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Abstract: The development of antibody therapies against SARS-CoV-2 remains a challenging task
during the ongoing COVID-19 pandemic. All approved therapeutic antibodies are directed against
the receptor binding domain (RBD) of the spike, and therefore lose neutralization efficacy against
emerging SARS-CoV-2 variants, which frequently mutate in the RBD region. Previously, phage display
has been used to identify epitopes of antibody responses against several diseases. Such epitopes
have been applied to design vaccines or neutralize antibodies. Here, we constructed an ORFeome
phage display library for the SARS-CoV-2 genome. Open reading frames (ORFs) representing the
SARS-CoV-2 genome were displayed on the surface of phage particles in order to identify enriched
immunogenic epitopes from COVID-19 patients. Library quality was assessed by both NGS and
epitope mapping of a monoclonal antibody with a known binding site. The most prominent epitope
captured represented parts of the fusion peptide (FP) of the spike. It is associated with the cell entry
mechanism of SARS-CoV-2 into the host cell; the serine protease TMPRSS2 cleaves the spike within
this sequence. Blocking this mechanism could be a potential target for non-RBD binding therapeutic
anti-SARS-CoV-2 antibodies. As mutations within the FP amino acid sequence have been rather
rare among SARS-CoV-2 variants so far, this may provide an advantage in the fight against future
virus variants.

Keywords: phage display; epitope mapping; COVID-19; genomic library; NGS

1. Introduction

The novel beta-coronavirus SARS-CoV-2 was described in late 2019 and is responsible
for the current public health crisis of global concern [1–4]. To tackle this pandemic, it
is important to understand which viral proteins are targeted by the humoral response
mounted by the host organism. The wild type SARS-CoV-2 viral genome [5] encodes four
structural, 16 non-structural and several accessory proteins within the 29,903 nucleotides
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(nt) of (+)ssRNA [6–11]. The pathogenicity of SARS-CoV-2 is linked to its ability to bind
the human angiotensin-converting-enzyme 2 (ACE2) [12]. ACE2 is recognized by the
receptor-binding-domain (RBD) of the S1 subunit of the spike protein. Upon binding,
the spike protein mediates viral cell fusion by changing from its pre-fusion to its post-
fusion condition [13,14]. Once the virus particle is attached to the host cell, the spike is
processed by host cell proteases such as furine, TMPRSS2 or cathepsins. These enzymes
TMPRSS2 prime the spike protein for efficient cell entry, leading to the infection of the
host cell [15]. COVID-19 patients mount a significant immune response after infection
or vaccination, including neutralizing antibodies [16,17]. Most therapeutic approaches
using antibodies are focused on preventing the virus from binding to host cells. Targeting
the RBD-ACE2 interface with such inhibiting antibodies has been a successful approach
to generate approved therapeutics to prevent viral cell attachment [18–22]. However,
newly arising SARS-CoV-2 variants have proven that the virus can introduce mutations
within the RBD that lead to loss-of-function of known therapeutics [23–25]. Besides the
spike protein, the nucleocapsid (N) protein is also highly immunogenic and is currently
used in most point-of-care (PoC) coronavirus antigen tests available on the market [26].
Other viral proteins, such as ORF3a, that is involved in viral replication and release, or
ORF8, which is an Ig-like folded dimer that is poorly conserved among coronaviruses
and interacts with many host cell proteins, are currently under investigation to ascertain
their suitability as targets for the development of therapeutics [7]. Despite the fact that cell
binding relies on RBD, directly neutralizing anti-RBD antibodies may only be one part of
anti-viral defenses, as other mechanisms such as CDC, ADCC or ADCP may help to clear
the virus without direct interference with the RBD/ACE2 interaction [27]. Along these lines,
antibodies targeting the N-terminal domain (NTD) of the spike protein showed neutralizing
capacities [28]. In this respect, it is also interesting to analyze the role of antibodies on the
epitopes outside of the RBD. In the past, the identification of immunogenic epitopes via
phage display has been useful for the development of vaccines and passive immunization
approaches. Using phage display, Riemer et al. [29] discovered that the short peptide
sequences of the trastuzumab antigen Her-2/neu were immunogenic. This peptide has
been declared a mimotope, because it mimics the parts of the epitope that are responsible for
antibody binding, and has been successfully used to induce the production of highly specific
antibodies, similar to trastuzumab in vivo in mice. They showed that these antibodies
have a neutralizing effect. To identify such mimotopes for SARS-CoV-2, many research
groups have performed assays based on microarray approaches. Here, synthetic peptides
are used to determine the binding site of antibodies in patient sera. Potential immunogenic
peptides have been identified for the spike protein using a set of synthetic, overlapping
peptides. In a study by Wang et al. [30], two major immunogenic peptides were identified
with this method, both representing fragments of the spike protein. One ranges from
amino acid 561 to 579 just downstream the ACE2-RBD interface, while the other has been
located on S2 between amino acids 818 and 835, i.e., the fusion peptide that is highly
conserved among coronaviruses [30]. A comparable attempt by Li et al. [31] confirmed
similar immunogenic epitopes on the spike protein. Such proteome analysis using peptide
arrays is a common tool to identify immunogenic epitopes. However, the findings vary
between studies depending on the method but also on the analyzed patient serum samples.
In particular, peptide arrays are limited by the maximal length of the synthetic peptides
(typically around 15–20 amino acids), thus missing conformational or many non-linear
epitopes, which make up a significant fraction, i.e., around 40%, of antibody epitopes [32].
ORFeome display can detect immunogenic proteins independent of the transcriptome or
proteome, as it does not rely on cDNA or protein extracts [33–35]. In this study, we present
an ORFeome phage display approach with the aim of identifying immunogenic peptide
sequences across the SARS-CoV-2 genome.
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2. Materials and Methods
2.1. Patient Serum Samples

