
Volume 6, Issue 1 2010 Article 14

The International Journal of
Biostatistics

Ordinal Regression Models for Continuous
Scales

Maurizio Manuguerra, Macquarie University
Gillian Z. Heller, Macquarie University

Recommended Citation:
Manuguerra, Maurizio and Heller, Gillian Z. (2010) "Ordinal Regression Models for Continuous
Scales," The International Journal of Biostatistics: Vol. 6: Iss. 1, Article 14.
DOI: 10.2202/1557-4679.1230
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Abstract

Ordinal regression analysis is a convenient tool for analyzing ordinal response variables in
the presence of covariates. In this paper we extend this methodology to the case of continuous
self-rating scales such as the Visual Analog Scale (VAS) used in pain assessment, or the Linear
Analog Self-Assessment (LASA) scales in quality of life studies. These scales measure subjects'
perception of an intangible quantity, and cannot be handled as ratio variables because of their
inherent nonlinearity. We express the likelihood in terms of a function connecting the scale with
an underlying continuous latent variable and approximate this function either parametrically or
non-parametrically. Then a general semi-parametric regression framework for continuous scales is
developed. Two data sets have been analyzed to compare our method to the standard discrete
ordinal regression model, and the parametric to the non-parametric versions of the model. The first
data set uses VAS data from a study on the efficacy of low-level laser therapy in the treatment of
chronic neck pain; the second comes from a study on chemotherapy treatments in advanced breast
cancer and looks at the impact of different drugs on patients' quality of life. The continuous
formulation of the ordinal regression model has the advantage of no loss of precision due to
categorization of the scores and no arbitrary choice of the number and boundaries of categories.
The semi-parametric form of the model makes it a flexible method for analysis of continuous
ordinal scales.
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1 Introduction
We propose regression models for outcomes which are intangible and difficult to
measure on conventional scales, such as pain and quality of life. Self-rating scales
are used in several disciplines to measure such outcomes. Continuous self-rating
scales are referred to as Visual Analog Scales (VAS) in the pain literature and Lin-
ear Analog Self-Assessment (LASA) scales in quality of life studies. Subjects are
typically given a linear scale of 100 mm and asked to put a mark where they per-
ceive themselves. In Figure 1 an example of VAS is shown.

 

No 
pain 

Worst pain 
imaginable 

Figure 1: The Visual Analog Scale

For convenience we refer to continuous scales of this type as VAS, and to
the outcome as pain. The VAS measurement is a continuous variable, discretized
by the observer because of the sensitivity of the measuring instrument. Typically it
is measured as a 100-point scale, and used as is, or more often with values grouped
to build a discretized scale.

Historically, there has been controversy on the nature of the VAS: whether
it is ratio or ordinal; linear or nonlinear. “Linear” in this context is taken to mean
that differences in pain between successive increments on the VAS are constant. In
a study on women with Patellofemoral Pain Syndrome (Thomeé, Grimby, Wright,
and Linacre, 1995), the application of Rasch analysis to VAS measures showed
the nonlinear properties of the scale. Myles, Troedel, Boquest, and Reeves (1999)
searched for what regions of the VAS the scores can be considered as ratio and
linear. Their results showed that the limits of these regions can include mild-to-
moderate pain and, in a subsequent study (Myles and Urquhart, 2005), they ex-
tended these limits to the cases of severe acute pain (mean VAS score 84 mm).
However, in a review on the use of the VAS in labor studies (Ludington and Dexter,
1998), 13% of primiparous women without analgesia report the worst pain imag-
inable at 3 cm cervical dilatation. If these patients receive no analgesia, their pain
will certainly increase as labor progresses.

Whatever the extent of the “linear” portion in the VAS, it seems reasonable
that some nonlinearity will be observed around the limits, where an higher den-
sity of signs, caused by perceptive states considered extreme or close to extreme,
could be expected. The problem of non–interpretability of distances between mea-
surements and the possibility of nonlinear behaviour, particularly at one or both
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extremes of the scale, is overcome by treating VAS measurements as ordinal rather
than ratio data. We therefore refer to scales of this type as continuous ordinal.

Svensson (1998) proposes rank-invariant models for the analysis of change
in VAS data, treating the measurements as ordinal. They are different from the
models we discuss, as they do not incorporate the effect of covariates and cannot be
considered as regression models.

