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Abstract. In groundwater ecosystems, in situ primary production is low, and metab-
olism depends on organic matter inputs from other regions of the catchment. Heterotrophic
metabolism and biogeochemistry in the floodplain groundwater of a headwater catchment
(Rio Calaveras, New Mexico, USA) were examined to address the following questions: (1)
How do groundwater metabolism and biogeochemistry vary spatially and temporally? (2)
What factors influence groundwater metabolism? (3) What is the energy source for ground-
water metabolism?

At Rio Calaveras, surface discharge and water table elevation increased at the onset of
spring snowmelt. Groundwater biogeochemical changes in response to snowmelt included
increases in dissolved oxygen and dissolved organic carbon (DOC) concentrations. Dis-
solved organic carbon concentration then decreased exponentially with time, suggesting
that newly saturated floodplain sediments were a major source of DOC. Organic matter
content in seasonally saturated sediments averaged 3% by mass, and ;0.05 mg C/g dry
sediment was water soluble. Microorganisms from these sediments were able to consume
an average of 45% of the leached DOC. These results show that snowmelt imports DOC
to groundwater and that a substantial amount can be consumed by biota. These results may
be important ecologically if the growth and abundance of groundwater organisms are limited
by DOC availability.

The influence on groundwater heterotrophic metabolism of DOC availability, inorganic
nitrogen (N), inorganic phosphorus (P), temperature, and season were assessed using lab-
oratory manipulations of aquifer sediments and seasonal measurements in field microcosms.
Augmentation with DOC (10 mgC/L above background) nearly doubled respiration rate
during base flow but did not influence respiration during snowmelt. In contrast, addition
of N and P did not influence respiration at any time. Respiration rate during snowmelt was
significantly higher than at base flow and was not influenced by any combination of DOC,
N, P, or temperature. The hypothesis that groundwater metabolism is limited by DOC
availability during base flow was supported. Hydrologic linkage between soils and ground-
water represents a critical flux of DOC that supports metabolism in unconfined alluvial
aquifers.

Key words: aquatic–terrestrial interface; dissolved organic carbon (DOC); groundwater; hy-
drologic controls; limitation of metabolism by DOC availability; metabolism; organic carbon cycling;
region of seasonal saturation (RoSS); seasonal variation; shallow groundwater ecosystem; snowmelt.

INTRODUCTION

Understanding energy flow has been a major focus
of research in ecosystem ecology since Raymond Lin-
deman (1942) published his seminal work, ‘‘The Tro-
phic-Dynamic Aspect of Ecology.’’ Over the years,
ecologists have developed an understanding of organic
matter cycling in a variety of terrestrial and aquatic
ecosystems. Working with a headwater stream, Fisher
and Likens (1973) emphasized that many ecosystems
are open to exchange of materials and energy across
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ecosystem boundaries and that import and export vec-
tors should be considered in order to better understand
organic matter dynamics.

Although 97% of global liquid freshwater resides
underground (Gibert et al. 1994), the ecology of
groundwater ecosystems is still poorly understood and
ecological principles have only recently been applied
to studies of subsurface aquatic environments (e.g.,
Vervier and Gibert 1991, Marmonier et al. 1993, Gibert
et al. 1994). Because water and solutes can have res-
idence times in groundwater on the order of centuries
to millennia (Fetter 1988), a classic view of ground-
water is that of a closed ecosystem, isolated from in-
teraction with surface environments (e.g., Ghiorse and
Wilson 1988, Chapelle and Lovley 1990). In shallow
groundwater, or local flow systems (sensu Toth 1963),
residence times are shorter, and the open-system per-
spective of organic matter dynamics embraced by
Odum (1956) and extended by Fisher and Likens
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FIG. 1. Components of a hypothetical catchment. Ecosystem components include the surface stream, surface water/
groundwater interface, permanent alluvial groundwater, and the region of seasonal saturation (RoSS). The RoSS is defined
as the portion of floodplain sediments that is seasonally saturated by a rising groundwater table (dashed line) during rainstorms
and/or snowmelt. The left portion of the diagram represents the structure of an unconstrained reach where hillslope soils
may contribute to the RoSS, and the right portion represents a constrained reach (sensu Gregory et al. 1991) where exposed
bedrock outcrops restrict hillslope–floodplain interaction.