In total, 20 samples were obtained in Germany and Northern Italy between February
2020 and January 2021 from non-vaccinated patients that had been hospitalized at inten-
sive care units (ICU). Sampling was performed according to the Declaration of Helsinki.
Plasma samples were taken between March 2020 and February 2021. Approval for the
serum samples was given from the ethical committee of the Technische Universität Braun-
schweig (Ethik-Kommission der Fakultät 2 der TU Braunschweig, approval number FV-
2020-02) and from the Institutional Review Board of Policlinico San Matteo (protocol
number P_20200029440).

2.2. Library Construction

The SARS-CoV-2 encoding sequences were separately amplified from seven genome
fragments in pUC57 vectors via PCR using individual primers for each fragment. DNA of
each fragment was purified using the Macherey-Nagel PCR purification Kit according to the
manufacturer’s instructions. PCR products were sonicated for 30 s on/30 s off for 70 cycles
(Bioruptor, Diagenode). The obtained fragmented DNA was blunt-end polished (Fast DNA
Repair Kit, Thermo Fisher, Braunschweig, Germany), purified with the NucleoSpin Gel
and PCR Clean-up Kit (Macherey-Nagel, Düren, Germany) and cloned into pHORF3 with
T4 DNA Ligase (NEB) overnight at 16 ◦C followed by a heat-inactivation at 70 ◦C for
10 min [33]. Ligations were purified using Amicon Ultra 0.5 mL tubes (Merck Millipore,
Tullagreen, Ireland) according to the manufacturer’s instructions. Electro competent E. coli
SS320 (Lucigen, Middleton, WI, USA) were used for transformation in a pre-chilled 0.1 cm
electroporation cuvette using a micropulser (BioRad, Munich, Germany) with 1.8 kV for at
least 5 ms. Immediately after pulsing, 1 mL of pre-warmed recovery medium (Lucigen) was
added and cells were recovered for one hour at 37 ◦C, 650 rpm. Next, 10 µL of transformed
E. coli suspension were used for a dilution series ranging from 10−4 to 10−6 in 2xYT medium
and plated them on 2xYT agar plates supplemented with 100 µg/mL Ampicillin and 0.1 M
glucose (2xYT-GA). The next day, the obtained colonies were counted and the maximum
library diversity was determined. The remaining 990 µL recovered E. coli were plated onto
a 15 × 15 cm 2xYT-GA plate. After overnight cultivation, the clones were collected by
applying 25 mL 2xYT-GA medium onto the plates and incubation for 15–30 min on a plate
rocker. The suspension was harvested with a L-spatula and 1 mL aliquots were saved as
glycerol stocks (750 µL medium and 250 µL 80% glycerol solution) by freezing them in
liquid nitrogen and storing them at −80 ◦C.