In Rasch analysis (see for example Fischer, 1995) this limitation is over-
come, as covariates can be incorporated in the parameters of the model. The draw-
back is that Rasch analysis cannot deal natively with continuous scales; indeed it
can be used to convert continuous recordings to a discrete scale, addressing cor-
rectly the non-linear nature of the VAS.

Finally ordinal regression models (McCullagh, 1980) are widely used for
regression analysis of discrete ordinal responses Y within K ordered categories. The
Y ’s are considered as coarse versions of an unobserved, continuous latent variable
W , such that

Y = j ⇐⇒ α j−1 < W < α j , j = 1, . . . ,K

where the α j’s are the correspondence on the latent variable scale of the category
boundaries on the ordinal scale and−∞ = α0 < α1 < · · ·< αK = ∞. Typically W is
an intangible quantity such as pain, and y = 1,2, . . . ,K codes for ordinal states such
as none, mild, moderate, severe. To relate the cumulative probabilities to covariates
x = (x1, . . . ,xp)′ in the jth category, we write:

γ j(x) = P(Y ≤ j|x) = P(W ≤ α j|x)

and assume that W =−x′β +ε . When ε has the standard logistic distribution having
cumulative distribution function (CDF) F(z) = P(ε ≤ z) = 1/(1+ e−z), then

γ j(x) = F(α j + x′β ) =
1

1+ e−(α j+x′β ) .

Inverting this translates to the cumulative logistic model (also called the propor-
tional odds model) for Y :

ln
(

γ j(x)
1− γ j(x)

)
= α j + x′β , j = 1, . . . ,K−1 (1)

In the VAS and LASA scale literature, the intercepts α j are either ignored
or used to characterize differences in category “size”. In agreement with the latter
approach, we think that the α js are worthy of careful modelling as they relate to
an important cognitive aspect, i.e. how the perception of pain changes at different
levels. This behaviour can be of particular interest around the extremes of the scale,
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where steep curvature is indicative of a tendency for subjects to perceive and score
their pain at the extreme.

The ordinal regression model has been developed in the last two decades in
order to incorporate additive and non-linear functional forms of predictors (Hastie
and Tibshirani, 1987) and spline-based smoothers of predictors (Yee and Wild,
1996). In Tutz (2003), a general framework to deal with semiparametrically struc-
tured models is given, with predictors that can contain parametric parts, additive
parts with an unspecified functional form, and interactions. In particular global
effects and category-specific effects are distinguished.

In the applied literature, typically continuous ordinal responses are analysed
using model (1) on a discretized version of the VAS responses (for example Kelly,
2001, Jensen, Chen, and Brugger, 2003), or simply by treating the VAS measure-
ments as continuous responses in a normal regression model (for example Schwenk,
1998). Both of these approaches are less than satisfactory: discretizing the response
involves loss of information, and use of the normal regression model has obvious
distributional shortcomings. More sophisticated methods have been proposed in
the statistical literature. Bottai, Cai, and McKeown (2010) and Lesaffre, Rizopou-
los, and Tsonaka (2007) both consider models for bounded responses, of which
VAS measurements are an example. Bottai et al. apply the logistic transformation
in order to overcome the difficulty inherent in formulating a model for a bounded
response, and use quantile regression modelling on the transformed scores. Lesaf-
fre et al. also apply the logistic transformation and consider models in which the
transformed response has a normal distribution. In this paper we propose a gener-
alization of the standard ordinal model (1) which leads to a semiparametric ordinal
regression model for continuous scales (Section 2). In Section 3 we develop an esti-
mation methodology based on Bayesian techniques and in Sections 4 and 5 we give
two practical examples where this approach is used. We discuss the relationship
between our model and the approaches of Lesaffre et al. and Bottai et al. in Section
6.

