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Abstract

Objective: Orexins have been implicated in the regulation of several physiological functions including
reproduction, energy balance and vigilance state. For successful reproduction, the precisely timed
hormonal secretions of the estrous cycle must be combined with appropriate nutritional and vigilance
states. The steroid- and nutritional state-dependent modulation of LH release by orexins, as well as
an increase of vigilance, suggest that orexins may co-ordinate these functions in the course of the
estrous cycle.
Design: We studied the brain tissue levels of orexins in the course of the estrous cycle in young and
middle-aged rats. Young cycling rats (3 months old) and irregularly/non-cycling (7–9 months old)
female rats were inspected for vaginal smears and serum hormone levels.
Methods: Tissue concentrations of orexin A and B were measured in the hypothalamus and lateral
hypothalamus on different days of the estrous cycle.
Results: Orexin A concentration in the hypothalamus of young cycling rats was higher on the day of
proestrus 5–6 h after the lights were switched on than on the other days of the estrous cycle at the
same circadian time. Orexin B concentration was higher on both the day of proestrus and the day of
estrus as compared with the days of diestrus. The hypothalamic concentrations of both orexin A and
B in the non-cycling middle-aged rats were lower than those in cycling rats on the days of proestrus
and estrus.
Conclusions: We have concluded that the high hypothalamic concentration of orexins on the day of
proestrus may contribute to the LH and prolactin surges. High orexin A levels may also contribute
to the decreased amount of sleep on the day of proestrus.
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Introduction

Orexins (orexin A and orexin B), also known as hypo-
cretins (hypocretin 1 and hypocretin 2 respectively),
are novel hypothalamic peptides (1, 2). They are cleaved
from a common precursor molecule, preopro-orexin
(130 residues) forming orexin A (residues 33–66;
hypocretin 1 residues 28–66) and orexin B (residues
69–96; hypocretin 2 residues 69–97) (1, 2). The cell
bodies containing prepro-orexin mRNA are located in
the lateral and perifornical hypothalamus (2, 3), but
send wide projections to several brain areas, including
the hypothalamus, which is regarded as one of the
main target areas of these neurons. Since one-third of
all hypothalamic neurons express orexin receptors,
and orexin axon terminals are found throughout the
hypothalamus, it has been suggested that orexins
could influence the general level of activity in many
hypothalamic systems (4). In addition to an increase
in food intake (2) orexin administration decreases pro-
lactin, growth hormone (5) and luteinizing hormone

(LH) secretion in non-steroid-primed rats (6), but
increases LH secretion in steroid-primed rats (7) as
well as increasing cortisol secretion (5). The luteinizing
hormone (LH) response to orexin A in the hypothala-
mus appears to be site-specific (8) and mediated
through orexin 1 receptors, which are located on the
gonadotropin-releasing hormone cells (9). It has
recently been shown that orexin A-stimulated LH-
releasing hormone release from the hypothalamic
explants is dependent on the steroid milieu (10).

A role for orexins in the regulation of the vigilance
state was originally suggested by anatomical evidence
(3), and further by the discovery of defects in the
orexin-2 receptor systems of narcoleptic dogs,
humans and mice (11 –13). Administration of orexin
A in the locus coeruleus (5), lateral preoptic area
(14) and basal forebrain (15) induces wakefulness.
Moreover, the levels of orexin A in the hypothalamus
are higher during waking and rapid eye movement
(REM) sleep than during slow-wave sleep, further
suggesting a function for orexin A in the regulation
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of vigilance states (16). These findings have established
a role for orexin A as a substance that promotes wake-
fulness.

The vigilance state and the sleep/wake cycle are
modulated by changes in the hormonal milieu: e.g.
the estrous cycle and pregnancy have profound effects
on both the amount and quality of sleep (17, 18).
Decreases in both non-REM and REM sleep, as well as
in the spectral power of sleep, have been observed in
female rats during proestrus (17). Previous studies
have shown modulations of orexin A tissue concen-
trations in several brain areas during the day of pro-
estrus in female rats (10).