2.3. Colony PCR for Library Quality Control

E. coli cells that contained a pORF3 vector were analyzed with PCR according to the
method described by Kügler et al. [33]. Briefly, the PCR was carried out with the primers
MHLacZPro_f (5′-GGCTCGTATGTTGTGTGG-3′) and MHgIII_r (5′-CTAAAGTTTTGTCGT
CTTTCC-3′) according to the following protocol: 1 min denaturation at 95 ◦C, 30 s at 56 ◦C
for annealing and 1 min at 72 ◦C for elongation. The process was repeated 29 times with
a final elongation step for 5 min. The PCR products were analyzed on a 1% agarose gel
which ran at 120 V for 30 min in 1× TAE buffer.

2.4. ORF Enrichment with Hyperphage

To enrich SARS-CoV-2 related protein fragments, the library was packaged using
Hyperphage (Progen, Heidelberg, Germany) that lacks the gene encoding pIII [36]. To
do so, the obtained glycerol stocks were inoculated in 200 mL 2xYT-GA medium. The
bacterial culture grew at 37 ◦C and 210 rpm until it reached an optical density at 600 nm
(OD600) of approximately 0.5. Then, 25 mL of the culture was infected with 2.5 × 1011 cfu
of Hyperphage. The culture incubated at 37 ◦C without shaking for 30 min and at 37 ◦C
with shaking for 30 min at 250 rpm. Cells were harvested by centrifugation at 3220× g
for 10 min and resuspended in 2xYT-KA medium for overnight phage production at
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30 ◦C, 210 rpm. The next day, the culture was centrifuged for 30 min at 8000 rpm (Sorvall
Centrifuge RC 6+; Rotor F9S 4×000Y). The supernatant was harvested and 1/5 (v/v) of
20% PEG (v/v) in 2.5 M NaCl were added. The suspension was incubated overnight on ice
in a 4 ◦C environment to precipitate phage. Next, the suspension was centrifuged for 1 h
at 11,000 rpm. The supernatant was discarded and the remaining pellet was resuspended
in 10 mL phage dilution buffer (PDB). The phage suspension was added to 1/5 of the
final volume of 20% PEG (v/v) in 2.5 M NaCl and incubated overnight on ice. Then the
suspension was centrifuged for 30 min at 20,000 rpm and the supernatant was discarded.
The phage pellet was diluted in 1 mL PDB and added to a 2 mL Eppendorf tube. Finally,
the cells were centrifuged 2× at 18,000× g and filtered in a 2 mL vial using a 0.45 µm filter.
The libraries were stored at 4 ◦C. Libraries were titrated in a dilution series ranging from
10−8 to 10−12 and 10 µL of each dilution was used to infect 50 µL E. coli XL-1 Blue MRF’
cells (OD600 = 0.5). The infected bacteria were plated out on 2xYT-GA plates.

2.5. NGS Data Analysis

For Next-Generation-Sequencing (NGS), the libraries were used to re-infect 5 mL of
E. coli XL1-Blue (MRF’) cells at an OD600 = 0.4–0.6. The infected bacterial culture was
inoculated overnight at 37 ◦C, 250 rpm and used for plasmid preparation with the Macherey-
Nagel Easy Pure kit according to the manufacturer’s instructions. The obtained plasmids
were used for PCR amplification of the sequence of interest. Here, it was important to
introduce barcode sequences via primers for NGS analysis at GENEWIZ, according to the
GENEWIZ Amplicon-seq guidelines. The PCR products were purified and analyzed on
a 1% agarose gel. Resulting FASTQ files were mapped to the Wuhan reference genome
(Genbank No.: MT326090.1) using BWA-MEM with the UGENE workflow “Processing
of raw DNA-seq paired-end reads”. The resulting BAM file was further processed using
samtools [37] and a coverage file was created according to a previously published python
script which indicated the reads that cover each position on the SARS-CoV-2 genome [38].
The coverage file was plotted with OriginPro 2018. Furthermore, the average coverage of
each ORF on the nucleotide level was analyzed. The calculated average value of the reads
per position were plotted using OriginPro.

