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Abstract. Organic aerosols (OA) represent one of the ma-

jor constituents of submicron particulate matter (PM1) and

comprise a huge variety of compounds emitted by different

sources. Three intensive measurement field campaigns to in-

vestigate the aerosol chemical composition all over Europe

were carried out within the framework of the European In-

tegrated Project on Aerosol Cloud Climate and Air Qual-

ity Interactions (EUCAARI) and the intensive campaigns of

European Monitoring and Evaluation Programme (EMEP)

during 2008 (May–June and September–October) and 2009

(February–March). In this paper we focus on the identifi-

cation of the main organic aerosol sources and we define a

standardized methodology to perform source apportionment

using positive matrix factorization (PMF) with the multilin-

ear engine (ME-2) on Aerodyne aerosol mass spectrometer

(AMS) data. Our source apportionment procedure is tested

and applied on 25 data sets accounting for two urban, sev-

eral rural and remote and two high altitude sites; therefore

it is likely suitable for the treatment of AMS-related am-

bient data sets. For most of the sites, four organic compo-

nents are retrieved, improving significantly previous source

apportionment results where only a separation in primary

and secondary OA sources was possible. Generally, our solu-

tions include two primary OA sources, i.e. hydrocarbon-like

OA (HOA) and biomass burning OA (BBOA) and two sec-

ondary OA components, i.e. semi-volatile oxygenated OA

(SV-OOA) and low-volatility oxygenated OA (LV-OOA).

For specific sites cooking-related (COA) and marine-related

sources (MSA) are also separated. Finally, our work provides

a large overview of organic aerosol sources in Europe and an

interesting set of highly time resolved data for modeling pur-

poses.

1 Introduction

Atmospheric aerosols negatively affect human health (Pope

and Dockery, 2006), reduce visibility, and interact with cli-

mate and ecosystems (IPCC, 2007). Among particulate pol-

lutants, great interest is dedicated to organic aerosols (OA)

since they can represent from 20 to 90 % of the total sub-

micron mass (Zhang et al., 2007; Jimenez et al., 2009). Or-

ganic aerosols are ubiquitous and are directly emitted by vari-

ous sources, including traffic, combustion activities, biogenic

emissions, and can also be produced via secondary formation

pathways in the atmosphere (Hallquist et al., 2009). Con-

straining OA emission sources and understanding their evo-

lution and fate in the atmosphere is therefore fundamental to

define mitigation strategies for air quality.

Our work is part of the European Integrated Project on

Aerosol Cloud Climate and Air Quality Interactions (EU-

CAARI), which aims to understand the interactions between

air pollution and climate. An introduction about project ob-

jectives and an overview on the goals reached within the EU-

CAARI project are provided by several papers (Kulmala et

al., 2009, 2011; Knote et al., 2011; Fountoukis et al., 2011;

Murphy et al., 2012). The coordinated EUCAARI campaigns

of 2008 and 2009 provide significantly more aerosol mass

spectrometer (AMS) data sets to analyze in comparison to

previous efforts (Aas et al., 2012). For the investigation

of the aerosol chemical composition and organic aerosol

(OA) sources dedicated studies were performed. Nemitz et

al. (2014) discuss the organic and inorganic components of

atmospheric aerosols, using AMS measurements performed

during three intensive field campaigns in 2008 and 2009. Ma-

jor contribution to the submicron particulate matter (PM1)

mass is provided by the organic compounds, which con-

tribute from 20 to 63 % to the total mass depending on the

site. Our work deals with the identification and quantifica-

tion of organic aerosol sources in Europe using high time

resolution data from aerosol mass spectrometer. Here we fo-

cus on the investigation of OA sources applying the positive

matrix factorization algorithm (PMF) running on the gener-

alized multi-linear engine (ME-2) (Paatero, 1999; Canonaco

et al., 2013) to the organic AMS mass spectra from all over

Europe.

Currently, only a few studies concerning a broad spatial

overview of OA sources are available in the literature. Zhang

et al. (2007) investigated organic aerosol sources in urban

and anthropogenically influenced remote sites in the North-

ern Hemisphere, focusing on the discrimination between the

traffic-related and secondary oxygenated OA components.

Jimenez et al. (2009) presented an overview of PM1 chemical

composition all over the world (including 8 European mea-

surement sites) focusing on the identification of OA sources

using AMS data. Ng et al. (2010) provided an overview of

OA sources in the Northern Hemisphere, including a broader

spatial domain than Europe and a wide range of locations

affected by different aerosol sources. Moreover, their ma-

jor focus was the investigation of the secondary oxygenated

components and their aging. Lanz et al. (2010) provided

an overview of the aerosol chemical composition and OA

sources in central Europe focusing on Switzerland, Germany,

Austria, France, and Liechtenstein. In all of these studies,

the major fraction of PM1 was often represented by organ-

ics which consisted, for most of the locations, of oxygenated

OA; however the contribution of primary sources (like traffic

and biomass burning) was not always identified especially in

rural and remote places. Our work includes 17 measurement

sites all over Europe, comprising 25 unit mass resolution

AMS data sets, and represents therefore an unprecedented

overview of OA sources in Europe. Moreover, the application

of advanced source apportionment methods allow us to over-

come limitations of commonly used source apportionment

techniques for AMS data, such as the purely unconstrained

positive matrix factorization (Canonaco et al., 2013). The

positive matrix factorization (PMF) model does not always

succeed since the co-variance of the sources might be large

due to the meteorology and the relative source contributions
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which vary too little. This can often be the case at rural and

remote sites but it was also shown for an urban background

site in Zurich, for which Lanz et al. (2008) pioneered the use

of ME-2 for AMS data. Here, for all measurement sites we

are able to clearly separate primary and secondary OA com-

ponents, including hydrocarbon-like OA (HOA, associated

with traffic emissions), biomass burning OA (BBOA), cook-

ing (COA) and secondary components (semi-volatile and low

volatility oxygenated OA, SV-OOA and LV-OOA, respec-

tively).

In addition, we provide a standardized source apportion-

ment procedure applicable to any measurement site (urban,

rural, remote, etc.) guiding source apportionment analysis

for on-line measurements. In fact, when applying multivari-

ate methods to AMS data, a critical phase is the evaluation

of the results which is strongly affected by subjectivity and

obviously depends on the expertise of the researcher. One

goal of this work is to facilitate the analysis of the modeler

dealing with AMS data; additionally, this strategy might be

useful in particular for the analysis of the long-term monitor-

ing network data retrieved with the quadrupole or time-of-

flight aerosol chemical speciation monitors (ACSM) (Ng et

al., 2011b; Fröhlich et al., 2013)

A final motivation of our work is to improve the predic-

tion of POA (primary organic aerosol) and SOA (secondary

organic aerosol) in regional and global models integrating

our European overview of OA sources. Our source apportion-

ment results are suitable for modeling purposes since under-

standing sources and processes of organic aerosols can sub-

stantially improve air quality and climate model predictions.

