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THE JOURNAL OF SYMBOLIC LoGic 

Volume 53, Number 3, Sept. 1988 

ORDINAL NUMBERS AND THE HILBERT BASIS THEOREM 

STEPHEN G. SIMPSON 

?1. Introduction. In [5] and [21] we studied countable algebra in the context of 
"reverse mathematics". We considered set existence axioms formulated in the 
language of second order arithmetic. We showed that many well-known theorems 
about countable fields, countable rings, countable abelian groups, etc. are equiva- 
lent to the respective set existence axioms which are needed to prove them. 

One classical algebraic theorem which we did not consider in [5] and [21] is 
the Hilbert basis theorem. Let K be a field. For any natural number m, let 
K [x1,.. ,Xm] be the ring of polynomials over K in m commuting indeterminates 
x.....,Xm. The Hilbert basis theorem asserts that for all K and m, every ideal 
in the ring K [x1,... ,xm] is finitely generated. This theorem is of fundamental 
importance for invariant theory and for algebraic geometry. There is also a gener- 
alization, the Robson basis theorem [11], which makes a similar but more 
restrictive assertion about the ring K<x1,... ,xm> of polynomials over K in m 
noncommuting indeterminates. 

In this paper we study a certain formal version of the Hilbert basis theorem within 
the language of second order arithmetic. Our main result is that, for any or all 
countable fields K, our version of the Hilbert basis theorem is equivalent to the 
assertion that the ordinal number oc` is well ordered. (The equivalence is provable 
in the weak base theory RCAO.) Thus the ordinal number wc is a measure of the 
"intrinsic logical strength" of the Hilbert basis theorem. Such a measure is of interest 
in reference to the historic controversy surrounding the Hilbert basis theorem's 
apparent lack of constructive or computational content. Recall Gordan's famous 
remark: "That is not mathematics, that is theology!" (See Bell [1] and Noether [8].) 

We also prove that the analogous formal version of the Robson basis theorem is 

equivalent to the assertion that the ordinal number wc is well ordered. (Again the 

equivalence is provable in RCAO.) Thus the "intrinsic logical strength" of the 
Robson basis theorem is strictly and measurably greater than that of the Hilbert 
basis theorem. 

The plan of this paper is as follows. In ?2 we give the precise statements of our 
main results relating basis theorems to ordinal numbers. In ?3 the main results are 
proved using several definitions and lemmas related to the theory of well partial 
orderings. The proofs of three of those lemmas are postponed to ?4. 

Received September 25, 1986; revised May 29, 1987. 

C 1988, Association for Symbolic Logic 

0022-4812/88/5303-0021 /$02.40 

961 

This content downloaded from 146.186.134.137 on Fri, 4 Oct 2013 12:05:01 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


962 STEPHEN G. SIMPSON 

This research was partially supported by NSF grant MCS-8317874. I would like 
to thank my colleague Edward Formanek for bringing Robson's papers [10] and 
[11] to my attention. 

?2. Hilbertian and Robsonian rings within RCAo. Recall that RCAo is the 
subsystem of second order arithmetic with Z? induction and Ao comprehension. 
The reader is assumed to be familiar with RCAo and to have at least some ac- 
quaintance with the technique of formalizing mathematics within RCAO. Roughly 
speaking, the mathematical content of RCAo is similar to the positive content of 
recursive mathematics. The biggest difference is that RCAo allows only a very 
restricted form of induction on the natural numbers, while recursive mathematics 
allows unrestricted induction. For basic information about RCAO, see [5], [17], 
[20], and [21]. 

Most of the definitions and arguments of this paper are meant to be formalized 
within RCAo. Within RCAo we use N to denote the set of all natural numbers. (If we 
are working within a non-w-model of RCAO, then N includes the nonstandard 
integers.) We use i, j, k, 1, m, n, ... as variables ranging over elements of N. 

As in [5] and [21], a countable commutative ring R is defined within RCAo to con- 
sist of a set IRI 

- N together with binary operations 

+RR: IRI x IRI - IRI, 

a unary operation -R: IRI ) RI, and distinguished elements OR, 1R E IRI satisfying 
the usual commutative ring axioms, including 0 # 1. We routinely write R instead of 

IRI and employ the usual notation of modern algebra. (Also within RCAo we can 
similarly define the notions of countable field, countable ring, countable partial 
ordering, etc.) 

Within RCAo we can prove that for any countable field K and any m E N, there 
exists a countable commutative ring K[x1, ... , X.] consisting of 0 plus all (Gddel 
numbers of) expressions of the form 

f (Xi 1 _* X.X) E 1i . . 5 m 
il+*--+im<n 

where Kii,...Xim>eNm, mcEN, ai,...im E K, and ai,...im # 0 for at least one 
(j1,... .im> eNNm with il + * + im = n. This is the ring of polynomials in m 

commuting indeterminates x1, ... X Xm over K. 
2.1. DEFINITION. Within RCAO, let R be a countable commutative ring. We say 

that R is Hilbertian if for every sequence <rk: k E N> of elements of R, there exists 
k E N such that for all j E N there exist SO 5 ... X Sk E R such that rj = Zi<k ri * si. 