2 Regression model for continuous ordinal responses
Consider VAS measurements v which are sampled from a continuous response vari-
able V ∈ (0,1)1, with density f (v) and CDF γ(v). The continuous ordinal response
variable V can be taken to reflect the subjective perception of an underlying con-
tinuous latent variable W defined on the real line. The dependence between V and

1As was mentioned in Section 1, VAS measurements are usually expressed in the range (0,100).
However, for mathematical convenience and without loss of generality, we assume in what follows
that v is scaled to lie in (0,1).
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W is modelled by a smooth one-to-one function g : (0,1) 7→ (−∞,+∞) that maps v
on the VAS to w = g(v) on the latent scale. This mapping is the link between the
recorded perception of pain and an underlying metric. As for the standard ordinal
model, covariates are modelled on the latent scale. Assuming W =−x′β + ε ,

γ(v|x) = P(V ≤ v|x) = P(W ≤ g(v)|x) = F(g(v)+ x′β ) ,

where F(·) is the CDF of ε . Inverting this translates to the generic ordinal regression
model for continuous observations v:

F−1(γ(v|x)) = g(v)+ x′β .

We assume the standard logistic distribution for ε , but other distributions, such as
the normal, can be used. The cumulative logistic ordinal model for continuous
response variables is:

ln
(

γ(v|x)
1− γ(v|x)

)
= g(v)+ x′β . (2)

The function g(v) in model (2) is the continuous analog of the discrete in-
tercepts α j in model (1), and its shape is informative of the change in perception
of pain at different levels (as are the α j). The linear component x′β may incorpo-
rate fixed and random effects. Random effects are useful not only for modelling
clustered or longitudinal data, as in the examples in Sections 4 and 5, but also for
modelling individual variation due to subjective perception of the pain.

Inverting and differentiating equation (2), we obtain the likelihood:

f (v|x) =
∂γ(v|x)

∂v
=

ġ(v)(eg(v)+x′β )
(1+ eg(v)+x′β )2

(3)

where ġ(v) = ∂g(v)
∂v .

A more general form of this model can be obtained by introducing a set of
non-parametric functions S1 smoothing the effects of the covariates z1, and allowing
interaction terms. A case of particular interest is when a set of variables z2 interacts
with the random variable v, allowing the estimation of non-parametric functions S2
that are v-level specific effects (analogous to the discrete case, where these were
called category specific effects (Tutz, 2003)). In this case, the model can be written
as:

ln
(

γ(v|x,z,S)
1− γ(v|x,z,S)

)
= g(v)+ xT

β +S1(z1)+S2(v,z2)

with likelihood:

f (v|x,z,S) =
∂γ(v|x,z,S)

∂v
=

(g′(v)+S
′
2(v,z2))(eg(v)+xT β+S1(z1)+S2(v,z2))

(1+ eg(v)+xT β+S1(z1)+S2(v,z2))2
.

Here a surface function S2(v,z2) and its derivative have to be estimated.
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3 Model implementation

3.1 g function

In order to complete the specification of model (2), we need to define the form
of the g(v) function. g has to be capable of capturing the nonlinear behaviour of
the ordinal measure. Any differentiable, increasing and “flexible enough” function
which maps (0,1) to (−∞,+∞) could be appropriate. This can be done using a
parametric or non-parametric approach; inverse sigmoidal functions and smooth
functions (for example, splines) could be appropriate choices.

3.1.1 Parametric g function

We choose g as the inverse of the generalized logistic function (Richards, 1959),
which has the advantage of simplicity and mathematical tractability:

g1(v) = M +
1
B

log
(

T vT

1− vT

)
, 0 < v < 1 (4)

where M is the offset, B is the slope and T is the symmetry of the curve. Considering
that

ġ1(v) =
T
B
· 1

v(1− vT )

the likelihood can be written in closed form using (3). The number of parameters
for model (2) with g(v) as in (4), is p+3. This compares favorably with p+K−1
parameters for the standard ordinal regression model (1) with K categories.

3.1.2 Non-parametric g function

Many choices can be made to define the cumulative logistic ordinal regression
model (2) using a smooth function for g(v). In this paper we have used B-splines,
as they are a convenient tool to address computational requirements. The general
form can be written as

g2(v) = λ0 +
m−1+q

∑
j=1

λ jB j(v,q) , (5)

where B j is the j-th basis function, q is the degree of the B-spline and m is the
number of knots equally spaced in the interval [vmin,vmax]. As g(v) is an increasing
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function, we need to impose monotonicity conditions on g2 (de Boor, 1978). This
is achieved by imposing a positive first derivative on g2(v):

ġ2(v) =
m−1+q

∑
j=1

λ jB
′
j(v,q) =

1
h

m−2+q

∑
j=1

(λ j+1−λ j)B j(v,q−1) > 0 .

