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Organellar proteomics: turning inventories into insights
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Subcellular organization is yielding to large-scale analysis.
Researchers are now applying robust mass-spectrometry-based
proteomics methods to obtain an inventory of biochemically isolated
organelles that contain hundreds of proteins. High-resolution
methods allow accurate protein identification, and novel algo-
rithms can distinguish genuine from co-purifying components.
Organellar proteomes have been analysed by bioinformatic meth-
ods and integrated with other large-scale data sets. The dynamics of
organelles can also be studied by quantitative proteomics, which
offers powerful methods that are complementary to fluorescence-
based microscopy. Here, we review the emerging trends in this rapidly
expanding area and discuss the role of organellar proteomics in the
context of functional genomics and systems biology.
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Introduction
The 23,000 or so human genes give rise to a much larger number of
active proteins owing to processes such as alternative splicing and
post-translational modification. A further level of complexity is intro-
duced by the precisely controlled temporal and spatial organization
of these proteins. Microarray experiments provide information on
the expression of transcripts, but do not address the important ques-
tion of where in the cell proteins are directed to and where they are
active. To understand cellular function, we need to know the cast of
characters at each time point and location in the cell. 

A simple hierarchy of cellular organization would include cel-
lular compartments, such as the cytosol and nucleus, membrane-
enclosed organelles, and large and small multiprotein complexes.
There is some overlap between these levels, and the definitions are
partly arbitrary (Fig 1). Organelles have classically been studied by
biochemists with the help of separation and enrichment methods,
and by cell biologists using microscopy. The first proteome-wide
localization study using green fluorescent protein (GFP) 
fusion proteins in yeast has been published (Huh et al, 2003). In 

mammalian systems, however, such methods face numerous chal-
lenges as fusion proteins are usually overexpressed, and tagging
itself is difficult and can lead to artefacts. In principle, mass-spec-
trometry-based proteomics (Aebersold & Mann, 2003) allows all
the proteins in a purified complex to be identified. The first multi-
protein complexes were characterized shortly after modern pro-
teomics methods were introduced (Neubauer et al, 1997, 1998;
Rout et al, 2000), and the proposal to systematically map multipro-
tein complexes dates back 10 years (Lamond & Mann, 1997).
Here, we review mass-spectrometry-based proteomics methods
that generate organellar proteomes and focus on approaches that
go beyond simple protein lists to provide functional proteomics
data. More than 250 organellar proteomics studies have been pub-
lished and several specialized reviews can be found (see, for
example, Brunet et al, 2003; Dundr & Misteli, 2001; Handwerger
& Gall, 2006; Taylor et al, 2003; Yates et al, 2005).

Mass spectrometry to obtain protein inventories
After an organelle has been biochemically purified, it can be
analysed by mass spectrometry, which has now almost completely
replaced two-dimensional (2D) gel electrophoresis as a method for
proteome analysis. Many mass-spectrometry-based methods have
been used in organellar proteomics, the most robust and powerful
of which involve one-dimensional (1D) gel electrophoresis, enzy-
matic degradation of the proteins, chromatographic separation of
the resulting peptides and electrospray tandem mass spectrometry
(MS2; Fig 2). Advantages of this workflow are that 1D gel electro-
phoresis is an almost universal protein-separation method, and the
use of sodium dodecyl sulphate (SDS) during this step allows the
efficient denaturation of proteins and the removal of buffer con-
stituents that are detrimental to mass spectrometry. However,
direct ‘in-solution’ digestion followed by liquid-chromatography
MS2 is attractive for proteomes of medium complexity, particularly
when measurements need to be repeated many times and a rela-
tively small amount of sample is available. 2D peptide chromato-
graphy can be highly automated and can also characterize 
complex proteomes (Link et al, 1999).

One potential source of error in obtaining a proteomic inventory
is the erroneous identification of proteins, and many published pro-
teomes contain significant numbers of these ‘false positives’ (Steen
& Mann, 2004). Fortunately, the development of high-accuracy
mass spectrometers (Syka et al, 2004) and multiple fragmentation
methods now allow the generation of high-quality data in high-
throughput experiments (Olsen & Mann, 2004; Olsen et al, 2004).
Furthermore, proper statistical interpretation of identification
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results (Elias et al, 2005; Keller et al, 2002; Nesvizhskii et al, 2003)
and the data requirements of journals (Carr et al, 2004) are helping
to make results more transparent. Implementation of these techni-
cal, algorithmic and reporting standards could lead to the complete
elimination of false-positive protein identifications. This is impor-
tant if proteomic inventories are to lead to useful annotations in
protein databases. Such annotations are difficult to reverse at a later
date, and even a small error rate in each individual report on 
the same organelle will eventually lead to an annotated proteome
consisting mostly of incorrect proteins.