2.2. REMARK. There is a subsystem of second order arithmetic known as ACAo 
which is somewhat stronger than RCAo. (See [5], [17], and [20].) Within ACAO, it 
is not hard to show that a countable ring R is Hilbertian if and only if every ideal of 
R is finitely generated. (An ideal of R is a set I c R such that 0 E R, 1 0 R, r, + r2 E I 

for all r1, r2 E I, and r * s E I for all r E I and s E R.) In RCAo however, the assertion 
that R is Hilbertian seems to be a little stronger than the assertion that every ideal of 
R is finitely generated. We may explain the distinction as follows. As in [5] and [17], 
define a Z? ideal of R to be a sequence <rk: k E N> such that (1) rk E R and rk # 1 for 
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all k E N; (2) for all i, j E N there exists k E N such that ri + rJ = rk; and (3) for all i E N 
and s E R there exists j E N such that ri * s = rj. Within RCAO, the notion of a Z l 
ideal of R is more general than the notion of an ideal of R. It is not hard to show 
within RCAo that R is Hilbertian if and only if every Z? ideal of R is finitely 
generated. 

In our main result (Theorem 2.7 below), it would be possible to replace 
"K[x1,... ., x] is Hilbertian" by "every ideal of K [x1,... ., x] is finitely generated". 
We have chosen to emphasize the Hilbertian property, mainly because it seems to be 
more useful in applications to algebraic geometry, etc. In addition, most of the work 
of proving our main result goes into showing that the well orderedness of wco implies 
Hilbertianness of K [x1,..., x.] for all m e N. Thus our use of the Hilbertian 
property leads to a more definitive result. 

We now discuss ordinal notations. 
2.3. DEFINITION. We define the set E of notations for ordinals less than es, and the 

ordering < of these notations. The definition is given by the following inductive 
clauses. 

1. If a? 2 > am belong to E, then wc' + . + woe' belongs to E. 
2. If al 2 2 am and f,1 2 ... f belong to E, then 

Ct0111 + * * * + C31?m < C)01 + ...+ Capon 

if and only if either (a) m < n and al = ftiB,**,m = ftm; or (b) al = #1f ***, ck = ftk, 

Ok+ 1 < fk+ 1 for some k < min(m, n). 
We use at, ft, y,... to denote elements of E, and we refer to such elements as ordinals 

less than so. We sometimes identify ft < so with the set of its predecessors, i.e. ft = 
{a: a < f}. We use 0 to denote the element of E which is the empty sum, i.e. 0 = 
c1 + * * * + wa)m where m = 0. We also write 1 = woo andc = w. We identify m E N 
with the element of E which is the sum of m ones, i.e., m = 1 + . + 1 (m times). 

2.4. PROPOSITION. The following facts are provable within RCAo. 
1. The set E = {lo: a < so } exists. 
2. The binary relation < exists and is a linear ordering of E. 
3. 0<a. for all a.. 
4. a. + 1 is the immediate successor of a. 
5. a. < w if and only if a. = m for some m E N. 
6. t <w ifandonly ifc <wim for somemeN. 
7. ot < wc@ if and only if a < wClrn for some m E N. 
PROOF. Within RCAo we can prove that the universe of all total number-theoretic 

functions is closed under composition, primitive recursion, and minimalization. (See 
?2 of [20] or Chapter II of [17].) Thus the usual proof that E and < are primitive 
recursive can be imitated to show within RCAo that these sets exist. The rest of the 
lemma is straightforward. 

(Generalizing parts 5, 6 and 7 of the above proposition, we may note that RCAo 
proves the following. For any at < so and limit ordinal ft < so, ci < f if and only if 
at < ft[m] for some m E N. Here <(f[m]: m E N> is the standard fundamental se- 
quence for ft, as defined for instance in Buchholz and Wainer [2].) 

2.5. DEFINITION. Within RCAo we make the following definitions. A descending 
sequence through so is a function f: N -+ {Jo: a < so} such that f(k + 1) < f(k) for all 
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k E N. We say that so is well ordered, abbreviated WO(so), if there is no descend- 
ing sequence through so. We say that a < so is well ordered, abbreviated WO(a), if 
there is no descending sequence through so beginning with a. 

From Gentzen's work, it is well known that ACAo does not prove WO(so), but 
that, for each (standard) a < so, ACAo proves WO(a). In the case of the weaker 
system RCA0, we have the following. 

