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Abstract: In this paper we illustrate the potential of ordinal-patterns-based methods for

analysis of real-world data and, especially, of electroencephalogram (EEG) data. We

apply already known (empirical permutation entropy, ordinal pattern distributions) and new

(empirical conditional entropy of ordinal patterns, robust to noise empirical permutation

entropy) methods for measuring complexity, segmentation and classification of time series.
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1. Introduction

The investigation of data on the basis of considering ordinal pattern distributions provides a new and

promising approach to time series analysis. Since the appearance of the seminal paper [1] of Bandt

and Pompe inventing (empirical) permutation entropy, the number of papers describing and using this

approach is rapidly increasing. In particular, empirical permutation entropy has been applied to EEG

data for detecting and visualizing changes related to epileptic seizures (e.g., [2–5]), for distinguishing

brain states related to anesthesia (e.g., [6,7]), for discriminating sleep stages [8], as well as for analyzing

and classifying heart rate variability data (e.g., [9–12]), and in financial and physical time series analysis

(see [13,14] for a review of applications).
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The paper is devoted to illustrating the potential of already known and new ordinal-patterns-based

methods for measuring complexity of real-world data and, especially, of EEG data. In particular, we

discuss empirical permutation entropy (ePE) and two related concepts, called empirical conditional

entropy of ordinal patterns (eCE) [15] and robust (to noise) empirical permutation entropy (rePE).

Here two aspects will be of special interest. At first, we compare computational and discriminatory

performance of ePE and eCE with that of approximate entropy (ApEn) and sample entropy (SampEn),

being common in complex data analysis. Approximate entropy has been applied in several

cardiovascular studies (see for a review [16]), for quantifying the effect of anesthesia drugs on the brain

activity [17–19], for discriminating sleep stages [20,21], for epileptic EEG analysis and epileptic seizures

detection [22,23] and in other fields (see [24,25] for a review of applications). Applications of sample

entropy have been given in several cardiovascular studies [9,26] (see for a review [16]), for analysis of

EEG data from patients with Alzheimer’s disease [27], for epileptic EEG analysis and epileptic seizures

detection [2,28] and other applications (see [24,25,29] for a review).

The second main aspect discussed in the paper is using ordinal patterns for the classification

of EEG data, which was first suggested in [30,31]. Namely, we introduce a CEofOP

(“Conditional-Entropy-of-Ordinal-Patterns-based”) statistic for finding points where a time series is

qualitatively changing. The detected change-points split the time series into homogenous segments that

are further clustered with respect to their ordinal pattern distributions.

The paper is organized as follows. In Section 2 we recall the concepts of approximate entropy

and sample entropy and define the main concepts used in our ordinal-patterns-based approach to time

series analysis including the empirical permutation entropy, the empirical conditional entropy of ordinal

patterns, and the robust empirical permutation entropy. The performance of the different quantifiers is

investigated and illustrated, on the one hand for simulated data from chaotic maps, which are often used

in complexity research, and on the other hand for EEG data with the aim of discriminating between

different states. Section 3 is devoted to ordinal-patterns-based segmentation and to the classification of

the obtained segments. For this the CEofOP statistic is introduced and explained. Its performance is

illustrated for the discrimination of sleep stages from EEG data. Finally, Section 4 provides a summary

including conclusions with some relevance for future research.

In the whole paper, we denote by N and R the set of natural and real numbers, respectively.

2. Entropies for Discriminating Complexity

2.1. Approximate Entropy and Sample Entropy

We recall the approximate entropy and the sample entropy, widely used in time series analysis as

practical complexity measures and originally introduced in [24,32]. We do not go into theoretical details

behind the concepts, but only note that they are related to such theoretical concepts as correlation

entropy [33], Eckmann–Ruelle entropy [34], Kolmogorov–Sinai entropy [35] and H2(T )-entropy [36]

(see also [37] for the discussion of their relationships).
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Definition 1. Given a time series (xi)
N
i=1

with N ∈ N, a length of compared vectors k ∈ N and a tolerance

r ∈ R for accepting similar vectors, the approximate entropy (ApEn
(
k, r, (xi)

N
i=1

)
) and the sample entropy

(SampEn
(
k, r, (xi)

N
i=1

)
) are defined as [24,32]:

ApEn
(
k, r, (xi)

N
i=1

)
=

∑N−k+1
i=1 ln Ĉ

(
i, k, r, (xi)

N
i=1

)

N − k + 1
−

∑N−k
i=1 ln Ĉ

(
i, k + 1, r, (xi)

N
i=1

)

N − k
, (1)

Ĉ
(
i, k, r, (xi)

N
i=1

)
=

1

N − k + 1
#

{
1 ≤ j ≤ N − k + 1 : max

l=0,1,...,k−1
|xi+l − x j+l| ≤ r

}
,

SampEn
(
k, r, (xi)

N
i=1

)
= ln Ĉ

(
k, r, (xi)

N
i=1

)
− ln Ĉ

(
k + 1, r, (xi)

N
i=1

)
, (2)

Ĉ
(
k, r, (xi)

N
i=1

)
=

2

(N − k − 1)(N − k)
#

{
(i, j) : 1 ≤ i < j ≤ N − k + 1, max

l=0,1,...,k−1

∣∣∣xi+l − x j+l

∣∣∣ ≤ r

}
,

where #A stands for the number of elements of a set A.

Note that SampEn(k, r, (xi)
N
i=1

) is undefined when either Ĉ
(
k, r, (xi)

N
i=1

)
= 0 or Ĉ

(
k + 1, r, (xi)

N
i=1

)
= 0.

We use further the short form ApEn(k, r,N) and SampEn(k, r,N) instead of ApEn
(
k, r, (xi)

N
i=1

)
and

SampEn
(
k, r, (xi)

N
i=1

)
when no confusion can arise.

Note that when computing ApEn by (1) one counts each vector as matching itself, because

max
l=0,1,...,k−1

|xi+l − xi+l| = 0 ≤ r,

which introduces some bias in the result [24]. When computing SampEn one does not count self-matches

due to i < j in (2), which is more natural [24].

It holds for all k,N ∈ N and r ∈ R that [24]:

0 ≤ ApEn(k, r,N) ≤ ln(N − k), (3)

0 ≤ SampEn(k, r,N) ≤ ln(N − k) + ln

(
N − k − 1

2

)
. (4)

For application of both entropies to real-world time series, the tolerance r is usually recommended to

set to r ∈ [0.1σ, 0.25σ], where σ is the standard deviation of a time series, and the length k of compared

vectors is recommended to set to k = 2 [24,32,38]. In order to compare the complexities of two time

series, one has to fix k, r and N due to the significant variation of the values of ApEn
(
k, r, (xi)

N
i=1

)
and

SampEn
(
k, r, (xi)

N
i=1

)
for different parameters [24,38].