Modeling POA and SOA components is challenging and still

critical due to uncertainties in emission inventories and com-

plex atmospheric processing. Including measurements of dif-

ferent OA components will improve the evaluation and con-

straining of modeling outputs. Our results will help in eval-

uating the accuracy of emission inventories (especially con-

cerning primary sources) which need better constraints to im-

prove regional and global models (Kanakidou et al., 2005; De

Gouw and Jimenez, 2009), while SOA sources obtained from

AMS source apportionment could be used to constrain SOA

in global chemical transport models (Spracklen et al., 2011).

2 Measurement field campaigns

2.1 Overview of the EUCAARI/EMEP 2008-2009
campaigns

Three intensive measurement field campaigns were per-

formed during late Spring 2008 (May–June), Fall 2008

(September–October) and Winter 2009 (February–March)

within the European Integrated Project on Aerosol Cloud

Climate and Air Quality interactions (EUCAARI) to investi-

gate the chemical composition of atmospheric aerosols in Eu-

rope among several other objectives (Kulmala et al., 2009).

Figure 1. EUCAARI/EMEP campaigns 2008–2009: measurement

periods.

Aerosol mass spectrometer (AMS) measurements were car-

ried out during 26 field campaigns at 17 different sites

(see Fig. 1), which are classified as urban (UR, includ-

ing Barcelona and Helsinki), rural (RU, including Cabauw,

Payerne, Montseny, San Pietro Capofiume, Melpitz, Puijo,

Chilbolton, Harwell, K-Puszta, and Vavihill), remote (RE,

including Finokalia, Mace Head, and Hyytiälä) and high al-

titude (HA, including Jungfraujoch and Puy de Dome) (Ne-

mitz et al., 2014). For some of the sites, specific studies were

also published. We refer the reader to Mohr et al. (2012) for

the Barcelona 2009 campaign, to Hildebrandt et al. (2010a,

b, 2011) for the Finokalia 2008 and 2009 campaigns, to Men-

sah et al. (2012), Li et al. (2013), and Paglione et al. (2013)

for the Cabauw 2008 campaign, to Saarikoski et al. (2012)

for the San Pietro Capofiume measurements, to Carbone et

al. (2014) for the case of Helsinki, to Poulain et al. (2011)

for Melpitz, to Dall’Osto et al. (2010) for Mace Head, and

to Freney et al. (2011) for Puy de Dome. An overview about

PM1 aerosol chemical composition is provided in a compan-

ion paper by Nemitz et al. (2014), where a detailed discus-

sion about measurements setup and data processing is also

provided. The average concentrations of PM1 chemical com-

ponents as measured by the AMS are also reported in Ta-

ble S1 in the Supplement. In this paper we focus on the

organic aerosols (OA) component which represents the ma-

jor fraction of submicron particulate matter for most of the

sites, ranging between 20 and 63 % of PM1 (concentration

range: 0.6–8.2 µg m−3), consistent with the values found by

Jimenez et al. (2009) and Ng et al. (2010). Table 1 sum-

marizes the average organic concentration for each site and

all the seasons and the relative OA contribution to NR-PM1

as measured by the AMS. Figure 2 represents an overview

of the EUCAARI measurement field campaigns focusing on

the organic aerosol sources (an analogous plot for the PM1

chemical composition is reported in Nemitz et al. (2014)).

For each site the average organic mass concentration of
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Figure 2. Measurement sites and average organic aerosol source contributions (bars). Measurement sites are classified according to their

location as urban (UR), rural (RU), remote (RE) and high altitude (HA). The bar graphs report the average OA source concentrations (y-axis

in µg m−3) for the three measurement periods (the chronological order is from left to right: spring 2008, fall 2008 and spring 2009 campaigns,

respectively). The identified OA sources are: HOA (hydrocarbon-like OA), BBOA (biomass burning OA), COA (cooking OA), SV-OOA and

LV-OOA (semi-volatile and low-volatility oxygenated OA), MSA (methane sulfonic acid) and LOA (local OA).

primary and secondary sources is shown as apportioned by

our standard ME-2 approach. Results from the three mea-

surement periods are represented with separated bars follow-

ing the chronological order from left to right (spring 2008,

fall 2008 and spring 2009 campaigns, respectively). Fig-

ures S2.1, S2.2, and S2.3 show the time series of the relative

contributions of each OA factor for all the measurement sites

during the three campaigns. Details about our source appor-

tionment strategy exploiting the multi-linear engine (ME-2)

are discussed in Sects. 3 and 4.

2.2 Aerosol mass spectrometer measurements

The Aerodyne aerosol mass spectrometer measures size-

resolved mass spectra of the non-refractory (NR) PM1

aerosol species, where NR species are operationally defined

as those that flash vaporize at 600 ◦C and 10−5 Torr. Black

carbon, mineral dust, and metals usually cannot be detected

and quantified by the AMS, while Ovadnevaite et al. (2012)

shown the possibility to measure sea salt with the AMS. Sev-

eral aerosol mass spectrometers were deployed all over Eu-

rope during the three intensive EUCAARI field campaigns

Table 1. Average organic concentrations (OA) and their relative

contributions to the NR-PM1 mass measured by the AMS.

Site OA (µg m−3) OA/NR-PM1

Barcelona 8.20 0.50

Cabauw 2.60 0.31

Finokalia 2.00 0.36

Helsinki 2.90 0.38

Hyytiälä 1.10 0.45

Jungfraujoch 0.66 0.43

K-Puszta 5.30 0.45

Mace Head 0.85 0.39

Melpitz 4.07 0.40

Montseny 3.50 0.32

Payerne 4.75 0.42

Puijo 0.90 0.64

Puy de Dome 1.17 0.28

San Pietro Capofiume 3.80 0.39

Vavihill 3.15 0.39

Chilbolton 2.50 0.28

Harwell 3.21 0.33
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(Nemitz et al., 2014), including Q-AMS (quadrupole AMS)

(Jayne et al., 2000), C-ToF-AMS (compact time of flight

AMS) (Drewnick et al., 2005) and HR-ToF-AMS (high res-

olution time of flight AMS) (DeCarlo et al., 2006).

The general working principle of the AMS is reported

below; however the reader should refer to the aforemen-

tioned papers for a detailed description of the different AMS

types. Briefly, air is sampled through a critical orifice into

an aerodynamic lens, where the aerosol particles are focused

into a narrow beam and accelerated to a velocity inversely

related to their aerodynamic size. Particles are transmitted

into a high vacuum detection chamber (10−5 Torr) and im-

pact on a heated surface (600 ◦C) where the non-refractory

species vaporize. The resulting gas molecules are ionized

by electron impact (EI, 70 eV) and the ions are extracted

into the detection region to be classified by the mass spec-

trometer. Details about our AMS measurement quantifica-

tion and data treatment (e.g., ionization efficiency calibra-

tions, collection efficiency estimation, air corrections, etc.)

are described elsewhere (Nemitz et al., 2014). For the evalu-

ation of our source apportionment results, black carbon data

obtained from aerosol light absorption measurements per-

formed with an aethalometer or a multi angle absorption pho-

tometer (MAAP) were also used in our work where available

(see Table S3).

