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Abstract

Organic acids are valuable platform chemicals for future biorefining applications. Such applications

involve the conversion of low-cost renewable resources to platform sugars, which are then

converted to platform chemicals by fermentation and further derivatized to large-volume chemicals

through conventional catalytic routes. Organic acids are toxic to many of the microorganisms, such

as Escherichia coli, proposed to serve as biorefining platform hosts at concentrations well below

what is required for economical production. The toxicity is two-fold including not only pH based

growth inhibition but also anion-specific effects on metabolism that also affect growth. E. coli

maintain viability at very low pH through several different tolerance mechanisms including but not

limited to the use of decarboxylation reactions that consume protons, ion transporters that

remove protons, increased expression of known stress genes, and changing membrane

composition. The focus of this mini-review is on organic acid toxicity and associated tolerance

mechanisms as well as several examples of successful organic acid production processes for E. coli.

Review
Biorefining Platforms

Biorefining promises the development of efficient proc-
esses for the conversion of renewable sources of carbon
and energy into large volume commodity chemicals. It
has been estimated that such bioprocesses already
account for 5% of the 1.2 trillion dollar US chemical mar-
ket [1], with some projecting future values of up to 50%
of the total US chemical market generated through biolog-
ical means. While the attractiveness of such bioprocesses
has been recognized for some time [2,3], recent advances
in biological engineering and associated sciences [4-15],
several biorefining success stories [16-18], and instability
in the price and future availability of oil [19], have collec-
tively reinvigorated interest in the large scale production
of chemicals through biological routes. Nevertheless,

many challenges still remain for the economical bio-pro-
duction of commodity chemicals. Such challenges
encompass the need to not only inexpensively convert
biomass into usable sources of carbon and energy but also
to engineer microbes to produce relevant chemicals at
high titers and productivities while minimizing the gener-
ation of byproducts that might foul downstream proc-
esses [1,20,21]. One model for addressing the latter of
such challenges involves the generation of platform
organisms that can be easily engineered and re-engineered
to produce a variety of building block chemicals that are
amenable to conversions to higher value products via tra-
ditional catalytic routes (see Figure 1). Although chemical
pretreatment of raw materials impairs viability of plat-
form organisms, this review will focus on product toxicity
issues associated with the production of organic acids in
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E. coli (for further information on sugar extraction from
raw materials see Zaldavar, et al. [22] and Knauf, et al.
[23]).

The US Department of Energy (USDOE) recently released
a prioritized list of building block chemicals for future
biorefining endeavors. Priority was assigned based on the
projected value of the platform chemical and potential
derivatives as well as what technological developments
were required for the production of the chemical and
associated derivatives [21]. The report emphasized the
importance of organic acids to the future of biorefining
efforts (eight of the top twelve chemicals were organic
acids, see Table 1 in additional file 1). The USDOE is not
the first to recognize the importance of organic acids. In
fact, there is a rich literature describing microbial produc-
tion of organic acids [17,20,24,25], including several suc-
cessful commercial bioprocesses [26-28]. Product toxicity
is one of the primary challenges in the development of
organic acid bioprocesses based on the use of platform
host organisms, such as E. coli. In particular, while E. coli
is known to survive very high concentrations of acids (pH
= 2) when passing through the mammalian stomach, E.
coli are surprisingly acid sensitive in exponential phase
when cultured planktonically [29,30]. Moreover, undisso-

ciated organic acids, which pass freely through the outer
and plasma membranes of E. coli [31,32], dissociate upon
entry into the slightly alkaline cytoplasm releasing pro-
tons that lower internal pH (pHi) and anions that specifi-
cally inhibit different aspects of metabolism resulting in
impaired growth [33-35]. Titers and productivities of 50–
100 g/L and 2–3 g/L·hr are expected for the economical
manufacturing of most building block acids by fermenta-
tion. The pKa values range from 3–5 for these organic
acids, which would result in a pH reduction to around 2.0
for titers of 50 g/L. This highlights a key challenge in the
metabolic engineering of organic acid production hosts.
That is, high titers result in the addition of protons to the
culture, which either result in a decreased pH or the addi-
tion of large volumes of base titrant. At low pH, organic
acids are undissociated, thus they pass freely through the
membrane and inhibit growth. At high pH, the process is
less efficient due to base requirements and because export
of the organic acid cannot proceed by free diffusion alone
(for a more detailed discussion of organic acid export
issues see Van Maris et al. [36]). What is desired, therefore,
is a platform organism that not only produces high levels
of organic acid chemicals but also is tolerant to any asso-
ciated toxicity.