2.2. Ordinal Patterns, Empirical Permutation Entropy and Empirical Conditional Entropy of

Ordinal Patterns

In this subsection we define ordinal patterns, empirical permutation entropy [1] and empirical

conditional entropy of ordinal patterns [15]. We start from the definition of ordinal patterns.

Definition 2. A vector (x0, x1, . . . , xd) ∈ Rd+1 has the ordinal pattern π = (r0, r1, . . . , rd) of order d ∈ N if

xr0
≥ xr1

≥ . . . ≥ xrd
, and

rl−1 > rl in the case xrl−1
= xrl
.
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For example, all ordinal patterns of order d = 2 are given in Figure 1.

The empirical permutation entropy was originally introduced in [1] as a natural measure of time

series complexity. This quantity is an estimate of the permutation entropy, which is strongly related to

the well-known Kolmogorov–Sinai entropy (see for the theoretical background [13,39]).

Figure 1. The ordinal patterns of order d = 2.

Definition 3. By the empirical permutation entropy of order d ∈ N and of delay τ ∈ N of a time series

(xi)
N
i=1

with N ∈ N we understand the quantity

ePE
(
d, τ, (xi)

N
i=1

)
= −

1

d

(d+1)!−1∑

j=0

p j ln p j, where

p j =
#{i = dτ + 1, dτ + 2, . . . ,N | (xi, xi−τ, . . . , xi−dτ) has the ordinal pattern j}

N − dτ

(with 0 ln 0 := 0).

Here assume that all possible ordinal patterns are enumerated by 0, 1, . . . , (d + 1)! − 1 [40].

We use the short form ePE(d, τ,N) instead of ePE
(
d, τ, (xi)

N
i=1

)
when no confusion can arise.

The empirical permutation entropy is a well-interpretable measure of complexity. Indeed, the higher

the diversity of ordinal patterns of order d in a time series (xi)
N
i=1

is, the larger the value of ePE(d, τ,N)

is. It holds for d,N, τ ∈ N:

0 ≤ ePE(d, τ,N) ≤
ln((d + 1)!)

d
, (5)

which is restrictive for estimating a large complexity as we show in Example 4 in Section 2.4. The

choice of order d is rather simple. The larger d is, the better the estimate of complexity underlying a

system by the empirical permutation entropy is. On the other hand, excessively high d value leads to an

underestimation of the complexity because by the bounded length of a time series not all ordinal patterns

representing the system can occur. In [41],

5(d + 1)! < N (6)

is recommended. The choice of the delay τ is a bit complicated; in many applications τ = 1 is used,

however larger delays τ can provide additional information as we illustrate in Example 5 for EEG data

(see also [42] for the discussion of the choice of τ). Note also that increasing the delay τ can lead to

increasing the values of ePE, i.e., when increasing the delay τ one should mind the bound (5) as we

illustrate in the following example (see also [37] for more details).

Example 1. In Figure 2 we present the values of ePE(3, τ,N) for the delays τ = 1, 2, 4 computed in

sliding windows of size N = 1024 of EEG recording (from the European Epilepsy Database [44]) with

the epileptic seizure marked in gray in the upper plot. The EEG is recorded from channel F4 from a

female patient, 54 years old with epilepsy caused by hippocampal sclerosis, the complex partial seizure

is recorded during a sleep stage S2. One can see that the values of ePE are larger for τ = 2 and τ = 4
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than for τ = 1, and they almost attain the upper bound ln 24
3
= 1.0594 (green dashed line). For τ = 1 the

ePE values reflect the seizure by the increase of their values, whereas the ePE values for τ = 2 and τ = 4

do not reflect the seizure; they cannot increase since they are bounded by 1.0594.

Figure 2. Empirical permutation entropy of EEG data with epileptic seizure.
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Note that here the epileptic seizure is reflected by an increase of the ePE values during the epileptic

seizure, in spite of many results that report decrease of ePE values during the seizure (e.g., [3,4,43]).

When analyzing EEG recordings from [44] we have found out that seizures that occurred during the

awake state (W) are often reflected by a decrease of ePE values, whereas seizures that occurred during

the sleep stages (S1, S2, REM) are reflected by an increase of ePE values. (Note that no seizures occurred

in sleep stages S3 and S4 in the database [44].) The explanation is that the ePE values during sleep are

usually less than the values of ePE during the awake state; see [37] for more details.

We define now the empirical conditional entropy of ordinal patterns. The theoretical conditional

entropy of ordinal patterns is introduced in [15], and for several cases it estimates the Kolmogorov-Sinai

entropy better than the permutation entropy (see [15] for details and examples).

Definition 4. By the empirical conditional entropy of ordinal patterns eCE
(
d, τ, (xi)

N
i=1

)
of order d ∈ N

and of delay τ ∈ N of a time series (xi)
N
i=1

with N ∈ N we understand the quantity

eCE
(
d, τ, (xi)

N
i=1

)
= −

(d+1)!−1∑

j=0

(d+1)!−1∑

l=0

p j q j,l ln q j,l, where (7)

p j =
#{i ∈ I | (xi, xi−τ, . . . , xi−dτ) has ordinal pattern j}

N − dτ − τ
,

q j,l =
#{i ∈ I | (xi, xi−τ, . . . , xi−dτ) and (xi+τ, xi, . . . , xi−(d−1)τ) have ordinal patterns j and l}

#{i ∈ I | (xi, xi−τ, . . . , xi−dτ) has ordinal pattern j}
,

for I = {dτ + 1, dτ + 2, . . . ,N − τ}

(with 0 ln 0 := 0 and 0/0 := 0).
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(Again assume that all possible ordinal patterns are enumerated by 0, 1, . . . , (d + 1)! − 1.)

Further we use the short form eCE(d, τ,N) instead of eCE
(
d, τ, (xi)

N
i=1

)
when no confusion can arise.

The empirical conditional entropy characterizes the average diversity of ordinal patterns succeeding

a given one. It holds for d,N, τ ∈ N:

0 ≤ eCE(d, τ,N) ≤ ln(d + 1). (8)

The choice of the order d of the empirical conditional entropy is similar to that of the empirical

permutation entropy. Similar to (6), order d and length N of a time series should satisfy

5(d + 1)!(d + 1) < N, otherwise eCE can be underestimated. (Note that to compute eCE

one has to estimate frequencies of all possible pairs of ordinal patterns, and there are

(d + 1)!(d + 1) such pairs.) However, our experience is that in many cases it is enough to have

(d + 1)!(d + 1) < N. (9)

Remark 1. For further discussion let us note that the permutation entropy is equal to the well-known

theoretical measure of dynamical systems complexity, the Kolmogorov–Sinai entropy, for strictly

monotone piecewise interval maps due to the result from [45]. For certain cases of interval maps,

in particular, for the logistic map TLM(x) = Ax(1 − x) with A ∈ [3.5, 4] and for the tent map

TTM = A min(x, 1 − x) with A ∈ (1, 2], the Kolmogorov–Sinai entropy can be estimated by the Lyapunov

exponent, which we use further in experiments (see [46,47] for the theoretical background).