3 Organic aerosol source apportionment

3.1 The multilinear engine (ME-2)

Positive matrix factorization (PMF) is the most commonly

used source apportionment method for AMS data (Lanz et

al., 2007; Ulbrich et al., 2009; Zhang et al., 2011) to describe

the measurements with a bilinear factor model (Paatero and

Tapper, 1994):

xij =

p
∑

k=1

gik ∗ fkj + eij (1)

where xij , gik , fkj and eij represent the matrix elements of

the measurements (x), time series (g), factor profiles (f), and

residuals (e). The subscript i corresponds to time, j to m/z,

k to a discrete factor and p to the number of factors. The

model solution is found iteratively minimizing Q using the

least squares algorithm:

Q =

m
∑

i=1

n
∑

j=1

(

eij

σij

)2

, (2)

where σij are the measurement uncertainties.

The model solution is not unique due to rotational am-

biguity (Paatero et al., 2002), in fact the product of the ro-

tated matrix G and F (G = G ·T and F = T −1 ·F ) is equal to

the product of the corresponding unrotated matrix which also

provides the same value of the object function Q. In order to

reduce rotational ambiguity within the ME-2 algorithm, the

user can add a priori information into the model (e.g., source

profiles), so that it does not rotate and it provides a rather

unique solution (Paatero and Hopke, 2009).

We perform organic aerosol source apportionment using

the multi-linear engine (ME-2) algorithm (Paatero, 1999) im-

plemented within the toolkit SoFi (Source Finder) developed

by Canonaco et al. (2013) at Paul Scherrer Institute. Simi-

larly to the PMF solver (Paatero and Tapper, 1994), the ME-2

solver (Paatero, 1999) executes the positive matrix factoriza-

tion algorithm. However, the user has the advantage to sup-

port the analysis by introducing a priori information in form

of known factor time series and / or factor profiles, for exam-

ple within the so-called a value approach (see Eqs. (3a) and

(3b)). The a value (ranging from 0 up to values larger than

1) determines how much the resolved factors (fj,solution) and

gi,solution) are allowed to vary from the input ones (fj , gi), as

defined in Eq. (3a) and (3b) (Canonaco et al., 2013). In our

work we only constrained the mass spectra represented by f .

fj,solution = fj ± α · fj (3a)

gi,solution = gi ± α · gi (3b)

For example, if a = 0.1 when constraining a mass spectral

profile, all of the m/z’s in the fit profile can vary as much

as −10 % to +10 % of the input constraining mass spectrum

profile.

In our work, a constant a value is applied to the entire con-

strained mass spectra (MS); however a softer constraining

technique is provided by the pulling approach (Paatero and

Hopke, 2009; Brown et al., 2012), which is available within

the SoFi package (Canonaco et al., 2013) and which is ex-

plained in more detail in Canonaco et al. (2014b).

The ME-2 solver is here successfully applied to the time

series of the unit mass resolution organic mass spectra mea-

sured by the AMS, including for most of the sites m/z up

to 200 (for a few sites the analysis was performed only up

to m/z 150 due to the low signal to noise ratio (SNR) ob-

served). Data are first averaged to 15–30 minute time resolu-

tion and after performing the source apportionment analysis

they are averaged to 1 hour for modeling purposes. The error

matrix preparation before running the source apportionment

algorithm is performed following the procedure introduced

by Ulbrich et al. (2009). Briefly, a minimum counting er-

ror of 1 ion is applied, m/z with SNR between 2 and 0.2

(weak variables) are downweighted by a factor of 2, while

bad variables (SNR<0.2) are downweighted by a factor of 10

(Paatero and Hopke, 2003; Ulbrich et al., 2009). Moreover,

based on the AMS fragmentation table, some organic masses

are not directly measured but calculated as a fraction of the

organic signal at m/z 44 (Allan et al., 2004); therefore the

errors of these m/z 44 dependent peaks are downweighted

(Ulbrich et al., 2009).

www.atmos-chem-phys.net/14/6159/2014/ Atmos. Chem. Phys., 14, 6159–6176, 2014
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3.2 A standardized source apportionment strategy

In this section we provide technical guidelines to perform

a standard source apportionment analysis on AMS data in

order to identify well known organic aerosol sources, like

hydrocarbon-like (HOA), biomass burning (BBOA), cook-

ing (COA) and oxygenated components (OOA), but also site-

specific sources. Our approach is particularly relevant for

rural locations where the temporal variability of emission

sources is less distinct and where the aging processes are

dominant compared to fresh emissions. A detailed descrip-

tion of the main features of these OA sources (source pro-

file, diurnal patterns, etc.) is presented in Sect. 4. Here, we

define first our source apportionment strategy and then we

provide details about the application of this methodology on

the EUCAARI-EMEP data. Finally, some technical exam-

ples concerning the data treatment and interpretation are also

reported in Sects. 3.2.2 and 3.2.3.

3.2.1 Technical guidelines

Within our work we define a standardized methodology to

perform source apportionment on AMS data using the ME-

2 algorithm with the aforementioned SoFi toolkit (Paatero,

1999; Canonaco et al., 2013). The sequential steps of the

methodology are reported below:

1. Unconstrained run (PMF).

2. Constrain the HOA mass spectrum (MS) with a low

a value (e.g., a =0.05–0.1) and test various number of

factors.

3. Look for BBOA (if not identified yet): constrain the

BBOA MS if f60 (i.e., the fraction of m/z 60 to the to-

tal organic mass) is above background level and check

temporal structures like diurnal increases in the evening

during the cold season due to domestic wood burning

(suggested a value = 0.3–0.5).

4. Look for COA (if cooking not found yet): check the

f55–f57 plot for cooking evidence (where f55 and f57

are the fraction of m/z 55 and m/z 57 to the total or-

ganic mass respectively; see Mohr et al., 2012). Fix it in

any case and check its diurnal pattern (the presence of

the meal hour peaks is necessary to support it at least in

urban areas).

5. Residual analysis: a structure in the residual diurnals

might indicate possible sources not separated yet by the

model (refer to Section 3.2.3). For each step the resid-

ual plots should always be consulted in order to evalu-

ate whether the constrained profile(s) has(have) caused

structures in the residuals. If so, the constrained profile

should be tested with a higher scalar a value.

6. In general the OOA components are not fixed, but are

left as 1 to 3 additional unconstrained factors.

