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Ordinal Measures for Image
Correspondence

Dinkar N. Bhat and Shree K. Nayar

Abstract—We present ordinal measures of association for image
correspondence in the context of stereo. Linear correspondence
measures like correlation and the sum of squared difference between
intensity distributions are known to be fragile. Ordinal measures which
are based on relative ordering of intensity values in windows—rank
permutations—have demonstrable robustness. By using distance
metrics between two rank permutations, ordinal measures are defined.
These measures are independent of absolute intensity scale and
invariant to monotone transformations of intensity values like gamma
variation between images. We have developed simple algorithms for
their efficient implementation. Experiments suggest the superiority of
ordinal measures over existing techniques under nonideal conditions.
These measures serve as a general tool for image matching that are
applicable to other vision problems such as motion estimation and
texture-based image retrieval.

Index Terms—Image matching, stereo, ordinal measures, correlation,
correspondence.

————————   ✦   ————————

1 INTRODUCTION

STEREO systems for depth estimation work reasonably well with
smooth surfaces that are mostly Lambertian in reflectance. How-
ever, many surfaces in real scenes exhibit sharp discontinuities
with non-Lambertian reflectance. It is a challenge for practical
systems to produce accurate depth maps in such settings. In this
paper, we present ordinal measures for image correspondence, in
the context of stereo matching.

The heart of any window-based method for stereo matching
lies in the underlying similarity criterion that determines optimal
statistical correlation between windows around corresponding
points. The basic assumption used is that these windows represent
the same location in the scene and have identical intensity distri-
butions. However, the assumption is violated due a number of
physical phenomena whence intensity data in windows around
corresponding points can be inconsistent. When the compared
windows straddle a depth discontinuity, they represent projections
of different surface regions. The same is the result of projective
distortion caused by varying viewpoint in acquiring the images.
The presence of depth discontinuities also causes occlusion due to
which scene points are visible in only one of the two images, and
they must correctly identified. Additionally, in the presence of
noise, specular reflection, and possibly varying camera parame-
ters, intensities at corresponding points may not be identical or
even linearly related. A larger window is not a cure-all, since it can
result in a greater number of false positives in occlusion zones and
increased smoothing of disparity across discontinuities, although
the number of false negatives due to noise and outliers may de-
crease. Different approaches have been developed to tackle indi-
vidual issues (for example, [9], [10]) within the framework of lin-
ear correlation measures. For instance, Quam [10] addresses the
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problem of projective distortion in a hierarchical correlation-based
framework wherein the disparity estimates from the prior resolu-
tion level of matching are used to geometrically warp the second
image towards the first at the current resolution level. Here, the
problems are addressed from a different basis, namely, the use of
an ordinal scale for intensity.

We introduce ordinal measures of association [6], [7] that are ro-
bust to a high degree. An ordinal variable implies one drawn from
a discrete ordered set like the grades in school. The ratio between
two measurements is not of consequence; only their relative or-
dering is relevant. The relative ordering between measurements is
expressed by their ranks. A rank permutation is obtained by sort-
ing the sample in ascending order and labeling them using inte-

gers 1 2, , . . . , n , n being the size of the sample. In our application,

intensity is viewed as an ordinal variable. Consequently, ordinal
correlation measures are based on rank permutations within win-
dows rather than absolute intensity data. Two well-known ordinal

measures include the Kendall’s t and the Spearman’s r [7]. Both
coefficients are relatively unaffected by the presence of random
data outliers, like noise, in comparison to direct image correlation.
However, if the ranks within each window are distorted, like in
the presence of projective distortion, they are not satisfactory. By
rank distortion, we mean rank permutations that bear strong
structural relationship, but there can be significant difference be-
tween some corresponding elements; for instance, a cyclic shift of
one permutation with respect to another. Simple computationally
economical algorithms are presented to evaluate the measures.
Experiments with real images and comparison with existing
matching methods suggest the suitability of ordinal measures for
applications.