2.3. Robustness of Empirical Permutation Entropy with Respect to Noise

In this subsection we discuss the robustness of the empirical permutation entropy with respect to

observational noise since it is not as robust to noise as it is usually reported (e.g., [48,49]). Given a time

series (xi)
N
i=1

, the observational noise (ξi)
N
i=1

adds an error ξi to each value xi:

yi = xi + ξi.

We introduce the (rePE), which is based on counting robust ordinal patterns defined in the

following way.

Definition 5. For positive η ∈ R, let us call an ordinal pattern of the vector (xt, xt−τ, . . . , xt−dτ) ∈ R
d+1

η-robust if

#
{
(i, j) : 0 ≤ i < j ≤ d, |xt−iτ − xt− jτ| < η

}
<

(d + 1)d

8
. (10)

The threshold
(d+1)d

8
is chosen as a quarter of the amount of the ordered pairs of entries from the vector

(xt, xt−τ, . . . , xt−dτ).

Definition 6. For positive η ∈ R, by the η-robust empirical permutation entropy (rePE) of order d ∈ N

and of delay τ ∈ N of a time series (xi)
N
i=1

, we understand the quantity

rePE
(
d, τ, (xi)

N
i=1, η

)
= −

1

d

(d+1)!−1∑

j=0

p j ln p j, where

p j =
# {i = dτ + 1, dτ + 2, . . . ,N | (xi, xi−τ, . . . , xi−dτ) has the η-robust ordinal pattern j}

# {i = dτ + 1, dτ + 2, . . . ,N | (xi, xi−τ, . . . , xi−dτ) has an η-robust ordinal pattern}

(with 0 ln 0 := 0 and 0/0 := 0).
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(Again assume that all possible ordinal patterns are enumerated by 0, 1, . . . , (d + 1)! − 1.)

Further we use the short form rePE(d, τ,N, η) instead of rePE
(
d, τ, (xi)

N
i=1
, η

)
when no confusion can arise.

Remark 2. Note that one cannot introduce in a similar way robust ApEn and SampEn because they are

based on counting pairs of vectors whose components are pairwise within a tolerance r (see Definition 1).

Example 2. For illustration, we consider ePE and rePE of a time series generated by the logistic map

TLM(x) = Ax(1− x) and by the tent map TTM(x) = A min(x, 1− x) for the random starting point x and for

the parameter A ∈ [3.5, 4] and A ∈ (1, 2], respectively. We add to the time series a centered Gaussian

white noise with standard deviation 0.1. In Figures 3 and 4 one can see that when noise is added, the

values of rePE for η = 0.1 are more reliable than the values of ePE. Indeed, the values of rePE of a

noisy time series are closer to the values of ePE of a time series without noise than the values of ePE

of a noisy time series. For comparison, the values of Lyapunov exponent are also presented in the plots

(see Remark 1).

Figure 3. Empirical permutation entropy and 0.1-robust empirical permutation entropy of

a time series generated by the logistic map; σ stands for the standard deviation of added

centered Gaussian white noise.
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Figure 4. Empirical permutation entropy and 0.1-robust empirical permutation entropy of a

time series generated by the tent map; σ stands for the standard deviation of added centered

Gaussian white noise.
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In Figure 4 the values of rePE for the parameter A < 1.5 are equal to 0, this is related to the small

number of 0.1-robust ordinal patterns, whereas the values of ePE of noisy time series provide the wrong

impression that the complexity of original time series for the parameter A < 1.5 is large.

Let us summarize that the introduced rePE provides better robustness with respect to observational

noise than the ePE. However, the rePE has two drawbacks. Firstly, one needs to set the parameter η in

order to compute rePE, which is ambiguous. Secondly, rePE has a slower computational algorithm than

ePE (see [37] for details).

2.4. Examples and Comparisons

In this subsection we compare the following practically important properties of ApEn, SampEn, ePE

and eCE: the efficiency of computing the entropies (Example 3), the ability to assess a large complexity

of a time series (Example 4), and the ability to discriminate between different complexities of EEG data

(Example 5).

Example 3. In this example we illustrate that ePE and eCE have more efficient algorithms for computing

than ApEn and SampEn (see [50–52] for the MATLAB scripts and [37,53,54] for the original papers

introducing the corresponding fast algorithms), which allows for processing large datasets in real time.

(Note that the algorithms introduced in [51,52] are the fastest for computing of ApEn and SampEn, to

our knowledge.)

We present the efficiency of the methods in terms of computational time and storage use with

dependence on the length N of a considered time series in Table 1 (we refer to [37,53,54]

for justification).

Table 1. Efficiency of computing the entropies.

Quantity Method of computing Computational time Storage use

ApEn [54] O(N
3
2 ) O(N)

SampEn [54] O(N
3
2 ) O(N)

ePE [53] O(N) O
(
(d + 1)!(d + 1)

)

eCE [37] based on [53] O(N) O
(
(d + 1)!(d + 1)

)

For better illustration we present in Figure 5 the computational times of the entropies with dependence

on the length N of a time series generated by the logistic map TLM(x) = 4(1− x)x. The experiments were

performed in MATLAB version R2013b and the times were measured by the standard function “cputime”

in OS Linux 2.6.37.6-24, processor Intel(R) Core(TM) i5-2400 CPU @ 3.10Hz. The time was averaged

over several trials. One can see that the values of ePE and eCE are computed about 104 times faster for

the same lengths of time series.

Example 4. In this example we illustrate the ability of the entropies to assess large complexity of a

time series. For that we consider a time series generated by the β-transformation for β = 11, i.e.,

T11(x) = 11x mod 1, with the Kolmogorov–Sinai entropy ln(11) [46] (see also Remark 1). In Figure 6

one can see that the values of ApEn and SampEn approach ln(11) starting from the length N ≈ 105 of a



Entropy 2014, 16 6220

time series, whereas the values of ePE and eCE are bounded by (5) and (8) (green and blue dashed line,

correspondingly), which is not enough for d ≤ 9. (Note that d > 9 is usually not used in applications

since it requires rather large length of a time series N > 5 · 10! points for the reliable estimation of

complexity [41].) The value of eCE for d = 9 is underestimated due to the insufficient length N = 108,

see for details [55].

