
IET
do

www.ietdl.org
Published in IET Generation, Transmission & Distribution
Received on 14th January 2009
Revised on 2nd May 2009
doi: 10.1049/iet-gtd.2009.0019

ISSN 1751-8687

Ordinal optimisation approach for locating
and sizing of distributed generation
R.A. Jabr 1 B.C. Pal2
1Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box 72, Zouk Mikhael,
Zouk Mosbeh, Lebanon
2Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, UK
E-mail: rjabr@ndu.edu.lb

Abstract: This study presents an ordinal optimisation (OO) method for specifying the locations and capacities of
distributed generation (DG) such that a trade-off between loss minimisation and DG capacity maximisation is
achieved. The OO approach consists of three main phases. First, the large search space of potential
combinations of DG locations is represented by sampling a relatively small number of alternatives. Second,
the objective function value for each of the sampled alternatives is evaluated using a crude but
computationally efficient linear programming model. Third, the top-s alternatives from the crude model
evaluation are simulated via an exact non-linear programming optimal power flow (OPF) programme to find
the best DG locations and capacities. OO theory allows computing the size s of the selected subset such that
it contains at least k designs from among the true top-g samples with a pre-specified alignment probability
AP. This study discusses problem-specific approaches for sampling, crude model implementation and subset
size selection. The approach is validated by comparing with recently published results of a hybrid genetic
algorithm OPF applied to a 69-node distribution network operating under Ofgem (UK) financial incentives for
distribution network operators.
1 Introduction
Distributed generation (DG) technologies are among the
main vehicles for the reduction of carbon emissions in
accordance with the Kyoto agreement on climate change.
Other benefits of DG include the reduction of losses and
the deferment of investment for network upgrades. The
different technologies that are classified as DG in the UK
are categorised into renewable and fossil fuel-based sources.
The renewable sources comprise wind turbines, biomass,
photovoltaics, geothermal, small hydro, and tidal and wave.
Fossil fuel-based sources consist of fuel cells, internal
combustion engines and combustion turbines. The
installation of DG in distributed networks has to be
coordinated such that early connections do not effectively
sterilise parts of the network by constraining the
development of other, potentially larger, plant connections
[1]. This necessitates providing the distribution network
operator with tools for determining the DG locations and
capacities that make best use of the existing network
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infrastructure. The information provided by such tools
could be transferred to potential developers in the form of
spare connection sites and sizes.

The problem of DG planning has recently received much
attention by power system researchers. Different formulations
have been solved using calculus-based methods, search-based
methods and combinations of the previous techniques.
The calculus-based methods include linear programming
(LP) [2], second-order algorithms [3] and OPF-based
approaches [1, 4]. These optimisation methods treat the
DG capacities as continuous variables while their locations
remain fixed. However, the problem of placing DG in
practical networks belongs to the complexity category of
non-deterministic polynomial (NP) complete, that is, it is
almost certain that solving for its global optimum cannot
be done efficiently on a computer. Solutions can be
obtained by analytical approaches only under simplifying
assumptions, such as placing a single DG [5].
Search-based methods have been proposed to seek the
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optimal (or near-optimal) DG locations and capacities from
candidate sites and sizes. The search-based methods
comprise various artificial intelligence techniques such as
genetic algorithms (GA) [6, 7], combined fuzzy-GA [8],
multi-objective evolutionary approaches [9] and tabu search
[10]. Combinations of search-based and calculus-based
techniques that handle discrete and continuous variables
have been also proposed to improve the modelling of DG
sites and sizes. An example of such a hybrid technique is
the combination of GA and optimal power flow (OPF)
[11–13]. Another approach is the heuristic method of [14]
for DG investment planning. It is also possible to handle
both discrete and continuous variables via Benders
decomposition. Such an approach has been proposed in
[15] within the context of placing static var compensators
for maximising the loading margin.