2.6. Identification of Immunogenic Epitopes

The panning procedure was adapted from Zantow et al. [34]. Briefly, in the first
pre-incubation step, the phage binding antibodies present in the sera were excluded from
the library. To achieve this, three wells per serum of a 96-well microtiter plate (MTP) (High
Bind, Corning, Glendale, AZ, USA) were coated with Hyperphage (1011 phage/well) and
incubated overnight at 4 ◦C. In parallel, a 100-fold excess (diversity/library titer) of each
library was pre-incubated for one hour at RT in panningblock solution (1% (w/v) BSA
and 1% (w/v) milk powder in PBS + 0.05% (v/v) Tween20 on an unrelated human IgG
antibody and on the anti-human Fc specific antibody MC002-M (Abcalis, Braunschweig,
Germany), used for capturing of the sera. Serum antibodies dissolved in panningblock
were captured by the anti-human Fc specific antibody MC002-M for two hours at RT. After
washing, the pre-incubated libraries were applied and incubated two hours at RT. Unbound
phage were washed away and 150 µL/well trypsin (10 µg/mL in PBS) was applied to
each well for 30 min at 37 ◦C for elution. Then, 100 µL of eluted phage were used for
infection of 5 mL E. coli TG1 cells at an OD600~0.5 in a 24-well MTP. The plates were
incubated 30 min without and then 30 min with shaking at 450 rpm at 37 ◦C in a shaker
(Labnet Vortemp56, Marshall Scientific, Hampton, NH, USA). Medium was changed by
centrifuging the plate 10 min at 2500× g (Eppendorf 5810R) and drying the plate briefly
on a paper towel. Afterwards, 5 mL of 2xYT medium supplemented with 100 µg/mL
Ampicillin and 0.1 M glucose (2xYT-GA) were added to the pellet and incubated 30 min at
37 ◦C, 450 rpm. The suspension was infected with 17 µL Hyperphage (3 × 1012 cfu/mL)
and incubated 30 min at 37 ◦C without and afterwards 30 min at 37 ◦C with shaking at
450 rpm. Plates were centrifuged as before and 5 mL 2xYT-A + 70 µg/mL Kanamycin
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(2xYT-KA) were added to the pellet. Phage production was carried out overnight at 30 ◦C,
450 rpm. For the next round of panning, 100 µL produced phage were added to 50 µL
panningblock solution and applied to the pre-incubation steps. After the second panning
round, 1:10, 1:100 and 1:1000 dilutions of the eluted phage were prepared in 2xYT medium.
From each dilution, 10 µL were used to infect 50 µL E. coli XL1-Blue MRF’ (OD600~0.5).
The infected bacteria were plated on 2xYT-GA agar plates. Randomly selected clones were
analyzed as indicated above and alignments were done with UGENE (version 34).

2.7. Phage Clone Production for Screening

For each panning approach, a 96-well MTP was filled with 150 µL 2xYT-GA medium
per well after the third panning round. Individual clones were picked from the 2xYT-GA
agar plates and inoculated in the 96-well MTP overnight at 37 ◦C, 800 rpm. This plate
served as a master-plate and was stored at −80 ◦C in 20% (v/v) glycerol. The next day,
10 µL were transferred from each well to 180 µL 2xYT-GA in a new 96-well MTP. The
MTP was incubated two hours at 37 ◦C, 800 rpm before it was infected with 10 µL/well
of Hyperphage (3 × 1012 cfu/mL). After incubation for 30 min at 37 ◦C with and without
shaking at 800 rpm, the plate was centrifuged at 3220× g for 10 min. The pellets were
resuspended in 2xYT-KA medium and phage particles were produced overnight at 30 ◦C,
800 rpm. For epitope mapping of monoclonal scFv-Fc antibodies, a single panning round
was performed.