Figure 5. Comparison of the computational times, measured by the MATLAB function

“cputime”, of the approximate entropy, sample entropy, empirical permutation entropy

and empirical conditional entropy of ordinal patterns computed with the MATLAB scripts

from [51,52], [50] (“PE.m”) and [37] (“CE.m”), correspondingly.
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Figure 6. Approximate entropy, sample entropy, empirical permutation entropy and

empirical conditional entropy of ordinal patterns of a time series generated by the

β-transformation for β = 11 with dependence on the length N and order d.
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The consequence of the upper bounds of the entropies is that ePE and eCE fail to distinguish between

the complexities larger than
ln((d+1)!)

d
and ln(d + 1), correspondingly. For example, one can see in

Figure 7 that the values of ePE and eCE are almost the same for the values β = 5, 7, . . . , 15 of the

beta-transformation Tβ(x) = βx mod 1 with the Kolmogorov–Sinai entropy ln β [46] (see Remark 1),

whereas the values of ApEn and SampEn estimate the complexity correctly.

Figure 7. The values of approximate entropy, sample entropy, empirical permutation entropy

and empirical conditional entropy of ordinal patterns of a time series generated by the

beta-transformation with dependence on the parameter β.
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Example 5. In this example we illustrate the ability of ApEn, SampEn, ePE and eCE to discriminate

between different complexities of EEG recordings from the Bonn EEG Database (available online

at [56]). There are five groups of datasets [57]:

• (A) surface EEG recorded from healthy subjects with open eyes,

• (B) surface EEG recorded from healthy subjects with closed eyes,

• (C) intracranial EEG recorded from subjects with epilepsy during a seizure-free period from

hippocampal formation of the opposite hemisphere of the brain,

• (D) intracranial EEG recorded from subjects with epilepsy during a seizure-free period from within

the epileptogenic zone,

• (E) intracranial EEG recorded from subjects with epilepsy during a seizure period.

Each group contains 100 one-channel EEG recordings of 23.6 s duration recorded at a sampling rate

of 173.61 Hz, and the recordings are free from artifacts; we refer to [57] for more details. For simplicity,

we further refer to the recordings from the group A as “recordings A”, the recordings from the group B

as “recordings B”, etc.

In Figure 8 one can see that ApEn and SampEn separate the recordings A and B from the recordings

C, D and E, whereas ePE and eCE separate the recordings E from the recordings A, B, C and D.
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Therefore it is a natural idea to present the values of ePE and eCE versus the values of ApEn and

SampEn for each recording. Indeed, in Figure 9 one can see a good separation between the recordings

A and B, the recordings C and D, and the recordings E.

Figure 8. The values of the entropies of the recordings from the groups A and B, C and D,

and E; N = 4097.
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Figure 9. The values of empirical permutation entropy and empirical conditional entropy of

ordinal patterns versus the values of approximate entropy and sample entropy; N = 4097.
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We have found also that varying the delay τ can be used for separation between the groups of

recordings when computing ePE and eCE. For example, in Figure 10 one can see that the delay τ = 1

provides a separation of the recordings A and B from other recordings, whereas the delay τ = 3 provides

a separation of the recordings E from other recordings. The natural idea now is to present the values

of ePE and eCE versus themselves for different delays τ. In Figure 11 one can see a good separation

between the recordings A and B, the recordings C and D, and the recordings E.

Figure 10. Empirical permutation entropy and empirical conditional entropy of ordinal

patterns of the recordings A and B, C and D, and E, N = 4097.

A, B C, D E
0.4

0.6

0.8

1

1.2

T
he

 v
al

ue
s 

of
 e

P
E

(4
,1

,N
)

A, B C, D E
0.4

0.6

0.8

1

1.2

T
he

 v
al

ue
s 

of
 e

P
E

(4
,2

,N
)

A, B C, D E
0.4

0.6

0.8

1

1.2

T
he

 v
al

ue
s 

of
 e

P
E

(4
,3

,N
)

 

 

A, B
C, D
E

A, B C, D E

0.5

1

1.5

T
he

 v
al

ue
s 

of
 e

C
E

(4
,1

,N
)

A, B C, D E

0.5

1

1.5

T
he

 v
al

ue
s 

of
 e

C
E

(4
,2

,N
)

A, B C, D E

0.5

1

1.5
T

he
 v

al
ue

s 
of

 e
C

E
(4

,3
,N

)

 

 

A, B
C, D
E

Figure 11. The values of ePE(5, 1,N) versus the values of ePE(5, 3,N) and the values of

eCE(5, 1,N) versus the values of eCE(5, 3,N), N = 4097.
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The results of discrimination are presented only for illustration of discrimination ability of ePE,

eCE, ApEn and SampEn, therefore we do not compare the results with other methods (for a review

of classification methods applied for the Bonn EEG Database see [58]).

Application of the entropies to the epileptic data from Bonn EEG Database has shown the following:
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• It can be useful to apply approximate entropy, sample entropy, empirical permutation entropy and

empirical conditional entropy of ordinal patterns together since they reveal different features of

the dynamics underlying a time series.

• It can be useful to apply empirical permutation entropy and empirical conditional entropy

of ordinal patterns for different delays τ since they reveal different features of the dynamics

underlying a time series.

3. Ordinal-Patterns-Based Segmentation of EEG and Clustering of EEG Segments

Complexity measures (including those considered in the previous section) are usually only

interpretable for stationary time series [1,32,60] and may be unreliable when stationarity fails. (Roughly

speaking, a time series is stationary if parameters of this time series do not change over time. See

Section 3.1 in [59] for a rigorous definition and details.) Meanwhile, most of real-world time series

are non-stationary [59]. A time point where some characteristic of a time series changes is called a

change-point. The detection of change-points is a typical problem of time series analysis [59,61–64]; in

particular it provides a segmentation of time series into stationary segments. In this section we suggest an

ordinal-patterns-based method for change-point detection. Note that methods for change-point detection

are usually introduced for stochastic processes; then time series are considered as particular realizations

of stochastic processes and ordinal patterns are a special kind of statistic over these realizations. In

this paper we only explain the idea of ordinal-patterns-based change-point detection and present our

approach in an “intuitive” way. Therefore we omit some theoretical discussions that will appear in [55]

and define all the concepts immediately for time series, which may be useful for applications. According

to the results of our experiments, the here suggested ordinal-patterns-based method provides much better

detection of change-points than the first ordinal-patterns-based method introduced in [30,31]. The

performance of our method is comparable but a bit worse than performance of the classical method

described in [65]; however, our method requires less a priori information about the time series. The

theoretical justification and comparison with other methods for change-point detection will appear in

forthcoming publications and, in particular, in [55].