2 CORRELATION-BASED IMAGE MATCHING

In a correlation-based framework, correspondence for a pixel in a

reference image is obtained by searching in a predefined region of

the second image. Correlation could be performed in a hierarchical

framework or at one single resolution. Most currently used stereo

methods belong to the category of linear correlation methods,

which include those based on the sum of squared differences

(SSD) and cross correlation. Let I1 and I2 represent intensities in

two windows, i.e., there exist n tuples I I I In n
1
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where I1  and I2  represent the corresponding sample means. Like

SSD, it appraises the degree of linearity between the samples being
compared. It is closely related to the least-squares line of fit [4],
hence NCC has similar properties to SSD. The absolute value of
NCC lies between zero and one, and a value of one indicates per-
fect matching windows. While NCC is preferable since it is invari-
ant to linear brightness and contrast variations between perfect
matching windows, SSD is computationally more attractive. How-
ever, both measures are nonrobust in that a single outlying pixel
can distort them arbitrarily. Further, by definition, they are not
suitable in the presence of nonlinear intensity variation at corre-
sponding pixels.

Since the Euclidean norm (SSD) is sensitive to outliers, robust
M-estimators have been used that are more resilient (for instance,
the Lorentzian in motion estimation [3]). The characteristic of ro-
bust estimators is that they cause outliers to contribute less weight
compared to inliers. Most M-estimators include a parameter that
needs to be set beforehand: the point at which measurements must
be considered outliers. The threshold can vary depending on im-
age contrast and noise level, and setting it in a correlation-based
framework is often done empirically. It is desirable to have a uni-
versal measure of correlation independent of absolute intensity
scale and experimental conditions.

Image transform methods are based on comparing stereo im-
ages transformed using local window measures. Kories and Zim-
merman’s [8] monotonicity operator, Zabih and Woodfill [11] rank
transform and census transform fall in this category. The rank trans-
form defines rank (of the center pixel P in a window W) as:

 R(P, W) = •P¢ Œ W | I(P¢) < I(P)•

where •.• refers to cardinality. In the case of the rank transform
method, the stereo images are fully transformed using the above
operator and the resulting mappings are compared using linear
correspondence measures. The advantage of the above schemes is
that correlation of transformed images is not dependent on abso-
lute gray values, and hence relatively insensitive to data outliers.
However, one drawback of the approaches is that they depend
quite heavily on the center pixel. Other methods have been devel-
oped to match local intensity gradients instead of raw intensity
values. However, their performance can be poor when gradient
information is not reliable. Finally, an entire class of methods has
been developed in frequency domain where the issue to estimate
the change in phase between Fourier or similar representations of
the original intensity signal. The implicit assumption regarding
surfaces being smooth and Lambertian remains. These techniques
are not considered since they belong to a different mould from
correlation-based methods.

3 ORDINAL MEASURES

In this section, ordinal measures of association are presented after
a brief review of the concept of correlation based on distance met-
rics. Sensitivity of the measures with respect to outliers and rank
distortion is discussed and compared to other correlation methods.

3.1 Motivation
To illustrate the robustness of ordinal measures, consider the fol-
lowing example of a 3 ¥ 3 reference window R with intensity I1:

R
10 30 70
20 50 80
40 60 100

Under ideal conditions, the corresponding window S with inten-
sity I2 is identical, and so are their rank matrices:

R S
1 3 7 1 3 7
2 5 8 2 5 8
4 6 9 4 6 9

Recall, that an ordinal measure of association is based on ranks
rather than intensity values themselves. Let us modify one pixel A
in S, say the one with intensity value 100, through a range of dif-

ferent values between 0 255, . This simulates the effect of a ran-

dom outlier. Clearly, in the range 80 255,c , ranks of the intensity

values in S are not modified, and hence any ordinal measure of
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correlation remains at one. This is unlike the linear correlation
coefficient which can substantially deviate. For example, when the
pixel takes a value of 255, NCC = 0.645. This attractive property of
ordinal measures motivates us to apply them for stereo matching.
The same robustness can also be observed of local transform tech-
niques like that of Zabih and Woodfill [11]. The concepts underly-
ing ordinal measures are now introduced using distance metrics.