Our approach starts with an unconstrained run, where no

a priori information concerning the source mass spectra is

added. This first step is important because it reveals the possi-

bility of separation for several OA components with PMF. It

also gives the user an idea of the number of possible sources

for that site, even though they might not be clearly sepa-

rated yet. If the HOA mass spectrum is not identified in the

first step (e.g., considering from 1 to 5 unconstrained fac-

tors), the user should fix the HOA mass spectrum with the

a value approach and, to evaluate the presence of this source

into the data set, investigate its diurnal pattern and correla-

tion with available external tracers (e.g., black carbon, NOx,

etc.). At this step several constrained runs are required vary-

ing the number of unconstrained factors (e.g., from 3 to 5)

in order to investigate the presence of other possible sources

(e.g., BBOA, COA, secondary components and possibly spe-

cific site-related factors). Moreover, the user should perform

a sensitivity analysis on the a value associated with the HOA

MS in order to define a range of possible solutions. A de-

tailed discussion about the sensitivity analysis is reported in

Sect. 4.5. If the user is unable to identify a biomass burning

related source within step 2, the investigation of the diurnal

pattern of a specific organic tracer for levoglucosan and pri-

mary biomass combustion species (f60 = m/z 60 / OA) (Al-

farra et al., 2007) can reveal the presence of BBOA at the

site (e.g., increasing contribution of f60 during the evening

suggests the use of biomass burning for domestic heating

purposes). In addition, it is important to study the variabil-

ity of f60 above background levels, which is reported to be

0.3 % ± 0.06 % (DeCarlo et al., 2008; Aiken et al., 2009; Cu-

bison et al., 2011). Finally, a primary OA source especially

important in urban areas is cooking (COA) (Slowik et al.,

2010; Allan et al., 2010; Sun et al., 2011; Mohr et al., 2012;

Crippa et al., 2013). The cooking contribution is not easily

resolved even for urban sites due to the similarity of its mass

spectrum with the one of HOA in unit mass resolution. So af-

ter identifying HOA and BBOA, the user should constrain the

COA MS with a rather low a value (e.g., a =0.05). To inter-

pret the retrieved factor as a cooking-related source, its diur-

nal pattern should show two peaks corresponding to the meal

hours at least in urban or semi-urban sites. As demonstrated

in Fig. 6 of Mohr et al. (2012), the f55 vs. f57 plot can pro-

vide further evidence of COA in urban sites strongly affected

by cooking activities. In fact, the triangular space defined

by Mohr et al. (2012) allows the identification of cooking-

influenced OA for points lying on the left hand side of this

triangle which are dominated by f55 (and therefore cook-

ing emissions) compared to points dominated by the traffic

source (lying on the right hand side of the triangle).

For specific sites (e.g., coastal locations, etc.) different

sources from continental urban and rural locations can be

expected. Therefore any a priori knowledge about specific

OA sources should be constrained when running the ME-

2 engine, to drive the model in finding local sources, of-

ten characterized by low contribution in mass and reduced
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temporal variability. Technical examples are provided in

Sect. 3.2.2.

At each step of the discussed methodology, it is important

to evaluate how the residuals vary moving from one step to

the other, and within a single phase varying the number of

factors. After fixing HOA and BBOA (step 3), the investi-

gation of the average diurnal variation of the residuals can

highlight the presence of unresolved sources by the model

(refer to Sect. 2.3.3 for further discussion).

When using the ME-2 algorithm for fixing source profiles,

the user must carefully validate the obtained results since a

good solution is not selected based on the possibility to re-

trieve a constrained profile (which is expected as output of

the model), but on several concurrent validation procedures.

The toolkit SoFi created by Canonaco et al. (2013) greatly

helps in performing all the suggested steps of our source

apportionment methodology and provides several metrics

to evaluate the quality of the chosen solution (e.g., cor-

relation with external data time series and mass spectra,

detailed residuals analysis, explained/unexplained variation

plots etc.) and also an efficient comparison of different so-

lutions (see SoFi manual, http://www.psi.ch/acsm-stations/

me-2).

3.2.2 Application to the EUCAARI-EMEP data

The previously mentioned procedure is successfully applied

on the 25 available organic AMS data sets and therefore

it provides a consistent methodology. Deploying the ME-2

solver allows the discrimination of traffic and biomass burn-

ing within the primary sources and of two OOA components

for the secondary fraction for most of the sites. In order to

perform a value runs within the ME-2 solver, it is neces-

sary to select reference mass spectra to be constrained in the

model. Due to the similar features of the HOA and COA mass

spectra, in our work we choose the HOA and COA mass

spectra identified in Paris by Crippa et al. (2013) as a ref-

erence, because of the significant contribution of the cook-

ing source to the total OA mass and its strong diurnal pat-

tern at that site. Solutions from other sites may have cook-

ing and HOA mixed to some extent. For the BBOA refer-

ence mass spectrum we adopt the one introduced by Ng et

al. (2011a) since it is considered representative of averaged

ambient biomass burning conditions. A detailed sensitivity

analysis investigating the impact of the input MS on the fi-

nal solution is already ongoing and will be fully addressed in

Canonaco et al. (2014a).

Additionally, for the two marine measurement sites (Mace

Head and Finokalia), a methane sulfonic acid (MSA) fac-

tor is used too (see Sect. S5). First, a relatively clean MSA

MS is obtained through an unconstrained PMF run for the

Mace Head 2008 late spring campaign (see Fig. S5 of the

supplementary material), during which high biological activ-

ity is expected (Dall’Osto et al., 2010). As a second step,

this MSA MS is used as input to the algorithm for the two

Figure 3. Comparison of the diurnal pattern of the Q-value for the

5-factor solution constraining HOA-BBOA or HOA-BBOA-COA

(Barcelona 2009). The structure in the scaled residuals suggests the

presence of additional sources.

other field campaigns (Finokalia 2008 and Mace Head 2009).

The separation of this factor is a challenge for the uncon-

strained PMF, due to reduced biological activity during early

spring in Mace Head and weak marine influence for the site

in Crete. Finally, in order to provide a complete overview of

the EUCAARI 2008–2009 data, the PMF solution described

in this paper for the Finokalia 2009 campaign is reported in

this work. Our standardized procedure could not be applied

to this data set due to specifics of the data pre-treatment and

the presence of unusual local sources.

3.2.3 Technical example of structure in the residuals

As discussed in Sect. 3.2.1, the analysis of the residual struc-

ture is fundamental to understand how the model solution

varies when adding more factors and which variables and/or

events get more explained. Figure 3 shows how the aver-

age diurnal profile of the scaled residuals (Q) for Barcelona

changes for the 5-factor solution run when constraining HOA

and BBOA and when additionally constraining COA. In the

first case, the Q diurnal shows two prominent peaks corre-

sponding to the meal hours in Barcelona (Mohr et al., 2012),

which suggests the presence of a possible cooking source not

resolved yet by the model. Therefore the residual analysis

provides an additional good reason to use the ME-2 algo-

rithm to also constrain a cooking source. After constraining

the COA mass spectrum in the model, the performance of

the model improves since the structure observed in the diur-

nal profile of the residuals disappears.