We describe the general idea of ordinal-patterns-based change-point detection (Section 3.1) and

introduce a statistic for detecting change-points in time series (Section 3.2). In this paper we use

segmentation for revealing the segments of time series corresponding to certain states of the underlying

system. For this we combine ordinal-patterns-based segmentation with classification of the obtained

segments by means of clustering (grouping of objects in such a way that objects from the same group

are in certain sense more similar than objects from different groups) of time series. We sketch the idea of

ordinal-patterns-based clustering in Section 3.3. Finally, we apply ordinal-patterns-based segmentation

and clustering to EEG time series in Section 3.4.

3.1. The Idea of Ordinal-Patterns-Based Change-Point Detection

The approach described below can be generalized to an arbitrary τ ∈ N, but to simplify the notation,

in this section we fix the delay τ = 1. For further discussion we need the following definition.
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Definition 7. A real-valued time series (xi)
N
i=0

has the sequence (πi)
N
i=d

of ordinal patterns of order d if

the vector (xi−d, xi−d+1, . . . , xi) has the ordinal pattern πi for i = d, d + 1, . . . ,N.

The idea of the ordinal-patterns-based change-point detection is to search for change-points in the

sequence of ordinal patterns of a time series instead of searching for change-points in the time series

itself. For doing this, we should assume further that all change-points in the time series are structural in

the sense of the following definition.

Definition 8. Let (xi)
N
i=0

be a time series with a single change-point t∗ ∈ {0, 1, . . . ,N} (i.e., (xi)
N
i=0

is

non-stationary and t∗ splits it into two stationary segments). We say that t∗ is a structural change-point

if the sequence (πi)
N
i=d

of ordinal patterns of order d is also non-stationary.

The assumption that change-points in a time series are structural seems to be realistic in many

cases. An indicator of a structural change-point is provided by frequencies of ordinal patterns. Given

t ∈ {d + 1, d + 2, . . . ,N − d}, denote distributions of relative frequencies of ordinal patterns of order d

before and after the moment t by p1(t) and p2(t) respectively, where pk(t) =
(
pk

j
(t)

)(d+1)!−1

j=0 for k = 1, 2. If

there is a structural change-point at t = t∗, then it holds p1(t∗) , p2(t∗); on the contrary, for a stationary

time series it holds

p1(t) ≈ p2(t) (11)

for all t ∈ {Tmin, Tmin + 1, . . . ,N − Tmin}, where Tmin = 5(d + 1)! is the length of a time series required for

a reliable estimation of the relative frequencies of ordinal patterns according to (6).

The first method of ordinal-patterns-based change-point detection introduced in [30,31] is, roughly

speaking, based on using (11). Here we suggest another approach described in the following subsection.

3.2. Change-Point Detection Using the CEofOP Statistic

We begin with introducing a statistic based on the empirical conditional entropy of ordinal patterns

(Definition 4) that allows to estimate a structural change-point in a time series. Let us denote here the

empirical conditional entropy of ordinal patterns of a time series (xi)
N
i=0

for order d ∈ N and delay τ = 1

by eCE
(
d, (xi)

N
i=0

)
.

Definition 9. The CEofOP (“Conditional-Entropy-of-Ordinal-Patterns-based”) statistic of a time series

(xi)
N
i=0

at time point t ∈ {d, d + 1, . . . ,N − 1} for order d ∈ N is given by

CEofOP(t; d) = (N − 2d) eCE
(
d, (xi)

N
i=0

)
− (t − d) eCE

(
d, (xi)

t
i=0

)
− (N − t − d) eCE

(
d, (xi)

N
i=t

)
. (12)

Remark 3. We can also rewrite CEofOP in an explicit form using (7):

CEofOP(t; d) = − (N − 2d)

(d+1)!−1∑

j=0

(d+1)!−1∑

l=0

p0
j(t) q0

j,l(t) ln q0
j,l(t)

+ (t − d)

(d+1)!−1∑

j=0

(d+1)!−1∑

l=0

p1
j(t) q1

j,l(t) ln q1
j,l(t)

+ (N − t − d)

(d+1)!−1∑

j=0

(d+1)!−1∑

l=0

p2
j(t) q2

j,l(t) ln q2
j,l(t), (13)
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(with 0 ln 0 := 0),

where pk
j(t) =

#{i ∈ Ik | πi = j}

#{i ∈ Ik}
, qk

j,l(t) =
#{i ∈ Ik | πi = j, πi+1 = l}

#{i ∈ Ik | πi = j}
for k = 0, 1, 2, and

I0(t) = {d, d + 1, . . . ,N − 1}, I1(t) = {d, d + 1, . . . , t}, I2(t) = {t + d, t + d + 1, . . . ,N − 1}.

The calculation of the CEofOP statistic by (12) requires a reliable estimation of eCE. For this

according to (9), the length of a time series should be no smaller than Tmin = (d + 1)!(d + 1). Therefore

we recommend to consider CEofOP(t; d) only for

N > 2Tmin = 2(d + 1)!(d + 1) (14)

and for t ∈ {Tmin, Tmin + 1, . . . ,N − Tmin}, d ∈ N.

If a structural change occurs at some point t∗, then CEofOP
(
t; d

)
tends to attain its maximum at t = t∗.

This happens because the conditional entropy is concave (not only for ordinal patterns but in general,

see Section 2.1.3 in [66]), i.e., for all t = Tmin, Tmin + 1, . . . ,N − Tmin it holds

eCE
(
d, (xi)

N
i=0

)
≥

t − d

N − 2d
eCE

(
d, (xi)

t
i=0

)
+

N − t − d

N − 2d
eCE

(
d, (xi)

N
i=t

)
. (15)

Thus the CEofOP statistic provides the following estimate of a single change-point t∗:

t̂∗ = arg max
t=Tmin,Tmin+1,...,N−Tmin

CEofOP(t; d). (16)

Remark 4. Note that if a time series (xi)
N
i=0

is stationary, then for N being sufficiently large, (15) holds

with equality for all t = Tmin, Tmin + 1, . . . ,N − Tmin (see [55] for the proof). This fact is important for

detecting change-points.

In the following example we illustrate the estimation of a change-point by the CEofOP statistic.

Example 6. Consider a time series (xi)
N
i=0

given by

xi =


sin π

2
i, i < γN

sin π
2
(2i + 1), i ≥ γN

(17)

for N ∈ N, i = 0, 1, . . . ,N, and γ ∈ (0, 1) such that γN ∈ N. This time series has a structural

change-point t∗ = γN; a part of the time series containing the change-point is shown in Figure 12.