Validation and integration
Proteins can be identified correctly but still might not be genuine
components of an organelle. The high sensitivity and sequencing
speed of modern mass spectrometers makes it inevitable that many
co-purifying proteins are also identified, even in high-purity prepa-
rations. Therefore, additional data are needed to validate the pro-
teins. ‘Subtractive proteomics’ compares the identified constituents
of the complex of interest and a related ‘background’ complex. For
example, the proteins identified in the ‘H-complex’ of the human
spliceosome were subtracted from the spliceosomal inventory
(Neubauer et al, 1998; Zhou et al, 2002). Schirmer and colleagues
identified the proteins in a nuclear-envelope preparation and sub-
tracted those that were also found in a microsomal membrane frac-
tion (Schirmer et al, 2003). The remaining 67 previously unknown
candidate integral nuclear-envelope proteins were then investigated
in the literature for any disease association. Among these, 23 pro-
teins were located in large chromosome regions associated with
dystrophies and are being investigated further (Wilkie & Schirmer,
2006). Subtractive proteomics is limited by the ‘sampling problem’:
in a complex proteome, not all peptides are sequenced and succes-
sive runs of the same sample do not overlap completely. To compare

two related proteomes, it is preferable to use stable isotope labelling
or to directly compare the ion current of identified peptides, even if
they were sequenced in only one of the experiments (Foster et al,
2005). In addition, the composition of ill-defined compartments,
such as lipid rafts, is difficult to study using proteomics. Using the stable
isotope labelling by amino acids in cell culture (SILAC) technique
(Ong et al, 2002) for comparative proteomics (Fig 3), Foster and col-
leagues isolated detergent-resistant lipid rafts from labelled and
unlabelled cells, with and without depletion of cholesterol, respec-
tively (Foster et al, 2003). In this way, any protein with a cholesterol-
dependent ratio is, by definition, a member of the cholesterol-
dependent lipid rafts. The quantitative data revealed an enrichment
of signalling molecules in lipid rafts, which provides biochemical
evidence for a functional connection between rafts and receptor-
mediated signalling. In protein correlation profiling (PCP), the infor-
mation inherent in the fractionation profile distinguishes between
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Fig 2 | Proteomics workflow. A protein mixture enriched in the organelle of

interest is separated by 1D-PAGE. The entire gel band is cut into 10–20 slices,

which are trypsin digested. The resulting peptide mixtures are separated by

liquid chromatography and peptides are on-line ionized by electrospray mass

spectrometry (MS). The panels show the summed ion signals of all the

peptides eluting during the chromatographic separation, an example of a mass

spectrum of eluting peptides, and a tandem (MS2) spectrum obtained by

isolating and fragmenting one of the eluting peptides. The mass and

fragmentation information is matched against a sequence database by a search

algorithm, resulting in a list of reported protein identifications for the

organelle. Peptide sequences can be confirmed with MS3 spectra obtained by

isolating and fragmenting the most intense fragment in the MS2 spectra (see

Steen & Mann (2004) for an introduction to peptide sequencing by MS).

1D-PAGE, one-dimensional polyacrylamide gel electrophoresis.
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genuine and background proteins (Fig 4). Andersen and colleagues
used PCP to eliminate about 90% of proteins in a centrosomal
preparation, leading to the high-confidence identification of 114
true centrosomal proteins (Andersen et al, 2003). PCP can also be
performed with internal standards (Fig 4) to increase the quantifica-
tion accuracy, which has resulted in the identification of additional
centrosomal proteins (J.S.A., unpublished data). Foster and colleagues
extended the PCP analysis to all membrane-enclosed organelles in
the mouse liver (Foster et al, 2006). In total, 1,900 proteins were
quantified and 1,404 localized to 10 subcellular compartments. This
large-scale PCP data set suggests error rates in published organellar
data sets of between 3 and 64% owing to co-purifying proteins.
Furthermore, the global nature of this study revealed multiple 
locations for 39% of all organellar proteins.

The candidate proteomic inventory can be analysed with a vari-
ety of bioinformatic methods, and several web-based organellar

databases and prediction algorithms (Donnes & Hoglund, 2004)
can independently support parts of the inventory. Bioinformatic
predictions are usually based on sequence features, such as signal
peptides or nuclear-localization sequences, and are most useful
for membrane-bound organelles. By contrast, the components of
subnuclear domains cannot be predicted accurately. In this case,
an increasingly useful tool for any proteome analysis is the Gene
Ontology project (Ashburner et al, 2000), which classifies proteins
not only by localization but also by biological process and molec-
ular function. Even though the categories are broad, they give a
useful overall assessment of the data. 