3.2 Review
A ranking which represents the relative ordering between values
of an ordinal variable is simply a permutation of integers. More

precisely, if Sn denotes the set of all permutations of integers

1 2, , . . . , n , then any ranking is an element of this set. To define

correlation between two rankings p1, p2, we require a measure of
closeness—a distance metric—between them. Once a distance metric

d(p1, p2) is defined, a coefficient of correlation a can be obtained as:

a
p p

= -1
2 1 2d

M

,c h
                                       (1)

where M is the maximum value of d(p1, p2), "(p1, p2) Œ Sn. a lies in

the range -1 1, . M is attained when the two permutations are

reverses of each other, and hence a = -1. Different distance metrics

are possible, an example being the Hamming distance dh:

dh
i i

i

p p p p1 2 1 2, sgnc h e j= -F
H
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KÂ                        (2)

where sgn(x) = x/|x| if x π 0, and 0 if x = 0. For the Hamming
distance, M = n. The Kendall’s t and the Spearman’s r can also be
expressed using distance metrics (see [2]). Kendall’s t computes
the number of discordant pairs between samples, and the Spear-
man’s r estimates the Euclidean distance between permutations.

Data inconsistency can occur between corresponding windows
due to the presence of specular reflection and discontinuities. This
could result in corresponding rank matrices being distorted unlike
the example discussed in Section 3.1. As a result, ordinal measures
like the Kendall’s t and Spearman’s r are inadequate. Therefore,
measures of association are defined that are unaffected by maver-
ick data items but capture the overall sense of correlation between
permutations.

3.3 Ordinal Measures

Let I1 be a window in one image, and I2 be a window in the next
image of the sequence. For the set of window intensity values

I Ii i

i

n

1 2
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,e j
=

, let p 1
i  be the rank of I i

1  among the I1 data, and p 2
i  be the

rank of I i
2  among the I2 data. Below, we present a method for de-

fining the distance between rank permutations along the lines
reported by [6]. However, our measure is motivated by the defini-
tion of the Kolmogorov-Smirnov test statistic (see [2]). Here we
assume that there are no ties in the data. The method to handle
tied values is discussed in [2]. A composition permutation s can be
defined as follows:

s ki k i
= =

-
p p2 1

1, e j                                       (3)

where p 1
1-  denotes the inverse permutation of p1. The inverse

permutation is defined as follows: If p1
i
 = j, then p 1

1-
=e j

j
i . Infor-

mally, s is the ranking of I2 with respect to that of I1. Under perfect
positive correlation, s should be identical to the identity permutation

given by u = (1, 2, º, n). By defining a distance measure between s

and u, a notion of distance is obtained between p1 and p2. The de-
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where J(B) is an indicator function of event B, i.e., J(B) = 1 when B

is true, and B = 0 otherwise. The vector of dm
i  values is termed as

the distance vector dm(s, u). Each component of the distance vector,
referenced by its positional index, estimates the number of prede-

cessing elements in s that are out of position. If (I1, I2) were per-

fectly correlated, then dm(s, u) = (0, 0, º, 0). The maximum value

that any component of the distance vector can take is n
2  which

must occur in the case of perfect negative correlation (see [2]).

Now, a measure of correlation k(I1, I2) is defined as:

k I I
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=                                (5)

Unlike [6], we do not consider the deviation from the negative
identity permutation since that is computationally more expen-
sive. If I1 and I2 are perfectly correlated (s = u), then k = 1. It falls to
-1 when (I1, I2) are perfectly negatively correlated. Fig. 1 describes
a simple example which illustrates the procedure for computing k.
k has the following desirable properties of a correlation coefficient:

•� It is independent of linear scaling and shift between I1 and I2

since p1 and p2 remain unchanged. This implies independ-
ence from camera gain and bias.