Figure 12. Part of the time series given by (17) with the change-point marked by the red

vertical line.
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Consider the corresponding sequence (πi)
N
i=d

of ordinal patterns of order d = 1 (recall that there are

two ordinal patterns of order d = 1, “increasing” and “decreasing”, see Definition 2). The sequence

(πi)
N
i=d

is a realization of a piecewise stationary Markov chain, the probabilities of ordinal patterns are

equal to 1
2

both before and after the change, while the transition probabilities (i.e., probabilities q j,l that

the ordinal pattern l succeeds the ordinal pattern j) are given by the matrices


1
2

1
2

1
2

1
2

 and


0 1

1 0

 .

Let t = θN ∈ N for θ ∈ (0, 1), then from the general representation (13) of CEofOP it follows that

CEofOP(θN; 1) =



(γ
2

ln
2−γ

γ
− ln(2 − γ) +

2−θ−γ

2
ln

2−θ−γ

1−θ
+
γ−θ

2
ln
γ−θ

1−θ

)
N, θ < γ

(γ
2

ln
2−γ

θ
− ln(2 − γ) +

2θ−γ

2
ln

2θ−γ

θ
+ (1 − θ) ln 2

)
N, θ ≥ γ

.

An easy computation shows that CEofOP(θN; 1) has a unique maximum at θ = γ, which provides a

detection of the change-point. In particular, for γ = 1
2

we obtain:

CEofOP(θN; 1) =



(
ln 2 − 3

4
ln 3 + 3−2θ

4
ln 3−2θ

2−2θ
+ 1−2θ

4
ln 1−2θ

2−2θ

)
N, θ < 1

2(
(2 − 2θ) ln 2 − 3

4
ln 3 − θ ln θ + 4θ−1

4
ln(4θ − 1)

)
N, θ ≥ 1

2

.

Figure 13 shows that CEofOP(θN; 1) attains a distinct maximum at θ = 1
2

(shown by the vertical line).

Figure 13. The CEofOP statistic for the time series given by (17).
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Now we describe how the CEofOP statistic solves two classical problems of change-point

detection [61]:

Problem 1. (at most one change): Given at most one change-point t∗ ∈ N, one needs to find an estimate

t̂∗ ∈ N or conclude that no change has occurred.

Problem 2. (multiple change-points): Given Nst ∈ N stationary segments bounded by the change-points

t∗
1
, t∗

2
, . . . , t∗

Nst−1
∈ N, one calculates an estimate N̂st ∈ N of Nst and estimates t̂∗

1
, t̂∗

2
, . . . , t̂∗

N̂st−1
∈ N of

change-points.

To solve Problem 1 we need to verify whether t̂∗ is actually a change-point. This is a classical problem

of change-point detection (see Section 1.1.2.2 in [59]); to solve it, we compare the value of CEofOP(̂t∗; d)
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with a certain threshold h: if CEofOP(̂t∗; d) ≥ h then one decides that there is a change-point in

t̂∗, otherwise it is concluded that no change has occurred. We compute the threshold h using block

bootstrapping from the sequence of ordinal patterns (see [63,64] for a comprehensive description of the

block bootstrapping; since this approach is rather often used we do not go into details). The solution of

Problem 1 using the CEofOP statistic is described in Algorithm 1 (Appendix A.1).

To detect multiple change-points (Problem 2) we use an algorithm consisting of two main steps:

Step 1: preliminary estimation of change-points using the binary segmentation procedure [67]. The idea

of the binary segmentation is simple: the single change-point detection procedure is applied to the

original time series; if a change-point is detected, then it splits the time series into two segments.

This procedure is repeated iteratively for the obtained segments until all of them either do not

contain change-points or are shorter than 2Tmin.

Step 2: verification of change-points and rejection of the false ones (the idea of this step as an

improvement of the binary segmentation procedure is suggested in [65]).

The details of these two steps are displayed in Algorithm 2 (Appendix A.2).

3.3. Ordinal-Pattern-Distributions Clustering

In this subsection, we consider classification of segments of time series with respect to the ordinal

pattern distributions.

Definition 10. A clustering of time series segments such that every segment is represented by

the distribution of relative frequencies of ordinal patterns is called ordinal-pattern-distributions

(OPD) clustering.

Given an M-dimensional time series for M ∈ N, a distribution of relative frequencies of ordinal

patterns is characterized by a vector p = (pl)
M(d+1)!−1

l=0
, where p j+(m−1)(d+1)! represents the relative frequency

of the ordinal pattern j in the m-th component of the time series for j = 0, 1, . . . , (d + 1)! − 1,

m = 1, 2, . . . ,M.

In the first papers devoted to OPD clustering [31,68], the authors split time series into short

segments of fixed length and then cluster these segments. Instead, we segment time series by means

of the change-point detection via the CEofOP statistic and then cluster the obtained segments that are

pseudo-stationary in the sense of having no structural change-points. Our approach is motivated by

the criticism of segmenting time series without taking into account their structure (see, for instance,

Section 7.3.1 in [62]).

To cluster the vectors representing the distributions of ordinal patterns, we use the k-means

algorithm [69] with the squared Hellinger distance. The squared Hellinger distance between the

distributions of frequencies of ordinal patterns in the i-th and k-th segments of a time series is defined by

ρH(pi, pk) =
1

2

(d+1)!−1∑

j=0

(√
pi

j
−

√
pk

j

)2

.

Using the squared Hellinger distance for the ordinal-patterns-based clustering was first suggested in [68];

for the justification of this choice we refer to [55].
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3.4. An Application of Ordinal-Patterns-Based Segmentation and Ordinal-Pattern-Distributions

Clustering to Sleep EEG

In this subsection we employ ordinal-patterns-based segmentation and OPD clustering to sleep stage

discrimination, which is a relevant problem in biomedical research [70,71]. To investigate sleep stages,

one measures electrical activity of brain by means of EEG. According to the classification in [72], there

are six stages of human state during the night:

• the waking state (W);

• two stages of light sleep (S1, S2);

• two stages of deep sleep (S3, S4);

• rapid eye movement (REM) sleep.

Note that according to the modern classification stage S4 is not distinguished from S3 [70].

Construction of a generally recognized automatic procedure for sleep stage discrimination is

problematic due to the complex nature of EEG signal; thus discrimination of sleep EEG is mainly carried

out manually by experts [70]. They assign a sleep stage (W, REM, S1–S4) to every 30 s epoch of the

EEG recording [70]; the result is often visualized by a hypnogram.

Example 7. We consider the dataset described in [73] and provided by [74]. It consists of eight

whole-night recordings with manually scored hypnograms (four recordings contain EEG monitored

during 24 h, for them we consider only the sleep related parts). Further we refer to the recordings

according to their names in the dataset (see Table 2 for the list of the names). Each recording contains

two EEG time series (recorded from the Fpz-Cz and Pz-Oz locations) sampled at 100 Hz.