This paper presents an ordinal optimisation (OO)
approach for solving the DG planning problem with
discrete and continuous variables. A mathematical
description of the OO technique is given in Appendix 1.
OO is based on the idea that the relative order (instead of
the cardinal value) of the performance of different
alternatives in a decision problem is robust with respect
to estimation noise [16]. This implies that if a set of
alternatives is very approximately evaluated and ordered
according to this approximate evaluation, then there is high
probability that the actual good alternatives can be found in
the top-s estimated good choices. As an example, consider
the limiting case where the estimation noise associated
with the approximate evaluation (crude model) has infinite
variance, that is, the top-s alternatives are randomly picked.
Moreover, assume that the search space has N ¼ 1000
alternatives and the actual good enough alternatives are
considered to be the top-50 ( g ¼ 50). By blindly picking
s ¼ 86 samples from the search space, the alignment
probability that at least one good enough alternative
(k ¼ 1) is in the 86 samples is given by (1) from [17]

AP(k ¼ 1) ¼
Xmin (g,s)

i¼k

g

i

� �
N � g

s � i

� �
N

s

� �

¼
X50

i¼1

50

i

� �
914

86� i

� �
1000

86

� � ffi 0:99 (1)

This implies that if any alternative in the top-50 is considered
satisfactory, there is no need to do an exhaustive search to
locate good alternatives. The previous example demonstrates
more than 10-fold reduction in the search space. Moreover,
the crude model is usually constructed such that the
ordering according to the approximate evaluation is biased
in favour of the actual good alternatives. Therefore the
number of samples (s ¼ 86) of the previous example is an
4
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upper bound on the size of the selected subset that contains
at least one good enough alternative with 99% chance.

The utility of OO is in dealing with NP-complete
problems such as DG planning with discrete and
continuous variables. Previous power systems research has
reported successful applications of OO for OPF [18] and
constrained state estimation [19] with discrete controls,
multiyear transmission expansion planning [20] and
capacitor placement in transmission systems [21]. The
contributions of this research lie in the specific algorithmic
choices for the application of OO in DG planning, namely

1. the number of samples N from the entire search space and
the corresponding heuristic rule for sampling;

2. the crude model for the fast and approximate evaluation of
the N samples; and

3. the size s of the selected subset of choices that will be
subjected to more elaborate and accurate analysis, for instance,
an exact OPF solution. The analysis can also include stability
simulations and short-circuit current computations.

The proposed OO approach is validated by comparing with
recently published results from a combined GA–OPF
approach [13].

2 Distributed generation planning
The evaluation of a given set of capacity expansion locations
is dependent on the choice of the performance measure,
typically the extreme value of an objective function in a
given feasible region. The objective can take several forms
among which are DG capacity maximisation [1, 2, 12], loss
minimisation [3, 8, 10] or a combination of both [13].

Without loss of generality, this paper considers the specific
UK distribution network operator requirements that specify
incentives for DG connections and losses [13]

maximise CDG

XNDG

j¼1

PDGj þ CL(PL(target) � PL(actual)) (2)

where CDG is the incentive for every MW of new DG in
£/MW-year converted into £/MWh, CL is the incentive/
penalty for every MW decrease/increase of loss relative to
the target in £/MWh, NDG is the number of DG installed
in the network, PDGj is the real power output of the jth
distributed generator in MW, PL(target) is the target power
loss level in MW and PL(actual) is the actual power loss after
DG installation in MW. It is computed as the summation
of the real power injections at all the nodes.

Renewable DG sources including combined heat and
power (CHP) stations that use renewable fuels (e.g. sewage
gas) may also benefit from the climate change levy
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exemption for renewables [22]. Good quality CHP stations
are also eligible to benefit from the climate change levy
exemption specifically for CHP. Other incentives related to
quality of service such as when DG participates into
frequency and voltage control services are not considered in
this paper.