Advanced aging is associated with deterioration of
several physiological functions. A multitude of hormo-
nal changes (19), changes in energy balance (20)
and changes in autonomic regulation take place (21).
In elderly humans, sleep is typically disrupted, resulting
in unwanted awakenings during the night time, exces-
sive daytime sleepiness and increased napping (22). In
old rats, the number of shorter sleep bouts increases
and the response to prolonged wakefulness is impaired
as compared with young rats (23, 24). We have pre-
viously shown that during aging both orexin A and
orexin B levels decrease in the hypothalamus and
other brain areas of male rats (25).

We hypothesized that the tissue concentrations of
orexins A and B in the hypothalamus may be modu-
lated in the course of the estrous cycle and aging in
female rats.

Materials and methods

Forty-two young (3 months old, weight 200 –260 g)
and 27 middle-aged (7 –9 months old, weight 295 –
400 g) female Hannover–Wistar rats were used in the
experiments. Before the experiments the animals lived
in the animal quarters of the department (Dept. of
Physiology, University of Helsinki). Food and drink
were available ad libitum throughout the experimental
period and the lights were on from 0800 to 2000 h.
Vaginal smears were inspected daily for at least
2 weeks (2 weeks for the young rats and 5–6 weeks
for the middle-aged animals) and inspected for cytology
to establish regular/irregular cycling. Rats were
decapitated in the afternoon at 1300–1400 h. Trunk
blood was collected and serum prepared as described
previously (26). Brains were rapidly removed and
hypothalamus and lateral hypothalamus were dissected
from a brain slice between bregma co-ordinates
of 1.0 –4.8 mm. The slice was first cut at 2 mm from
the bottom of the hypothalamus, then trimmed 3 mm
lateral from the midline to each side, and then a
2 mm (1 mm lateral from the midline to each side)
piece ( ¼ hypothalamus) was separated, leaving
two 2 mm pieces, which contained the lateral
hypothalamus (27). The weights of the tissue blocks

were hypothalamus 66.5^3.5 mg and lateral hypo-
thalamus 63.0^2.2 mg. Tissue was frozen on dry ice
and stored at 280 8C until RIA. The experimental
protocol was accepted by the provincial administrative
board in accordance with the laws of Finland and the
European Convention. All efforts were made to
minimize animal suffering and the number of animals
used in the experiments.

RIAs for orexin A and B

The assays were performed using commercial RIA kits
for orexin A and orexin B (Peninsula Laboratories
Inc., San Carlos, CA, USA) according to the manufac-
turer’s instructions and as previously described (25).
In short, the tissues were homogenized in 0.5 –0.8 ml
1% trifluoroacetic acid and centrifuged at 12 000 g for
20 min at þ4 8C. The supernatant was lyophilized
and dissolved in 0.5 ml RIA buffer. In each assay,
50ml samples were measured in duplicate. The protein
content of the tissue was measured using the method of
Lowry (28). Results are expressed as pg orexin/mg pro-
tein. The samples were measured in two separate RIAs,
each containing samples from all groups (diestrus,
estrus, proestrus and old). The interassay variability
for 2 years in our laboratory for orexin A RIA has
been 21.2% and that for orexin B 30.3%. The intra-
assay variability in the orexin A RIA was 1.21% and
in the orexin B RIA 7.73% calculated by the method
of Abraham et al. (29).

RIAs for estrogen, LH, follicle-stimulating
hormone (FSH), progesterone and prolactin

Estradiol levels were measured by immunofluorometric
assay (IFMA) after diethylether extraction, using the
human estradiol Delfia kit (Perkin-Elmer-Wallac OY,
Turku, Finland) adapted for rodent samples (30). Pro-
gesterone (31) and prolactin (32) levels were measured
using RIAs as described previously. LH and FSH were
measured using IFMA assays as described previously
(33, 34). The interassay coefficients of variation (C.V.)
of the assays were ,15% and intra-assay C.V. values
were ,10% at the concentrations measured. To elimin-
ate the influence of intra-assay variability, all samples
to be compared were analyzed in the same assay runs.