Conceptual model of toxicity in biorefining applicationsFigure 1
Conceptual model of toxicity in biorefining applications. Sugars are extracted from waste biomass for use as feedstock for plat-
form organisms in a biorefinery. Metabolically engineered microorganisms convert sugars into valuable platform chemicals that 
are then further derivatized to large-volume chemicals. Product and feedstock toxicity are observed, thus limiting productivity 
of biorefining applications.
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Many microbes are capable of producing platform chem-
icals by aerobic and anaerobic fermentation processes
[22]. L-lactic acid has traditionally been produced by lac-
tic acid bacteria. Although many lactic acid bacteria strains
have been studied extensively [37], the ability to produce
optically pure L-lactic acid is hampered by the presence of
both L and D lactate dehydrogenase genes [38]. Pure L-
lactic acid must therefore be produced via another path-
way, as the racemic acid product is not useful for down-
stream conversion into polylactic acid. A number of other
microorganisms have been used for industrial fermenta-
tion of several of the building block organic acids identi-
fied in Table 1. Large scale production of amino acids has
been accomplished in Corynebacteriumglutamicum [39],
succinic acid has been produced by Actinobacillus succino-
genes [40], and itaconic acid production has been carried
out with Aspergillus terrus [41]. While successful, the future
application of these organisms as platform hosts is lim-
ited when compared with E. coli. E. coli is advantageous as
a platform host because it is the most well characterized
model organism, it has been used in recombinant proc-
esses for over 20 years, there are a wide variety of good
genetic tools, and it is sensitive to many antibiotics used
in genetic engineering efforts [42]. Moreover, the comple-
tion of the E. coli genome sequence has already enabled
many functional genomics studies and proven useful in
metabolic engineering efforts [43]. Finally, E. coli grows
quickly in minimal media and maintains the ability to
metabolize both 5 and 6 carbon sugars, which is a specific
advantage over the use of industrially relevant yeast
strains [22]. This mini-review will describe the basic
mechanisms underlying organic acid toxicity and associ-
ated tolerance pathways in E. coli followed by a short dis-
cussion of several metabolic engineering strategies
employed for the production of organic acids in E. coli.

Organic Acid Toxicity in E. coli

One of the primary factors contributing to the toxicity of
organic acids is their ability to diffuse across E. coli cellular
membranes when undissociated as opposed to the
restricted passage of dissociated protons and anions (see
Figure 2) [31,32]. Diffusion of dissociated acids is limited
to secondary transport, which is known to involve H+/
monocarboxylic acid symporters. However, the detailed
mechanism and specificities of the transporters remain
unknown [31]. E. coli maintain a cytoplasmic pH (pHi =
7.5) that is most often higher than that of the external
media and typically well above the pKa of organic acids
[44,45]. As a result, organic acids exist in the dissociated
form within the cytoplasm. Thus, diffusing organic acids
entering into the cytoplasm will dissociate and disrupt the
pHi and anion pool of the cytoplasm. The resulting
increase in internal acidity can affect the integrity of
purine bases [46] and result in denaturing of essential

enzymes inside the cell [35], both of which negatively
affect cell viability.