Table 2. Agreement between the manual scoring and the ordinal-patterns-based

discrimination of sleep EEG.

Recording Amount of sleep-related epochs Correctly identified epochs

sc4002 1050 73.6%

sc4012 1150 73.7%

sc4102 1050 83.8%

sc4112 750 79.2%

st7022 944 61.2%

st7052 1032 81.3%

st7121 1027 80.7%

st7132 852 68.9%

Overall 7855 75.4%

The ordinal-patterns-based discrimination of sleep EEG consists of the following steps:

(1) EEG time series are filtered to the band 1 Hz to 45 Hz (with the Butterworth filter of order 5).
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(2) The ordinal-patterns-based segmentation procedure (described by Algorithm 3 in Appendix A.3)

is employed for d = 4, which is the maximal order satisfying 2(d + 1)!(d + 1) < N (see (14)) for

N = 3000 corresponding to the epoch length of 30 s.

(3) OPD clustering (as described in Section 3.3, for d = 4) is applied to the segments of all recordings.

The number of clusters 8 is chosen, the transition-state segments (see Algorithm 3) are considered

as unclassified. We deliberately choose the number of clusters larger than the number of sleep

stages since for different persons EEG may be significantly different (especially in the waking

state). Therefore, we analyze the obtained clusters and group them into larger classes:

• class “AWAKE”: three clusters;

• class “LIGHT SLEEP”: three clusters (one of these clusters may be associated with stage S1

and two others with stage S2, but we do not distinguish between S1 and S2 since the amount

of the epochs corresponding to S1 is small);

• class “DEEP SLEEP”: one cluster (the manual scoring was done according to the old

classification [72], while the modern classification [70] does not distinguish stages S3

and S4);

• class “REM”: one cluster.

Figure 14 illustrates the outcome of the ordinal-patterns-based discrimination of sleep EEG in

comparison with the hypnogram.

Figure 14. Hypnogram (bold curve) and the results of ordinal-patterns-based discrimination

of sleep EEG (white color corresponds to class AWAKE, light gray to LIGHT SLEEP, gray

to DEEP SLEEP, dark gray to REM, red to unclassified segments) for recording st7121 from

the dataset [74].

1 2 3 4 5 6 7 8

REM

S4
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S2

S1

W

Error

 Time (hours)  

Table 3 presents the correspondence between the results of ordinal-patterns-based discrimination

against manual scoring. Amounts of correctly identified epochs are shown in bold. The share of correctly

identified epochs for every recording is shown in Table 2.
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Table 3. Amount of 30 s epochs from the class specified by the column with the manual

score specified by the row (for all eight recordings from the dataset [74]).

Results of ordinal-patterns-based discrimination

AWAKE LIGHT SLEEP DEEP SLEEP REM unclassified

M
an

u
al

sc
o

re

W 440 165 0 103 3

S1, S2 110 3234 227 635 19

S3, S4 0 404 880 10 5

REM 0 244 0 1365 0

Unclassified 3 6 1 1 0

As one can see from Table 2 the overall agreement between the manual scoring and the suggested

ordinal-patterns-based method for sleep EEG discrimination in Example 7 is 75.4%. This is

comparable with the results for the same dataset reported by researchers that use different discrimination

methods. In particular, in the studies [75] and [76], the authors obtain agreement with the manual

scoring for 74.5% and 81.5% of the epochs, respectively. In contrast to the methods suggested

in [75,76], the ordinal-patterns-based discrimination is based on completely data-driven procedures of

ordinal-patterns-based segmentation and OPD clustering, and does not use any expert knowledge about

the data. This fact emphasizes the potential of ordinal-patterns-based segmentation and OPD clustering

and encourages further research in this direction.

4. Summary and Conclusions

We have discussed the applicability and performance of three empirical measures based on the

distribution of ordinal patterns in time series. These are the empirical permutation entropy (ePE), the

empirical conditional entropy of ordinal patterns (eCE), and the robust empirical permutation entropy

(rePE). Whereas the ePE is well established and eCE is recently introduced [15], the rePE is a new

concept proposed for dealing with noisy data.

We have pointed out that from the viewpoint of computer resources (computational time and memory

requirements) the algorithms for computing ePE and eCE, introduced in [15,37], are better than the

algorithms for computing ApEn and SampEn introduced in [54]. This is interesting in the case of

considering large time series. We have demonstrated on the examples of the logistic and the tent family

that rePE could be a robust alternative to ePE in the case of observational noise. Therefore, a further

investigation of rePE seems to be useful. Further, the comparison of the entropies was done on the base

of EEG recordings from the Bonn EEG Database (available online at [56]). Here it was discussed how

good the considered quantifiers separate data of three groups: group 1 consisting of healthy subjects,

group 2 consisting of subjects with epilepsy in a seizure-free period, and group 3 consisting of subjects

with epilepsy in a seizure period. We have illustrated that plotting the values of ApEn and SampEn

versus the values of ePE and eCE provides a good separation between the three groups, as well as

plotting the values of ePE and eCE versus themselves for different delays. We therefore conclude that
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the combined use of ApEn, SampEn, ePE and eCE or the combined use of ePE and eCE seems to be

useful for discrimination purposes.

We have suggested a method for classifying time series on the basis of investigating their

ordinal pattern distributions. The method consists of two steps: segmentation of time series

into pseudo-stationary segments and clustering of the obtained segments. We have performed the

segmentation of time series on the basis of change-point analysis providing the boundaries of segments.

As change-points, we have considered time points where the ordinal structure of a time series was

changing, as proposed in [30]. In order to identify such points we have introduced the CEofOP

(“Conditional-Entropy-of-Ordinal-Patterns-based”) statistic, which is based on eCE. For finding all

relevant change-points, we have used the binary segmentation procedure [67] in combination with

block bootstrapping [63,64]. After segmenting the time series as described, the obtained segments

were clustered on the basis of their ordinal pattern distributions by means of a commonly-used cluster

algorithm (k-means clustering with the squared Hellinger distance). The method was applied to the

discrimination of sleep EEG data. Here we have obtained good results for considering eight clusters.

The obtained clusters could be very well assigned to one of the following four groups: “AWAKE”,

“LIGHT SLEEP”, “DEEP SLEEP”, and “REM”. This is somewhat surprising because no information

on the structure of data related to special sleep stages was used, but shows some potential of the method

in sleep stage discrimination.