•� It is symmetrical, i.e., k(I1, I2) = k(I2, I1). Hence, either image
can be used as reference (see [2]).

•� k(f(I1), h(I2)) = k(I1, I2), where f and h are monotonically in-
creasing functions.

To illustrate this property, consider the case when differ-
ent cameras are used for stereo and have different responses
to image irradiance. Each sensor output I is related to image
irradiance E as:

I gE m= +
1
g

Fig. 1. Example illustrating the procedure for computing k.
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where g is the camera gain, m is the reference bias factor,

and g accounts for image contrast. Since the gain and bias
account for linear variations which, as noted earlier, do not

affect k, let us assume there is only gamma variation be-
tween the sensors. In other words, let the gains of the sen-
sors be identically 1.0 and the bias factors be zero. Further,
let the imaged surface be Lambertian, i.e., the image irradi-
ance from any point is identical for both sensors. The sensor

outputs are related by the equation I Ii i t

1 2= e j , "i where

t =
g

g

2

1

. In general, t π 1, and hence the linearity between

the sensor outputs is lost. If t > 1, then I I ii i
2 1< ", , and if t <

1, then I I ii i
2 1> ", . However, k remains at one, because p2

remains the same as p1. The usefulness of this property for
motion estimation in tagged Magnetic Resonance Images
(MRI) was shown elsewhere (see [2]).

•� The distance vector is not affected by arbitrary relabeling of
data items. Equivalently, the distance measure is right-
invariant, i.e.:

dm(s(p1t, p2t), u) = dm(s, u)

where t Œ Sn is an arbitrary relabeling of the data items. The
reason for right-invariance is that the s permutation is not
affected by the relabeling. This property is useful when the
method of ranking the data samples may change, for in-
stance, one can choose the descending order for generating
permutations.

Another measure of correlation c(I1, I2) which is computation-
ally less expensive is defined as:

c I I
dm

mid

n1 2

2

1
2

,c h = -                                     (6)

Here dm
mid  refers to the deviation at the n

2  index of the distance

vector. It has the same properties as k, but in practice is somewhat
less robust. Theoretically, deviation at any index of the distance
vector could be used, however, the largest range of deviation,

0 2, n , occurs at the middle index position, the maximum occur-

ring in the case of perfect negative correlation, which means
higher discriminatory power.

3.4 Sensitivity
There are two issues concerning a stereo measure: its robustness
and discriminatory power. The first determines the amount of
data inconsistency that can be withstood by the measure at cor-
responding windows before mismatches begin to occur. The
second is concerned with its ability to reject noncorresponding
windows. These are conflicting requirements but crucial for ste-
reo application.

A useful quality of our measures is their insensitivity to random
noise and rank distortion. Consider the example of Section 3.1. k re-
mains at one when the intensity of pixel A is modified to a value in
the range (80-255]. The reason is that corresponding rank matrices
remain unchanged. Now let pixel A in window S first change to
75, and then to zero. The rank matrices of S corresponding to the
two cases are:

S S
1 3 7 2 4 8
2 5 9 3 6 9
4 6 8 5 7 1

Note that in case 2, the rank permutations of R and S are strongly
related, i.e., all rank values of R except one has shifted by unit
value. A correlation measure should be relatively unaffected by
such changes, instead it should capture the overall relationship
between permutations. For instance, the Euclidean distance be-
tween permutations, the one used in the Spearman’s r is not at-
tractive because it does not capture the underlying structure be-
tween the rankings. In the first case, the Spearman’s r, the Ken-
dall’s t, and NCC take values 0.98, 0.94, and 0.6, respectively. They
change significantly to 0.40, 0.56, and 0.31, respectively, in the sec-
ond case. On the other hand, k remains fixed at 0.5 in both cases. It
is futile to compare absolute values of correlation measures since
each of them have different interpretations and are on different
scales. Only their change with varying input is important since it
represents sensitivity. Therefore, our measures capture the gen-
eral relationship between data without being unduly influ-
enced by unusual yet accurate data—after all, specular reflec-
tion and discontinuities are physical phenomena. It is worth
noting that the Hamming distance (2) which can be used to
define a measure of correlation, is not one of choice since it is
sensitive to rank distortion.