Organic acid anions affect cell growth in a variety of man-
ners. Increased anion concentration has been shown to
lead to an increased transport of potassium ions into the
cell, which increases turgor pressure [47,48]. To maintain
a constant turgor pressure and cell volume, glutamate is
transported out of the cell [48]. This transport activity
concomitantly disrupts the osmolarity of the cytoplasm,
which in turn lowers the cell's growth potential and viabil-
ity. In addition to this general anion effect, there are also
effects specific to each organic acid. It has been proposed
that enzymes involved in protein synthesis are sensitive to
a combination of two unrelated mechanisms, including
the acidification of pHi and the formation of an anionic
pool [35]. Although this finding implies that the organic
inhibition due to the anion pool could be acid specific,
the details describing this dual inhibition mechanism
remain unclear. Kirkpatrick et al. reported proteins exhib-
iting increased expression in response to extracellular ace-
tate [33]. Among these are the OppA transporter, RpoS
regulon, several amino acid uptake proteins, DNA bind-
ing proteins, and extreme-acid preiplasmic chaperones.
Interestingly, when formate was introduced in place of
acetate the expression of the previously mentioned pro-
teins was repressed, indicating that the response was
anion specific. This finding introduces new challenges in
addressing organic acid tolerance. Specifically, it high-
lights the need to engineer both pH and as well as specific
anion tolerance into host organisms.

Finally, production of organic acids might include inter-
mediates that are themselves toxic. For example, 3-
hydroxypropionic acid (3HP) is closely related to the anti-
microbial compound Reuterin. Reuterin describes the
hydroxypropionaldehyde (HPA) system including HPA,
HPA dimer, and HPA hydrate. Reuterin is inhibitory to
several bacteria, including E. coli, at concentrations as low
as 0.03–0.05 g/L [49-51]. It is thought that the toxicity
could be the result of inhibition of DNA synthesis [52]. It
has been postulated that the reactivity of the aldehyde
group of HPA causes DNA damage similarly to formalde-
hyde, which is the aldehyde analog of formic acid [49].
Intermediate toxicity can be managed either by optimiza-
tion of the production pathway in the host or by engineer-
ing tolerance to the intermediate itself.

Organic Acid Tolerance in E. coli

E. coli has a remarkable ability to remain viable under a
broad range of pH conditions. This ability is essential for
its survival in the mammalian digestive system where pH
can vary between pH = 2–8. Several different acid toler-
ance mechanisms have been identified in E. coli. While
each mechanism is capable of providing some degree of
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tolerance, they are regulated differently and confer varying
levels of tolerance.

Although most acid tolerance systems are activated in sta-
tionary phase, acid tolerance as low as pH = 3 has been
observed in exponential phase E. coli grown under aerobic
conditions, which is advantageous from a productivity
standpoint [30]. Although the underlying tolerance mech-
anism is not known, such tolerance can be reliably acti-
vated by adapting cells at sublethal pH values between 4.3
and 5.8 [53]. E. coli that exhibit growth phase tolerance
remain viable at pH values on the same order as stationary
phase tolerance, however the percent survival is signifi-
cantly lower. Lin et al. reported 1% survival of the original

culture following acid adaption at pH 4.3 followed by
acid challenge at pH 3.3 compared to 0.0001% survival
for unadapted cultures. This is compared to stationary-
phase cultures, which exhibited up to 50% survival.

Three stationary phase acid resistance systems have been
studied in the most detail [29,30]. These systems confer
the highest levels of tolerance and are believed to be
responsible for stationary phase E. coli survival when pass-
ing through the mammalian stomach. Acid resistance sys-
tem 1 (AR1) is activated in slightly acidic media (pH 5.5)
in the absence of extracellular glucose or amino acids. E.
coli grown aerobically under these conditions retain via-
bility under acid challenges as low as pH = 2.5 [54]. This