The feasible region is formed of the typical OPF
constraints

P
Pi ¼ 0P
Qi ¼ 0

�
at each node i (net power injections) (3)

PGj min � PGj � PGj max

QGj min � QGj � QGj max

)
for each generator j

(power generation limits)
(4)

Vi min � Vi � Vi max for each node i (voltage limits) (5)

Smn � Smnmax

for each circuit from node m to node n

(branch flow limits)
(6)

Following [12, 13], distributed generators are also assumed to
operate in power factor control mode thus requiring an
additional constraint

QDGj

PDGj

¼ tanfj (7)

where QDGj is the real power output of the jth distributed
generator in MVAr and fj is the constant power factor
angle of the jth distributed generator. It is possible to
further include constraints on DG penetration limit and
permitted fault levels [4]. The above OPF problem can be
solved using the MATPOWER software package [23]. It
constitutes the exact model for evaluating the different
alternatives of DG locations.

3 Ordinal optimisation approach
The search for the exact global solution to the problem of
locating and sizing of DG requires for non-trivial cases an
immense computational time. For instance, choosing 9 DG
locations out of 68 potential candidates necessitates the
evaluation of

68
9

� �
¼

68!

9!(68� 9)!
ffi 4:93� 1010 combinations

With around 0.15 s per OPF solution on a Core-Duo
1.73 GHz processor, the evaluation of the above
combinations sequentially takes more than 200 years to
complete. The OO theory provides a probabilistic framework
for reducing the search space and the computational effort
involved in ranking the different alternatives. The OO
algorithm for locating and sizing a pre-specified number of
distributed generators can be summarised as follows:
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1. Select N designs (i.e. combinations of DG locations) from
the search space such that at least one of them is in the top a

percent of all solutions with a probability level P. Typical
values of a and P are 0.1 and 99%, respectively.

2. Evaluate and order the N designs using a crude and
computationally cheap model.

3. Compute the number of top-s samples in the N designs
that contain at least one actual good alternative, for
instance one in the true top-50, with a given alignment
probability level AP(k ¼ 1) � 0:95. Evaluate each of the s
samples using an exact OPF model and determine the
good enough solution.

The implementation details relating to each of the above
steps are discussed below.

3.1 Search space

Let the set Q denote the population of all designs and assume
that the solutions have been ordered with respect to their
objective function (2) values from best to worst. Let L

consist of the top a percent designs in Q, that is,

a ¼
jLj

jQj
(8)

where j j denotes the cardinality of a set. If N� designs are
blindly picked from Q, the probability that none of these
designs is in L is (1� a)N � . Thus, the probability that at
least one of the N� designs is in L is 1� (1� a)N � . If this
probability is desired to be no less than P, then [24]

N � �
ln (1� P)

ln (1� a)
(9)

Table 1 shows the minimum required values of N� for
different values of P and a. For instance, if at least one of
the N� solutions is desired to be in the top 0.1% of the
search space with no less than 99% probability, then N�

should be at least 4603.

In practice, a heuristic rule is used to rank the nodes in
terms of their suitability for DG placement, and the
minimum number of top candidate locations NC among
the nodes is chosen such that the number of sample

Table 1 Required number of designs for applying OO

P, % Top 0.1% Top 0.01%

99 4603 46 050

99.9 6905 69 075

99.99 9206 92 099

99.999 11 508 115 124
715
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designs is

N ¼
NC

NDG

� �
¼

NC!

NDG!(NC � NDG)!
�

ln (1� P)

ln (1� a)
(10)

The heuristic rule operates on the complete set of nodes that
are eligible for DG placement. At each stage, the rule uses
the OPF described in Section 2 to identify the most
suitable node for locating a distributed generator, that is,
the node that results in the maximal value of the objective
function (2). The ranking procedure is described in detail
below.

Let T denote the list of nodes that are eligible for DG
placement. The list TS will contain the sorted list of the
top NC DG locations when the procedure terminates.
Initially, TS is empty. Unless otherwise specified, step
( jþ 1) follows step j.

Step 1: Given that the nodes in TS are DG sites, use the OPF
solver to identify the node in T that when used as an
additional DG site would yield the maximal value of
the objective function (2). This requires executing an OPF
solution for each DG location in T. In each OPF
execution, the nodes in TS are assumed to be DG sites.
After executing the OPF solutions, the DG location in T
that yields the best objective function value is the desired
node.

