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Study Objectives: To evaluate the role of orexin-A with respect to cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers, and explore its relationship 
to cognition and sleep characteristics in a group of cognitively normal elderly individuals.
Methods: Subjects were recruited from multiple community sources for National Institutes of Health supported studies on normal aging, sleep and CSF 
biomarkers. Sixty-three participants underwent home monitoring for sleep-disordered breathing, clinical, sleep and cognitive evaluations, as well as a lumbar 
puncture to obtain CSF. Individuals with medical history or with magnetic resonance imaging evidence of disorders that may affect brain structure or function 
were excluded. Correlation and linear regression analyses were used to assess the relationship between orexin-A and CSF AD-biomarkers controlling for 
potential sociodemographic and sleep confounders.
Results: Levels of orexin-A, amyloid beta 42 (Aβ42) , phosphorylated-tau (P-Tau), total-tau (T-Tau), Apolipoprotein E4 status, age, years of education, 
reported total sleep time, number of awakenings, apnea-hypopnea indices (AHI), excessive daytime sleepiness, and a cognitive battery were analyzed. 
Subjects were 69.59 ± 8.55 years of age, 57.1% were female, and 30.2% were apolipoprotein E4+. Orexin-A was positively correlated with Aβ42, P-Tau, 
and T-Tau. The associations between orexin-A and the AD-biomarkers were driven mainly by the relationship between orexin-A and P-Tau and were not 
influenced by other clinical or sleep characteristics that were available.
Conclusions: Orexin-A is associated with increased P-Tau in normal elderly individuals. Increases in orexin-A and P-Tau might be a consequence of the 
reduction in the proportion of the deeper, more restorative slow wave sleep and rapid eye movement sleep reported with aging.
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INTRODUCTION
In humans, a growing body of evidence suggests that synaptic 
activity is associated with increased production of amyloid 
beta (Aβ).1–5 The brain maintains its connectivity during light 
sleep6–8 but reduces its metabolic and electric activity with in-
creasing depth of non-rapid eye movement (NREM) sleep.6–10 
This suggests that brain-soluble Aβ levels may fluctuate with a 
diurnal pattern consistent with higher neuronal activity during 
wakefulness and decreased neuronal activity during NREM 
sleep.11 Evidence supporting this Aβ diurnal pattern has been 
reported in some human studies but not others.12–16 With respect 
to tau protein, a recent study in transgenic mice showed that 
chronic sleep disruption resulted in an increased insoluble frac-
tion of tau in the brain,17 but the relationship between the sleep-
wake cycle and tau phosphorylation in humans is unknown.

Orexin-A (hypocretin-1), a neuropeptide produced by lat-
eral hypothalamic neurons,18 is involved in the regulation of the 
sleep-wake cycle by increasing arousal levels19–21 and has been 
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Significance
Orexin is a key regulator of sleep-wake homeostasis. Deposition of abnormal phosphorylated tau (P-Tau) in neurons and glia is one of the major features 
of Alzheimer’s disease (AD). Our results show a positive association between cerebrospinal fluid (CSF) levels of orexin-A and P-Tau in a group of 
cognitively normal elderly. Further, this correlation was not influenced by total sleep time, number of awakenings or sleep disordered breathing. Both 
findings could be explained by the decrease in the proportion of deeper restorative sleep stages that is part of normal aging or, alternatively, by AD 
pathology causing orexin dysfunction early in the disease process. Understanding the role of orexin dysfunction in older adults might help unfold new 
preventive therapies for AD.

suggested to promote Aβ production and amyloid deposition 
in transgenic mice.12 The relationship between the orexinergic 
system and the Alzheimer disease (AD) neurodegenerative 
process in humans has been analyzed by a variety of cross-sec-
tional studies in different clinical populations showing associa-
tions of cerebrospinal fluid (CSF) orexin-A with Aβ42 but also 
with phosphorylated tau (P-Tau) and total tau (T-Tau). However, 
the results so far have been inconclusive.22–27 Whether the re-
ported changes in Aβ42, P-Tau or T-Tau are directly related to 
orexin-A secretion or are secondary to changes in the sleep-
wake cycle (as suggested by a recent study in mice)28 is also 
unknown.