2.6. PROPOSITION. 1. For each (standard) natural number m, RCAo proves 
WO(Cow). 

2. RCAo does not prove WO(w_)'). 
3. RCAO proves: WO(w_)') if and only if WO(w_)m) for all m E N. 
4. RCAo proves: WO(wcl' ) if and only if WO(w)m) for all m E N. 
PROOF. Part I is straightforward. 
Part 2 is a consequence of the following result which is essentially due to Parsons 

[9] (although Parsons did not consider the system RCAo). The provably total 
recursive functions of RCAo are just the primitive recursive functions. If WO(wO) 
were provable in RCAO, we could use this to show that the Ackermann function is a 
provably total recursive function of RCAO, contradicting Parsons' result. (For a 
Gentzen-style proof of Parsons' result, see Sieg [14]. For a model-theoretic proof, 
see Chapter IX of Simpson [17].) 

Parts 3 and 4 follow immediately from parts 6 and 7 of Proposition 2.4. (More 
generally, RCAo proves: for any limit ordinal /3 < so, WO(f.) if and only if WO(f.[m]) 
for all m E N. This is an immediate consequence of the parenthetical remark 
following the proof of Proposition 2.4.) 

The following theorem is the main result of this paper. 
2.7. THEOREM. Within RCAo it is provable that the following assertions are 

pairwise equivalent. 
1. For all m E N and all countable fields K, the commutative ring K[x1, . . , Xm] is 

Hilbertian. (This is our formal version of the Hilbert basis theorem.) 
2. For each m E N, there exists a countable field K such that the commutative ring 

K[xl,... , xm] is Hilbertian. 
3. WO(oa)/), i.e. the ordinal number cl) is well ordered. 
This theorem will be proved in ??3 and 4. 
We now discuss Robson's noncommutative generalization of the Hilbert basis 

theorem. 
Within RCAo we make the following definitions. Given m E N, let x1,... , xm be m 

noncommuting indeterminates. We use W. = {X1,. ,xm}* = {X1,... ,xm} to 
denote the set of monomials in x1, ... , xm. Another way to view Wm is as the free 
monoid generated by x1,... ,xm. (A monoid is a semigroup with a distinguished 
identity element.) Yet another way to view Wm is as the set of all finite sequences of 
elements of the set {x1, . . , xm} (including the empty sequence). This is referred to in 
computer science as the set of words on the alphabet x1 , ... X Xm (including the empty 
word). 

For all w E Wm we write IwI = the length of w. A typical element of Wm is a formal 
product w = xi, ... xi,, and in this case we have IwI = 1. 

Within RCAo we can prove that, for all countable fields K and all m E N, there 
exists a ring K<x1, ... ., xm> consisting of 0 plus all (Gddel numbers of) expressions 
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of the form f = El.,,<aXu, where n E N, u E W., a. e K, and a. # 0 for at least 
one u with lul = n. Thus K<x1,...,x.> is the ring of polynomials over K in m 
noncommuting indeterminates x1,... , xm. 

A polynomial h e K<xl,.. ., xm> is said to be homogeneous of degree I if it is 
nonzero and of the form 

(1) h= E cww 
lwl =l 

where w E Wm and cw E K. In this case we write IhI = 1. 
If w E Wm is of length l, say w = xi, xi,, then for any u0, u1,..., ul 4 Wm we write 

w[u0,. . .uXl] = uOxiul ... 
X01u1- 

If h e K<xl,. ., Xxm> is homogeneous of degree I as in (1) above, then we write 

h[uo,. . .,ul] = E cww[uo,. . .Xul 
lwl =l 

Thus lh[uo,...,ul]l = luol + + lull + 1. 
An ideal is said to be homogeneous if it is generated by its homogeneous elements. 

A homogeneous ideal I of K~x1, . . , Xm> is said to be insertive if for all 1 E N and all 
homogeneous polynomials h of degree 1, h e I implies h[uo,..., ul]] e I for all 
uo0..., ul G Wm. The Robson basis theorem (cf. Theorem 3.15 of [11]) asserts that for 
any field K and any m E N, every insertive homogeneous ideal of K < x1,... ,xm> is 
finitely generated qua insertive homogeneous ideal. We shall consider a slightly 
different, but equivalent, formulation. (Compare Remark 2.2 above.) 

2.8. DEFINITION. Within RCAo we make the following definition. Let K be a 
countable field. For m e N, we say that K<x1,..., xm> is Robsonian if, for every 
sequence <hk: k E N> of homogeneous elements of K<x1,.. ., xm>, there exists k E N 
such that for all j E N we have 

hj = E E aim ... 1,h [uo,.. .uj 
i <k luol + * *+ |ulil +Hi =Ij 

for some aj uo,... , c K, where 'k = IhkI for all k E N. 
The second main result of this paper is as follows. 
2.9. THEOREM. Within RCAo it is provable that the following assertions are 

pairwise equivalent. 
1. For all countable fields and all m E N, the ring K<xl,... ., xm> is Robsonian. (This 

is our formal version of the Robson basis theorem.) 
2. For each m E N. there exists a countable field K such that the ring K<xl,... ,xm> 

is Robsonian. 
3. WO(wc ), i.e. the ordinal number cl)@ is well ordered. 
This theorem will be proved in ??3 and 4 along with Theorem 2.7. 