Step 2: Remove the node identified in Step 1 from T. Add it
at the bottom of TS.

Step 3: If the length of list TS is NC, print TS and terminate
the search. Otherwise, go to Step 1.

The above procedure terminates after executing

NC(2NT � NC þ 1)

2
(11)

OPF solutions, where NT is the initial length of list T. The
search space formed of the N designs is denoted by QN .
Q

N is representative of Q [17].

3.2 Crude model

To speed up the search process, OO theory advocates the use
of a crude model to evaluate each of the N designs in Q

N . In
the context of DG sizing, the crude model is formed of a
linear version of the OPF in Section 2. The model is
constructed by making use of an approximation formula
that relates an arbitrary load flow variable y to the vector of
independent injections z of the load flow problem. The
vector z is formed of the squared voltage magnitudes at the
slack and PV nodes, the real power injections at the PV
and PQ nodes and the reactive power injections at the PQ
nodes. The load flow variable y can be the squared voltage
magnitude at a PQ node, the real power injection at the
6
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slack node, the reactive power injection at the slack or a PV
node or the real/reactive line power flow. The expression of
the variable y in terms of z is

y ¼ bTz (12)

where b is a vector of coefficients given by

b ¼ [L(x0)T]�1Rx0 (13)

Appendix 2 includes a clarification of the notation and the
derivation of (12) and (13).

By using (12), the operational constraints (4)–(7) in the
OPF definition can be therefore approximated by a set of
linear inequalities in terms of z. Moreover, the variables in
z are limited to the squared voltage magnitude at the slack
and PV nodes, the real power generation at the PV nodes
and the real power produced by DG at PQ nodes. The
reactive power generation associated with DG at PQ nodes
does not appear as a variable in z because the constant
power factor condition allows it to be substituted out of the
problem. As compared to the OPF model, the crude model
can be therefore optimised using an LP solver [25] with
considerably less computational effort.

3.3 Selected subset

Assume that the N alternatives in QN are ordered
according to the crude model from best to worst. Let S
denote the subset of the top-s alternatives among the
above crudely ordered N designs and let the actual top-g
designs denote the good enough subset G, that is, the
truly good enough designs are the top-g alternatives
among the accurately ordered N designs in QN . By
assuming an infinite variance of the estimation noise of
the crude model relative to the exact model, it is possible
to compute the value s such that at least k truly good
enough alternatives are in S with a given value of the
alignment probability [17]

AP(k) ¼ Pr[jG > Sj � k] ¼
Xmin (g,s)

i¼k

g
i

� �
N � g
s � i

� �
N
s

� � (14)

Typically, the good enough subset G is formed of the true
top-50 in QN , the minimum alignment level k between the
selected subset S and the good enough set G is one, and
the alignment probability AP (k ¼ 1) is set to at least
0.95. The size of S for a given N is then the minimum
value of s which satisfies

AP(k ¼ 1) ¼
Xmin (50,s)

i¼1

50
i

� �
N � 50

s � i

� �
N
s

� � � 0:95 (15)
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To simplify the computation of s, it is possible to employ in
(14) the binomial approximation to the hyper-geometric
distribution [26]

AP(k) ¼
Xmin (g,s)

i¼k

s
i

� �
ri(1� r)s�i (16)

where

r ¼
g

N
(17)

For example, the size of the selected subset S corresponding
to N � ¼ 4603 is 275. This size was obtained by
incrementing s until finding the first value that satisfies
(15) while employing the binomial approximation. In
practice, the variance of the estimation noise is not
infinite, that is, the crude model is biased in favour of
the actual good alternatives. This implies that the value
of s computed by (15) serves as an upper bound on the
size of S that contains at least one good enough
alternative (k ¼ 1) with a given AP(k ¼ 1) � 0:95. For
N ¼ 1000, Edward Lau and Ho [27] have tabulated the
required size of the selected subset as a function of k, g,
the estimation noise level and the class of the ordered
performance curve.

Once the set S is formed, the designs in it are evaluated by
using the exact OPF model. The combination of DG
locations that produces the highest objective function value
is declared as a good enough solution with a high
probability to the problem of locating and sizing of DG.