4 Results and discussion

4.1 Primary and secondary OA source contributions

The standardized source apportionment strategy introduced

in Sect. 3.2 is systematically applied to the 25 available
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Table 2. Relative contributions of the identified organic components to the total OA. Note that only main organic sources in common for

most of the sites are reported (HOA, BBOA, SV-OOA and LV-OOA).

Site Spring 2008 Fall 2008 Spring 2009

HOA BBOA SV-OOA LV-OOA HOA BBOA SV-OOA LV-OOA HOA BBOA SV-OOA LV-OOA

Barcelona 0.24 0.08 0.20 0.29

Cabauw 0.14 0.10 0.22 0.39 0.19 0.10 0.34 0.36

Finokalia 0.04 – 0.33 0.58 0.66

Helsinki 0.16 0.14 0.20 0.51

Hyytiälä 0.06 0.04 0.42 0.48 0.03 0.05 0.28 0.65

Jungfraujoch 0.06 0.11 – 0.83

K-Puszta 0.12 0.11 0.33 0.44

Mace Head 0.12 0.16 0.28 0.39 0.12 0.27 0.59

Melpitz 0.05 – 0.51 0.44 0.08 0.14 0.35 0.43 0.09 0.11 0.28 0.52

Montseny 0.07 0.09 – 0.83

Payerne 0.06 0.12 0.28 0.53 0.07 0.09 0.27 0.57

Puijo 0.22 – – 0.78

Puy de Dome 0.01 0.09 0.55 0.35 0.06 0.18 0.37 0.39

San Pietro Capofiume 0.10 0.12 0.28 0.50

Vavihill 0.20 0.12 – 0.68 0.21 0.10 0.50 0.19

Chilbolton 0.20 0.20 0.19 0.40

Harwell 0.07 0.13 0.32 0.48

AMS data sets, consisting of the AMS matrices with the

organic mass spectra over time and the corresponding er-

rors. Table S2 reports the comparison of the number of OA

components identified with the a value approach in com-

parison with the unconstrained run (PMF) (Ulbrich et al.,

2009), highlighting in red the constrained source mass spec-

tra. The unconstrained PMF often cannot provide a clear sep-

aration of OA sources in rural and remote sites (Zhang et

al., 2007; Jimenez et al., 2009). This may also happen at ur-

ban background sites where the effect of meteorology can

still be dominant compared to the source temporal variabil-

ity (Lanz et al., 2008; Canonaco et al., 2013). In our 25 data

sets, unconstrained PMF allows mainly the identification of

POA (often including HOA and BBOA in one factor typi-

cally characterized by high signal at m/z 44 and 60) and SOA

sources (refer to Table S2). Even when HOA is identified,

it is often not clean due to the high contribution of m/z 44

(which should be rather small for primary traffic emissions).

In some cases it is only possible to separate two secondary

oxygenated components, but no primary source is retrieved,

although expected.

On the contrary, with our approach, primary and sec-

ondary OA sources are retrieved for all the analyzed data

sets, including traffic (HOA), cooking (COA) and biomass

burning (BBOA) as primary sources, and methane sulfonic

acid (MSA), semi-volatile and low-volatility oxygenated OA

(SV-OOA and LV-OOA) as secondary components. For the

Cabauw 2008 and Finokalia 2009 data sets the contribution

of local (site specific) sources is also observed. The ME-2

solution for the Cabauw 2008 campaign includes a site spe-

cific factor (named here LOA, local organic aerosol) which

is interpreted to be hulis-related (humic-like substances), as

widely explained in Paglione et al. (2013). These results rep-

resent a great improvement in the source apportionment field,

since we demonstrate the possibility to identify several pri-

Figure 4. Relative organic source contributions (ME-2 results). On

top of each bar the average organic concentration (in µg m−3) is also

reported. Site specific sources are classified as LOA (local organic

aerosols) and include HULIS-related OA (humic-like substances)

for Cabauw (Paglione et al., 2013), while amines and local sources

for Finokalia (Hildebrandt et al., 2011).

mary and secondary OA components even at rural locations

where the POA factors often contribute less than 10 % of the

OA. Comparisons with previously published PMF solutions

(mainly from HR-PMF data) for specific sites are reported in

Sect. S3 of the supplementary material.

Our methodology combines the advantages of the chem-

ical mass balance and the positive matrix factorization ap-

proach. In fact, the a priori knowledge of well-known source

profiles (e.g., from primary sources) drives the source ap-

portionment algorithm in finding an optimal solution for the
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Figure 5. Relative organic source contributions as a function of total organic concentrations. Average plot over all the seasons and rural sites

(a), Barcelona only (b), and average plot for marine sites (c).

model, while less constrained components (e.g., secondary

OA) are allowed to freely vary (similarly to the unconstrained

PMF case). However, our approach should provide consistent

results with the unconstrained PMF case, where an optimal

solution could be also identified by the means of other tech-

niques such as e.g., a significant number of seeds, individ-

ual rotations or by reweighting specific uncertainties, etc.,

although requiring often very high time efforts and a lot of

expertise on the user side.

Figure 4 summarizes the average organic aerosol con-

centration and the average relative contribution of each OA

source for each site (see also Table 2). For all sites and

campaigns it is possible to separate a hydrocarbon-like OA

factor (average equal to 11 ± 6 % of OA), whose contribu-

tion on average ranges from 3 % to 24 % to the total OA

mass. The HOA average concentration ranges between 0.1

and 2.1 µg m−3 depending on the site location and campaign.

Although Puijo is classified as rural site, it has nearly the

largest HOA fraction since located on a hill at 2 km from the

city center of Kuopio (population 97000) which is a source

of HOA and few point sources (Leskinen et al., 2012; Hao et

al., 2013). However, in absolute terms, HOA concentrations

in Puijo are rather low (0.2 µg m−3), while at sites with high

total OA concentrations the absolute HOA amount is higher

compared to rural sites.

Biomass burning is identified in 22 data sets and is associ-

ated with a mix of domestic heating during cold periods and

open fires (e.g., agricultural, forest and gardening waste) and

barbecuing activities etc. The BBOA contribution to the total

OA mass varies on average between 5 and 27 % (correspond-

ing to 0.1–0.8 µg m−3) with an average relative contribution

to the total OA mass equal to 12 ± 5 %. At 3 sites (Melpitz

spring 2008, Puijo fall 2008 and Finokalia spring 2008) f60

is close to or below the background values and the BBOA

is regarded as negligible. Major contribution to total OA de-

rives from secondary sources, which are classified here based

on their degree of oxygenation as SV-OOA and LV-OOA and

which contribute on average 34 ± 11 % and 50 ± 16 % to the

total OA mass, respectively.