?3. Well partial orderings. The purpose of this section is to prove the main results 
of the previous section, Theorems 2.7 and 2.9. In order to do so, we need to discuss 
certain aspects of the theory of well partial orderings, within RCAo. Our discussion 
is self-contained. For general background on well partial orderings, the reader may 
consult [3], [4], [11], [12], [13], [15], [19], and [22]. 
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Within RCAo we make the following definitions. A countable partial ordering A 
consists of a set IA I c N together with a binary relation <A ' IAI x IAI which is 
reflexive (a <Aa for all a E Al), transitive (a <Aa' and a' <Aa" imply a <Aa") and 
antisymmetric (a <A a' and a' <A a imply a = a'). We usually write A instead of IAl 
and < instead of <A- 

3.1. DEFINITION (RCAO). A countable partial ordering A is said to be well partially 
ordered if, for all infinite sequences <ak: k E N> of elements ak E A, there exist i andj 
such that i < j and a' < aj. 

3.2. LEMMA. The following is provable in RCAo. For any countable partial 
ordering A, the following assertions are equivalent. 

1. A is well partially ordered. 
2. For all infinite sequences <ak:k E N> of elements ak E A, there exists k such that 

for all j there exists i < k such that ai < aj. 
PROOF. We reason within RCAo. The implication from 2 to 1 is trivial (take j = 

k + 1). We prove the implication from 1 to 2. 
Assume that A is well partially ordered. Let <ak: k E N>, ak E A, be given. By 

recursive comprehension, let X be the set of all j E N such that Hi (i <j A a ? aj). 
We claim that Vj Hi (i c X A ai < aj). Suppose not. Let j be such that Vi (a1 < aj -+ 

i 0 X). By recursion on k we shall define an infinite sequence of natural numbers 
1k. k E N>. We begin by putting io = j. Assume inductively that aik < a;. Then iko 

X, so we can find ik+1 < ik such that aik+l1 < aik< aj. Thus ik: k eN> is an infinite 
descending sequence of natural numbers. This contradiction proves our claim. 

We claim that X is finite. If not, let nx:N -+ X be the one-to-one function 
which enumerates the elements of X in increasing order. Consider the sequence 
<alrX(k). k E N>. Since A is well partially ordered, there exist i and j such that i < j 
(hence xx(i) < xx(j)) and a,(i) < a1CX(j). This contradicts the fact that xx(j) E X. 
Our claim is proved. 

Since X is finite, let k E N be .an upper bound for X. Our first claim implies that 
Vj Hi(i < k A ai < aj). This completes the proof of Lemma 3.2. 

3.3. DEFINITION (RCAO). If <Ai: 1 < i < m> is a finite sequence of countable 
partial orderings, we can form the m-fold Cartesian product 

m 

A1 x * x Am = H A = {<al,**, am>: al,... ,am E A}. 
i= 1 

This is again a countable partial ordering under the product relation: 
<a1,...,am> < <a'1,...,a'> if and only if a, < a' and ... and am < am'. 

In particular, we have the m-fold Cartesian power Nm = N x ... x N (m factors), 
where N is the set of natural numbers with the usual ordering. 

3.4. LEMMA. The following is provable in RCAo. For any m E N and any countable 
field K, the following are equivalent. 

1. The commutative ring K [x1 ... X Xm] is Hilbertian. 
2. The m-fold Cartesian power Nm is well partially ordered. 
PROOF. We reason within RCAo. Fix m and K. 

Assume first that K[x1, ... .,xm] is Hilbertian. Let <<ekl, ... .,ekm>: k E N> be an 

infinite sequence of elements of Nm. For each k E N define a monomial 

Mk = Xekl ... Xkm K[x,... 5x 

This content downloaded from 146.186.134.137 on Fri, 4 Oct 2013 12:05:01 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ORDINAL NUMBERS AND THE HILBERT BASIS THEOREM 967 

Since K[x1,...,xm] is Hilbertian, we have 3kVj Mj = g0Mo + + gkMk for 
some g0,- *-,gk E K[x1,..., Xm]. Take for instance j = k + 1. A simple cancella- 
tion argument shows that Mj is divisible by Mi for at least one i < k. Thus 
<ej1,... ,eim> < <ej1,...,ejm> in Nm, and i < j. Since the sequence <<ekl,,..,ekm>: 

k E N> is arbitrary, we see that Nm is well partially ordered. This proves that 1 
implies 2. 