Now we present the other side of the coin, namely, discrimina-

tory power of k. We concentrated on robustness in the presence of
rank distortion in corresponding windows. But this robustness
could turn into a liability when comparing windows which do not
correspond. When window intensity values are replaced by their
corresponding ranks, there is a loss of information, because the
ratio between different measurement values is no longer used. The
loss of information due to the choice of an ordinal scale of meas-
urement is the price one pays for robustness, and is a well-known
trade-off in nonparametric statistics [4]. One factor that affects
discriminatory power is the window size. The window size deter-
mines the amount of sample data that will be used for comparison.

When the window size is small, say 3 ¥ 3, only five values
n
2 1+e j  are possible for k. Hence, the discriminatory power of the

coefficients is low, and mismatches could result with high prob-
ability. As the window size increases, the discriminatory power of
the coefficients increases. On real images, typically, window sizes

of 7 ¥ 7 or 9 ¥ 9 perform well, as can be seen from experiments in
the later sections. However, as with any window-based measure,
continually increasing the window size causes performance to
degrade because of increased false positives in the occlusion re-
gions and smoothing of disparity values across depth boundaries.
Choosing the appropriate window size is an issue for which we do
not have a solution. In [2], we discuss the discriminatory power of

k in more detail.

3.5 Experiments With Synthetic Images
We compared the ordinal measures with SSD, NCC, and Zabih and
Woodfill rank transform. We used the test suite [1] consisting of
four sequences of images generated as benchmarks for matching
algorithms. In each sequence, one parameter is varied; we will use
sequences in which the noise level is varied. No pair of images in a
sequence are stereoscopic since viewpoint between them remains
unchanged. Therefore, the matching location for any pixel is
known exactly. Further, there is no question of occlusion.

In Fig. 2, salt and pepper noise was added to the left image to
generate the right image. Notice the significant degradation of
image quality. The intensity variance in the window is used to
estimate the amount of texture around the center pixel. If the vari-
ance is below a threshold, then we do not consider that point for
matching. However, in the Zabih and Woodfill method, the rank
transformed images are used for correlation instead of original
intensity images; therefore, to keep the comparison fair, the test for



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  4,  APRIL  1998 419

sufficient texture is performed using the same variance threshold
while transforming the images. To simulate stereo matching, we use
a search range of ±10 pixels. Matches are established for a region of
size 100 ¥ 100 (= 10

4
) pixels of the left reference image.

The results of matching are shown in Table 1 which tabulates
the number of matches incorrectly identified by each measure, i.e.,
the number of false negatives are reported. Each measure is denoted
by the appropriate abbreviation. Note, since there is no occlusion
in this example, the issue of false positives does not arise. It can be
seen that k gives the best results of all. c does better than NCC and
SSD but not as well as Zabih’s method. All measures did better
with increasing window size which is expected since there are no
depth discontinuities and hence no occlusion. The graph in Fig. 3a
represents the performance of SSD, NCC, and k on a different im-
age set (from the Aschwanden and Guggenbuhl test suite) with
increasing amounts of shot noise. The performance of k is much
better than SSD or NCC. The rank-transform does better than SSD
or NCC but not as well as k. It may be argued that rather than us-
ing k, one might first design a filter for the images to remove noise
and then use regular correlation, but the problem of designing
an optimal filter is hard. Next, the measures were compared (see
Fig. 3b) with respect to increasing Gaussian noise level. In this
case, k does not do as well as SSD or NCC which are optimal
estimators of linear regression parameters. Zabih’s method also
does better than k because it uses linear correspondence on the