Cooking contributes on average ∼15 % to the total OA

mass in Barcelona, consistent with AMS ambient measure-

ments performed in European urban areas like Zurich, Paris,

London, etc. (Mohr et al., 2012; Canonaco et al., 2013;

Crippa et al., 2013; Allan et al., 2010). Finally, MSA con-

tributes from 2 % to 6 % to the total OA mass in the two

marine sites (Mace Head and Finokalia), similarly to the val-

ues reported by Dall’Osto et al. (2010) and Ovadnevaite et

al. (2014).

Figure 5 is an alternative method to summarize source ap-

portionment results, in fact instead of reporting average con-

centrations of the sources, it reports the relative OA source

contribution vs. the OA concentration for all the rural, ma-

rine and urban sites, highlighting the role of specific sources

within different concentration ranges (average over 21, 1 and

3 data sets for panel a, b and c, respectively). The number

of measurements happening for each concentration bin is

reported (black line with markers) and shows a decreasing
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Figure 6. Diurnal profiles of organic aerosol components. Mean values (± standard deviation) for OA components are shown for the different

seasons and all sites.

trend for higher concentration. The last concentration bin in-

cludes all data points above that concentration.

For rural sites (see Fig. 5a), the HOA contribution de-

creases with increasing OA concentrations, while the BBOA

contribution is very small for very low concentrations

(<1 µg m−3), but stable over the rest of the concentration

range. No general pattern can be observed for the two sec-

ondary components. However the LV-OOA fraction seems

to increase at higher concentration. For an urban site like

Barcelona (see Fig. 5b), traffic is a significant source both

at low and high OA concentrations, while the semi-volatile

oxygenated component is rather low. However, the differen-

tiation between SV- and LV-OOA is highly dependent on the

oxidation processes in the atmosphere, geographical position

of the measurement site, season, meteorological conditions,

etc., therefore our conclusions for the Barcelona site might

not have general validity. Figure 5c shows the fractional con-

tribution of OA sources as a function of total OA concentra-

tion for marine sites. An interesting feature is the high rel-

ative contribution of MSA at very low OA concentrations

(below 1 µg m−3), where both the primary OA sources and

the LV-OOA fraction are small. Figure 5 highlights the im-

portance of comparing models and measurements in different

concentration ranges instead of only e.g., the average contri-

butions. An obvious example is Mace Head where the contri-

bution of sources at low concentrations from the Atlantic are

very different from situations when the station is downwind

of European pollution.

4.2 Evaluation of results

The interpretation of the retrieved source apportionment fac-

tors as organic aerosol sources is based on correlations with

external data (see Table S3), the investigation of their diur-

nal pattern (Fig. 5) and the source mass spectra compari-

son with reference ones (refer to Sect. 4.3 for further dis-

cussion). However, presenting all details about the evalua-

tion of the source apportionment results for each campaign

is beyond the scope of this paper. HOA typically corre-

lates with black carbon, which is co-emitted by the same

source; biomass burning correlates with the organic frag-

ment at m/z 60 (org60) which corresponds mainly to the ion

C2H4O+

2 and has been shown to be a good tracer for biomass

burning (Alfarra et al., 2007; DeCarlo et al., 2008; Aiken

et al., 2009). However, in marine environment, m/z 60 is

usually dominated by Na37Cl (Ovadnevaite et al., 2012). To

further evaluate the interpretation of primary sources within

the selected solution, source-specific ratios can be calculated

(e.g., HOA / CO, HOA/BC and HOA / NOx) and compared

with literature studies. However, in our work this approach

could not be systematically applied due to the lack of external

data. Bilinear regression (Allan et al., 2010) can be used to

estimate these ratios also in the presence of multiple sources;

however, this method is more applicable to a single data set

rather than an overview of 25 data sets across Europe.

The secondary OA components are compared with the

secondary inorganic species: the SV-OOA time series are

expected to correlate with nitrate (NO3) due to the higher

volatility of this component and its partitioning behavior with

temperature, while the LV-OOA time series are correlated

with sulfate (SO4) since it represents a less volatile fraction

(Lanz et al., 2007). However, depending on the specific fea-

tures of the SV-OOA and LV-OOA components, associated

with their origin and processing in the atmosphere, their cor-

relations with the secondary inorganic species might be not

very high (Table S3). Finally, to further validate our source

apportionment results, we investigated the diurnal pattern

of the identified sources. In order to remove the effect of
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Figure 7. Mass spectral variability for the retrieved ME-2 OA

sources. Median values are represented with circles and the 25th

and 75th percentiles with error bars.

boundary layer height evolution, we recommend that users

investigate the diurnal patterns of the relative source contri-

butions relative source contribution diurnal pattern in addi-

tion to the absolute source contributions.

Figure 6 shows the diurnal patterns of HOA, BBOA, SV-

OOA and LV-OOA. First, median diurnal patterns for each

source referred to a specific site and campaign are evalu-

ated; then mean values (± standard deviation) for the three

campaign periods are calculated and reported in Fig. 6. Two

peaks corresponding to rush hour times are observed for the

HOA daily pattern, while an increasing contribution in the

evening hours is typical for BBOA emissions. A rather flat

pattern is shown for LV-OOA, although an afternoon increase

can be observed for the late spring 2008 campaigns simi-

larly to the expected summertime behavior. Finally, an anti-

correlated pattern with temperature is found for SV-OOA.

Figure 6 does not report the diurnal pattern of the cook-

ing source since it is identified only for the urban site of

Barcelona. The reader should refer to Fig. 3 for the valida-

tion of the COA diurnal pattern which is characterized by

two peaks corresponding to the meal hours.

4.3 POA and SOA mass spectral variability

Figure 7 shows the median mass spectra of HOA (n=25),

BBOA (n = 22), SV-OOA (n = 21) and LV-OOA (n = 25)

together with the 25th and 75th percentiles. The presented

mass spectra (MS) can be considered as reference profiles

for European sites in addition to the work presented by Ng et

al. (2011a), where only for a reduced number of data sets it

was possible to retrieve a good separation of primary sources

(e.g., HOA and BBOA). The comparison between the Ng

et al. (2011a) MS and our median profiles provides an R2

Figure 8. Average BBOA fractional contribution vs. average f60

for each site.

equal to 0.99, 0.93, 0.86 and 0.95 for HOA, BBOA, SV-OOA

and LV-OOA, respectively. However, as shown in Fig. 6, spe-

cific m/z express a stronger variability within a source profile

compared to others, as later discussed later.