For the converse implication, assume that Nm is well partially ordered. Let 
<fk: k E N> be an infinite sequence of elements of K[xj, . . ., xm]. Let cp(h) be the 
Z? formula which says that h E K [xj,..., Xm] and h = fogo + + fkgk for some 
k E N and g0,. .,gk E K[xx,...,Xm]. Since cp(h) is Z 0, we can prove within RCAo 
that there exists a sequence <hk: k e N> such that Vh (cp(h) +-+ 3k (h = hk)). (See 
[20, Lemma 2.1].) Now for each k e N let Mk be the leading monomial of hk. This 
means that Mk is the lexicographically first monomial in hk of highest total degree. 
Identify Mm = X Mkl * xm"' with the m-tuple <ekd,... ekm> e Nm. Since Nm is well 
partially ordered, we see by Lemma 3.2 that there exists k such that for all j there 
exists i < k such that Mj is divisible by Mi. 

Fix such a k. We claim that, for all j, 

(2) hj = goho + + gkhk 

for some go,... , gk e K [x1,... , Xm]. We shall prove this by induction on the ordering 

of leading monomials. Given j, let i < k be such that Mj is divisible by Mi, say Mi 
= MiNj where Nj is another monomial. Then, for an appropriate constant c; e K, h 
-cjNjhi has a leading monomial which is prior to Mj in the ordering of leading 
monomials. Also hj - cjNjhi = h, for some I e N. Hence by the inductive hypothesis 

hj-cjNjhi = g*ho + 0 + g*hk 

for some g *,.. . cg- e K[x1, . .. X Xm]. Hence (2) holds with gi = gi* + cjNj, and g, 
- g* for all I < k, 1 # i. 

This completes the proof of Lemma 3.4. 
3.5. REMARK. The above proof that 3.4.2 implies 3.4.1 is similar to a proof of the 

Hilbert basis theorem which is due to Gordan [6], [7]. 
3.6. LEMMA. The following is provable in RCAo. For any m e N, the following are 

equivalent. 
1. The m-fold Cartesian power Nm is well partially ordered. 
2. The ordinal (wm is well ordered. 
The proof of this lemma will be presented in ?4. 
PROOF OF THEOREM 2.7. The theorem follows immediately from Proposition 2.6.3 

and Lemmas 3.4 and 3.6. 
3.7. DEFINITION (RCAO). If A is a countable partial ordering, we can form the 

countable set A * of all finite sequences of elements of A. We partially order A* by 
putting (ai: i < k> < <bj:j < 1> if and only if there exist jo < ... < k-1 < I such 
that aO < bjo,.. . ak- ? b ik. Thus A* is a countable partial ordering. 

In particular, taking A = .x....,Xm} where x1,...,xm are noncommuting 
indeterminates, we have the set of monomials Wm = {x,.. . ., xm}* as in ?2. Using the 
notation of ?2, we see that for all w and w' e Wm, w < w' if and only if w[uo,.. ., ul] 
= w' for some uo,. . . ,ul e Wm, where I = Iwi. 
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3.8. LEMMA. The following is provable in RCAo. For any m E N and any countable 
field K, the following assertions are equivalent. 

1. The ring K<x1, . . .,Xm> is Robsonian. 
2. The set of monomials W. is well partially ordered. 
PROOF. We omit the proof, which is entirely analogous to the proof of Lemma 3.4 

above. 
3.9. LEMMA. The following is provable in RCAo. For all m E N, if the set of 

monomials W.+ 1 is well partially ordered, then the ordinal Cl)< is well ordered. 
3.10. LEMMA. The following is provable in RCAo. For all m E N, if the ordinal 

W 
( 

'm+ Iis well ordered, then the set of monomials W. is well partially ordered. 
The proofs of the previous two lemmas will be presented in ?4. 
PROOF OF THEOREM 2.9. The theorem follows immediately from Proposition 2.6.4 

and Lemmas 3.8, 3.9 and 3.10. 

?4. Effective reification. The purpose of this section is to complete the arguments 
of ?3 by proving Lemmas 3.6, 3.9 and 3. 10. Two of the proofs are based on the notion 
of reification which is defined below. 

The following definitions are made within RCAo. Let A be a countable partial 
ordering. A finite sequence s = <a': i < k > of elements ai E A is said to be bad if there 
do not exist i and j such that i < j < k and ai < aj. In this case we write 

A, = {aeA:ai i aforall i < k} 
= {a E A: s-<a> is bad}. 

For any a E A, we write 

As(a) = As-<a> = {b E As: a % b} 

The countable set consisting of all bad finite sequences of elements of A is denoted 
Bad(A). Note that the existence of Bad(A) is provable in RCAo. 

4.1. DEFINITION (RCAO). Let A be a countable partial ordering. For a < es, a 
reification of A by a is a mapping f: Bad(A) -+ a + 1 such that f(s-<a>) < f(s) for all 
s E Bad(A) and a E As. 