From this equation, it is clear a sufficient condition for obtaining a monotonic g(v)
function is for the sequence of coefficients λ to be increasing.

To avoid overfitting of the data, the non-parametric approach has been im-
plemented by penalizing the log-likelihood L(v|x) = log( f (v|x)) by a non-negative
functional J measuring the roughness of g2. We maximize

L(v|x)−λJ(g2)

where λ is the smoothing parameter, estimated using Generalized Cross Validation
(GCV), and J has been chosen as the integrated squared second derivative:

J(g2) =
∫ +∞

−∞

g′′2(t)
2dt .

For details on this methodology and its application to Bayesian inference,
the reader is referred to Hastie and Tibshirani (1987), Wahba (1990), Green and
Silverman (1993), Ruppert, Wand, and Carroll (2003) and Hastie, Tibshirani, and
Friedman (2009).

3.1.3 Scale endpoints

A problem in extending the ordinal regression model to continuous scales is that
the VAS and the LASA scale are closed, i.e. they include the extremes. Besides
considerations on the possibility of experiencing the worst possible pain or quality
of life, there is a problem related to the acquisition of data. The patient can put the
mark very close to or on the extreme of the scale. Nevertheless, data are acquired
as a 100-point scale, so the ticks will be spaced at 1 mm intervals. That means
that it is not possible to discriminate ticks between 99.5 and 100 mm. It is also
impossible to greatly increase the number of points dividing the scale, as the mark
has some thickness. From a mathematical point of view, there are two possible
ways to consider boundary data. We can either consider them as equal to 0 or 100,
in which case the model is not identifiable as the g function must go towards minus
or plus infinity; or we can consider them as undetermined measures between 99.5
and 100 mm. This is the approach we have followed, converting values of 100 to
99.9 and values of 0 to 0.01. The fitting of the g function is then to be considered
limited to the range 0.01-99.9 mm. Outside this interval, the g function is not
estimated and is assumed to go towards infinity.
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3.2 Predictors

The above penalized likelihood approach for B-splines has been adopted for predic-
tors which appear in the model as smooth functions. In this case the monotonicity
constraint is not required. GCV is used for estimation of the smoothing parameter.

3.3 Estimation and software

The likelihood is expressed in closed form, so maximum likelihood methodology
can be used to estimate the model parameters. However, in our applications de-
scribed in Sections 4 and 5, the models include random effects and model fitting
involves integration of the random effects. We found it more convenient to use
Bayesian methodology, performed using non-informative priors. The posterior dis-
tribution of a parameter is proportional to the product of the likelihood function
and its prior distribution. Use of an non-informative prior results in the posterior
distribution being proportional to the likelihood, and for large n the same estimate
is achieved with ML and Bayesian estimation. Several authors (for example Huber
and Train, 2001, Kuhner and Smith, 2007, Wall, 2009) have pointed out the sim-
ilarity between ML and Bayesian estimates, in the contexts of choice modelling,
genealogy and structural equation modelling, respectively. This suggests that the
choice between ML and Bayesian estimation then becomes one of computational
feasibility and convenience, rather than a philosophical choice between methodolo-
gies. In the particular case of a uniform prior distribution, the posterior distribution
mode estimator is coincidental with the maximum likelihood estimator, while the
mean minimizes the squared error function and the median the absolute error func-
tion. In our examples the differences between the three estimators have usually
been statistically negligible; we have chosen to use the mode estimator to have re-
sults formally equivalent to the ML methodology. Model selection has been based
on the Deviance Information Criteria (DIC) (see Spiegelhalter, Best, Carlin, and
van der Linde, 2002).