2.8. Screening ELISA

For screening ELISA experiments, 96-well MTP (High Bind, Corning, Glendale, AZ,
USA) were coated with 25 ng/well of a mouse anti-pVIII antibody (clone B62-FE2; Progen)
and incubated overnight at 4 ◦C. Wells were washed three times with Milli-Q + Tween20
(0.1% (v/v)) and blocked with 350 µL/well of 2% (w/v) M-PBST. Overnight produced
phage particles were captured and COVID-19 patient sera were diluted 1:100 in 2% M-PBST
supplemented with 1010 cfu Hyperphage and 1:10 (v/v) E. coli cell lysate and applied to the
captured phage particles. To detect bound serum antibodies, an anti-human IgG polyclonal
antibody conjugated with HRP (A0170; Sigma Aldrich, St. Louis, MO, USA) was applied
at a dilution of 1: 70,000 and incubated two hours at RT. The plates were washed three
times with Milli-Q + Tween20 and TMB substrate was applied for 20 min to each well.
After stopping the reaction with 1 N sulfuric acid the absorption at 450 nm and 620 nm
was measured. In the assays using monoclonal antibodies, clones were considered positive
with a ∆OD450-620 nm signal higher than 1.3.

2.9. Epitope Characterization by Peptide Microarray

Microarray assays were carried out according to the method described by SK-Hotop
et al. [39]. Briefly, 15-mer peptides of the four structural SARS-CoV-2 proteins (Ref.
NC_045512, Wuhan-Hu-1) with a three amino acid overlap were synthesized on cellu-
lose membranes, dissolved and printed to glass slides. Patient serum samples were diluted
1:120 in blocking buffer (2% casein in TTBS (1% Tween 20 (w/v) in TBS) and incubated
on the slides over night at 4 ◦C. Bound serum antibodies were stained with Alexa Fluor®

647 conjugated, isotype specific secondary antibodies (Jackson ImmunoResearch, West
Grove, PA, USA). Data analysis was performed by visual inspection.

2.10. Titration ELISA on Identified Peptides

Biotinylated peptides were obtained from Peps4LS (Heidelberg, Germany). Costar
384-well MTP were coated with 200 ng/well Streptavidin overnight at 4 ◦C. The following
day, all wells were washed three times with Milli-Q + Tween20 and blocked for one hour at
RT with 2% (w/v) BSA dissolved in PBS-T. Next, 1 µg of biotinylated peptide per well was
captured for one hour at RT and plates were washed three times as described before. Sera
were titrated in 2% BSA in PBS-T ranging from the dilution factor of 1:300 to 1:3 × 10−8

and applied to a 384-well MTP. Unbound serum antibodies were washed away three times
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with Milli-Q + Tween20. To detect bound serum antibodies, we applied an anti-human IgG
polyclonal antibody conjugated with HRP (A0170; Sigma; 1:70,000) and incubated for one
hour at RT. The plates were washed three times with Milli-Q + Tween20 and TMB substrate
was applied for 20 min to each well and analyzed as described before. Data analysis and
graphical plots were carried out using OriginPro (version 2018).