Statistics

The statistical comparisons were made using one-way
ANOVA with Student –Newman –Keul as a post hoc
test. Kruskal–Wallis one-way ANOVA on ranks was
used in cases of unequal variance or non-normal distri-
bution in groups, followed by Dunn’s post hoc test. In
comparing two groups, Student’s t-test was applied.
Differences between groups was regarded to be signifi-
cant if P , 0.05. Values are given as means^S.E.M.

throughout.
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Results

Estrous cycle

Of the 42 young rats, three had irregular estrous cycles
and were excluded from the calculations. Of the
remaining 39, 22 were collected during diestrus,
seven during proestrus and ten during estrus. Of the
27 middle-aged rats, five had regular cycles. Those
with either irregular cycles or constant estrus (n ¼ 3)
formed the group named ‘OLD’ in the calculations
(n ¼ 22). Of the five regularly cycling middle-aged
rats two were decapitated in diestrus, two in estrus
and one in proestrus.

Hormone levels

In the course of the estrous cycle of young animals
Serum estradiol concentrations were higher on the
day of proestrus as compared with the days of
diestrus and proestrus (diestrus 0.094^0.010, estrus
0.054^ 0.012, proestrus 0.49^0.29 nmol/l; Kruskal–
Wallis one-way ANOVA on ranks H(2) ¼ 19.95;
post hoc Dunn proestrus vs diestrus and proestrus
vs estrus, P , 0.05; diestrus vs estrus, not significant
(ns)).

There was no statistically significant difference in
serum LH, FSH, progesterone or prolactin concen-
trations between the days of the estrous cycle
(Table 1).

In the course of aging The serum estradiol concen-
trations were lower in non-cycling middle-aged animals
as compared with proestrous day concentrations in
young animals (proestrus 0.49^0.29, OLD
0.11^0.01 nmol/l; Kruskal –Wallis one-way ANOVA
on ranks H(3) ¼ 22.00, P , 0.001; post hoc Dunn
proestrus vs OLD, P , 0.05).

Serum prolactin levels were higher in non-cycling
middle-aged animals as compared with rats in diestrus
or estrus (Kruskal –Wallis one-way ANOVA on ranks
H(3) ¼ 18.82, P , 0.001; post hoc Dunn P , 0.05
for both diestrus vs OLD and estrus vs OLD).

There was no statistically significant difference in
serum LH, FSH or progesterone concentrations
between young and middle-aged rats (Table 1).

The effect of the estrous cycle on orexin A and
B hypothalamic and lateral hypothalamic
tissue concentrations

Hypothalamic orexin A concentration was higher on
the day of proestrus in young cycling animals as com-
pared with both the days of diestrus and estrus (diestrus
885^113, proestrus 2071^256 and estrus
1378^265 pg/mg tissue; one-way ANOVA degreees of
freedom (2,38) ¼ 9.37, P , 0.001; post hoc
Newman –Keul’s proestrus vs diestrus and proestrus
vs estrus, P , 0.05; estrus vs diestrus, ns) (Fig. 1a).

Hypothamic orexin B concentration was higher on
both the days of proestrus and estrus in young cycling
animals as compared with diestrus (diestrus 937^305,
proestrus 3307^1235, estrus 3693^963 pg/mg
tissue; Kruskal–Wallis one-way ANOVA on ranks
H(2) ¼ 13.40, P ¼ 0.001; post hoc Dunn diestrus vs
estrus and diestrus vs proestrus, P , 0.05) (Fig. 1b).

There was no significant difference in the lateral
hypothalamic tissue concentrations of orexin A
between the days of diestrus and proestrus (diestrus
621^113 (n ¼ 14), proestrus 866^400 (n ¼ 6)
ng/mg tissue; t-test t(18) ¼ 0.80, P ¼ ns; for estrus
the mean^S.E.M. was 338^142 (n ¼ 4)). For orexin
B, the number of samples in the proestrous and estrous
groups and orexin A in the estrous group was insuffi-
cient (n , 5) to allow proper statistical analysis. In
the diestrous group, orexin B tissue concentration
was 1908^522 pg/mg tissue (n ¼ 8).