In the next sections, these methods are applied to two data sets. In the first
example, the discrete standard ordinal model is compared to the continuous model
using a parametric g function. The software packages WinBUGS 1.4.3 (Lunn,
Thomas, Best, and Spiegelhalter, 2000) and JAGS (Plummer, 2009a), called from
R 2.8.1 (R Development Core Team, 2009) with the R2WinBUGS (Sturtz, Ligges,
and Gelman, 2005) and rjags (Plummer, 2009b) libraries respectively, have been
used. Estimates over several runs have been very stable, with no dependence on
the chains’ initial values. Burn-in periods of 4000 iterations and samples of 10000
iterations have been used to estimate the parameters.
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In the second example, interest is shifted to the comparison between para-
metric and non-parametric versions of the g function. A semi-parametric model
has been adopted, with the g2 function and the nonparametric part of the predictor
estimated using cubic B-splines with 30 knots. For an overview on the Bayesian
perspective on penalized likelihood estimation the reader is referred to, for example,
Green (1999). Estimation of the B-spline coefficients has shown some instability,
given the sparsity of data for high values of the predictor (see Table 2), and long
burn-in phases (30000 iterations) and samples (10000 iterations) were necessary.
Bayesian confidence intervals have not reflected the instability in the convergence
of the chains; for this reason we have preferred to use bootstrap methodology (see
Wang and Wahba, 1995), that appears to be better for small data sets and has given
more credible estimates. 200 bootstrap samples have been generated to estimate
the confidence intervals and, as recommended, the method of normal intervals has
been used. The analyses have been performed using the Metropolis-Hastings algo-
rithm, implemented in R 2.8.1 using the splines and MCMCpack (Martin, Quinn,
and Park, 2009) libraries.

The results and the code have been validated either using generated data sets
or fitting the data with more than one package.

4 Application to pain data
In this example, we contrast the approach of analysing categorised VAS scores in
the discrete standard ordinal setting, with the analysis using the continuous model
with a parametric g function.

4.1 Chronic neck pain study

The study design has been explained in detail elsewhere (Chow, Heller, and Barns-
ley, 2006). Briefly, the study is a randomized, double-blind, placebo-controlled
investigation on the efficacy of low-level laser therapy (LLLT) in the treatment of
chronic neck pain. Ninety patients were recruited between July 2002 and May 2003
at a large suburban medical centre of 17 general practitioners in Sydney, Australia.
They were 18 years of age or over, had unilateral or bilateral chronic neck pain
and had never attended treatment with LLLT. Subjects were randomized to receive
14 treatments over 7 weeks, with either active or placebo laser. The primary out-
come measure of the study was the VAS, marked by the patients at baseline, at the
end of the course of treatment and one month after completion of the treatment
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(approximately 12 weeks from baseline). After exclusion of six patients for miss-
ing recordings, we analyzed data from n = 84 subjects measured at the three time
points.

4.2 Discrete response variable

To assess the suitability of the cumulative logistic ordinal model for continuous
responses, we have compared it with the discrete standard ordinal model. In order
to analyze the data set in the discrete framework, we divided the VAS scores into
nine equally-spaced classes. Within-subject correlation is modelled using a random
effect for subject. The model for subject i at time t and VAS category j is:

log
γi jt

1− γi jt
= α j + xiβt +bi i = 1, . . . ,n; j = 1, . . . ,8; t = 1,2,3 , (6)

where γi jt = P(Yit ≤ j|xi, t), bi are the individual effects sampled from N(0,σ2) and
xi is an indicator variable for active laser. The parameters β1,β2,β3 give the effect
of the laser treatment at the three time points. The time main effect has not been
included in the model as it has been found to be non-significant. In principle, other
covariates may be incorporated in the model. None of the available covariates (age,
sex, type of injury, laterality) was found to be significant in any of the analyses.

The results (Table 1) show a bias between the treated and placebo groups
prior to treatment described by β1, and a significant effect of laser on pain relief
after the treatment (β2) and one month later (β3), with an attenuation of the positive
effect. Note that, since eβt is the effect of laser on the odds of scoring Y ≤ j, at
time t, positive βt signifies lower VAS scores due to laser, i.e. pain relief. The indi-
vidual effects (b) are sampled from a normal distribution with significant standard
deviation σ ≈ 3, signifying a persistent subject effect. It is particularly important to
incorporate this effect because of the individual and subjective nature of the mea-
surements.

4.3 Continuous response variable

Analogous to the discrete case, for continuous response variables the model is:

log
γit

1− γit
= g(vit)+ xiβt +bi

where vit are the scaled VAS scores and the term g(vit) is approximated using for-
mula (4).
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The model parameters β are consistent with those of the discrete model,
with slightly lower standard errors. The model has the advantage of no loss of
information due to categorization of the VAS scores and no arbitrary choice of the
number and boundaries of the categories.

