cost using traditional approach is 176583. - 1]2‘3|4|5l6|7,8‘9‘1]1|1|1|1llllllllllt
Ordinal Optimization Ordinal Opt + OCBA Mac?mes - - 9 i 2 ? ‘1‘ 3 ? Z § ? g
P Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.0.0. 2 11 [ 1 1 1
90.0% 245.1 720.5 106.6 1656.5 23 Z 1 o L 1 Lo ] ! 1
95.0% 337.6 523.1 131.3 1344.9 2.6 s 1 111 1 1 1 1
6 | 1 1l 1 I
99.0% 518.5 340.6 188.7 935.8 2.7 7 Pl 11 11 1 1
99.5% 628.0 281.2 209.2 844.1 3.0 8 11 11 1 1
v =5%. The comp. cost using traditional approach is 159450. (@
Ordinal Optimization Ordinal Opt + OCBA Parts
P Comp. Cost  TS.F. Comp. Cost ~ TS.F. SFO.O. ] 1|5|1|1[1 2‘8‘9|1|1|1|1|l|l|3|4|6|7|llz
90.0% 544.3 292.9 163.5 9752 33 MaC?meS L f f 1131416 Z 2 1 810
95.0% 647.6 246.2 203.9 782.0 32 6 11111 I 1
1 T r 1111 111]1
99.0% 1071.9 148.8 291.6 546.8 3.7 3 111111111
99.5% 1189.0 134.1 331.7 480.7 3.6 2 1 111111
4 1 111
Y= 15%. The comp. cost using traditional approach is 103191. 7 1 1 T 11111
8 111111
Ordinal Optimization Ordinal Opt + OCBA
P Comp. Cost  TS.F. Comp. Cost _TSF. S.F.O.0. (b)
90.0% 607.1 170.0 160.8 641.8 38
95.0% 873.0 118.2 204.0 505.9 4.3 TABLE VII
99.0% 1502.6 68.7 305.5 337.8 49 RANKING OF ALGORITHMS USING PERFORMANCE MEASURE CR
99.5% 1837.9 56.1 387.2 266.5 4.7 Ranking of Algorithms Ranking of Algorithms Ranking of Algorithms
Using CR Using OL Using Combination
CR OL Comb.
. . ) i SGL-Leo  52.30 ABL-Leo 1342 SGL-Leo 0.66
measure of the best algorithm is to that of other algorithms.; SGL-L1 5448 ABLLLI 1575 SGL-L1 0.67
Intuitively, the closer in performance the best algorithm is 3 SGLL2 5507 ABL-L2 1624 SGL-L2 068
. h lgorith the harder it is to identifv th 4 AWL-Leo 6543 WAR-L2 2231 AWLLw 077
comparmg' to other algorithms, .e araer it I1s to I. en |fy €5 AWLA2 68.20 WAR-Leo  22.36 AWLL2 0.77
best algorithm. Clearly, the confidence level requiremeft 6 AWLLL 6949 WAR-LL 2282 AWLLI 077
: : ; CTD-Le 9174 SGL-L1 23.83 CTD-Leo 0.92
affegts the required c_omputatlon as well. In general, a hlg_helg P SOLoe 2408 iz 107
confidence level requirement requires longer computation time CTD-LL 15435 SGL-L2 2419 CTD-L1 1.07
for ordinal optimization. However, the speedup of OCBA over ¥ CPLA2 13546 AWLLL - 2612 ABL-AL2 - L12
) e . . e 1 CPL-LI  157.55 AWLL2 2624 WAR-LI .13
ordinal optimization (i.e., S.F.0.0.) increasesf&sincreases. » CPL-Ise  169.20 AWL-Les  26.64 ABL-LI 113
This is because a higher computational requirement on ordinat WAR-L1 19411 CID-LL 2684 WAR-L2 114
timizati ff. tunity for OCBA t ioulat 14 WAR-L2  201.49 CTD-L2 2717 CPL-L2 1.15
opluimization otrers _more opportunity Tor 0 manipulate WAR-Leo  213.16 CTD-Loo 29.53 CPL-LI 1.16
the budget allocation. 16 ABL-L2 2316l CPL-Les  29.66 WAR-Le 118
: ; P ; 17 ABL-LI 23910 CPL-L2 3027 CPL-Leo 1.18
Larger v implies larger variation of testing problems. As ¢ ABLLe 33497 CPLLL 3036 ABLLe 14l