Based on this preliminary evidence, the aim of this study 
was to investigate the involvement of the orexinergic system 
in Aβ42, P-Tau and T-Tau concentrations by measuring CSF 
orexin-A and AD-biomarker levels at cross-section in a group 
of cognitively normal elderly controlling for sociodemographic, 
clinical, and sleep characteristics.
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METHODS

Subject Recruitment
Sixty-three cognitively normal elderly individuals were re-
cruited at the NYU Center for Brain Health from active Na-
tional Institutes of Health (NIH)-supported longitudinal 
studies of normal aging and CSF diagnostic AD-biomarkers 
that have been ongoing between 1998 and 2015. Subjects had 
previously been recruited from multiple community sources, 
including individuals interested in research participation and 
risk consultation; self-referred individuals with subjective cog-
nitive complaints; spouses, family members, and caregivers of 
impaired patients participating in other studies; and random 
sampling using voter registration records from the New York 
City Manhattan and Brooklyn Borough areas. Individuals 
with medical conditions or history of significant conditions 
that may affect the brain structure or function, such as stroke, 
uncontrolled diabetes mellitus, traumatic brain injury, any 
neurodegenerative diseases, and active major depression, as 
well as magnetic resonance imaging evidence of intracranial 
mass or infarcts, were excluded from the parent studies. Sleep 
complaints were not part of the inclusion or exclusion criteria 
of any of the NIH studies that the subjects were recruited from, 
nor were subjects referred to the study from the NYU Sleep 
Disorders Center that performed the later sleep analyses.

Clinical and Diagnostic Evaluation
Subjects received a clinical standardized diagnostic assess-
ment that is part of the Uniform Data Set II (UDS II). This 
battery was incorporated into all US AD Centers in 2005 to 
standardize data collection across centers and disciplines and 
includes medical, psychiatric, and neurological evaluations.29 
To this battery we added the Hamilton Depression Rating 
Scale,30 additional home monitoring for sleep disordered 
breathing (SDB), a detailed sleep interview, and we asked the 
participants to fill out the Epworth Sleepiness Scale (ESS)31 
to measure excessive daytime sleepiness. None of the selected 
subjects were on active treatment for SDB with continuous 
positive airway pressure or dental appliances. Eligibility re-
quirements for the present study included having had CSF 
collected by lumbar puncture (LP) and a diagnostic structural 
magnetic resonance imaging scan completed prior to the sleep 
examination (average time interval between the sleep study 
and the LP was 0.9 ± 1.1 y). Presence of the apolipoprotein E4 
(ApoE4) genotype was determined using standard polymerase 
chain reaction procedures.

Cognitive Evaluation
All subjects received a standard neuropsychological test battery, 
which has published norm values.32 The tests included to mea-
sure declarative memory were subtests of the Guild Memory 
Scale: verbal paired associates (initial [PRDI], delayed [PRDD] 
and immediate [PARI]), delayed paragraph recall subtest 
(PARD) and the Wechsler Memory Scale Revised33: Logical 
Memory subtests (Logic I and II). A subtest of the Wechsler In-
telligence Scale Revised was added to assess working memory 
(digits backward [WAISDIG-B]).34 The Digit Symbol Substi-
tution Test (DSST)34 was used to evaluate psychomotor speed. 

Trails A and digits forward (WAISDIG-F)34 were included to 
evaluate attention and Trails B Test was included to evaluate 
executive function.35 Category fluency (animals and vegetables) 
and the Boston Naming Test (BNT)36 were used to evaluate lan-
guage. The Mini Mental State Examination37 was included as 
an additional global measure of cognition.

CSF Analysis
LPs were performed using a 25-gauge needle guided by fluo-
roscopy between 11:00 and 13:00 (median time of the LP 12:39; 
interquartile range [IQR] 01:48 h) to be consistent with respect 
to circadian variation of Aβ peptides, as previously published 
studies indicate that there is a diurnal fluctuation of CSF Aβ42 
(with lower levels during the late morning hours).12,14 However, 
there is a marked decrease of Aβ42 circadian amplitude with 
increasing age,38 so it is unlikely that the results were affected 
considerably by the small variability in the time of the LPs 
in our sample. The average ‘lag time’ between midsleep (re-
ported bedtime + reported total sleep time [TST]/2) and the LP 
start time was of 10.02 ± 01:35 h. All CSF samples were kept 
on ice until centrifuged for 10 min at 1,500 g, at 4°C. Samples 
were aliquoted to 0.25 mL polypropylene tubes and stored at 
−80°C until assayed. CSF P-Tau 181 (pg/mL), T-Tau (pg/mL), 
and Aβ42 (pg/mL) were analyzed in a blind manner in batch 
mode using enzyme-linked immunosorbent assay (Fujirebo, 
Ghent, Belgium).39 CSF orexin-A (pg/mL) was measured using 
an in-house radioimmunoassay.25