(1973) may hold great promise for understanding en-
ergy flow where metabolism may rely on material trans-
port from the surface.

Groundwater ecosystems are constantly dark, thus
photosynthesis does not occur in situ, organic matter
standing stocks are low relative to surface ecosystems
(Ghiorse and Wilson 1988, Chapelle and Lovley 1990),
and biological productivity in the subsurface is often
limited by organic matter availability (Jones 1995). Be-
cause subsurface rates of chemoautotrophic primary
production are low (Chapelle and Lovley 1990, Jones
et al. 1994), groundwater food webs are usually het-
erotrophic (sensu Odum 1956) and may rely on import
of organic matter from surface environments (Jones et
al. 1995). Therefore, hydrologic connectivity between
the surface and subsurface is likely of great importance
to energy flow in shallow groundwater ecosystems.

Recognition that surface water–groundwater ex-
change influences biological responses in both streams
and shallow groundwater has led to a considerable body
of research directed at understanding surface water–
groundwater (SW/GW) interactions in recent years (see
reviews by Jones and Holmes [1996], Brunke and Gon-
ser [1997], Boulton et al. [1998]). In the context of
organic matter cycling, many studies have addressed
the influence of groundwater on streams (e.g., Wallis
et al. 1981, Rutherford and Hynes 1987, Fiebig and
Lock 1991, Fiebig 1995), and an increasing emphasis
has been placed on understanding the functioning of

the SW/GW interface or hyporheic zone (sensu Triska
et al. 1989).

Stream ecologists have shown that SW/GW inter-
actions can supply organic matter to subsurface organ-
isms. For example, Jones et al. (1995) showed that
respiration in the SW/GW interface of Sycamore Creek,
Arizona, USA is fueled by stream algal production. In
the Steina River, Germany, and in the Necker River,
Switzerland, respiration in the SW/GW interface is pri-
marily supported by particulate organic matter buried
during floods (Pusch and Schwoerbel 1994, Nageli et
al. 1995). These studies highlight the importance of
SW/GW exchange to subsurface energy flow.

In many catchments, the SW/GW interface may ac-
count for only a small portion of the saturated subsur-
face (Morrice et al. 1997, Wroblicky et al. 1998), and
in these systems it is unlikely that SW/GW interaction
provides all of the organic matter required to support
subsurface heterotrophic metabolism. Interactions be-
tween alluvial groundwater and overlying unsaturated
sediments may be important to subsurface ecology, but
these terrestrial–aquatic interactions are less well un-
derstood (Danielopol 1980).

The region of seasonal saturation (RoSS) is defined
as the sediments overlying the unconfined alluvial
groundwater ecosystem that are seasonally saturated
during wet periods (Fig. 1). We hypothesize that the
RoSS represents an interactive component of catch-
ments that is located at a terrestrial–aquatic ecotone
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and that the RoSS plays a unique and regulatory role
in the structure and functioning of shallow groundwater
ecosystems. We define the vertical boundaries of the
RoSS to include the sediments of the vadose (unsat-
urated) zone, which is delimited by the lowest mean
water table elevation during base flow and the highest
mean water table elevation observed during periods of
high flow, including rain storms and snowmelt. Lat-
erally, the RoSS includes the entire extent of the flood-
plain defined as valley floor width (Gregory et al.
1991), and in many unconstrained systems may also
include alluvium within hillslopes up to the watershed
boundaries (Fig. 1). We propose that hydrologic inte-
gration of the RoSS and shallow groundwater supplies
organic matter for heterotrophic metabolism.

Mountain catchment model

The hydrology of mountain catchments is often dom-
inated by spring snowmelt (e.g., Bales and Harrington
1995). In these catchments, snowmelt results in an in-
crease in water table elevation and surface water dis-
charge. Previous research has shown that the RoSS
contains high levels of dissolved organic carbon (DOC)
that can be flushed into both surface and groundwater
(Hornberger et al. 1994, Boyer et al. 1997, Mulholland
and Hill 1997, Hinton et al. 1998). A characteristic of
the flushing response is a peak in DOC concentration
on the rising limb of the hydrograph, followed by a
logarithmic decline in DOC with time (Hornberger et
al. 1994, Boyer et al. 1996, 1997). These recent papers
highlight the role of the RoSS in DOC export to
streams. Our study relates the RoSS to DOC supply for
groundwater metabolism, and provides insight on how
aquatic–terrestrial interactions may influence energy
flow and biogochemistry in headwater catchments.