a result, the performance measures in our experiméms,
OL, and their combination, become larger asincreases.
Since the stopping criterion for the traditional approach @ The resulting rankings for each performance measure with
that the standard deviation @f,,[h;(w)] is less than 0.1% of v = 5% are shown in Table VII.
| B [hi(w)]|, the computational cost of the traditional approach Comparing different performance measures in Table VII,
is lower for largery. However, when using this approach theve see that the Average Between Linkage heuristic ith
confidence level of identifying the best algorithm can not b&milarity coefficient performs better than other algorithms if
guaranteed. On the other hand, our approaches tend to taleare minimizingOL. However, its performance is among
longer computation time ag increases, since the variances othe worst if we are interested i@R In addition, comparing
the performance measure becomes larger and it becomes miafge VII with Table I, Average Within Linkage heuristic
difficult to isolate the best algorithm. is the best heuristic foICR in example 1. However, the
Experiment 3. Base Testing on the Second Set of Problbast heuristic forCR in example 2 is the Single Linkage
Instances: We test our approaches using another base instaieuristic. The performance of heuristic algorithms can be
shown in Table VI(a) [13]. We again consider three perfohighly sensitive not only to the performance measure, but also
mance measure€R OL, and a linear combination @Rand to the problem instances.
OL. Similarly, we conduct a pre-testing in order to obtain the Experiment 4. Testing the Efficiency of Ordinal Optimization
appropriate scaling factor for the combination@R andOL, and OCBA—Instance TwoSame as Experiment 2, we
which is 0.006&€R + 0.04110L in this case. All settings in consider three different percentages of variations: =
the numerical experiment are the same as those in Experim&dt, 5%, 15% in the test problems. Tables VIII-X contain the
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TABLE Vil

CoMPUTATION CosT FORCR FERFORMANCE MEASURE WITH DIFFERENT
CONFIDENCE LEVEL REQUIREMENTS. T.S.F.I1s THE TIME SAVINGS FACTOR

THE

WHEN OUR TECHNIQUES ARE APPLIED AS COMPARED WITH
TRADITIONAL APPROACH.S.F.0.0.Is THE SPEEDUP FACTOR OF

UsING OO+OCBA OvVeR UsING OO OnLy. THus S.F.0.0. GN
BE AN INDICATOR OF THE EFFECTIVENESS OF THEOCBA TECHNIQUE

Y =2%. The comp. cost using traditional approach is 52689.

Ordinal Optimization Ordinal Opt + OCBA
P Comp. Cost T.S.F. Comp. Cost T.S.I. S.F.0.0.
90.0% 309.0 170.5 95.9 549.4 3.2
95.0% 669.5 78.7 127.3 413.9 53
99.0% 1106.4 47.6 208.3 252.9 5.3
99.5% 1540.4 34.2 250.3 210.5 6.2
¥ =5%. The comp. cost using traditional approach is 46264.
Ordinal Optimization Ordinal Opt + OCBA
P Comp. Cost  T.S.F. Comp. Cost ~ T.S.F. S.F.0.0.
90.0% 586.7 78.9 132.1 350.2 44
95.0% 890.0 52.0 202.9 228.0 4.4
99.0% 1744.9 26.5 321.4 144.0 5.4
99.5% 2000.1 23.1 370.2 125.0 5.4
¥ = 15%. The comp. cost using traditional approach is 21761.
Ordinal Optimization Ordinal Opt + OCBA
P Comp. Cost  T.SF. Comp. Cost  T.S.F. S.F.0.0.
90.0% 466.7 46.6 136.6 159.4 34
95.0% 830.1 26.2 170.7 127.5 4.9
99.0% 1191.7 18.3 275.7 79.0 43
99.5% 1439.6 15.1 306.7 71.0 4.7
TABLE IX
CoMPUTATION CoST FOROL PERFORMANCE MEASURE
WITH DIFFERENT CONFIDENCE LEVEL REQUIREMENTS
¥ =2%. The comp. cost using traditional approach is 143231.
Ordinal Optimization Ordinal Opt + OCBA
P’ Comp. Cost _TSF. Comp. Cost___T.SF. S.F.0.0.
90.0% 4339 330.1 120.5 1188.7 3.6
95.0% 824.6 173.7 153.6 932.5 54
99.0% 1483.9 96.5 303.3 4723 49
99.5% 2223.0 64.4 340.2 421.0 6.5
¥ =5%. The comp. cost using traditional approach is 181289.
Ordinal Optimization Ordinal Opt + OCBA
P Comp.Cost TSF .  CompCost TSF. _SFO.O.
90.0% 99.9 1814.8 60.6 2991.7 1.6
95.0% 128.8 1407.6 67.1 2701.9 1.9
99.0% 206.6 877.5 85.1 21304 24
99.5% 249.1 727.8 93.3 19431 2.7
Y= 15%. The comp. cost using traditional approach is 211442.
Ordinal Optimization Ordinal Opt + OCBA
P Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.O.0.
90.0% 159.4 1326.5 70.2 3012.1 2.3
95.0% 216.1 978.5 81.5 2594.5 2.7
99.0% 354.9 595.8 112.7 1876.2 3.1
99.5% 385.2 548.9 131.2 1611.6 2.9