It is important to note that when both QN and Q are large
enough (which is typical in the DG problem) the selected
subset S that is selected from Q

N also has a high
probability to contain good enough designs in Q, and the
difference between the two alignment probabilities can be
ignored for engineering purposes [17].

4 Numerical results
The OO algorithm for locating and sizing of DG has been
programmed in MATLAB running on an Intelw CoreTM

2 Duo Processor T5300 (1.73 GHz) PC with 1 GB RAM.
The approach was tested on a 69-node distribution
network and the results are compared with those obtained
from a GA–OPF method and recently published in [13].
The line and load data together with the one line diagram
of the network appear in [13, 28]. The network was
assumed to be operated under UK voltage regulation limits
of +6% of the nominal value and with thermal limits of
3 MVA for all lines. Moreover, all DG units were assumed
to operate with 0.9 PF lagging and the loss target was set
to 0.228 MW, the network loss prior to DG installation
[13]. The coefficients in the objective function were based
on the incentive figures employed in the UK [13]; an
incentive for connecting DG of 2.5 £/MW-year and a loss
incentive of 48 £/MWh. The distribution network has 68
Gener. Transm. Distrib., 2009, Vol. 3, Iss. 8, pp. 713–723
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PQ nodes that are eligible for DG placement. The network
was studied for locating and sizing three, five, seven and
nine distributed generators.

4.1 Good enough solution in QN

The OO procedure described in Section 3 was applied to
obtain the best solution in the selected subset S, which is a
good enough solution in Q

N with high probability. The
two extreme cases in Table 1 were considered:

Case 1: a ¼ 0:1 and P � 99%.

Case 2: a ¼ 0:01 and P � 99:999%.

With a ¼ 0:1 and P � 99% (Case 1), the size of QN is
required to be no less than 4603. The corresponding values
of the search space size N, the number of candidate node
locations NC and the size s of the selected subset are given
in Table 2 for the different numbers of DG NDG. It is
seen from Table 2 that the largest number of candidate
node locations is NC ¼ 32 corresponding to NDG ¼ 3. The
heuristic rule for ranking the DG locations therefore
requires executing 32� (2� 68� 32þ 1)=2 ¼ 1680 OPF
solutions, which takes around 300 s. The ranked list is
applicable not only to the problem involving three
distributed generators, but also to the other instances that
require installing a larger number. The good enough
solutions for Case 1 are shown in Table 3 together with
the DG sizes (obtained using MATPOWER)
corresponding to the DG locations given by a GA–OPF
approach and reported in [13]. These results demonstrate
the possibility of spreading the capacity by connecting more
but smaller distributed generators. Table 4 shows the
corresponding values of the total DG capacity, total DG
capacity over the minimum load ratio, the total incentive
and its two components. It is clear that as far as the total
incentive (objective function (2)) is concerned, the good
enough solutions given by the OO approach are slightly
better than those given by the GA approach for NDG equal
to 5, 7 and 9.

In an attempt to obtain still better solutions, Case 2, which
requires sampling no less than 115 124 possible designs from
Q, was studied. The corresponding values of N, NC and s are
given for this case in Table 5. The good enough solutions for
Case 2 are different than those in Table 3 only for NDG ¼ 5,
where the good enough DG locations are found to be at

Table 2 OO parameters for P ¼ 99% and a ¼ 0.1 (Case 1)

NDG N NC s

3 4960 32 296

5 6188 17 370

7 6435 15 385

9 5005 15 299
717
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nodes 4, 26, 40, 48 and 62 with corresponding capacities of
0.9418, 0.7601, 0.7723, 0.6433 and 0.8895 MW. The last
block in Table 4 shows the total DG capacities and
incentives for Case 2. Although increasing the number of
samples in Q

N did not yield appreciably better results in
this particular instance, it does give more confidence in the
quality of the obtained solutions by requiring QN to
include at least one design from the top 0.01% designs in
Q with a probability of more than 99.999%.