3. Results
3.1. The Genome of SARS-CoV-2 Is Represented within the ORFeome Phage Display Library

We constructed a genomic ORFeome display library covering the entire viral genome.
By using the phagemid vector pHORF3, which selects for open reading frames (ORF) upon
packaging with Hyperphage, phages display viral protein fragments of different sizes on
their surface [36,40]. The alignment of the FASTQ files obtained from NGS to the Wuhan
reference genome (Genbank No.: MT326090.1) showed a coverage of the entire SARS-CoV-2
genome (Figure 1A). The plotted coverage file indicated that the reads were distributed over
the genome, but each nucleotide position was represented differently: the structural ORFs,
such as Spike, Envelope (E), Membrane (M) and Nucleocapsid (N), were covered better
than the accessory proteins. Overall, the library covered the spike gene with a median of
3849 reads per nucleotide position (Figure 1B). The 3′-end of the genome, where all the
smaller non-structural proteins are encoded, showed less abundant coverage compared to
ORF1ab. The least represented ORF was ORF6, since the median read count per nucleotide
position was 8. In contrast, the N protein showed median coverage of 17,293 reads per
nucleotide position. Taken together, the median of the coverage rate for each nucleotide
position of the entire genome was 4310 reads.Viruses 2022, 14, x FOR PEER REVIEW 7 of 15 
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referred to a better coverage of the corresponding nucleotide position. (B) average reads per nu-
cleotide position (as indicated in (A)) plotted against the length of the corresponding ORF, indicating
the quality of coverage for each ORF. Structural ORFs are indicated in blue and ORFs encoding
accessory proteins are indicated in red.

3.2. Epitope Identification of Monoclonal Antibodies

To determine whether the generated SARS-CoV-2 genomic ORFeome library could
be used to identify antibody epitope, we tested the non-neutralizing monoclonal antibody
STE73-6C10 that was shown to recognize a peptide sequence within the S1 subunit [41]. The
ORFeome phage display and subsequent screening ELISA results led to the identification
24 clones that were sequenced. Twenty-three of these clones were different, with insert
lengths between 31 and 77 aa. All clones shared a minimal epitope region of 25 aa (CTEVP-
VAIHADQLTPTWRVYSTGSN) that is identical to a sequence on the S1 subunit of the spike
protein (Genbank No.: MT326090.1) (Figure 2A). These findings were verified by peptide
microarray analysis of STE73-6C10. Here, it was shown that the antibody recognized three
peptides on the used slides (Figure 2B). Notably, peptides 207 and 208 showed a high signal,
whereas peptide 209 was faintly recognized. Due to this decrease in binding of peptide 209,
we determined a 12 amino acid long core epitope consisting of the motif VAIHADQLTPTW
for antibody STE73-6C10.
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the amino acid sequence 619–639 of the Wuhan variant, Genbank No.: MT326090.1.
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3.3. Immunogenic Epitope in the S2 Subdomain of the Spike Protein Is Common among
COVID-19 Patients

Five COVID-19 patient sera from Northern Italy and Germany were panned against
the generated ORFeome library to determine the mimotopes of the antibodies generated
during humoral response. Prior to ORFeome display, antibody titers against spike and
RBD were determined (Figure S1). Patient TUBS21 revealed the highest IgG titer among the
selected patient sera. A major immunogenic epitope within the S2 subdomain of the spike
protein was clearly evident after two panning rounds, as indicated in Table 1. Screening
ELISA results determined the amount of clones sent to sequencing. The sequenced clones
were aligned to the spike protein’s aa sequence (Genbank No.: MT326090.1) and plotted
with Ugene (Version 34) or Geneious (v8.1) (Figures S2–S6). Alignment analysis of patient
17 revealed that this patient has developed antibodies against the N-terminal part of the N
protein (Table 1). For patient 1, we identified two distinct mimotopes at the S2 subdomain
of the spike protein. The main mimotope refers to the fusion peptide (FP), which bears the
cleavage site of the TMPRSS2 and is essential for the viral-host cell fusion process [12]. A
less abundant mimotope was located between HR1 and HR2 than from a helical structure
during cell fusion [42]. The analysis of patient 18 led to the identification of similar
mimotopes. Here, two clones representing the site between HR1 and HR2 were identified,
and 18 clones referred to the TMPRSS2 cleavage site epitope, which was also abundant in
patient 1. Moreover, we identified two spike related epitopes for sample TUBS21. Here, one
immunogenic epitope within the SD1 subdomain of spike, close to the RBD-ACE2 interface,
was identified. Eleven distinct clones with a size ranging from 25 to 61 aa determined a
MER of 17 aa (ESNKKFLPFQQFGRDIA). The second epitope was determined by 33 clones
ranging from 16 to 70 aa in size. The 14 aa long MER was defined between the aa811 to
aa824 (KPSKRSFIEDLLFN), which was also observed for patient sample TUBS42, further
strengthening the results obtained with sera collected in Italy. Overall, the mimotope
represented by this peptide (DPSKPSKRSFIEDLLFNKVTLADA), encompassing the FP,
was the most common and abundant. Therefore, it was synthesized, and more patient
samples were analyzed by ELISA, to determine whether there was binding directed to
this mimotope. As Figure 3A indicates, 12 out of 15 patients from Italy had generated
antibodies recognizing this mimotope. Moreover, our peptide microarray results confirm
that patient sera recognize, among others, this mimotope (Figure 3B).