Sleep Evaluation
A full sleep evaluation was performed on all subjects. This 
included a sleep interview, detailed snoring history, and self-
administration of the ESS.31 Home monitoring of SDB was 
completed using either an ARES™ Unicorder (Watermark, 
Boca Raton, FL)40 or an Embletta™ MPR (Natus Medical Inc, 
San Carlos, CA)41 systems during a 2-night period. Both sys-
tems record flow from a nasal cannula and oximetry via finger 
or forehead. The variables calculated and included in this study 
were: (1) the apnea/hypopnea index with 4% desaturation 
(AHI4%), defined as the sum of all apneas (> 90% reduction 
in airflow for > 10 sec) and all hypopneas (> 30% reduction in 
airflow for 10 sec) associated with > 4% oxygen (O2) desatura-
tion divided by the total time where both flow and oximetry 
signals were valid; (2) the AHIall, which was defined as the 
sum of all apneas and all hypopneas (hypopneas 4% + events 
with visible reduction in airflow amplitude and presence of 
inspiratory flattening ending in breaths with normalization of 
airflow as a surrogate for arousal42) identified divided by the 
total time where there was a valid flow signal irrespective of 
O2 saturation; and, (3) mean saturation of oxygen (SpO2) satu-
ration during the night. Although the systems used different 
techniques of oximetry measurement, we have previously 
shown that SDB metrics between these two measurements are 
highly correlated.40 Both systems and AHI indices have been 
compared with the recommended definitions of AHI based on 
full in-laboratory nocturnal polysomnography that included 
electroencephalographic measures of sleep and show good 
comparability.40,41 Reported total sleep time (TST) duration 
was assessed using one question: “During the past month, how 
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many hours of sleep did you usually get each night, what is 
your best estimate?” Although reported TST by a single ques-
tion has shown to have a large individual variability, in our 
global dataset of elderly subjects (n = 143), reported TST shows 
a correlation of 0.45 (P < 0.05) with actigraphy which is con-
sistent with the literature43 (data not published). Additionally, 
in contrast to previous reports of overestimation by subjective 

measure, our global data show little systematic bias of reported 
TST (−0.1 ± 1.1 h). Awakenings from sleep were assessed using 
a second question: “During the past month, how many times 
do you wake up each night, on average?”

Statistical Analysis
Logarithm transformation was applied to normalize right 
skewed variables prior to analysis (these included: P-Tau, 
T-Tau, AHI4%, AHIall, TST, number of awakenings, and mean 
SpO2 saturation). Regression-based z-scores corrected for age, 
sex, race, and education derived from our normative sample32 
were used to assess cognitive measures. Correlation analyses 
were used to assess for the relations between continuous de-
pendent (Aβ42, P-Tau, and T-Tau) and explanatory variables 
(orexin-A) to obtain correlation coefficients. Finally, stepwise 
multivariable linear regression models were examined for 
Aβ42, lnP-Tau, and lnT-Tau to determine which characteristics 
independently predicted their CSF levels. We used a stepwise 
selection process with variables significant at the P < 0.05 entry 
and exit criteria to determine the final multivariate models. 
The following variables were included in the models: orexin-
A, P-Tau (for Aβ42 analyses), Aβ42 (for P-Tau analyses), age, 
ApoE4 status, years of education, AHI4%, AHIall, TST, and 
number of awakenings. Analyses were done with SPSS 20.0 
(Chicago, IL, USA).