We have demonstrated the potential of ePE and eCE for the discrimination of states of a system based

on time series analysis, but would also like to emphasize that for these purposes a combined use of

different entropy concepts, ordinal and non-ordinal ones, can be useful. For this, a better knowledge of

the relationship and of the differences of such concepts would be important and should be addressed in

further research.
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A. Algorithms

A.1. Algorithm for Detecting at Most One Change-Point
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Algorithm 1 Detecting at most one structural change-point using the CEofOP statistic.

Input: sequence (πi)
tend

i=tstart
of ordinal patterns, order d, probability α of false alarm.

Output: estimate of a change-point t̂∗ if change-point is detected, otherwise return 0.

1: function DetectSingleCP((πi)
tend

i=tstart
, d, α)

2: Tmin ← (d + 1)!(d + 1);

3: if tend − tstart ≤ 2Tmin then

4: return 0; ⊲ sequence too short, no change-point can be found

5: end if

6: t̂∗ ← arg max
t=tstart+Tmin,...,tend−Tmin

CEofOP(t; d);

7: h← Bootstrapping(α, (πi)
tend

i=tstart
);

8: if CEofOP(̂t∗; d) < h then

9: return 0;

10: else

11: return t̂∗;

12: end if

13: end function

A.2. Algorithm for Detecting Multiple Change-Points

Algorithm 2 Detecting multiple structural change-points using the CEofOP statistic.

Input: sequence (πi)
N
i=d

of ordinal patterns, order d, probability α of false alarm.

Output: an estimate of the number N̂st of stationary segments and estimates of their boundaries
(
t̂∗
k

)N̂st

k=0
.

1: function DetectAllCP((πi)
N
i=d

, d, α)

2: N̂st ← 1; t̂∗
0
← 0; t̂∗

1
← L; k ← 0 ⊲ Step 1

3: repeat

4: t̂∗ ← DetectSingleCP
(
(πi)

t̂∗
k+1

i=̂t∗
k
+d

, d, 2α
)
;

5: if t̂∗ > 0 then

6: Insert t̂∗ to the list of change-points after t̂∗
k
;

7: N̂st ← N̂st + 1;

8: else

9: k← k + 1;

10: end if

11: until k < N̂st;

12: k← 0; ⊲ Step 2

13: repeat

14: t̂∗ ← DetectSingleCP
(
(πi)

t̂∗
k+2

i=̂t∗
k
+d

, d, α
)
;

15: if t̂∗ > 0 then

16: t̂∗
k+1
← t̂∗;

17: k← k + 1;

18: else

19: Delete t̂∗
k+1

from the change-points list;

20: N̂st ← N̂st − 1;

21: end if

22: until k < N̂st − 1;

23: return N̂st,
(
t̂∗
k

)N̂st

k=0
;

24: end function
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A.3. Algorithm for Ordinal-Patterns-Based Segmentation of Multivariate Time Series

Here we present Algorithm 3, which is used in Section 3.4 for the discrimination of sleep EEG time

series with the following values of parameters:

• order d = 4;

• probability of false alarms α = 0.07 (we use a relatively high probability of false alarms since we

prefer to split a sleep stage into several segments that can be grouped into one cluster on the next

step, rather than to get segments containing several sleep stages);

• minimal length of a valid stationary segment Tsegm = 3000 (i.e., a valid stationary segment should

be at least 30 s, which corresponds to the length of an epoch used in manual scoring).

Algorithm 3 Ordinal-patterns-based segmentation of multivariate time series.

Input: sequences (πm
i

)N
i=d

of ordinal patterns for univariate time series for m = 1, 2, . . . ,M, order d, probability α of false

alarm, minimal length Tsegm of a valid stationary segment.

1: function SegmentEEG((π1
i
)N
i=d
, (π2

i
)N
i=d
, . . . , (πM

i
)N
i=d
, d, α, Tsegm)

2: N̂st ← 0; t̂∗
0
← 0;

3: for m = 1, 2, . . . ,M do ⊲ detect change-points for every univariate time series

4: N̂m
st ,

(
t̂m
k

)N̂m
st

k=0
← DetectAllCP

(
(πm

i
)N
i=d

, d, α
)
;

5:
(
t̂∗
k

)N̂st+N̂k
st−1

k=N̂st+1
←

(
t̂m
k

)N̂m
st−1

k=1
; ⊲ insert change-points for each univariate time series into the joint list

6: N̂st ← N̂st + N̂k
st − 1;

7: end for

8: N̂st ← N̂st + 1; t̂∗
N̂st

← L;

9:
(
t̂∗
k

)N̂st

k=0
← Sort

((
t̂∗
k

)N̂st

k=0

)
; ⊲ sort change-points in increasing order

10: t← t̂∗
1
; k ← 2;

11: ⊲We check each estimate of a change-point: if it is too close to the previous one, we suppose that

12: ⊲ they correspond to the same change reflected by different time series not simultaneously.

13: ⊲We mark the segment between such change-points as a transition state.

14: repeat

15: if t̂∗
k
− t ≥ Tsegm then

16: t← t̂∗
k
;

17: if TransSegmentk = −1 then ⊲ is the previous segment a transition state?

18: Delete t̂∗
k−1

from the change-points list; ⊲ then merge it with the current segment

19: N̂st ← N̂st − 1;

20: else

21: TransSegmentk ← −1; ⊲ mark the segment as a transition state

22: end if

23: else

24: t← t̂∗
k
;

25: TransSegmentk ← 0; ⊲ mark the segment as a normal segment

26: k← k + 1;

27: end if

28: until k < N̂st;

29: return N̂st,

(
t̂∗
0
, . . . , t̂∗

N̂st

)
,
(
TransSegment0, . . . ,TransSegment

N̂st−1

)
;

30: end function
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76. Ronzhina, M.; Janoušek, O.; Kolářová, J.; Nováková, M.; Honzík, P.; Provazník, I. Sleep scoring

using artificial neural networks. Sleep Med. Rev. 2012, 16, 251–263.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Entropies for Discriminating Complexity
	Approximate Entropy and Sample Entropy
	Ordinal Patterns, Empirical Permutation Entropy and Empirical Conditional Entropy of Ordinal Patterns
	Robustness of Empirical Permutation Entropy with Respect to Noise
	Examples and Comparisons

	Ordinal-Patterns-Based Segmentation of EEG and Clustering of EEG Segments
	The Idea of Ordinal-Patterns-Based Change-Point Detection
	Change-Point Detection Using the CEofOP Statistic
	Ordinal-Pattern-Distributions Clustering
	An Application of Ordinal-Patterns-Based Segmentation and Ordinal-Pattern-Distributions Clustering to Sleep EEG

	Summary and Conclusions
	Algorithms
	Algorithm for Detecting at Most One Change-Point
	Algorithm for Detecting Multiple Change-Points
	Algorithm for Ordinal-Patterns-Based Segmentation of Multivariate Time Series