The effect of age on orexin A and orexin B
tissue concentration in the hypothalamus and
lateral hypothalamus

Hypothalamic orexin A tissue concentration in young
animals was higher on the days of proestrus and
estrus than in the non-cycling middle-aged animals,
but there was no difference when the levels on the
day of diestrus in young rats were compared with
those of middle-aged rats (diestrus 885^113, proestrus
2071^256, estrus 1377^264, OLD 531^86 pg/mg
tissue; Kruskal–Wallis one-way ANOVA on ranks
H(3) ¼ 22.52, P , 0.001; post hoc Dunn proestrus
vs OLD and estrus vs OLD, P , 0.05; diestrus vs OLD,
ns) (Fig. 1a).

Hypothalamic orexin B tissue concentration was
higher on all days of estrus in young animals as

Table 1 Serum concentrations of hormones during the estrous cycle in rats. Animals were decapitated at 1300–1400 h. Values are
means^S.E.M.

Estradiol (nmol/l) Progesterone (pmol/l) LH (ng/ml) FSH (ng/ml) Prolactin (ng/ml)

Diestrus (young, n ¼ 22) 0.094^0.010 14 590^2300 0.528^0.078 2.90^0.62 8.60^1.14
Proestrus (young, n ¼ 7) 0.490^0.287 11 150^1660 0.450^0.086 1.87^0.47 27.75^10.85
Estrus (young, n ¼ 10) 0.055^0.012 11 630^1340 0.421^0.093 3.21^0.99 21.51^11.00
Middle-aged (non-cycling, n ¼ 22) 0.110^0.014 15 770^1900 0.627^0.079 3.53^0.40 35.32^6.76
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compared with non-cycling middle-aged animals (di-
estrus 937^304, proestrus 3306^1234, estrus
3692^963, OLD 677^624 pg/mg tissue; Kruskal–
Wallis one-way ANOVA on ranks H(3) ¼ 20.72,
P , 0.001; post hoc Dunn OLD vs diestrus, proestrus
and estrus, P , 0.05) (Fig. 1b).

There was no significant difference in lateral hypo-
thalamic tissue concentrations of orexin A between
young (diestrous and proestrous groups in the statisti-
cal analysis) and non-cycling middle-aged animals
(young as above, OLD 782^318 pg/mg tissue
(n ¼ 15); Kruskal –Wallis one-way ANOVA on ranks
H(2) ¼ 4.26, P ¼ ns). For orexin B, the number of
samples in proestrous, estrous and OLD groups and
orexin A in the estrous group was insufficient (n , 5)
to allow proper statistical analysis.

Discussion

Previous studies have established a connection between
the gonadal axis function and orexins: in steroid-
primed, ovariectomized rats, orexin A increases LH
secretion (7, 8), while in non-primed rats, LH secretion
decreases (6). In the present study, the estrogen prim-
ing for LH and prolactin surges was evident on the
day of proestrus, as evidenced by the elevated estrogen
levels. The estrogen priming suggested that on the day
of proestrus the effect of orexins on LH secretion would
be stimulatory. Secretion of orexin(s) appears to be vital
for the appearance of the LH and prolactin surges, as
antibody to orexin A abolishes the steroid-induced LH

and prolactin surges in ovariectomized rats (35).
Thus the increase in orexin secretion on the day of
proestrus may be an integral part of the hormonal
secretion cascade which precedes ovulation. The phys-
iological significance of this regulation remains pre-
sently speculative, though connection with food
intake and energy balance has been suggested (35).
This view is supported by the finding that in fasted
rats orexin A partially restores the LH secretion (35).

Russell et al. (10) measured the hypothalamic con-
tent of orexin A at different phases of the estrous
cycle and found that in the hypothalamus orexin
A concentration was lowest late on the day of
proestrus, while in several other brain areas the
concentrations were highest at this time-point. They
speculate that this may be due to the highest release
of orexin A occurring at this time-point, leaving
the hypothalamic orexin A content low. The tissue in
the present study was collected 5–6 h after lights
were turned on on the day of proestrus, which can be
regarded as mid-proestrous day. The discrepancy
between the orexin content profile in the two studies
may be due to the difference in the time at which the
tissue was collected, or there may be a difference in
the size of the tissue block defined as hypothalamus –
our tissue block was relatively large (more than
60 mg) and may have contained more hypothalamic
nuclei than those of the previous study.