RESULTS

Participant Characteristics
Demographic, sleep and cognitive characteristics of all subjects 
(n = 63) are shown in Table 1. Subjects were 69.59 ± 8.55 y of 
age, 57.1% were female, and 30.2% were ApoE4+. All partici-
pants had at least 12 y of education (mean value: 16.51 ± 2.27); 
a Mini Mental State Examination score > 26 (mean value: 
29.29 ± 0.96); a Clinical Dementia Rating score of 0; and who 
received a diagnosis of cognitively normal and not actively de-
pressed by the study clinician. Of all subjects, four were being 
treated with fluoxetine (one with fluoxetine and lorazepam), 
one was taking bupropion, one was taking lorazepam, one was 
taking trazodone, two were taking diazepam, two were taking 
gabapentin, and one was taking nonprescription sleep medica-
tion (melatonin).

CSF AD Biomarker Levels and Orexin-A
A summary of CSF levels of Aβ42, P-Tau, T-tau, and orexin-A 
is presented in Table 2. There was no significant correlation 

Table 1—demographic, cognitive and sleep characteristics for all 
subjects.

All Subjects (n = 63)
Clinical Characteristics

Age (y) 69.59 (8.55)
Female 57.1%
BMI 26.73 (4.64)
Years of education 16.51 (2.28)
Hypertension 44.4%
Cardiovascular disease 6.3%
Diabetes 6.3%
Thyroid disease 25.4%
Geriatric Depression Score 1.48 (1.82)
ApoE4+ 30.2%
MMSE (raw) 29.29 (0.96)

Sleep Characteristics
Number of sleep awakenings 1.60 (1.15)
ESS 5.59 (3.58)
AHI4% 11.18 (12.49)
AHIall 24.01 (14.93)
Mean nocturnal SpO2 94.71% (1.60)
TST 7.06 (1.12)

Cognitive Characteristics
PRDI 0.47 (1.30)
PRDD 0.58 (1.31)
PARI 0.03 (0.96)
PARD 0.05 (0.95)
Logic2 −0.13 (1.13)
WAISDIG-F (z-scores) −0.21 (1.30)
WAISDIG-B (z-scores) −0.21 (1.07)
DSST (z-scores) 0.12 (0.96)
Trails A Test (z-scores) −0.10 (0.97)
Trails B Test (z-scores) −0.12 (0.81)
Category fluency animals (z-scores) 0.19 (0.93)
Category fluency vegetables (z-scores) 0.05 (1.08)
BNT (z-scores) −0.13 (0.94)

Results are reported in mean ± standard deviation (SD) or percentages. 
AHI4%, apnea-hypopnea index with 4% oxygen desaturation; 
AHIall, average number of apneas and hypopneas per hour of sleep 
occurring independent of oxygen desaturation; ApoE4+, Apolipoprotein 
E4 positive (E3/E4, E2/E4 or E4/E4); BMI, body mass index; BNT, Boston 
Naming Test; DSST, Digit Symbol Substitution Test; ESS, Epworth 
Sleepiness Scale; Logic2, logical memory subtest 2; MMSE, Mini Mental 
State Examination; PARD, delayed paragraph recall subtest; PARI, verbal 
paired associates immediate; PRDD, verbal paired associates delayed; 
PRDI, verbal paired associates initial; TST, reported total sleep time; 
WAISDIG-B, digits backward; WAISDIG-F, digits forward.

Table 2—Summary of CSF levels of Aβ42, P-Tau, T-Tau, and Orexin-A.

CSF Biomarker All Subjects (n = 63)
Aβ42 (pg/mL) 525.1 (270.7)
P-Tau (pg/mL) 43.9 (18.3)
T-Tau (pg/mL) 307.7 (146.7)
Orexin-A (pg/mL) 689.4 (156.7)

Aβ42, amyloid beta 42; CSF, cerebrospinal fluid; P-Tau, phosphorylated 
tau; T-Tau, total tau. Results are reported as mean (standard deviation).
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between Aβ42 and time of LP or lag time. Across all subjects, 
significant correlations were found between all three CSF 
biomarkers and orexin-A (Aβ42: r = 0.40, P < 0.01; lnP-Tau: 
r = 0.52, P < 0.01; and lnT-Tau: r = 0.42, P < 0.01) (Figure 1). 
Similarly, all CSF biomarkers were positively associated with 
lnP-Tau (Aβ42: r = 0.46, P < 0.01; lnT-Tau: r = 0.87, P < 0.01) 
and with Aβ42 (lnT-Tau: r = 0.35, P < 0.01) (Figure 2).