An overview of organic acid toxicity and tolerance mechanisms in E. coliFigure 2
An overview of organic acid toxicity and tolerance mechanisms in E. coli. Diffusion of undissociated acid molecules can occur 
freely in acidic medium but is limited to transport systems at neutral or basic pH. The toxic effects associated with organic 
acids are the result of both anion specific affects on metabolism as well as increased internal proton concentrations. Affects on 
internal pH are mitigated by transport of protons out of the membrane, consumption of protons by decarboxylation reactions, 
and, more generally, induction of stress regulons. Anion specific tolerance mechanisms are not well characterized.
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system is also referred to as the oxidative or glucose-
repressed system, since the expression of this system is
thought to be regulated either directly or indirectly by
RpoS and cyclicAMP receptor protein (CRP) [55,56]. Acid
resistance system 2 (AR2) is activated in E. coli grown in
aerobic conditions in acidic complex media. This system
requires the presence of extracellular glucose and gluta-
mate and is dependent upon genes encoding glutamate
decarboxylase (gadAB) and a glutamate:GABA antiporter
(gabC) [30]. Under such conditions, E. coli have been
demonstrated to exhibit acidic resistance up to a pH of 2.
The mechanism involves the expenditure of excess cyto-
plasmic protons during amino acid decarboxylation reac-
tions (see Figure 2), thus raising the internal pH [54,55].
Acid resistance system 3 (AR3) parallels the mechanisms
of AR2 with several slight deviations [30,54,55]. AR3 is
activated under anaerobic conditions, in complex media
with added glucose. It also involves amino acid decarbox-
ylation reactions to lower the internal pH, but requires
extracellular arginine in place of glutamate. AR3 also
requires increased expression of arginine decarboxylase
and an arginine: agmatine antiporter for increased acid
tolerance.

Finally, several general acid tolerance mechanisms that
regulate the physical properties of the membrane or the
effectiveness of ion transport have been identified. These
active responses, or those that occur as a result of the cell's
ability to sense pH changes, are independent of growth
and are induced by pH shifts as small as 0.2 pH units [57].
The first response is the ability of the microorganism to
adjust membrane properties, such as lipid content, thus
effectively changing the proton permeability [57].
Another cellular response to acid shock is the induction of
genes responsible for repairing and preventing lethal cel-
lular damage. Specifically, increased expression of the
oxyR and soxR regulatory genes has been observed by tran-
scriptional profiling of acid tolerant phenotypes [45,58].
These systems regulate the removal of damaging oxidizing
agents, thus preventing further DNA damage under acidic
stress [46]. Finally, acid tolerance can be achieved by
adjusting the ionic transporter efficiency, effectively regu-
lating the anion and cation balance as a means of main-
taining a constant internal pH [47].

Organic Acid Production in E. coli

Metabolic and genetic engineering, directed evolution,
and classic strain selection have all been employed in the
development of E. coli strains that produce building block
organic acids, including lactic-acid, succinic acid, and 3HP
[17,25,59,60]. Improved titers have been achieved due to
optimization of fermentation conditions and relavant
pathways utilized. However, titer limitations exist when
fermentation is carried out in unbuffered media, which
allows the pH to acidify due to increased acid concentra-

tion. Alternatively large amounts of base titrant are
required to raise the pH of the media during the organic
acid production leaving the final acid molecule in the
undissociated form. Following production under these
conditions, large volumes of acid must be added to
recover the acid in the protonated form. Metabolic and
genetic engineering of acid tolerance into production
strains, making fermentation at a pH less than the pKa of
the acid produced possible, would circumvent the need
for the additional consumption of acid and base titrants,
and thus lower the overall production cost. Similarly,
engineering strain fitness to increase productivity at a
decreased pH would improve productivity and reduce
base consumption.

Lactic acid production is one of the most successful exam-
ples to date of the engineering of large volume chemical
production in E. coli. E. coli was selected as a favorable
host strain due to its ability to consume both pentose and
hexose sugars and to generate optically pure L-lactic acid,
which is the desired product for downstream polylactic
acid (PLA) production [61,62]. An effective lactic acid
producing strain of E. coli was created by induced expres-
sion of the L-specific lactic acid dehydrogenase (LDH)
gene from Streptococcus bovis. High titers (50–75 g/L) were
observed under controlled pH (pH = 7) and anaerobic
conditions. Titers were drastically decreased (10–20 g/L)
as the pH was allowed to drop with increasing acid pro-
duction [59]. However, allowing the pH to fall below the
pKa of lactic acid also resulted in decreased concentration
of the acid in the undissociated form, which facilitated the
subsequent isolation of the protonated acid. Interestingly,
the choice of host strain made a significant difference in
lactic acid production [59]. Those constructed from an E.
coli B strain showed a titer of almost twice that produced
from K12 derivatives. The increased production was
attributed primarily to differences in the native growth
characteristics rather than increased acid tolerance.