4.2 Best solution in QN

The validation of the OO approach and its corresponding
results requires executing a computationally intensive task
in which all designs in Q

N are accurately evaluated using
the OPF programme. This task is referred to as brute force
enumeration (BFE). The results of this BFE allow the
determination of (i) the actual alignment level jG > Sj
between the good enough and the selected subsets and (ii)
the best solution in QN . These results are shown in
Table 6 for Cases 1 and 2, where it is seen that the total
incentives of the best solutions in S and QN are identical.
This fact is supported by the very high value of jG > Sj for
all cases, which is attributed to the suitability of the crude
8
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LP model to the problem at hand. The results also confirm
that the sizes s in Tables 3 and 6 are indeed upper bounds
on the sizes of the selected subsets that contain at least one
good enough design (k ¼ 1).

The heuristic rule for generating the search space QN was
also validated by comparing with the strategy of randomly
picking the N DG locations. For each value of NDG,
Table 7 shows the best solution obtained from the heuristic
rule as compared to the best solution obtained from random
sampling for the search space sizes in Table 2 (Case 1) and
Table 5 (Case 2). The results demonstrate that the search
space generated by the heuristic rule contains a better
solution as compared to the one obtained from randomly
picking candidate locations. Indeed, this was observed in
five independent runs of the random picking strategy. As
seen in Table 4, the best solution in the search space
generated by the heuristic rule is also slightly better than
the one given by the GA–OPF approach in [13].

4.3 Computational requirements

The computational requirements for obtaining the good
enough and best solutions in Q

N are given in Table 8. The
Table 3 DG locations and capacities for Case 1

Node NDG ¼ 3 NDG ¼ 5 NDG ¼ 7 NDG ¼ 9

DG capacities, MW DG capacities, MW DG capacities, MW DG capacities, MW

[13] OO [13] OO [13] OO [13] OO

4 0.9418 0.9418 0.9418 0.4678 0.7018

5 0.6330

6 0.2311

13 0.2676 0.2432 0.2433

17 0.5947

21 0.2719

26 0.7378 0.7378 0.7601 0.7601 0.7601 0.6343

27 0.7295 0.6765

30 1.1407 1.1405

35 1.0365 1.0365 0.7628 0.7631 0.7631

40 0.7089 0.8073 0.7206 0.7199 0.7209 0.7200

49 0.5774 0.5458 0.5458

57 0.7945 0.7472

58 0.7044 0.7044

62 0.8872 0.8872 0.8895 0.8895 0.7179 0.7066 0.7179

65 0.6523

Total 2.6614 2.6614 4.0630 3.9761 4.5608 5.5305 4.8282 6.0027
IET Gener. Transm. Distrib., 2009, Vol. 3, Iss. 8, pp. 713–723
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Table 4 Optimal capacity and incentives

Method Parameter Number of distributed generators

3 5 7 9

GA–OPF [13] total capacity, MW 2.6614 4.0630 4.5608 4.8282

capacity/min load, % 59.5665 90.9366 102.0776 108.0609

DG incentive, £/h 0.7616 1.1627 1.3052 1.3817

loss incentive, £/h 7.9670 9.5791 9.9790 10.1383

total incentive, £/h 8.7286 10.7419 11.2842 11.5200

OO case 1 total capacity, MW 2.6614 3.9761 5.5305 6.0027

capacity/min load, % 59.5665 88.9913 123.7808 134.3484

DG incentive, £/h 0.7616 1.1379 1.5827 1.7178

loss incentive, £/h 7.9670 9.6135 9.7790 9.9612

total incentive, £/h 8.7286 10.7513 11.3617 11.6790

OO case 2 total capacity, MW 2.6614 4.0069 5.5305 6.0027

capacity/min load, % 59.5665 89.6810 123.7808 134.3484

DG incentive, £/h 0.7616 1.1467 1.5827 1.7178

loss incentive, £/h 7.9670 9.6310 9.7790 9.9612

total incentive, £/h 8.7286 10.7777 11.3617 11.6790
T

Table 5 OO parameters for P ¼ 99.999% and a ¼ 0.01
(Case 2)