We investigated the shallow alluvial aquifer asso-
ciated with the Rio Calaveras, a semiarid mountain
catchment in New Mexico, as a model ecosystem for
a study of the influence of the RoSS on groundwater
organic carbon cycling. We hypothesized that hydro-
logic fluxes between the RoSS and saturated zone are
critical to heterotrophic metabolism in near-stream
groundwater.

STUDY SITE

Rio Calaveras is a first order, spring-fed, perennial
stream at 2475 m elevation in the Jemez Mountains,
New Mexico (358569 N, 1068429 W). Catchment area
is 3760 ha, and mean stream gradient is 1.3%. Alluvium
is a silty sand (Wroblicky et al. 1998) derived from
welded Bandelier tuff formed after the eruption of the
Valles Caldera 1.2 yr BP (Dane and Bachman 1965).
Average grain size of alluvium is 1–2 mm and alluvial
depth ranges from 1–3 m (Wroblicky 1995). Soils are
frigid–mesic eutroboralfs and haploborolls. The catch-
ment is in a mixed conifer forest; dominant tree species
include Douglas fir (Pseudotsuga menziesii), white fir
(Abies concolor), blue spruce (Picea pungens), and

ponderosa pine (Pinus ponderosa). The stream canopy
is mostly open, and there is limited overstory riparian
vegetation. Climate at the study site is semiarid, with
mean annual precipitation of 450 mm (National Weath-
er Service, Los Alamos, New Mexico, USA). Most of
the precipitation occurs as rain during monsoon thun-
derstorms during July–September and as snow during
November–March. Stream discharge and groundwater
table elevation respond to precipitation inputs from rain
and snowmelt. Stream discharge ranges from ;1 L/s
during autumn base flow to .100 L/s during spring
snowmelt. Subsurface water during base flow is char-
acterized by low dissolved inorganic nitrogen (0.137–
0.167 mg N/L), soluble reactive phosphorus (mean 5
0.008 mg P/L), and DOC ranging 1.27–1.58 mg C/L
(Valett et al. 1996). In addition, baseflow groundwater
is anoxic or hypoxic, with dissolved oxygen (DO) con-
centration ranging 0.0–0.95 mg DO/L (Valett et al.
1996). Because subsurface anoxia and hypoxia are
common at Rio Calaveras (Baker et al. 1999, 2000,
Valett et al. 1996, 1997), DO can be used as a tracer
of surface–subsurface linkage, because it is transported
to the saturated zone during snowmelt and storms.

Instrumentation

Rio Calaveras was instrumented with two Palmer–
Bowlus (Plasti-Fab, Oregon, USA) plastic flumes (in-
stalled November 1995); one was located several me-
ters below the perennial spring source, and the second
one was located 120 m downstream (Fig. 2A). Twenty-
four groundwater sampling wells were installed in five
transects perpendicular to the stream (hereafter referred
to as interface wells; Fig. 2A). An additional 24 wells
were installed in the floodplain and near the hillslope
edges (referred to as floodplain wells) at various dis-
tances (3–20 m) from the active stream channel (Fig.
2A). All wells were constructed of 5 cm inner diameter
polyvinyl chloride (PVC) pipe with 50-cm screen
lengths (25-mm slots), capped on the bottom. Wells
were installed 30–50 cm below the baseflow water table
or the stream bottom, using either a hand or gasoline-
powered auger. Well holes were packed with silica sand
to several cm above the well screen, backfilled with
native fill, and capped with bentonite to prevent infil-
tration of water along the well casing (Valett et al.
1996). The interface wells were installed in 1991–1992.
An additional 14 floodplain wells were installed in au-
tumn 1993, and 10 floodplain wells were installed in
autumn 1995.