Table 1. Mimotopes of SARS-CoV-2 positive patients identified by ORFeome phage display. Amino
acid positions are given according to Wuhan reference genome (Genbank No.: MT326090.1). Hits
were determined by screening ELISA and clones that led to a higher signal than background were
sent to sequencing.

Sample Selected Hits Epitope Sequence

patient 1 5/8 811-PSKRSFIEDLLFNKVT-828
1/8 1143-ELDSFKEELDKYFKNHTSPDV-1165

patient 17 1

49-
ASWFTALTQHGKEDLKFPRGQGVPINTNSSPDDQIGY
YRRATRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLPYGAN
KDGIIWVATEGALNTPK
DHIGTRNPANNAAIVL
QLPQGTTLPKGFYAEGS
-177

patient 18

18/22 811-PSKRSFIEDLLFNKVT-828

2/22
1143-ELDSFKEELDKYFKN
HTSPDVDLGDISGINASVVNIQKEIDR
-1186

TUBS 21
11/67 553-ESNKKFLPFQQFGRDIA-571
33/67 810-KPSKRSFIEDLLFN-825

TUBS 42 18/29 809-SKPSKRSFIEDLLF-824
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panning are indicated with colors (red: patient 1, blue: patient 17 and green: patient 18). Patient
samples from northern Italy that were not subject of ORFeome phage display are indicated in grey.
Fitted curves were obtained by the Logistic5 function in OriginPro2018. (B) Peptide microarray
analysis of the IgG response of patient sera 1, 17 and 18 on the four structural SARS-CoV-2 proteins.
Left: Spike; Upper right: Nucleocapsid; Middle right: Membrane; Lower right: Envelope. Areas
marked in red correspond to identified hits for linear epitopes detectable. Hit identification was
carried out by visual inspection.

4. Discussion

In this study, we identified an immunogenic polypeptide located within the spike
protein of SARS-CoV-2 which is prominently recognized by COVID-19 patient sera. This
peptide was found in four out of five serum samples from COVID-19 ICU patients by
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ORFeome phage display. The minimal epitope region (MER) encodes the 16 amino acid
(aa) sequence (811-PSKRSFIEDLLFNKVT-828) and refers to the N-terminus of the fusion
peptide (FP) of spike, which is involved in viral cell entry after the spike protein is cleaved
by the host protease TMPRSS2 [12,43]. This result was further strengthened by the presence
of antibodies directed to this peptide sequence in several other patient sera (15 out of
17) and confirmed by peptide microarray assays. Here, the analyzed patient sera could
detect 15-mer peptides with an offset of three amino acids. We detected the presence
of antibodies, recognizing the aa sequence of the FP and peptide sequences referring to
the S1 subunit (553-ESNKKFLPFQQFGRDIA-571) of spike, which have also been found
by others with different methodologies. [30,44,45]. Consistent with results described by
Zamecnik et al. [46] we found similar immunogenic peptides on the spike protein and
Nucleocapsid (N). Using ReScan with a phage display library spanning the SARS-CoV-2
proteome with 38 aa long fragments and a 12 aa overlap, they identified two epitopes
that also represent the FP (residues 799-836; 818-855; RefSeq.: NC_045512). Furthermore,
they also characterized an immunogenic epitope between residues 1141 and 1178 which
we observed for patient 1 and patient 18 as well [46]. A similar approach using phage
display led to the successful identification of immunogenic peptides representing the Zika
virus envelope protein of infected patients. However, the limitation of phage display-
derived methods is that binding to epitopes that rely on post-translational modifications or
quaternary structures is unlikely to be detected [47].