NDG N NC s

3 50 116a 68 3002

5 118 755 29 7114

7 116 280 21 6966

9 167 960 20 10 062

aMaximum number of combinations
Gener. Transm. Distrib., 2009, Vol. 3, Iss. 8, pp. 713–723
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table compares the execution times for solving N LP and
s OPF problems as required by OO theory against the BFE
of N OPF solutions. The speed up factor (SUF ¼ BFE
execution time/OO total execution time) shows that the
OO approach can speed up the search by a factor that ranges
between 9.00 and 9.99 in comparison with the BFE
approach. Table 8 also shows that performing the complete
study for Case 1 on the four NDG values takes around 6 min
using the OO approach and 1 h by BFE. For Case 2, OO
requires around 2 h whereas BFE takes more than 19 h to
terminate. These results together with the comparative study
in Table 6 support the adoption of OO, particularly the use
of a computationally cheap crude model for ordering a large
number of alternatives.
Table 6 Validation of OO results

NDG Case 1 Case 2

jG > Sj Total incentive, £/h, of best
solution in

jG > Sj Total incentive, £/h, of best
solution in

S QN S QN

3 50 8.7286 8.7286 50 8.7286 8.7286

5 50 10.7513 10.7513 50 10.7777 10.7777

7 50 11.3617 11.3617 50 11.3617 11.3617

9 44 11.6790 11.6790 50 11.6790 11.6790
719
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Table 7 Validation of the heuristic rule

NDG Case 1 Case 2

Total incentive, £/h, of best solution in QN Total incentive, £/h, of best solution in QN

Heuristic rule Random picking Heuristic rule Random picking

3 8.7286 8.5746 8.7286 8.7286

5 10.7513 10.5650 10.7777 10.7062

7 11.3617 10.9966 11.3617 11.2289

9 11.6790 11.4119 11.6790 11.5179

Table 8 Comparison of computational performance

NDG 3 5 7 9

case 1 LP–OO, s 28 38 44 37

OPF- OO, s 50 64 66 51

Total-OO, s 78 102 110 88

OPF–BFE, s 779 989 1049 818

SUF 9.99 9.70 9.54 9.30

case 2 LP-OO, s 309 761 841 1367

OPF-OO, s 497 1175 1167 1572

Total-OO, s 806 1936 2008 2939

OPF–BFE, s 7745 18 443 18 268 26 451

SUF 9.61 9.53 9.10 9.00
5 Conclusion
This paper presented an OO approach for locating and sizing
of DG. OO is known to give good enough solutions to
hard problems; the confidence in the OO solution is set
mainly by two parameters: a that specifies the percentage
of top designs and P that is the probability level that at
least one of the sampled designs belongs to the top a

percent. The OO approach is deterministic and can be
easily implemented by making use of existing software
packages for LP and OPF. This is unlike many of the
stochastic search methods in which the results are not
necessarily repeatable and the termination criteria do not
reflect the top percentage of the search space to which the
obtained solution belongs. In fact, the use of a stochastic
method to solve a particular instance of a problem usually
requires running the same method for several times to yield
the best solution. The proposed OO implementation has
been compared with the results of a recently published
hybrid GA–OPF approach and was shown to give
marginally better results. Its performance was also
contrasted with BFE in which it was demonstrated that
OO gives good enough solutions with more than 9-fold
reduction in computational effort.
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This research can be extended in several directions. One
possibility is to account for the time variability of the load
through the extension of the crude and exact models to
cover several time periods. Another research direction
would entail investigating additional constraints on DG
connections resulting from short-circuit [4] and stability
studies [29]. A third direction is to quantify the benefit of
DG in deferring network upgrades [13] as a first step to
include this benefit in the OO framework. Vector OO [17]
can be also investigated for the optimisation of multi-
objective formulations that include models of load and
price uncertainties, which are, respectively, accounted for
through technical and economic risk objective functions
[30]. Vector OO is particularly promising for handling
problems where the priority among the objective functions
is not clearly known to the decision maker.
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7 Appendix 1
Ordinal optimisation is based on two tenets stating that the
optimisation of complex problems can be made much easier
by order comparison and goal softening [17]:

1. Order comparison: ‘order’ is much more robust against
estimation noise as compared to ‘value’.

2. Goal softening: for many practical problems, it is enough
to settle for a ‘good enough’ solution instead of insisting on
getting the ‘best’.