METHODS

Catchment hydrology, biogeochemistry, and
hydrologic linkages among the RoSS,

groundwater, and stream

The aerial extent of catchment subsystems, including
the active stream channel, surface water–ground water
(SW/GW) interface, and the region of seasonal satu-
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FIG. 2. (A) Map of Rio Calaveras study
catchment showing locations of interface wells
(circles), floodplain wells (triangles), flumes
(trapezoids), surface stream (gray line), and
stream sampling locations (3). Surface flow is
from right to left. Hillslopes are represented by
the shaded areas and the floodplain is repre-
sented by the white area. Well symbols are not
drawn to scale. (B) Locations of field micro-
cosms used for measuring heterotrophic metab-
olism in floodplain locations (squares) and in-
terface locations (stars). Microcosms were bur-
ied 30–50 cm below the baseflow water table.

ration (RoSS) were determined for base flow and snow-
melt conditions. The active stream channel was sur-
veyed and its area calculated (Wroblicky 1995). Wrob-
licky et al. (1998) used a two-dimensional hydrologic
model (MODFLOW) to define the SW/GW interface
(i.e., lateral hyporheic area) at Rio Calaveras as the
area bounded by water moving from the stream into
the subsurface and returning to the stream in #10 d.
At Rio Calaveras, the RoSS was defined as that part
of the floodplain bounded by the hillslopes and not
occupied by the active stream channel or SW/GW in-
terface.

Field sampling of system hydrology and biogeo-
chemistry occurred twice per month during February
1995–August 1996 and monthly during August 1996–
October 1997. On each visit, surface water discharge
at the downstream end of the reach was measured by
using either a solute (chloride) injection (Stream Solute
Workshop 1990) or stage measurements in the flumes
(after November 1995). Water table elevation was mea-
sured in each well with an electric water level meter
(Solinst, Georgetown, Ontario, Canada). Dissolved ox-
ygen and temperature were measured at 5–7 stream
sampling stations (Fig. 2A) and in each well using a
YSI 55 DO meter equipped for low dissolved oxygen
(DO) measurements (i.e., thin (0.013-mm) membranes
[YSI, Yellow Springs, Ohio, USA]). Water samples
were collected in acid-washed high-density polyeth-
ylene bottles from the surface stream stations as grab
samples and from the wells with a bailer. Samples were
stored on ice until returned to the lab where they were
filtered using glass microfiber filters (Whatman Glass
Fiber Filter, size F [GF/F], 0.7 mm pore size [Whatman,
Cambridge, UK]). Samples were refrigerated or frozen
until analysis. Dissolved organic carbon was deter-

mined by wet persulfate oxidation on an Oceanography
International Model 700 Total Organic Carbon analyzer
(College Station, Texas, USA; Menzel and Vacarro
1964).

Repeated-measures analysis of variance (ANOVA,
Proc GLM, SAS Institute 1985) was used to indicate
the influence of location (stream water, interface water,
floodplain water) and season (repeated factor: premelt,
snowmelt, and base flow) on the dependent variables
DO, dissolved organic carbon (DOC), and water table
elevation. Differences among levels of a factor were
considered statistically significant at P # 0.05, and
Tukey multiple-comparison tests were used to identify
the differences among locations. Wilks’ l was used to
identify differences among levels of the repeated factor
(i.e., seasonal differences, SAS Institute 1985). System
hydrology was used to define seasons as follows: pre-
melt included days during which the water table ele-
vation and stream discharge were rising (late February–
early May); snowmelt was defined as days when dis-
charge and water table elevation peaked (May–June);
and base flow included days (June–February) during
which the water table elevation and discharge were
decreasing and then stabilizing at lower values than
were observed during snowmelt.

If DOC is flushed from the RoSS at the onset of
snowmelt, a semilogarithmic relationship should exist
between DOC and time, as observed in other mountain
catchments (Hornberger et al. 1994, Boyer et al. 1997).
Furthermore, DO imported during snowmelt may be
consumed by chemical processes and by biota during
organic matter decomposition, producing a rapid de-
cline in groundwater oxygen content. We used linear
regression to assess the relationship between log DO
or log DOC and time (SAS Institute 1995). The neg-
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ative inverse of the slope of the line describing this
relationship is the time constant (measured in no. days)
of the flushing event (Boyer et al. 1997). The time
constant represents the amount of time that hydrologic
linkage between the RoSS and groundwater may influ-
ence biogeochemical and ecological processes. In this
paper, we use the time constant as a proxy for DOC
residence time.