4.2. LEMMA. The following is provable in RCAO. Let A be a countable partial 
ordering. If there exists a reification of A by a, and if a is well ordered, then A is well 
partially ordered. 

PROOF. We reason within RCAo. Let f: Bad(A) -+ a. + 1 be a reification of A by a. 
Suppose that A is not well partially ordered. Then there exists an infinite sequence 
<ak: k E N> of elements ak E A which is bad, i.e. there do not exist i, j E N such that 
i <j and ai < aj. For each k E N put ak = f(<ai: i < k>). Then Kak: k c N> is an 
infinite descending sequence of ordinals less than or equal to a. This contradicts the 
assumption that a is well ordered. Our lemma is proved. 

4.3. REMARK. A large part of the work in this section is devoted to finding explicit, 
effectively given reifications of the well partial orderings which were considered 
in ?3. Our treatment of reification is self-contained. For general background on 
reification, the reader may consult DeJongh and Parikh [3], Schmidt [12], and 
Statman [22]. 

We shall make use of the following definition and lemma. 
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4.4. DEFINITION. Within RCAo we define the natural sum of ordinals less than es 
by 

(t?l+ ***+ W'-?) + (CW)#I + * * + Ct)4.) = (t)Y1 + * * + Ct)Ym+n 

where <y1,... ., m,> is a permutation of <(ti,.. ., am,f,.. . such that 

V1 > ... > ym + .. The natural product is defined by 

(Wa * + + w3,M) X (WO #1 + * + w0fln) = (0al+1+.. +ai C f?i+ +** + C)?m+fn 

where i = 1,...,m and j = 1,...,n. Note that in this paper we use + and x 
exclusively to denote the natural sum and natural product. 

4.5. LEMMA. The following facts are provable within RCAo. 
1. (ac + + y = a + (/ + y). 
2. a + /= + ot. 
3. ai + 1 < a + /2 if and only if fl1 < 2 

4. wy is additively indecomposable, i.e. at < wy and / < cy imply ai + /3 < cY. 
5. (a. x /3) x y = a. x (/ x y). 
6. ci x / = # x ci. 

7. a x/ 1 < a x f2 if and only if /1 < f2 

8. (a + /3) x y = (ai x y) + (/ x y). 
9. cow is multiplicatively indecomposable, i.e. at < wc and / < w" imply at x /3 

< c) 
PROOF. The proof is straightforward. 
We now prepare for the proof of Lemma 3.6. 
For u < v < w we write [u, v) = {a: u < a < v}. Given an m-fold Cartesian 

product n17 1 [ui, vi) with ui < vi < co for each i, we define 

m m 
1H1 [ui, vi) = H (vi - ui) 

where on the right-hand side n denotes natural product. 
4.6. SUBLEMMA (RCAO). Suppose that <a,, ... 5am> E Hm= 1[ui, vi) where 

ui < v. < co for each i. Then 

m m 

(3) Z H [ui(of), vi(j)) < H [ui, vi) 

Here E denotes natural sum, ai = <(i: 1 < i ? m> ranges over all m-tuples of zeros and 
ones which do not consist entirely of ones, and 

[[a) v,) if A=OI- 

PROOF. We reason within RCAo. Let k be the number of i's such that vi = co. 
Suppose first that k = 0. In this case, the sublemma follows easily by observing that 
the disjoint union 

m 

U H [ui(o), v(oj)) 
it s =1 

is a proper subset of the finite set fTim= i [ui, vi). 
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Suppose now that k > 0. The right-hand side of (3) is of the form cok x n where 
n < c. Let us say that u is wild if vi = O for some i such that vi = co; otherwise f is 
tame. If u is wild, the contribution of u to the left-hand side of (3) is of the form 

xk x n', where k' < k and n' < c. Hence, by Lemma 4.5.4, the total contribution 
of all the wild u's is < C0k. On the other hand, the total contribution of all the tame 
&ts is of the form cOk x n" where n" < n. (The inequality n" < n follows from the 
special case k = 0 which has already been proved.) Thus the total left-hand side is 
<a k + (cok x n") < Coik x n. This completes the proof of Sublemma 4.6. 

4.7. SUBLEMMA. The following is provable in RCAo. For each m E N, there exists a 
reification of Nm by ct)m. 

PROOF. We reason within RCAo. Fix m e N. We shall define a reification 
f: Bad(Nm) -> cotm + 1. For s E Bad(Nm) we shall define f(s) < com by primitive 
recursion on the length of s. (See [20, pp. 788-789].) The value of f(s) will be 
obtained in terms of a decomposition of (Nm), into a disjoint union, 