All these analytical tools implicitly assume that organellar pro-
teomes are the same, regardless of tissue or cell type. However, a
study of the mitochondrial proteome showed substantial variations
depending on the tissue from which it was derived (Mootha et al,
2003a). Emili and co-workers recently separated cell lysates into
cytosolic, nuclear, mitochondrial and membrane fractions in six
different mouse tissues (Kislinger et al, 2006). This study provided
tissue expression and compartment information for more than
5,000 proteins and showed that organelle protein composition
varied between tissues. There might also be differences in subcel-
lular organization between cells in culture and primary cells or tis-
sues. Nevertheless, bioinformatics analyses suggest a high degree
of evolutionary conservation of organellar proteomes. For exam-
ple, human homologues of proteins localizing to the yeast nucleo-
lus also had an 89% probability of being nucleolar (Andersen et al,
2005). A similar result was found in a large-scale analysis of 
membrane-bound organelles (Foster et al, 2006). 

Fluorescence-based microscopy is another powerful technique
for studying protein subcellular localization. However, micro-
scopy is based on single cells, whereas analysing the constituents
of organelles that have been biochemically enriched averages over
millions of cells. Furthermore, microscopy is usually performed
either with antibodies, which potentially raise specificity issues, or
with tagged proteins, which need to be shown to behave similarly
to endogenous proteins. A combination of MS-based proteomics
and microscopy is therefore an attractive validation method for
both, as illustrated here with examples from mitosis-related struc-
tures. In the centrosome study mentioned above, a subset of 23
novel centrosomal proteins with correct PCP profiles was amino-
terminally and carboxy-terminally tagged, and shown to localize
to the centrosome (Andersen et al, 2003). Sauer and colleagues
investigated the components of the spindle pole body and reported
151 proteins, 17 of which were tagged and 6 localized to the spin-
dle (Sauer et al, 2005). Skop and co-workers reported an inventory
of the midbody in Chinese hamster ovary cells (Skop et al, 2004).
An RNA interference (RNAi) follow-up of homologues in
Caenorhabditis elegans revealed a furrow-formation defect in 100
of the 172 candidates, and in vivo localization validated 10 of
these as novel midbody proteins. The use of orthogonal methods to
validate subcellular localization is important not only to establish
subcellular assignment of the identified proteins but also to
explore the functional value of proteomics experiments. In a study
of proteins binding to major components of focal-adhesion com-
plexes, de Hoog and colleagues identified many RNA-binding pro-
teins. On the basis of quantitative data, these proteins could not
easily be ignored as contaminants. Imaging experiments subse-
quently led to the discovery of a new structure that is involved in
cell adhesion (de Hoog et al, 2004).
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Dynamics of organelles
The protein constituents of most organelles are in constant
exchange with the rest of the cell. Several organelles—particularly
nuclear subdomains—contain both resident and transient proteins.
For example, during their maturation, proteins and protein com-
plexes might pass through several subdomains (Swedlow &
Lamond, 2001). Furthermore, perturbation of the cell might change
the proteome of an organelle. So far, these processes have generally
been studied using microscopy, which, despite its tremendous
power, remains a candidate-based approach and only allows a few
factors to be followed in a single experiment. By contrast, proteomic
investigation can follow changes in the proteome in an unbiased
way for all the components of an organelle. Using the SILAC tech-
nology, Andersen and colleagues have performed the first compre-
hensive study to follow the temporal change of an organelle after
perturbation (Andersen et al, 2005). Transcription was inhibited in
SILAC-labelled cells for different lengths of time, and changes in the
proteome were quantified at up to nine time points (Fig 3). The
experiments were performed using stable cell lines expressing GFP-
tagged nucleolar proteins to compare the MS data directly with the
corresponding quantitative fluorescence measurements in the same
cell cultures. Many, but not all, nucleolar proteins left the nucleolus
after transcription inhibition, whereas a small group of proteins was
recruited. Functionally or physically interacting proteins, such as
the exosome subunits and the polymerase I subunits, had similar
kinetic profiles. The response of the nucleolar proteome was also
followed for several other perturbations, with interesting results. For
example, proteasome inhibition resulted in largely opposite recruit-
ment patterns for the ribosomal proteins compared with transcrip-
tion inhibition, which suggests the involvement of the ubiquitin
proteasome system in ribosome biogenesis. Furthermore, through 
a variation of this experimental strategy, protein synthesis and mat-
uration can be studied directly (Doherty & Beynon, 2006).
Importantly, organellar dynamics can be assessed for a large variety
of perturbations once the organellar proteome has been defined
and the method has been established. In this way, quantitative mass
spectrometry can be used as a functional assay similar to others that
are routinely used in cell biology.