In our study, we show that the identification of this epitope is possible using ORFeome
phage display of a whole-genome SARS-CoV-2 library. The library quality determines
whether immunogenic epitopes can be found within serum samples or not. To this end, our
library was analyzed by NGS; the results indicated that the majority of the genome sequence
was covered by the library, despite some accessory proteins being only marginally repre-
sented. For additional control, we showed that monoclonal antibody STE73-6C10 [41] binds
its epitope on the SD2 subdomain of the spike protein (CTEVPVAIHDQLTPTWRVYSTGSN).
The identified mimotope was confirmed by a peptide microarray assay, where we identified
the 12 aa-long motif VAIHADQLTPTW. Compared to what we found with ORFeome phage
display (31–72 aa), this peptide is much shorter, which shows that functionally displayed
polypeptides on pIII of our SARS-CoV-2 genome library are, in general, longer than the
used 15-mers in the peptide microarray assay.

Newly emerging SARS-CoV-2 variants can escape the immune response to earlier
variants by introducing mutations in the RBD [23,24]. Targeting the FP with antibodies may
prevent the host protease TMPRSS2 from cleaving the S2 subdomain, thus reducing viral
cell entry [12]. Moreover, the aa sequence of FP does not vary between currently known
SARS-CoV-2 spike variants [48]. The generation of antibodies against the FP could therefore
lead to the identification of a candidate that can still be used against newly emerging SARS-
CoV-2 variants. Small molecules targeting TMPRSS2 have been shown to prevent viral cell
entry in vitro, even though the physiological function of TMPRSS2 remains elusive [49]. It
remains unclear what effects could occur when targeting TMPRSS2 alone. It seems that
this protease is also involved in influenza infection by cleavage of hemagglutinin [50].
Targeting the FP with specific antibodies may also offer an alternative approach, avoiding
possible deleterious effects caused by the targeting of a host endogenous protein. The
FP leads to an immune response in COVID-19 patients and, to our knowledge, is not
affected by N-gylcosylations [51]. This immunogenic character may be used to artificially
initiate an immune response with this peptide sequence as part of a vaccine. Riemer et al.
showed that short peptide fragments, i.e., 10 aa in size, can successfully induce an immune
response for other diseases in a vaccine-like manner [29]. The FP sequence could have
similar potential and might serve as a vaccine candidate that can induce the generation
of SARS-CoV-2 eliminating antibodies. Our findings suggest that the spike protein’s FP
of SARS-CoV-2 is an immunogenic sequence that is prominently targeted by the immune
system of COVID-19 patients.
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We showed that ORFeome phage display could identify this epitope in a fast and
effective manner. The sequences may be useful for the development of therapeutics (either
neutralizing antibodies or vaccines) which are more likely to be active against future
variants, based on the observation that the FP sequence has remained conserved so far
among SARS-CoV-2 circulating variants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14061326/s1, Figure S1: EC50 values of reciprocal sera dilutions
determined by ELISA.; Figure S2: Alignment of selected clones from patient 1 to the Spike protein
reference genome (Genbank No.: MT326090.1).; FigureS3: Alignment of selected clones for Spike
epitope 1 from patient 18 to the reference genome (Genbank No.: MT326090.1).; Figure S4: Align-
ment of selected clones for Spike epitope 2 from patient 18 to the reference genome (Genbank No.:
MT326090.1).; Figure S5: Alignment of all selected clones for both epitopes from patient TUBS21 to
the 1274 aa long Spike reference sequence (Genbank No.: MT326090.1). Figure S6: Alignment of all
selected clones selected from patient TUBS42 to the 1274 aa long Spike reference sequence (Genbank
No.: MT326090.1).
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