(4) (Nm)S C U H [lu1ijv), 
jeJ i= 1 

where J is a finite index set and ui? < vi; co for all c- J and i = 1, ..., m. We shall 

then define 

m 

f(s) = E H li vi>, 
jeJ i=1 

We begin with the trivial decomposition (Nm)< > = Nm = Hfi= 1 [0, c), and accord- 
ingly we define 

m 

f (< >)= H[0 ,A) = WM 

Now fix s E Bad(Nm) and assume inductively that we have already defined f(s) 
according to a decomposition (4) of (Nm),. Given s' = s-<a> E Bad(Nm), we want to 

define f(s'). Since a e (Nm),, there is a unique f' E J such that a = <a1,...,am> 
E Him= 1[uij, vij ). As our decomposition of (Nm),, we take (4) with Him= 1[uij, viy) 
replaced by 

m 

U H [uij(cr), vij,(of)) 
aT i= 

as in Sublemma 4.6. It is easy to check that this provides a decomposition of (Nm),, as 

required. The fact that f(s') < f(s) follows from Sublemma 4.6 and Lemma 4.5.4. 
This completes the proof of Sublemma 4.7. 
PROOF OF LEMMA 3.6. We reason within RCAO. Fix m E N. 
Assume first that cotm is well ordered. By Sublemma 4.7 there exists a reification of 

Nm by ct)m. Hence by Lemma 4.2 it follows that Nm is well partially ordered. This 

proves half of our lemma. 
For the other half, assume that Nm is well partially ordered. Define a mapping 

g: ,m -+ Nm by g(i<m ai x Wi) = <ai: i < m>. Note that g(a) < g(f3) implies a < /3. 
Now if cotm is not well ordered, let <ak: k E N> be an infinite descending sequence of 
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ordinals less than w)m. Then <g(ak): k E N> is a sequence of elements of Nm. Since by 
assumption Nm is well partially ordered, there exist i and j such that i < j and 
g(ai) < g(aj). It follows that ac < aj, a contradiction. This completes the proof of 
Lemma 3.6. 

PROOF OF LEMMA 3.9. We reason within RCAo. By recursion on m E N we define 
mappings m: a)o" Wm, 1 with the property that 4Fm(a) < -m(f3) implies a < /3. For 
m = 0, if a < w)O = c), we put 

go(a) = X1 x * 1 EC W1 

n 

where a = n < c. Trivially 4FO(a) < gF(fl) implies a ? /3. 
Assume now that -i has been defined. To define -i, +1, let a < C(fl + 1 be given. Let 

k = kC be as small as possible such that a < WG)'l xk. Then we have 

(5) OC =wwX co"x(k-l) X ck i - 1 + + 0c? x al + a( 

where (k - 1 'al aO are all less than )W"'. Hence 9m ~ 1) m(al), 9m(0O) C 
Km+ 1, and we define 

(6) gm+1(a) = 
Om() k-l)Xm+2 xm Wme+2 

We claim that Fm+1(aci) ? 4m+ implies a </ ?. Assume Fm+ 1((a)?gm+ (). 
Then obviously k,, < kf. If k,, < kg, then trivially a < ft. Otherwise, let k = k,, = kf. 
Thus we have (5) and (6), and similarly 

/ C = x (k -X1) X lk -1 + ***+ ) X /1 + /0 

so that 

gm + 1(f) = 9m(ek-l)Xm +'2 ...2Xm.+2 m g m +2 

From m+1(a) < ?m+1(/3) and kaf =k = k, it follows that 9-(ck1) < 

gm(ftk--),... , -m(aj) < -m(f1) - (ao) < gm(ft0). Therefore, by induction on m, we 
have (k-l < ftk-1,. ...,cil < f1t ao < fto and hence, by Lemma 4.5, a < ft. This 
proves the claim. 

Now to prove the lemma, fix m and assume that m + 1 is well partially ordered. If 
w0"m is not well ordered, let <ak: k e N> be an infinite descending sequence of 
ordinals less than w?". Then <K-j(ak): k e N> is a sequence of monomials in Wm+,. 
Since by assumption Wm + 1 is well partially ordered, there exist i and j such that i < j 
and g- (ai) < 9-m(aj); hence ai < a,, a contradiction. 

This completes the proof of Lemma 3.9. 
4.8. SUBLEMMA. The following is provable in RCAo. Let A be a countable partial 

ordering. If there exists a reification of A by a, then there exists a reification of A * by 
% +1 

PROOF. The proof is essentially the same as the proof of Lemma 5.2 of [13]. Since 
that paper has not been translated into English, we repeat the proof here. 