mappings obtained through the rank transform.
The two measures were then tested on a random dot image

pair (see Fig. 4) and compared with the other methods. The ran-
dom dot image pair, each image of size 64 ¥ 64 pixels, depicts a
square (size: 20 ¥ 20 pixels) moving four pixels to the right in front
of a stationary textured background. Note that this is strictly not a
stereo pair, but a motion sequence. Gaussian noise of variance 5.0 is
added to both images, and there is a difference in intensity scale of
10 percent between the images. The computational problems are:

•� to obtain correct correspondence including those at depth
boundaries between the background and the moving plane
and

•� to correctly report that no matches can be found in the oc-
clusion region—the region of size 4 ¥ 20 to the right of the
moving square with respect to the reference image.

The search range is fixed at ±10 pixels on a scanline for all meth-
ods. All methods also incorporate a back matching strategy wherein
each match is verified independently by matching patches from
the left image in the right image, and vice versa. If the match for a
window from the left image is not mapped back to within a pixel of
its location in the left image, it is not considered valid. This is a more
uniform way to compare measures than to use different thresholds
for different similarity measures in order to determine mismatches.
The results (number of mismatches) are shown in Table 2.

  

Fig. 2. Image pair with the right image generated by adding salt and pepper noise to the left image. This pair is used to test k with other meas-
ures. Locating right matches with such significant image degradation is the computational challenge.

TABLE 1
COMPARISON OF DIFFERENT MEASURES

USING THE IMAGES SHOWN IN FIG. 2

Measure Mismatches

7 ¥ 7 9 ¥ 9 11 ¥ 11

Window Window Window

k 1,324    923    791
Zabih 1,752 1,171    809
c 1,856 1,270 1,001
Norm. Corr. 4,128 2,991 2,245
SSD 4,567 3,469 2,645

Number of incorrect matches identified by each measure at different window

sizes is tabulated.

TABLE 2
COMPARISON OF DIFFERENT MEASURES

USING THE RANDOM DOT IMAGES SHOWN IN FIG. 4
Measure Mismatches

7 ¥ 7 9 ¥ 9 11 ¥ 11
Window Window Window

k 51 (11) 69 (16) 103 (28)
c 87 (14) 79 (16) 110 (30)
Norm. Corr. 72 (15) 95 (22) 108 (30)
Zabih 124 (21) 100 (22) 112 (32)
SSD 211 (12) 141 (20) 134 (34)

The total number of mismatches which is the sum of the false negatives and

the false positives is shown for different window sizes. The number of false

positives which are the incorrectly reported matches in the occlusion zone is

shown separately in brackets.
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k again does the best in comparison to the other measures. The
improvement may not seem as drastic as in the earlier example,
because the number of pixels on discontinuities and in the occlu-
sion region is small. Observe that the number of false positives in
the occlusion zone increases with window size for all measures, as
expected. Also note that the total number of mismatches decreases
with increasing window size in the case of SSD, because the num-
ber of false negatives decreases faster than the increase in false
positives. This can be explained by the fact that at smaller window
sizes the effect of intensity difference between images and noise is
more pronounced on SSD than on the others, and as window size
increases, the performance of SSD with respect to false negatives
increases fast. Presumably, there would be a window size beyond
which all measures would do equally badly because of false posi-
tives and disparity smoothing.

Table 3 shows the number of false negatives obtained using
each measure. The results were obtained by retracting the back-
matching strategy as explained earlier. Also, no thresholds were

used for any measure, and hence all measures were forced to re-
port incorrect matches in the occlusion region (in truth, there
should be no match for any pixel in that region). The aim was to

  

(a)                                                                               (b)

Fig. 3. Performance of the measures with (a) increasing shot noise level and (b) increasing Gaussian noise level.