Let Q be the search space of optimisation variables, QN

the set of N chosen designs, N the number of designs
uniformly chosen from Q, G the good enough subset,
usually the true top-g designs in Q

N , S the selected subset,
usually the estimated top-s designs in Q

N , G > S the set of
truly good enough designs in S, AP the alignment
probability ¼ Pr[jG > Sj � k], the probability that there
are actually k truly good enough designs in S and k the
alignment level.

The procedure for the practical application OO to complex
optimisation problems is as follows:

Step 1: Uniformly sample N designs from Q to form Q
N .

Step 2: Estimate the performance of the designs in Q
N using

a crude and computationally fast model.

Step 3: Specify the size of the good enough subset, g, the
required alignment level, k, and the corresponding
alignment probability, AP.

Step 4: Use (15) to determine the size of the selected subset, s.
2
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Step 5: Select the estimated top-s designs from Step 2 to form
the selected subset, S.

Step 6: OO theory ensures that S contains at least k truly good
enough designs with a probability level no less than AP.

Ho et al. [17] provides a theoretical foundation of the OO
method by showing that the alignment probability
converges exponentially with respect to the number of
replications and with respect to the sizes of the good
enough and selected subsets.

8 Appendix 2
This section presents the derivation of the approximation
formula in (12) and (13). The derivation makes use of the
quadratic equations of the power in terms of the real ei and
imaginary fi node voltage components. Without loss of
generality, let node 1 denote the slack node, nodes 2 to
(mþ 1) denote m PV nodes and nodes (mþ 2) to n denote
the remaining (n� m� 1) PQ nodes. Define the
(2n� 1)� 1 state vector x and the (2n� 1)� 1 injection
vector z as

x ¼ [e1, e2, . . . , en, f2, . . . , fn]T (18)

z ¼ [V 2
1 , V 2

2 , . . . , V 2
mþ1, P2, . . . , Pn, Qmþ2, . . . , Qn]T (19)

It follows from the load flow equations in rectangular format
that any component of the injection vector can be expressed
as

zk(x) ¼ xTJ kx, k ¼ 1, . . . , (2n� 1) (20)

where Jk is a (2n� 1)� (2n� 1) real symmetric matrix
defined by the type of the injection. If x0 denotes the initial
state vector, then substituting x ¼ x0 þ Dx in (20) and
neglecting higher order terms yields

zk(x)þ zk(x0) ¼ 2xT
0 J kx (21)

Equation (21) can be expressed in the vector form as

z(x)þ z(x0) ¼ 2L(x0)x (22)

where L(x0) is a (2n� 1)� (2n� 1) matrix defined by

L(x0) ¼

xT
0 J 1

..

.

xT
0 J 2n�1

2
64

3
75 (23)

The state vector x can be solved from (22) as

x ¼
1

2
[L(x0)]�1(z(x)þ z(x0)) (24)

An arbitrary load flow variable y(x) can be also expressed in a
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form similar to (20)

y(x) ¼ xTRx (25)

where R is a (2n� 1)� (2n� 1) real symmetric matrix
defined by the type of the variable. Therefore an
approximation similar to (21) also holds

y(x)þ y(x0) ¼ 2xT
0 Rx (26)

By substituting (24) into (25) and noting that
z(x0) ¼ L(x0)x0, it follows that

y(x) ¼ xT
o R[L(x0)]�1z(x) (27)
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Equation (27) can be written as

y ¼ bTz (28)

where b is a (2n� 1)� 1 vector, which is the solution of

[L(x0)T]b ¼ Rx0 (29)

The same approximation formula appears originally in [31]
but is derived differently herein.
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