TABLE X
CompPUTATION CosT FOR0.0068cr + 0.0411o. PERFORMANCE
MEASURE WITH DIFFERENT CONFIDENCE LEVEL REQUIREMENTS

Y =2%. The comp. cost using traditional approach is 1342026.

Ordinal Optimization Ordinal Opt + OCBA
P’ Comp.Cost__TS.F. Comp.Cost __TSF. _S.FO.0.
90.0% 151.1 8881.7 68.3 19648.9 2.2
95.0% 197.1 6808.8 76.6 17519.9 2.6
99.0% 3515 3818.0 99.9 13433.6 35
99.5% 4347 3087.2 113.0 11876.3 3.8
Y= 5%. The comp. cost using traditional approach is 1234472.
Ordinal Optimization Ordinal Opt + OCBA
P Comp. Cost T.S.F. Comp. Cost T.S.F. S.F.0.0.
90.0% 309.0 3995.0 95.9 128724 32
95.0% 669.5 1843.9 127.3 9697.3 53
99.0% 1106.4 1115.8 208.3 5926.4 5.3
99.5% 15404 801.4 250.2 4933.9 6.2
¥ = 15%. The comp. cost using traditional approach is 755589.
Ordinal Optimization Ordinal Opt + OCBA
P Comp. Cost  TS.F. Comp. Cost ~ T.S.F. S.F.0.0.
90.0% 431.2 1752.3 125.7 6011.0 3.4
95.0% 924.8 817.0 177.6 4254.4 5.2
99.0% 1611.9 468.8 287.4 2629.0 5.6
99.5% 1824.6 414.1 347.0 2177.5 5.3

testing results fo€R, OL, 0.0068CR+0.04110L performance
measure, respectively.

Again, we see that usingrdinal optimizationcan obtain
a time savings factor as high as 8881, and the OCBA can
further pushes the saving factor up to 19648 in this example.
While the time saving factors of using our approaches could be
problem-dependent, we believe that the proposed techniques
provide a very efficient approach to compare algorithms and
isolate the best algorithm using relatively short computer time.

VI. GENERAL APPLICABILITY OF THE METHOD

As previously suggested, the proposed scheme could be used
to compare different algorithms or different parameter settings
of an algorithm. On the other hand, the approach could be used
on a variety of combinatorial problems including the well-
known vehicle routing, and job-shop scheduling problems.
This is because the method makes no use of the special struc-
ture of the combinatorial problem under consideration, neither
does it assume any special relationships among the heuristics
under comparison. The comparison scheme is essentially a
means to implementing a designed computational experiment,
assuming each algorithm as a capsulated module that takes the
problem input and provides a solution that can be evaluated
by a certain performance measure.