We reason within RCAo. Let f: Bad(A) ->, a + 1 be a reification of A by a. In 
terms of f we shall define a reification f*: Bad(A*) -) W)'O+ + 1 of A* by w)"x 

For each t e Bad(A*), in order to define f *(t) < wa+', we shall define a certain 
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mapping 

(7) ~~~~~ht: (A *)t +Ct 

where Ct is a certain countable partial ordering. The mapping ht will have the 
property that ht(u) < ht(v) implies u < v for all u, v E (A *)t. The countable partial 
ordering Ct will be of the form 

(8) Ct= U H BLk 
ie IkeKi 

where I and the K', i E I, are finite index sets, U denotes finite disjoint union, Hn 
denotes finite Cartesian product, and each Bik is either A, or (A,)* for some s E 
Bad(A). The ordinal value of any such countable partial ordering is defined in 
terms of f as follows: IASI = o (S) I(As)*I = c InkK BkI = HkeKIBkI (natural 
product), and I U i Di = Di I iI DiI (natural sum). We then define f *(t) = I CtA for 
each t E Bad(A*). 

It remains to define the mappings ht as in (7), for each t E Bad(A*). We shall do this 
by primitive recursion on the length of t. We begin by letting h< > be the identity 
mapping of (A*)< > = A* into C< > = (A< >)* = A*. Thus we have 

f(K >) = IC< >1 = I(A< >)*I = f((>)+' < c() 

Now let t' = tK<u> E Bad(A*) and assume that ht:(A*)t -+ Ct and f*(t) = ICtA, 
with Ct as in (8), have already been defined. Our goal is to define ht . Since u E (A*)t, 
we have h(u) E Ct; hence ht(u) E flke K Bik for a unique i E I. Thus ht(u) = <Ck: k E Ki> 
where Ck E Blk for each k E Ki. For each 

<dk:ke Ki> E D = ( Bik (<Ck ke Ki>), 
k eKi 

we have dk E Bik for all k E Ki, and dk E Bik(ck) for at least one k E Ki. Therefore, there 
is an obvious mapping of D into UjeKiHkeKiBk where Bk =BkforI kand 

Bkk = Bik(Ck)- 

We shall now define a mapping of Bk into another countable partial ordering B". 
We distinguish three cases. 

Case 1. j : k. In this case we map Bk = Bik into B'k = Bk = Blk via the identity 
mapping. 

Case 2. j = k, Bik = A. with s E Bad(A). In this case we have Ck = a E A. and we 

map Bkk = Bik(Ck) = AS(a) into B" = As(a), via the identity mapping. Thus 

IB"k I IA,(a)I = f(s a>) < f(s) IAsI= IBlkI 

Case 3. j = k, Bik = (A,)* with s E Bad(A). In this case we have Ck = <a,: I < n> 
E (A,)*. For each w E Bkk = BLk(ck) = (As)*(<ai: I < n>), there is a smallest m < n 
such that <a,: I < m> : w. Hence w is of the form 

w = wo^<bo >^ ^Wm- 1<bm-1>^Wm 

where w1 e As(al)* and b, E As. Thus there is an obvious mapping of Bkk into 

k = U (As(ao)* x As x x As(am-i)* x As x As(am)*). 
m<n 
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Note that IASI 0f(S) < ,of(s) 1 and 

IAs(a)*I = ,f( a>)+1 
< Of(s) + 

Hence by additive and multiplicative indecomposability of cao)f`)+', we see that 

IBII I < (f () = I(As)* I = lBik1 

We now let Ct be the countable partial ordering which results from (8) when we 
replace the term HkeKZ ik by UjeKilkeK B"'k and distribute Cartesian products 
over disjoint unions. The mapping h,: (A*),, -+ Ct is defined as the composition of ht 
with the other mappings which were mentioned above. 

We now compute: 

U H B/ = Z Hi Bkl 
jeKi keKi jeKikeKi 

where on the right-hand side E and 11 denote natural sum and natural product. For 
all j and k we have IB[1I < IBikJ and IBkI < IBW. Hence, for each E K', HkeKIB 
< HkeKiIBikI. By the additive indecomposability of HkeKiI BikI, it follows that 

A | k|< ik k 
jeKi keKi keKi 

This implies that f*(t') = ICtI <ICt = f*(t). The proof of Sublemma 4.8 is 
complete. 

PROOF OF LEMMA 3.10. We reason within RCAo. Fix m e N and assume that 
C(owm+l is well ordered. Let A = {Xi,... ,Xm} with the discrete ordering: xi < x; if 
and only if i = j. Thus A* = W.. There is an obvious reification of A by m (namely 
f (s) = m - (length of s) for all s e Bad(A)). Hence Sublemma 4.8 provides a reifi- 
cation f * of A* by C)t"m"+ 1 Since by assumption )?m+1 is well ordered, Lemma 4.2 
implies that A* = Wm is well partially ordered. This completes the proof. 

Added in Proof. Recently we became aware of A. Seidenberg's interesting work on 
constructive aspects of the Hilbert basis theorem (see Proceedings of the American 
Mathematical Society, vol. 29 (1971), pp. 443-450, and Transactions of the American 
Mathematical Society, vol. 174 (1972), pp. 305-312). The results of the present paper 
have been used by Harvey Friedman to illuminate some problems which were raised 
by Seidenberg. 
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