The hydrocarbon-like OA (HOA) profile is characterized

by peaks corresponding to aliphatic hydrocarbons (includ-

ing m/z 27, 41, 43, 55, 57, 69, 71, etc.) (Canagaratna et al.,

2004). Since this mass spectrum is strongly constrained when

running the ME-2 algorithm (a value=0.05), the site to site

variability of the characteristic peaks is reduced, as shown

by the percentiles in Fig. 7. However, we do not expect this

source to significantly vary in terms of MS as demonstrated

by the comparison of HOA mass spectra retrieved from am-

bient measurements (e.g., R2 = 0.99 between the average

HOA MS from Ng et al. (2011a) and the HOA MS retrieved

in Paris (Crippa et al., 2013)) and laboratory experiments

(Mohr et al., 2009).

On the contrary, as discussed previously (Grieshop et al.,

2009; Heringa et al., 2011), the biomass burning mass spec-

trum is strongly affected by the type of wood, burning con-

ditions, etc., and thus highly variable. For this reason the ref-

erence spectrum of BBOA is not constrained very strongly

when running the ME-2 model, but we adopt an a value of

0.3 to account for this variability. The characteristic peaks

of this source profile are m/z 29 (CHO+), 60 (C2H4O+

2 ), 73

(C3H5O+

2 ) which are associated with fragmentation of anhy-

drosugars such as levoglucosan (Alfarra et al., 2007; Aiken et

al., 2009). Major differences in the primary OA mass spectra

are observed at m/z 29, 44 and higher masses (e.g., m/z 67,

69, 73, 77, 79, 81, 91).

For the secondary components the major variability is as-

sociated with the f44 to f43 ratio which provides informa-

tion about the degree of oxygenation of the considered fac-

tor. The LV-OOA factor is characterized by an average f44

to f43 ratio equal to 3.3, corresponding to highly oxygenated

compounds, while the SV-OOA has a lower ratio (on average

equal to 1.1). The f44 vs. f43 information is also summarized
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in Fig. S4, where the SV- and LV-OOA components retrieved

for all our data sets are represented within the triangular

space defined by Ng et al. (2010). The aging of secondary

OA components can be studied considering the evolution in

the f44 (corresponding to the CO+

2 ion) vs. f43 (mostly cor-

responding to the C2H3O+ ion) space.

The relative fractions of specific m/z are different between

these two secondary components. A comparison of the me-

dian SV- and LV-OOA MS reveals that: m/z 91, 105, 107,

109, 115, 117, and 119 are much higher in the SV-OOA MS

than in the LV-OOA, while m/z 45, 100, 101, 113 are higher

in the LV-OOA MS than in the SV-OOA. This comparison is

performed on the normalized spectra from m/z 45 up to 200.

No specific tracers for the two components are retrieved in

our study.

Using the equation introduced by Aiken et al. (2008) it is

possible to estimate the degree of oxygenation of each source

making use of the linear relation between the O : C ratio and

the fraction of m/z44 of a specific factor. The resulting O : C

ratio is 0.13 for HOA, 0.22 for BBOA, 0.41 for SV-OOA

and 0.81 for LV-OOA, consistently with AMS high resolu-

tion analyses available in the literature (Jimenez et al., 2009;

Ng et al., 2010; DeCarlo et al., 2010).

4.4 Assessment of the BBOA presence

Figure 8 reports the average fraction of BBOA to the total OA

for each site as a function of the average f60 contribution. For

only 3 locations it is not possible to identify a BBOA source,

coherently with their corresponding f60 values below back-

ground level (which is expected to be around 0.3 %) (Cubi-

son et al., 2011). A linear relation is found between fBBOA

and f60 (intercept = −0.026, slope=29.34), with an R2 equal

to 0.77, representing the possibility to estimate the amount

of BBOA contributing to a site based on the f60 metric, even

before performing a constrained/unconstrained positive ma-

trix factorization run.

For a few sites with an f60 contribution close to the back-

ground level a small contribution of BBOA to total OA (4 %)

is found, representing the uncertainty of our approach, but

also to the f60 background level variability associated with

different sites and to the deployment of different AMS. How-

ever, in this study the source apportionment including BBOA

relies not only on f60, but on all mass fragments.

Finally, high BBOA contributions are also observed dur-

ing rather warm periods (e.g., during the spring 2008 cam-

paign in Helsinki, San Pietro Capofiume, Cabauw) when

the domestic heating is not expected. Probable but uncertain

sources include open fires, agricultural waste disposal, forest

and gardening waste burning which often show their maxi-

mum contributions during spring and autumn.

4.5 Sensitivity analysis of the a value approach

In order to further evaluate our source apportionment results,

we perform a sensitivity analysis varying the a value for the

HOA MS, to loosen the constraint for this source and sub-

sequently provide a range of possible reasonable solutions.

The HOA MS is initially constrained with an a value of 0.05

because we do not expect it to vary a lot from site to site, as

previously discussed. However, releasing the constraint asso-

ciated with the a value, it is still possible to separate the traf-

fic source for all the sites. Several a value runs are performed

increasing its value until the HOA source is not meaningful

anymore, based on the features of the HOA MS (e.g., a too

high contribution of m/z 44 represented a mixture of HOA

with BBOA or secondary oxygenated sources), the variation

in the HOA diurnal pattern and, when available, the correla-

tion with external data. For most of the sites an upper range of

the a value is found to be 0.2, in accordance with Canonaco

et al. (2013) who identified an upper limit of 0.15 for the

HOA MS at the urban background site in Zurich for a longer

time period.

Table 3 summarizes our sensitivity analysis results, report-

ing for each site the relative contribution of the retrieved OA

sources within the a value range of 0.05–0.2 for the HOA

MS. The HOA relative contribution does not vary signifi-

cantly (only by a few percent) within the considered a value

range and is sometimes associated with the reapportionment

of the other sources (e.g., the contribution of the SV-OOA

factor varied accordingly).

Concerning BBOA, an a value of 0.3 is found to give rea-

sonable freedom to the BBOA MS in the ME-2 model, while

it is not possible to define a consistent a value upper limit

for all the sites. In fact it is difficult to define a criterion to

determine when the BBOA factor fails when increasing the

a value, due to the variable features of the BBOA MS and

the lack of stronger metrics in this study. In our study we

present a sensitivity test for BBOA varying the a value in the

range 0.2–0.4 and we report the relative contribution of OA

sources to total organic as a function of the a value extremes

of the investigated range (refer to Table 4). However, if a pri-

ori knowledge about wood burning conditions is available for

a site, we suggest to constrain the BBOA MS deriving from

the same kind of burning conditions, instead of using an av-

erage BBOA MS.