Characterization of sediment organic matter content

Nine floodplain sediment cores were obtained from
the Rio Calaveras catchment by hand-driving a split-
spoon sampler to depths of 0–150 cm below the ground
surface (to ;50 cm below the baseflow water table).
Sediment organic matter (OM) content at ;2.5-cm in-
tervals was determined by mass loss on combustion at
5008C for 2 h (ash-free dry mass, AFDM). Dissolved
organic carbon was extracted from samples at 12.5-cm
intervals (composited from homogenized 2.5-cm sub-
samples) by incubating 50 g (wet mass) sediment in
100 mL of deionized water with shaking for 15 min
(Nelson et al. 1994). Subsamples (50 mL) were cen-
trifuged at 3000 rpm for 15 minutes, and supernatant
was filtered first through GF/F glass microfiber filters
then through deionized water-rinsed 0.22 mm nitrocel-
lulose membrane filters. The filtrate was split into two
20-mL subsamples used to determine the quantity and
relative bioavailability of extracted DOC.

Dissolved organic carbon concentration was mea-
sured following procedures we have described. Rela-
tive bioavailability was assayed using a microbial in-
oculation technique (Marmonier et al. 1995). A micro-
bial solution was prepared by backflushing membrane
filters that were originally used to filter the 50-mL sam-
ples, with 40 mL of filter-sterilized deionized water.
We inoculated each 20-mL subsample of filtered water
with 0.2 mL of this microbial solution. Controls con-
sisted of (1) uninoculated DOC samples, (2) inoculated
deionized water, and (3) sterile deionized water. Sam-
ples were stored in sealed 50-mL Erlenmeyer flasks
and incubated at 228C in the dark for one month. Fol-
lowing incubation, samples were refiltered through
rinsed membrane filters with pore size of 0.22 mm.
Dissolved organic carbon content of the filtrate was
measured, and bioavailable DOC was determined as
the difference between pre- and postincubation DOC
concentrations. Data for bioavailable DOC are pre-
sented as percentage of the preincubation DOC con-
centration. The inoculated deionized water served as
blanks, and DOC resulting from inoculation was sub-
tracted from the DOC concentration in samples. Chang-
es in inoculated DOC and sterile water following in-
cubation were within analytical error (62%) of our
measurements.

Vertical structure of floodplain sediment organic
matter was investigated by comparing each organic
matter parameter (total organic matter content, DOC,
and bioavailable DOC) in three defined layers: soil or-

ganic horizon (0–20 cm below surface), RoSS (21–100
cm below surface), and permanently saturated sedi-
ments as defined by the mean baseflow water table
elevation (.100 cm below surface). One-way ANOVA
and Tukey multiple comparison tests were used to test
the influence of sediment depth on organic matter con-
tent, water soluble organic carbon and labile water-
soluble organic carbon. Differences were considered
statistically significant at P # 0.05.

Heterotrophic metabolism

Field microcosms for measuring heterotrophic me-
tabolism were made from clear Plexiglas tubes (20 cm
long, 7 cm diameter; Fig. 3A). Tube interior was rough-
ened with 100-grit sandpaper to prevent preferential
flow along the inner chamber walls. Tubes were filled
with floodplain alluvium obtained from a single loca-
tion 30–50 cm below the baseflow water table upstream
of the study reach at Rio Calaveras. Alluvial material
was sieved to 1–2 mm grain size, washed with deion-
ized water, and dried prior to being packed into the
microcosms. Alluvial organic matter content (as ash-
free dry mass) was ;1% by mass, and porosity was
37 6 0.8% (n 5 3). Prepared alluvium was placed into
each microcosm, and Plexiglas separators (drilled with
1.5-mm holes) were placed on each end to secure sed-
iments within the microcosms (Fig. 3A). The remaining
length of the tube (14 cm) was backfilled with prepared
alluvium (Fig. 3A), and nylon window screen (1 mm
diameter mesh) was attached to the tube ends to secure
backfilled sediment and stabilize microcosm contents.

On 18 October 1996, microcosms were installed in
subsurface locations at Rio Calaveras (Fig. 2B). Inter-
face microcosms were placed 30–50 cm below the
stream bottom in four locations, with microcosm open-
ings oriented parallel to stream flow. Three microcosms
were installed in one location, and the remaining three
interface locations each contained one microcosm.
Floodplain microcosms were installed in four locations
several meters away from the stream, 30–50 cm below
the baseflow water table (1–2 m below the ground sur-
face), and oriented parallel to the direction of ground-
water flow as determined from a water table map. As
with interface locations, one floodplain location con-
tained three microcosms, while three locations each
contained one microcosm (Fig. 2B). Burial of multiple
microcosms in a single location allowed us to deter-
mine within-location variability and assess the validity
of the respirometry method. All measurements made
on the three microcosms buried in single locations were
averaged to avoid pseudoreplication (sensu Hurlbert
1984) when performing statistical analyses to test for
location and time effects.