The estimated g function, shown in Figure 2, can be seen to have a different
slope, but possibly similar symmetry, to the intercepts α j estimated in the discrete
standard ordinal regression model. This is the consequence of the finite number of
categories K used in the discrete case. Increasing K has the effect of shifting the
estimated α j to better agree with the continuous case, while decreasing K shifts the
intercepts in the opposite direction. (These results have been computed but are not
shown.) Note that we are unable to use the DIC for comparison of the discrete and
continuous models, as the likelihoods for the discrete and continuous cases are not
comparable.

Discrete Continuous
K = 9 (parametric g function)

Mode 95% CI Mode 95% CI
β1 -2.26 -3.31 -1.19 -1.90 -2.78 -0.95
β2 1.73 0.77 2.77 1.74 0.86 2.68
β3 1.06 0.08 1.98 1.01 0.19 1.96
σ 2.95 2.33 3.81 2.74 2.20 3.41
M - - - 0.63 -0.29 1.49
T - - - 0.85 0.49 1.18
B - - - 0.43 0.35 0.54

Table 1: Chronic neck pain study: parameter estimates.

5 Application to quality of life data

5.1 Chemotherapy treatments in advanced breast cancer study

In this example, we compare the parametric and non-parametric approaches to ap-
proximate the g function, and demonstrate the use of a smooth term for one of the
covariates.

Metastatic breast cancer is the most common cause of cancer death and
the greatest cause of cancer morbidity among Australian women. The ANZ 0001
trial, conducted by the ANZ Breast Cancer Trials Group, is an unblinded, multi-
centre, randomised trial with three chemotherapy treatment arms (n = 292 patients
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Figure 2: Intercepts and g function of the discrete and continuous models evaluated
in the chronic neck pain study.

with complete quality of life measurements) concluded in 2005 (Stockler, Sour-
jina, Grimison, Gebski, Byrne, Harvey, Francis, Nowak, Hazel, Forbes, and Group,
2007) . Health-related quality of life is assessed at each chemotherapy treatment
cycle, from randomization until disease progression, when treatment is interrupted.
The treatments Intermittent Capecitabine (IC) and Continuous Capecitabine (CC)
are compared with the standard combination treatment CMF, each with its own pro-
tocol. There is no maximum duration of treatment, but it is interrupted on disease
progression, or when patient intolerance or unacceptable toxicity are recorded.
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The study aims to verify which treatment has a better impact on quality of
life, and in particular how this impact changes over chemotherapy cycle. Various
aspects of quality of life are assessed using LASA scales. The number of remaining
patients in selected cycles, by treatment arm, are shown in Table 2. Note that no
patients on standard CMF treatment progressed beyond cycle 20, and for the other
two treatments the data are sparse beyond this point.

We used the overall quality of life LASA scale as dependent variable. Among
the several covariates available, we have selected ECOG score, oestrogen level, age,
body surface area (BSA) and chemotherapy cycle number. BSA, ECOG score and
oestrogen were found to be not signficant and have been excluded from the final
model.

Treatment
Cycle IC CC CMF

0 97 94 101
5 65 63 57
10 37 37 10
15 22 21 3
20 12 11 2
25 7 6 0
45 1 3 0
60 0 1 0

Table 2: Remaining subjects at different cycle numbers.

5.2 Model

The model for the overall quality of life vi j for patient i at chemotherapy cycle j is:

log
γi j

1− γi j
= g(vi j)+ xiβ + s( j)+bi

where xi is the age of patient i (not standardized), s( j) is a smooth term that depends
on cycle number j and bi are random effects sampled from N(0,σ2). We compare
the parametric and non-parametric approaches for g(vi j), using the inverse gener-
alized logistic function (4) and B-splines (5), respectively. B-splines are used for
estimation of s( j).
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5.3 Results

Table 3 compares the parameters estimated with the parametric and non-parametric
approaches. The two methods show similar results for β and σ , with a signifi-
cant worsening of quality of life with increasing age. The β coefficients have the
same interpretation as those from the cumulative logistic model (1). In the table,
the 95% percentile confidence intervals are estimated using bootstrap methods as
already discussed. In terms of DIC, the non-parametrically formulated model has
an advantage over the parametric approach.