Stepwise linear regression models using Aβ42, lnP-Tau and 
lnT-Tau as the dependent variables revealed that the positive 
associations shown previously were driven by the correlations 
between orexin-A and tau proteins as only P-Tau and T-Tau 
were associated with orexin-A in the final regression models: 
(1) LnP-Tau: β = 0.42, partial correlation coefficient = 0.45 
(P < 0.01), suggesting that lnP-Tau increased by 0.17 (0.42 
times the standard deviation [SD] of lnP-tau of 0.41), equiva-
lent to an approximately 1.19-fold increase in P-Tau, for every 
SD increase in orexin-A (SD = 156.70 pg/mL) after adjusting 
for years of education and CSF Aβ42. (2) LnT-Tau: β = 0.44, 
partial correlation coefficient = 0.47 (P < 0.01), suggesting 
that lnT-Tau increased by 0.22 (0.44 times the SD of lnT-tau of 
0.5), equivalent to approximately 1.25-fold increase in T-Tau, 
for every SD increase in orexin-A after adjusting for years 

of education (full models are shown in Table 3). The best-fit 
model for CSF Aβ42 did not include orexin-A but P-Tau in-
stead: β = 0.49, partial correlation coefficient = 0.51 (P < 0.01), 
suggesting that Aβ42 increased by 112.7 pg/mL (0.49 times SD 
of 229.91 pg/mL) for every SD increase in lnP-Tau (SD = 0.41) 
after adjusting for ApoE4 (full models are shown in Table 3). 
Sensitivity analyses, removing lnP-Tau and Aβ42 from the 
linear regression models, showed that the correlation between 
lnP-Tau and orexin-A remained significant (β = 0.54, partial 
correlation coefficient = 0.55, P < 0.01) after adjusting for 
years of education; the correlation between orexin-A and Aβ42 
changed and became significant once again (β = 0.53, partial 
correlation coefficient = 0.50, P < 0.01) after adjusting for sex 
and ApoE4 status, suggesting that P-tau could mediate some of 
the observed effects between orexin-A and Aβ42.

Sleep Characteristics and Orexin-A
Sleep characteristics: objective (AHI4%, AHIall, and mean 
SpO2 during the night) and subjective (reported TST, reported 
number of awakening and ESS) are shown in Table 1. Among 
the 63 participants, 22 subjects were considered free of SDB 
(AHI4% < 5/h), 26 had mild SDB (AHI4% 5–14.99/h), and 15 

Figure 1—Scatterplots of CSF orexin-A, Aβ42, and the natural log of CSF P-Tau and T-Tau for all subjects are shown. Significant correlations were found 
between all CSF biomarkers and orexin-A levels. Aβ42, amyloid beta 42; CSF, cerebrospinal fluid; P-Tau, phosphorylated tau; T-Tau, total tau.

Figure 2—Scatterplots of natural log of CSF P-Tau and the natural log of CSF T-Tau and Aβ42 for all subjects are shown. Both CSF biomarkers were found 
to have significant positive associations with P-Tau. Aβ42, amyloid beta 42; CSF, cerebrospinal fluid; P-Tau, phosphorylated tau; T-Tau, total tau.
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had moderate to severe SDB (AHI4% > 15/h). Thirteen sub-
jects were classified as short sleepers (≤ 6 h per night), 34 were 
normal sleepers (6 to 8 h per night) and 16 were long sleepers 
(≥ 8 h per night). Only eight subjects complained of exces-
sive daytime sleepiness (ESS > 10). Using analysis of variance 
and simple bivariate correlations, orexin-A levels were nega-
tively correlated with body mass index (r = −0.43, P < 0.01) 
and were higher in females (F(1,61) = 11.83, P < 0.01). Orexin-A 
was not significantly correlated with any other available sleep 
characteristics.

DISCUSSION
This study was unique in systematically testing the relationship 
between orexin-A and CSF AD-biomarkers in a group of cog-
nitively normal elderly individuals with available objective and 
subjective ambulatory measurements of sleep. CSF orexin-A 
levels were positively correlated with Aβ42, P-Tau, and T-Tau 
but the associations were not independent, suggesting that they 
could have been mediated by the observed relationship be-
tween orexin-A and tau. Further, they were not influenced by 
reported TST, number of awakenings or SDB indices.