However, from an implementation point of view, several
issues must be addressed when setting up heuristic algorithms
for comparison. First, the method assumes the existence of
a problem instance and its statistical variations. In practice,
this information must be made available from historic data
or othera priori knowledge of the problem. For example,
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for production scheduling problems, static information oardinal optimization. However, even if this assumption is not
job routing and processing time distributions are typicallyalid and thus, the exponential convergence property is not
available in the information system. Giverpriori information ensured, the OCBA scheme is still applicable and could still
on the incoming job orders, a problem instance could educe computation cost significantly.
constructed with proper statistical variations. The sources
of statistical variations may include processing times, setup
requirements, job routings and the presence of alternative
machines. With the capability of current information systems, The computation ofAPCSin this paper is a special case
constructing a problem instance and its statistical variations f@iscussed in [14]. In the following we give the proof of
a specified planning period should not be difficult. A similafheorem 2. LetX;, X;,---, X bek random variables, and
setting can be applied to vehicle routing problems wherg2, X3, ---, X are mutually independent.
incoming customer demands over the near-term planningtemma 1: P{X; < X; N Xy < X;} > P{X; < X;}
periods are analyzed priori, providing a statistical basis for P{X1 < X;}, @ # j # 1.
the algorithm selection test instances.

Another issue involves the testing of a diverse set of pf) PLXL <XiNXp <Xy}
algorithms. While comparing different parameter settings of  _ // P{X, <anX; <b}fx. x,(a,b)dadb
an algorithm or a set of “standardized” algorithms (such is ) ’
the case in the IMSL library) is straightforward, comparing (f is the density fun).

independently developed algorithms remains difficult. Aswell [ [
illustrated by [6] and [32], the difficulties are due to the wide PiXy <anXy <bifx.(a)fx,(b) dadb

APPENDIX

variety of programming options available (e.g., data structures, (independence)
memory management scheme), presumed computing plat-
forms, and the vary interpretations afgorithm comparison = // P{Xy <a}P{X; <b}fx,(a)fx,(b)dadb

Clearly some effort on setting up the ground rules, or even (becauseP{X; < aN X, < b}
standardizing the heuristic algorithms is necessary before a .

fair comparison can start. As specialized software libraries Z min[P{Xy <a}, PLX, <]
(e.g., class libraries in €+, or Java) becomes common 2 P{X1 <a}P{X; <b}),

place for mathematical and statistical algorithms, it is not /P X, < d -/P X, <b Y db
unreasonable to assume that the algorithms under comparison — X < apfxi(a)da X Hx, (0)
are standardized under a common set of assumptions. =P{X; < X;}P{X; < X;}.

Lemma 2 P{X; < X;,i # 1} > [[._, P{X1 < X;}
VIl. CONCLUSION

In this paper, we demonstrated that the performance of pf) P{X: <Xy i # 1}

algorithms could be highly sensitive to problem instances, = P{X1 < max[Xa,---, X]}
parameter settings and performance measures. In extreme = P{X; < X;NX; < max[Xs, -, Xz}
cases, an algorithm may perform exceptionally well on a > P{X, < X2} P{X, < max[Xs, -, Xa]}

particular set of instances while fail to produce acceptable
solutions on others. Furthermore, as we have shown in our
experiments, a heuristic algorithm may be superior on a partj&—
ular performance measure while performing poorly on anothepP
performance measure. Two methods of ordinal comparis&agX1 <X, i#1)
presented in this paper offer an efficient scheme for selectin ’
heuristic algorithms given a desired confidence level and a = PLXy < XppPiXo < XpPiXp <max|Xy, -, X}
particular set of problem instances. Computational testing on > P{X1 < Xo}P{X; < X3} P{X; < X4}
a set of statistical clustering algorithms demonstrates that our ... P{X; < X;}.
method can effectively compare and select algorithms that are
expected to perform the best on given problem instances. Théroof of Theorem 2:Under the Bayesian model
time savings factors of usingrdinal optimizationin the com-
putational testing range from 23 to 8881. The application of ~ P{CS} = P{The current top-raking algorithrb
optimal computing budget allocation on ordinal optimization is actually the best algorithjn
can further push the savings factor up to as high as 19 648. _ P{jb < Jii# b.

Our proposed approach for algorithm comparison is quite .
general with a few mild assumptions. A major assumptioRpply Lemma 2
is that the variation/noise of the testing result has a finite
moment generating function, which is true for most real-world k . .
distributions. The restriction of a finite moment generating p{cst= [ P <Ji} 0
function is to ensure the exponential convergence property of i=1,i7b

(According to Lemma 1).

the same way
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