    

                                     (a)                                                                         (b)                                                                        (c)

Fig. 4. Image pair (a)-(b) representing a square moving against a stationary textured background. In (c), true disparity levels with respect to the
left image are shown in different shades. The darkest region indicates the occlusion region.

TABLE 3
COMPARISON OF THE MEASURES

USING THE RANDOM DOT IMAGES OF FIG. 4

Measure Mismatches

7 ¥ 7 9 ¥ 9 11 ¥ 11

Window Window Window

k 35 43 59
c 47 50 62
Norm. Corr. 47 54 60
Zabih 56 65 54
SSD 136 97 84

In this case, only the false negatives are reported (see text for details).
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compare the performance with respect to false negatives alone. Thus,
the mismatches reported in the table are those due to disparity
smoothing across boundaries, noise, and intensity bias between the
images. The results are consistent with the earlier table. Particularly,
note that with increasing window size, the number of false negatives
increases (except in the case of SSD), which can be attributed to
disparity smoothing across the discontinuities. The reason for di-
minishing mismatches in the case of SSD is explained earlier.

Next, we use a stereo pair of a densely textured cube
1
 (see Fig. 5)

with disparity variation in the range [25-50] pixels. The issues
were to obtain accurate disparity in the presence of significant
projective distortion, and to match correctly at the depth disconti-
nuities between the cube and the black background. The window
size used was 9 ¥ 9. The resulting dense disparity map is shown in
Fig. 5 which is accurate. To verify, we compared the obtained dis-
parity by the plane-fit error method as follows. The disparity is
obtained manually (i.e., by visually matching) at the corners of the
cube. We then fit planes to each of the three visible faces of the
cube using the pixel positions of the corners and the manually
calculated disparity. Finally, we computed the squared difference
of the expected disparity from the plane fit and the computed dis-
parity using k, at all pixels on each of the three faces. We observed
that, up to pixel accuracy, the result is nearly 100 percent accurate.
While this is not the best way to compare results, it may provide
qualitative justification.

4 COMPUTATIONAL ISSUES

The naive algorithm for computing the distance vector by search-

ing linearly through s is an O(n
2
) method. Hence, if D is the dis-

parity search range, then the cost of computing dm at every pixel

would be O(Dn
2
). This is in addition to the sort operations to per-

form ranking. We developed a simple O(n) algorithm for building

dm while simultaneously evaluating max i
n

m
id

=1  (see [2] for details).

Mathematically, our algorithm states that,

d d J s i J s im
i

m
i j

j

i
i+

=

+
= - = + + > +Â

1

1

11 1e j e j                  (7)

The costly operations are therefore those of sorting window data,
which is O(n log n). Note, however, that we do not have to sort a
window in the second image every time it slides across through
one pixel distance within the search range D, if we use heap-sort in

1. This stereo pair was developed at the University of Illinois by Bill
Hoff. Its title is “Synthetic Image of a Cube With Gray Random-Dot
Texture.”

which data is maintained as a heap tree. Only delete and insert
operations corresponding to difference between the old and the
new window have to be performed. Since each operation is of the
order O(log n) and the total number of operations is less than n,
this scheme is more economical than sorting anew.

A preferable alternate scheme to avoid comparison sorting
(heapsort, quicksort) is as follows. Note that intensity values are
integers and lie in the range [0, 2

k
 - 1], where k represents the

number of bits of intensity resolution. We can now use counting
sort which is O(n + 2