In Figure 3 the parametric and non-parametric estimates of the g function
are shown. The accordance is good over the range of the scale, except in the region
of worst quality of life (right side of the scale), where fewer subjects have marked
their perception. The fact that the non-parametric model has obtained a better fit
(smaller DIC) of the data is probably due to a lack of flexibility of the parametric
curve at this extreme of the scale.

On the other hand, the two models have given similar results for the depen-
dence of the overall quality of life on cycle number. In Figure 4, the result obtained
by the non-parametric model is shown. The CC treatment has a clear advantage
over IC in terms of quality of life, while it is not possible to give clear indications
on the standard CMF treatment. Confidence intervals for the functions are wide
because of the sparsity of data for high cycle numbers, see Table 2. This aspect of
the data presented a challenge for stability of the computation.

6 Discussion
We provide a regression framework for a response variable that is a recorded per-
ception of an underlying latent variable which is difficult to observe or measure.
The model is an extension of the cumulative logistic ordinal regression model for
discrete ordinal responses and incorporates both parametric and non-parametric co-
variate terms, as well as random effects. The recorded perception is mapped to the
latent variable using either a parametric or non-parametric function.

A commonly used approach for VAS reponses is to categorize them, and
analyze them as discrete ordinal responses. Our model obviates the need for this
aggregation of information. We have shown that the results obtained are consistent
with those from the discrete variable analyses, with more precise estimates. Some
differences have been observed in the intercepts, as shown in Figure 2. This is due
to the low sensitivity of the discrete model: when few categories are used as in this
case, the behaviour of α cannot be observed accurately around the extremes, where
the major non-linearities can be observed. In contrast, the continuous formulation

13

Manuguerra and Heller: Ordinal Regression Models for Continuous Scales



0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

v

w

Parametric g function
Non−parametric g function
Assumed behaviour at boundaries

Figure 3: Parametric and non-parametric estimates of the g function. The 95%
percentile confidence intervals are obtained with bootstrap methods.

of the model gives the same weight to the whole VAS, and the higher sensitivity
around the limits makes the slope of the curve different from the discrete case.

For the parametric approximation of the g function, our choice of the inverse
of the generalized logit function was based on its simplicity and flexibility. How-
ever, our method is not limited to this choice and the inverse of any sigmoid function
may be used, as appropriate for the data set at hand. Use of a non-parametric g func-
tion eliminates the need for a choice of function, at the expense of several degrees
of freedom. In the case of a sparse data set, there will be obvious advantages to a
judicious choice of parametric g function over the non-parametric approach.
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Figure 4: Dependence of the overall quality of life on chemotherapy cycle number
with 95% percentile CI obtained with bootstrap methods. Higher values correspond
to worse quality of life.

Our approach is more general than those of Lesaffre et al. (2007) and Bottai
et al. (2010). In both of these, the application of the logistic transformation to the
scores assumes an underlying symmetry in the mapping of the observed score to
the latent variable. In the cases of both pain and quality of life, it is unlikely that
behaviour at the two extremes of the scale is symmetric, and this is borne out by
the asymmetric nature of the estimates of the g function in our two applications.
Our approach is flexible, allowing either a parametric transformation which has
flexibility in its shape, such as the generalized logistic transformation with three
parameters governing the curve’s location, symmetry and slope; or a smooth func-
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Parametric g function Non-parametric g function
Mode 95% CI Mode 95% CI

β 0.014 0.009 0.021 0.022 0.019 0.023
σ 0.204 0.192 0.232 0.174 0.158 0.193

Deviance -1652.7 -2260.8
Effective no 3.4 14.0

of parameters
DIC -1647.9 -2244.3

Table 3: Chemotherapy impact on quality of life in advanced breast cancer patients:
parameter estimates. Modes of posterior samples and 95% bootstrap confidence
intervals are given.

tion with no constraints on its shape besides monotonicity. Having mapped the
scores to the latent scale, the chosen regression model depends on distributional

assumptions made on the latent variable. Lesaffre et al. (2007) assume normality,
and Bottai et al. (2010) make no distributional assumptions and use quantile regres-
sion. Our approach allows any distributional assumption, although we have found
the logistic distribution convenient because of the resulting similarity of the model
with proportional hazards ordinal regression.
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