Finally, we recognize that the selection of the reference

mass spectra to be constrained when running the ME-2 ap-

proach is critical and it might affect the source apportionment

output. Therefore, in Sect. 6 of the Supplementary Material,

the effect of the choice of specific mass spectrum as refer-

ence when running ME-2 on the source apportionment out-

put is investigated. However, a future study using more suited

data sets with more external constraints on the validity of the

retrieved sources will be performed to fully address this im-

portant task.
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Table 3. Sensitivity analysis for the HOA factor (a value range=0-0.2, a value for BBOA=0.3 if constrained). The relative contribution of

OA sources to the total OA is reported varying the HOA a value.

site HOA BBOA SV-OOA LV-OOA COA MSA

BCN 0.24–0.25 0.09–0.07 0.13–0.10 0.37–0.34 0.17–0.24 –

CBW 0.14–0.16 0.10–0.10 0.23–0.22 0.38–0.38 – –

0.17–0.21 0.09–0.11 0.31–0.34 0.43–0.34 – –

FKL 0.04–0.05 – 0.23–0.28 0.68–0.64 – 0.05–0.03

HEL 0.16–0.16 0.15–0.15 0.31–0.18 0.38–0.51 – –

SMR 0.06–0.07 0.04–0.05 0.37–0.34 0.53–0.54 – –

0.03–0.04 0.05–0.05 0.29–0.31 0.63–0.60 – –

JFJ 0.07–0.07 0.11–0.12 – 0.82–0.81 – –

KPO 0.11–0.17 0.13–0.10 0.35–0.34 0.41–0.39 – –

MH 0.11–0.14 0.16–0.13 0.25–0.30 0.41–0.36 – 0.07–0.07

0.11–0.15 0.30–0.27 – 0.57–0.55 – 0.02–0.02

MPZ 0.07–0.06 – 0.37–0.34 0.56–0.60 – –

0.08–0.08 0.14–0.15 0.34–0.31 0.44–0.46 – –

0.10–0.10 0.17–0.10 0.30–0.28 0.43–0.52 – –

MSY 0.13–0.09 0.10–0.10 – 0.77–0.81 – –

PAY 0.05–0.07 0.11–0.11 0.29–0.29 0.54–0.53 – –

0.07–0.08 0.10–0.10 0.26–0.22 0.57–0.60 – –

PUI 0.21–0.27 – – 0.79–0.73 – –

PDD 0.01–0.02 0.09–0.08 0.20–0.20 0.70–0.70 – –

0.05–0.05 0.17–0.17 0.37–0.37 0.41–0.41 – –

SPC 0.09–0.12 0.16–0.18 0.26–0.24 0.49–0.46 – –

VAV 0.20–0.22 0.13–0.13 – 0.67–0.65 – –

0.10–0.13 0.15–0.16 0.26–0.20 0.49–0.51 – –

CHL 0.16–0.18 0.16–0.15 0.22–0.21 0.46–0.46 – –

HAR 0.09–0.15 0.11–0.08 0.31–0.30 0.49–0.47 – –

Table 4. Sensitivity analysis for the BBOA factor (a value range=0.2-0.4, a value for HOA=0.05). The relative contribution of OA sources

to the total OA is reported varying the BBOA a value. In the table, the first number refers to the solution obtained with an a value of 0.2 and

the second one to with a value of 0.4.

site HOA BBOA SV-OOA LV-OOA COA MSA

BCN 0.25–0.25 0.07–0.08 0.12–0.11 0.39–0.41 0.16–0.15 –

CBW 0.09–0.07 0.08–0.10 0.17–0.19 0.66–0.65 – –

0.20–0.19 0.10–0.10 0.33–0.34 0.36–0.36 – –

SMR 0.06–0.06 0.04–0.05 0.55–0.50 0.36–0.38 – –

0.03–0.03 0.04–0.05 0.39–0.26 0.54–0.66 – –

JFJ 0.08–0.07 0.10–0.12 – 0.82–0.81 – –

KPO 0.12–0.11 0.10–0.14 0.33–0.35 0.45–0.39 – –

MH 0.11–0.11 0.14–0.15 0.24–0.15 0.44–0.52 – 0.07–0.07

0.13–0.13 0.27–0.32 – 0.59–0.54 – 0.01–0.02

MSY 0.12–0.12 0.09–0.13 – 0.78–0.75 – –

PAY 0.06–0.05 0.10–0.10 0.27–0.35 0.58–0.49 – –

0.08–0.08 0.10–0.09 0.26–0.20 0.57–0.63 – –

PDD 0.01–0.01 0.08–0.09 0.45–0.466 0.45–0.44 – –

0.05–0.05 0.15–0.18 0.36–0.37 0.44–0.40 – –

SPC 0.11–0.09 0.15–0.20 0.28–0.21 0.46–0.50 – –

VAV 0.20–0.21 0.15–0.13 – 0.65–0.67 – –

0.12–0.11 0.14–0.18 0.20–0.22 0.54–0.50 – –

HAR 0.07–0.09 0.12–0.10 0.44–0.45 0.36–0.37 – –
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5 Conclusions

We developed a new standardized approach for source ap-

portionment analysis applicable for aerosol mass spectrome-

ter measurements. Our source apportionment procedure was

tested and systematically applied to 25 organic aerosol data

sets, demonstrating the possibility to separate the main pri-

mary and secondary organic aerosol components also for ru-

ral sites. This represents a significant advancement compared

to previous literature studies which showed limitations of the

unconstrained positive matrix factorization when applied on

rural/background site data sets. Our source apportionment

strategy is significantly improved through the use of the mul-

tilinear engine (Paatero, 1999) and the SoFi toolkit devel-

oped by Canonaco et al. (2013). Future applications of our

strategy are associated not only with the unit mass resolu-

tion aerosol mass spectrometer, but also the high resolution

instruments and the aerosol chemical speciation monitor. In

the next few years the latter will provide a network of long-

term online data about the aerosol chemical composition, of-

ten measured at non-urban locations. The investigation of OA

sources will require guidelines to overcome instrument-and

data-related limitations. This paper provides these guidelines

with a structured methodology for a consistent interpretation

of OA source apportionment work.

Moreover, with our study we are able to describe organic

aerosol sources all over Europe, thus improving the actual

knowledge on the OA source distribution and representing

an important step in the definition of mitigation strategies at

the regional scale.

On average primary sources contribute less than 30 % to

the total OA mass concentration, while the predominant frac-

tion of OA is associated with secondary formation (mainly

SV-OOA and LV-OOA). The traffic contribution is season in-

dependent and represents 11 ± 6 % of total OA all over Eu-

rope. Biomass burning represents 12 ± 5 % of the total OA

mass and might be associated with domestic heating dur-

ing wintertime and to open fires, agricultural waste disposal,

waste burning etc., during the other seasons. Cooking is in-

deed a relevant source mainly for urban locations (15 %).

The control of primary organic aerosol emissions should be

performed together with the reduction of the sources of sec-

ondary OA (SV- and LV-OOA) in Europe as the latter make

the dominant OA fraction, although this task is quite chal-

lenging. Finally, coupling European wide measurements and

source apportionment results with regional and global mod-

els will improve their prediction of POA and SOA compo-

nents.

The Supplement related to this article is available online
at doi:10.5194/acp-14-6159-2014-supplement.
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