Sleep in female rats is modified by the estrous cycle:
during proestrus, sleep is typically reduced and motor
activity is increased during the period of darkness
( ¼ the active period for rats) (17, 18). Orexins, in

Figure 1 Tissue concentrations of orexin A and orexin B in the hypothalamus on different days of the estrous cycle in young and
middle-aged rats. Young (3 months old) and middle-aged (7–9 months old) female rats were inspected for vaginal smears for at least
for 2 weeks and decapitated at 1300–1400 h, and classified as diestrous (DI; n ¼ 22), proestrous (P; n ¼ 7), estrous (E; n ¼ 10) or
irregular cycling/non-cycling (OLD; n ¼ 22). Tissue concentrations of orexin A and B in the hypothalamus were measured using RIAs.
(a) Orexin A tissue concentration (pg/mg protein) in young animals was higher on the days of proestrus and estrus than in the middle-
aged animals, but there was no difference when the levels on the day of diestrus in young rats were compared with those of middle-
aged rats (Kruskall–Wallis one-way ANOVA on ranks H(3) ¼ 22.52, P , 0.001, post hoc Dunn proestrus vs OLD and estrus vs OLD,
P , 0.05; diestrus vs OLD, ns). (b) Orexin B tissue concentration was higher on all days of estrus in young animals as compared with
middle-aged animals (Kruskall–Wallis one-way ANOVA on ranks H(3) ¼ 20.72, P , 0.001; post hoc Dunn OLD vs diestrus, proestrus
and estrus, P , 0.05).
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particular orexin A (5, 14, 15), increase wakefulness. It
has been suggested that their physiological role would
be to consolidate the waking phases by increasing
wakefulness during the natural wakefulness period.
Compatible with this concept, several studies have
shown diurnal variation both in the level of orexin
gene expression and the concentrations of the pep-
tide(s) (15, 36, 37), all of them showing higher levels
of orexin A during the active phase of the animal,
and a decline in the course of the rest phase. The
increase in orexin A content on the day of proestrus,
observed in the present study, and secretion followed
by a decrease in the hypothalamic content later on
the day of proestrus, as suggested by Russell et al.
(10), are compatible with the findings of an increase
in wakefulness starting in the later part of the rest
period and extending to the active phase during the
night of proestrus.

It has recently been suggested that the increased
orexin levels during wakefulness could be induced by
motor activity, rather than the vigilance state per se
(38). As motor activity is increased during the day of
proestrus (17, 18), it cannot be excluded that the
changes in orexin A and B content in the present
study could have been, at least partly, induced by an
increase in motor activity.

We have previously reported a decrease in orexin A
and orexin B tissue concentrations in male rats in the
course of aging, which in the lateral hypothalamus
was observed at the age of 12 months, while in the
hypothalamus a significant decrease in orexin A was
found at the age of 24 months (25). In the present
study, orexin A and B levels in the hypothalamus
were decreased in irregularly or non-cycling animals
of the age of 7 –9 months as compared with the estrous
and proestrous levels of rats of 3 months of age, while
in the lateral hypothalamus orexin A levels did not
differ from those of young rats, probably because the
animals of the present study were younger than those
of the previous study, though a gender difference
cannot be excluded.

Serum LH and FSH concentrations were not elevated
in samples collected on the day of proestrus because the
samples were collected before the rise of the LH and
FSH peaks. The concentrations of FSH and LH in the
middle-aged animals were not significantly elevated
either, while prolactin levels were higher than in the
young animals. Prolactin levels have been shown to
increase with age, possibly due to decreased efficacy
of the inhibitory tuberoinfundibular dopamine
neurons (39).

In summary, orexin A and B tissue concentrations in
the hypothalamus of young cycling rats were found to
be higher on the day of proestrus than on the days of
diestrus, suggesting that orexins may be part of the hor-
monal cascade that precedes ovulation. The elevated
level of orexin A may, in addition to its effects on endo-
crine functions, contribute to the increased disruption

of sleep that has earlier been reported to take place
during the day of proestrus. Orexins may function as
hypothalamic signals which co-ordinate the energy
balance and vigilance state with reproduction.
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