Economically competitive titers of succinic acid have also
been achieved in E. coli. Strains were engineered to limit
flux to other anaerobic byproducts normally formed dur-
ing fermentation [60]. Specifically, succinic acid produc-
tion was optimized by redirecting the metabolic flux at the
pyruvate node away from lactate and formate through
inactivation of the pyruvate-formatelyase and lactate
dehydrogenase [60,63]. The maximum yield in succinic
acid production was approximately 50 g/L in pH control-
led cultures. However, similar to lactic acid studies, suc-
cinic acid production was significantly repressed when pH
was not kept at neutral levels.

A final example of metabolic engineering organic acid
production in E. coli was reported by Cargill in 2001 [17].
Suthers and Cameron engineered a 2-step glycerol to 3HP
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pathway in E. coli. Glycerol was first converted to 3HPA
via a glycerol dehydratase enzyme (dhaB – isolated from
Klebsiella pneumoniae). 3HPA was then converted to 3HP
via an aldehyde dehydrogenase (ald). This first pathway
was not ideal for several reasons including a very low
reported titer (0.2 g/L), the use of the more expensive glyc-
erol as opposed to glucose, and the generation of the
highly toxic 3-HPA (reuterin) compound. Selifinova et al.
later proposed five additional pathways for the produc-
tion of 3-HP directly from glucose in E. coli [36]. Results
for each of such pathways have yet to be reported. One
issue that has yet to be addressed is how to fulfill the
desire to produce 3-HP at a pH below the pKa = 4.51 of 3-
HP, which would lessen the dependency on large volumes
of base titrant to retain neutral pH at high titers.

Metabolic engineering of E. coli organic acid tolerance rep-
resents an important future opportunity. As discussed
above, E. coli possess several systems for surviving pH as
low as 2.0, which is much lower than what is required for
an economical biorefining process. Since induction of
these systems is well characterized and the relevant genes
are known in many cases, future efforts might be better
focused on the development of multi-stage fermentations
that allow for generation of biomass prior to induction of
acid tolerance and, ultimately, acid production. Future
genetic engineering efforts might focus on engineering
tolerance against the less well characterized metabolic
effects associated with increased organic acid anion con-
centrations. For example, the addition of acetate, ben-
zoate, and propionate to culture media at a concentration
of 8 mM has been observed to inhibit growth of E. coli up
to 50% [35]. The acetate inhibition is thought to be
caused by limited methionine pools combined with
increasing concentrations of homocysteine, a toxic inter-
mediate, due to inactivation of a key enzyme in the
methionine synthesis pathway, which can be countered
by the addition of methionine to the media. This finding
established that growth inhibition is the result of both of
lowered pH and specific anionic effects, which decreases
the activity of key enzymes. Thus, engineering tolerance to
specific organic acid anion effects by increased expression
of inhibited enzymes could aid in increasing overall proc-
ess productivity.

Conclusion
Organic acids are a valuable sector of the industrial chem-
ical market, which have already been successfully pro-
duced through microbial fermentation. However, product
titers have been variable, ranging from less than 1 g/L to
concentrations cost competitive with current petrochemi-
cal production processes. These fermentation processes
have been limited in E. coli due to product and intermedi-
ate toxicity. Toxicity is directly measured by growth inhi-
bition, which specifically decreases productivity. This

review highlighted what is known about organic-acid tox-
icity and tolerance mechanisms in E. coli. Specifically, E.
coli are growth inhibited by the increase in both proton
and associated anion concentrations that are characteristic
of organic-acid production processes. While several acid-
tolerance mechanisms have been characterized in E. coli,
anion specific mechanisms require additional study.
Thus, future metabolic engineering efforts that seek to
improve understanding of these issues within the context
of organic-acid biorefining applications should prove
useful.
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