Previous publications are conflicting with reports of posi-
tive or no associations between orexin-A and CSF biomarkers 
of risk for AD.22–27,44 From these, three studies have similarly 
found associations between CSF orexin-A and tau but not with 
Aβ42. The first study analyzed a group of 48 AD patients and 
28 inpatient controls without dementia admitted for suspected 
subarachnoid hemorrhage or chronic polyneuropathy.27 CSF 
orexin-A levels were correlated with T-Tau but only in the AD 
group. The second study included two different groups of AD 
patients and compared them with two groups of depressed pa-
tients in full remission.44 When the whole group was analyzed, 
orexin-A was related to increases in P-Tau, T-Tau, and to a 
lesser extent Aβ40, but not Aβ42. The third study analyzed 
a group of 26 AD patients, 18 patients with Lewy body de-
mentia and 24 non-demented controls.22 Orexin-A was linked 
to T-Tau in female non-demented controls whereas associa-
tions between orexin-A and Aβ42 were absent in all groups 
regardless of sex. The variability of results from these studies 
is hard to interpret due to the small sample sizes, heterogeneity 

of comparison groups, presence of psychotropic medication 
(which could have influenced orexin-A levels or neuronal ac-
tivity, whereas less than 20% of subjects in our sample were 
receiving psychotropic medication), lack of objective sleep 
assessments, wide age ranges, and the possibility that the or-
exinergic system is affected by the neurodegenerative process 
itself, as shown by a postmortem study that reported a 40% 
decreased cell number and 14% lower CSF orexin-A levels in 
patients with advanced AD.45 Together, these results suggest 
that the relationship between CSF levels of orexin-A and AD 
biomarkers may vary depending on age, clinical diagnoses, 
medication, dementia severity, hypothalamic damage, and 
presence or absence of senile plaques.

The orexinergic system is a key regulator of sleep onset, 
transitions between vigilance states, and energy expenditure.46 
It shows a wake-on and rapid eye movement (REM)-off pat-
tern of firing47 that helps maintain sleep-wake homeostasis.48 
REM deprivation has been shown to differentially increase 
orexin-A levels in discrete brain areas in rats in what could po-
tentially comprise a positive feed forward cycle between REM 
sleep disruption and CSF orexin-A level increases.48 Normal 
aging is accompanied by a decrease in the ability to initiate 
and maintain sleep, sleep consolidation, and the proportion of 
deeper, more restorative slow wave and REM sleep stages.49 
This suggests that increases in orexin-A could be a biomarker 
of the reduced sleep depth observed as part of the aging pro-
cess. Further, the coexistence of narcolepsy and AD49 (which 
demonstrates that AD pathology can also develop in the ab-
sence of orexin) and recent studies from Roh et al.28 showing 
that focal overexpression of orexin does not alter the amount 
of Aβ pathology in transgenic mice support the hypothesis that 
it is the effect of orexin (or aging) on the sleep-wake cycle and 
not the expression of the neuropeptide itself that modulates 
Aβ pathology. Relatedly, sleep deprivation has been associ-
ated with GSK3β activation50 and better sleep consolidation 
has been shown to attenuate the effect of ApoE4 genotype 
on incident AD and development of neurofibrillary tangles 
postmortem,51 in what could comprise a second positive feed 
forward cycle between sleep disruption and increases in CSF 
P-Tau. Thus, one model that accounts for the observed positive 

Table 3—Stepwise multivariate linear regression models of P-Tau, T-Tau, and Aβ42.

CSF Biomarker Model B (SE) Parameter (β) t value P
Ln(P-Tau) (Constant) 1.87 (0.36) 5.24  < 0.001

Orexin-A 0.00 (0.00) 0.42 3.87  < 0.001
Years of education 0.05 (0.02) 0.25 2.52  < 0.05

Aβ42 0.00 (0.00) 0.27 2.44  < 0.05

Ln(T-Tau) (Constant) 3.29 (0.47) 6.99  < 0.001
Orexin-A 0.00 (0.00) 0.44 4.12  < 0.001

Years of education 0.08 (0.02) 0.37 3.46 0.001

Aβ42 (Constant) −307.2 (226.3) −1.37 0.180
Ln(P-Tau) 280.2 (61.0) 0.49 4.55  < 0.001