k
). Currently, eight-bit sensors are the norm,

which implies intensity values must lie in the range [0-255].
Hence, sorting in a window is O(n + 256), linear in n. Counting sort
is effective with tied data values too since it is a stable sorting al-
gorithm, i.e., the relative ordering of tied data values is preserved
in the generated permutation. To find that value of n when count-
ing sort begins to perform better than comparison sort, the fol-
lowing inequality must be satisfied: c1n log n > c2(n + 256), where
c1, c2 are constants of the algorithm. If c1 = c2, then for n ≥ 64 (or
equivalently, a window of size 8 ¥ 8), counting sort is better. Fur-
ther improvement in computational complexity is gained if the
images are preprocessed to determine the maximum and minimum
intensity values in windows of each image. Consequently, the com-
plexity of sorting each sample is O(n + B) where B is often much less
than 256. When sensors of higher intensity resolution are used (k >
10), then a comparison sort algorithm would be of choice. Alterna-
tively, the images can be subsampled in intensity resolution to eight
bits. For ordinal measures, higher intensity resolution is not highly
beneficial, since actual intensity values are not used.

5 EXPERIMENTS

The first is a stereo image pair in Fig. 6 from the Calibrated Imag-
ing Laboratory at Carnegie Mellon University. A sequence of im-
ages was obtained by moving the camera horizontally. Precise
disparity was tabulated at 28 points (shown in the figure) using an
active range-sensing method. We used the third and fourth images
in the sequence. Note that many points are located on depth dis-
continuities which pose a serious problem for stereo matching. The
disparity range is [20-35] pixels with respect to the left stereo im-
age which is used as the reference. Since we do not attempt sub-
pixel matching, the nearest integer coordinates for each reference
point is used as its position in the image. A window size of 9 ¥ 9
is used for matching. Point 18 was matched inaccurately, the pos-
sible reason being that the window which straddles it is largely un-
textured. Also, correspondence at point eight was off by two pixels.
All other points (26 of them) were matched correctly to the nearest
pixel. The complete results of matching are tabulated in [2].

    

                                         (a)                                                                     (b)                                                                    (c)

Fig. 5. Stereo pair (a)-(b) of a textured cube (by Bill Hoff) and disparity plot (c) obtained using k.
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Next, we present results with the rather popular stereo image
pair of the Pentagon (see Fig. 7). The images are of resolution 512 ¥
512. Disparity is horizontal in the range [-10, 10] pixels. We
matched the images using two different window sizes: 9 ¥ 9 and 11
¥ 11, and the respective results are shown in Fig. 8. We also used a
threshold of 0.5 on k in each case. It may be observed that the dis-

parity map at the larger window size is smoother at the edges as
expected. Note that the results obtained were using pure image
matching, i.e., without any preprocessing or by using any complex
heuristics. Presumably, the results would improve further if an
approach specifically for handling occlusion like in [5] was used in
tandem.

  

(a)                                                                                                             (b)

(c)

Fig. 6. (a) and (b) Stereo image pair obtained in the Calibrated Imaging Lab at Carnegie Mellon University (by Mark Maimone). (c) The 28 points
for which precise disparity has been obtained using an active range method.

    

Fig. 7. Stereo images of the Pentagon.
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6 CONCLUSION

We have presented ordinal measures for stereo correspondence
and have shown it to be robust under nonideal conditions. We also
developed computationally efficient algorithms for evaluating
them. Although the issues were presented in the context of stereo
matching, they are equally applicable in motion estimation. The
main feature of this work is the reinterpretation of intensity on an
ordinal scale, although measurements are on a ratio scale. One
possible drawback of using an ordinal scale is that effect of com-
mon image error models cannot be easily incorporated. In other
words, it not clear how the parameters of an error model would
translate to parameters in a ranking model; our current work seeks
to address this issue. The use of ordinal measures can be extended
to applications like image retrieval based on texture where the
problem is to match texture descriptors of two images. Texture
descriptors could represent outputs of an image convolved with,
say, Gabor filters of different parameterizations. Hence, the use of
an ordinal scale for measurements may have wider scope.
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Fig. 8. (a) and (b) Density plots of the disparity maps representing the Pentagon pair obtained at two different window sizes. (c) A surface plot.