Functional genomics with subcellular resolution
The location of a protein is an important independent parameter
that can be used in interpreting the results of any large-scale experi-
ment. For example, Mootha and colleagues used the mitochondrial
proteome to identify the gene mutated in a form of Leigh syndrome
(Mootha et al, 2003b). This disorder shows clinical and biochemical
features pointing to the involvement of mitochondria, and genetic
analysis of affected families has implicated a specific genomic
region in the development of the disease. Only a single gene in this
region encodes a protein that is a member of the mitochondrial pro-
teome data set and is co-regulated at the messenger RNA level with
other mitochondrial genes. Data from the same mitochondrial pro-
teome mapping experiment were also used in a sophisticated bio-
informatic analysis to identify transcription-factor-binding sites
upstream from mitochondrial genes. Furthermore, a gene-expression
neighbourhood index was defined to capture genes the transcripts
of which showed significant co-regulation with mitochondrial
genes. Several transcription factors and low-abundance factors that
were not sequenced in the proteome experiments were retrieved by
this analysis. Foster and co-workers have recently reported a similar

analysis in their whole-cell study of organellar structures by PCP
(Foster et al, 2006). These analyses would not be possible with the
entire proteome, but derive their statistical power from the fact that
a single organelle is queried. Organellar data can generally be lay-
ered on top of any other large-scale data. Thus, as more
protein–protein interaction data become available, it will be useful
to interpret them in the light of protein co-localization in organelles
(Hinsby et al, 2006). Large-scale mutagenesis screens and live-cell
RNAi experiments (Pepperkok & Ellenberg, 2006) combined with
proteomics data are also expected to provide insight into the func-
tion of organelles. Through a genetic screen in zebrafish looking for
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kidney cyst defects, Sun and colleagues identified several genes
with homologues in flagella that were linked to human kidney dis-
ease (Sun et al, 2004). Supporting this association between cilia
and cystogenesis, three proteomic investigations into the eukaryotic
flagellum also found several homologues of human ciliary diseases
(Broadhead et al, 2006; Keller et al, 2005; Pazour et al, 2005).
Proteomic characterization of the human centrosome resulted in
the identification of several disease-associated genes, including
nephrocystin 6, which is another cystic kidney disease gene that is
mutated in Joubert syndrome (Sayer et al, 2006).

Large-scale proteomics of post-translational modifications can
also be performed with subcellular resolution ( Jensen, 2006). For
example, Nousiainen and co-workers defined 736 phosphorylation
sites on mitotic spindle-associated proteins (Nousiainen et al, 2006),
which constitute a promising starting point for functional studies.
Temporal or comparative analysis of site-specific modifications by
quantitative proteomics helps to distinguish basal sites from regula-
tory sites. It will be interesting to use such approaches to directly
study signalling to organelles.

In the cell nucleus, organelles are difficult to define and purify. In
several proteomic analyses of nuclear structures (Andersen et al,
2005; Jurica & Moore, 2003; Saitoh et al, 2004), unexpected pro-
teins are commonly observed. Their presence in certain compart-
ments possibly reflects non-specific associations with proteins
roaming the nuclear space (Gorski & Misteli, 2005). Dynamic
organellar proteomics might help to address this issue and to deter-
mine how these structures are formed and maintained. A systems
biology approach to the temporal and spatial organization of the
nucleus, including chromatin states, would be of great value in
understanding gene expression and other fundamental molecular
events in the cell (Gorski & Misteli, 2005).

Conclusion
The increasing power of mass-spectrometry-based proteomics now
makes it possible to characterize organelles with more than 1,000
proteins and with a dynamic range in protein abundance of several
orders of magnitude. In fact, obtaining mass-spectrometry data has
already ceased to be the limiting step in organellar proteomics.
Instead, the main challenges are purifying the organelle and removing
the background proteins. As shown by several examples, integrat-
ing organellar data sets with existing functional genomics data can
be fruitful. Conversely, large-scale organellar data enhance other
types of data, giving them ‘subcellular resolution’. In the next few
years, we expect mass-spectrometry-based proteomics to define a
basic set of inventories for the main cellular organelles. These
inventories will then allow even more interesting questions to be
asked about the effect of perturbations on organellar proteomes and
what can be revealed by the dynamic interchange of proteins
between compartments.
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