ApoE4 status −152.4 (53.6) −0.30 −2.70  < 0.01

Aβ42, amyloid beta 42; B (SE), unstandardized regression coefficient estimate (standard error); β, standardized regression coefficient estimate; 
CSF, cerebrospinal fluid; Ln(P-Tau), natural log of phosphorylated tau; Ln(T-Tau), natural log of total tau; P-Tau, phosphorylated tau; T-Tau, total tau.
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correlation between P-Tau and orexin-A is that age-related in-
creases in orexin-A promote wakefulness and sleep fragmenta-
tion, which then promote accumulation of P-Tau. However, we 
could not confirm this hypothesis because we were not able 
to show associations between orexin-A levels and our avail-
able ambulatory measures of sleep fragmentation (AHIall and 
reported number of awakenings). Dual orexin receptor antago-
nists, which have recently been approved for the treatment of 
insomnia,51 should therefore be investigated in elderly patients 
with elevated levels of CSF orexin-A and P-Tau as a possible 
preventive measure for development of AD pathology. It re-
mains to be determined whether such an intervention would 
only benefit those with insomnia symptoms or objective mea-
surements of poor sleep quality, as they may prove ineffective 
in normal sleepers.

An alternative model that explains the positive correlation 
between CSF P-Tau and orexin-A would be that AD pathology 
causes overexpression of CSF orexin-A. In cell cultures, Da-
vies et al.52 have reported that application of Aβ42 induces 
both amyloid plaque formation and tau phosphorylation mim-
icking an AD milieu that results in downregulation of orexin 
receptors (OxRs). Although levels of orexin-A were not spe-
cifically evaluated, these results suggest a plausible homeo-
static increase in orexin-A levels secondary to OxR reduction 
induced by AD neuropathology. In humans, current con-
sensus is that the AD pathological process begins decades be-
fore clinical symptoms occur.53 This long ‘preclinical’ phase 
of AD might first become detectable in middle age as deposits 
of P-tau in the transentorhinal cortex and in subcortical nu-
clei such as the locus coeruleus (LC).54,55 The LC is a cluster 
of norepinephrine (NE) neurons that project throughout the 
neuraxis and provide the sole source of NE to the neocortex.56 
LC-NE neurons express Ox1R57,58 and have two modes of 
firing: tonic, which is highest during wakefulness, decreases 
during NREM and is silent during REM sleep20,59,60; and 
phasic, which occurs in response to sensory stimuli.59,61 Pro-
jection neurons are remarkably sturdy and a large number of 
them containing pretangle material can survive until an indi-
vidual dies.62 However, several studies have clearly shown that 
loss of LC-NE neurons63–78 occurs later in the disease process 
and exacerbates AD pathogenesis and disease progression.79,80 
These findings suggest that overexpression of orexin could re-
sult from an imbalance between the LC-NE and orexinergic 
systems after the norepinephrine pathways are damaged by 
neurofibrillary tangles.

The clinical relevance of the observed positive correlation 
between Aβ42 and tau protein levels is unknown as most 
studies indicate that changes in P-Tau are usually downstream 
to decreases in CSF Aβ42. However, recent studies have 
shown that secreted tau may cause neuronal hyperactivity and 
increase Aβ production, suggesting another mechanism of 
feed forward regulation.81 To our knowledge, only two studies 
have found similar incidental cross-sectional evidence of a 
positive association between CSF tau and Aβ42. The first was 
performed in a group of familial AD mutation carriers82 and 
the second in cognitively normal elderly patients with normal 
CSF Aβ42 levels.83 Because amyloid precursor protein and tau 
are highly expressed proteins in neurons, their increased levels 

in CSF could reflect overall synaptic function83 and/or the ef-
fects of impaired sleep.84

Limitations of this study include the cross-sectional nature 
of the findings; the time interval between the sleep studies and 
the LP; the absence of nocturnal polysomnography recordings 
with measurements of sleep architecture and REM duration 
that could confirm our explanatory hypothesis; and the use of 
reported TST instead of objective measurements of sleep du-
ration. The results of this study should therefore be validated 
in independent cohorts with in-laboratory encephalographic 
measures of sleep architecture, young comparison groups, and 
LPs performed shortly after or before the sleep studies.
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