Microcosms were removed for measurement of het-
erotrophic metabolism on four dates: 8 March 1997
(winter), 24 April 1997 (spring), 17 July 1997 (sum-
mer), and 23 October 1997 (autumn). Microcosms were
excavated and stored in sealed plastic bags on ice until
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FIG. 3. (A) Schematic representation of microcosm used to measure subsurface heterotrophic metabolism. The figure also
depicts the recirculation apparatus during (B) sampling mode, and (C) recirculation mode. Arrows indicate flow direction.

returned to the lab for analysis. Water for use in me-
tabolism measurements was obtained from the surface
stream (for interface microcosms) and from a ground-
water well (for floodplain microcosms). Metabolism
measurements were made within two to three days of
excavation, and the microcosms were reburied within
a week of excavation. Microcosms were stored at 48C
when not in use.

Metabolic rates were measured in the laboratory us-
ing a recirculation apparatus (adapted from Pusch and
Schwoerbel 1994 and Jones 1995). All equipment was
sterilized prior to measurements using a 15% bleach
solution. Metabolism measurements were done at con-
stant temperature reflecting the average subsurface
temperature at the site on the day of excavation. In-
cubation temperatures were 58C for microcosms col-
lected in winter and spring, 148C during summer, and
108C during autumn. Water for recirculation was de-
gassed by constant bubbling with N2 to bring DO con-
centrations to values reflecting in situ conditions. Just
prior to metabolism measurement, the sediment be-
tween the Plexiglas separators and microcosm ends was
removed and stored in a sterile plastic bag. These sed-
iments were subsampled for organic matter content,
extractable DOC, and bioavailable DOC. The ends of
the tubes were fitted with washed (deionized water)
polyester quilt batting followed by ground plastic stop-
pers. Microcosms were attached vertically to the re-
circulation apparatus (Fig. 3B) and were connected to
the water reservoir via Tygon R3603 beverage grade
tubing (9 mm outer diameter, 5 mm inner diameter;
Saint-Gobain Performance Plastics, Akron, Ohio
USA).

Heterotrophic metabolic rates were determined by
measuring carbon dioxide (CO2) and methane (CH4)
generation and DO consumption during microcosm in-
cubations. The general method entailed taking initial

dissolved gas samples following microcosm prepara-
tion and a series of samples taken over the course of
the incubation during which water was continuously
recycled through the microcosms.

Initially, water was pumped vertically through the
microcosms at a rate of 1.5 mL/min using a peristaltic
cartridge pump (Manostat, New York, New York,
USA). Tubing inside the pump was Tygon R1000 peri-
staltic pump tubing (9 mm outer diameter, 5 mm inner
diameter). All tubing types and connectors were se-
lected to minimize gas exchange. We confirmed that
no gas was exchanged across the tubing by running
CO2 1 CH4 saturated deionized water through the re-
circulation apparatus for 8 h, over which time we ob-
served no significant change (determined using linear
regression) in gas concentrations. Water used in me-
tabolism incubations was allowed to purge through the
microcosm outlet for 1.5 h to remove any resident in-
terstitial water. After purging, water at the outlet was
collected for initial samples of dissolved CO2, DO, and
CH4 by attaching a 15-mL nylon syringe to the micro-
cosm outlet (Fig. 3B). Circulating water was collected
by allowing pump pressure to displace the syringe
plunger. Free dissolved CO2 was extracted from 5-mL
samples using a syringe equilibration technique (Kling
et al. 1992) and was measured using a gas chromato-
graph with a thermal conductivity detector (Buck Sci-
entific, Pennsylvania, USA). Dissolved oxygen was
measured on 5-mL samples using a modified microw-
inkler technique (Wetzel and Likens 1991). To prevent
atmospheric O2 contamination, fixed samples were
acidified within 5 min of collection and transferred to
cleaned 8-mL serum vials prior to titration. Dissolved
CH4 samples (1–2 mL) were transferred to cleaned,
evacuated 3.5-mL Vacutainer vials. Methane was re-
leased into the vial headspace by shaking and was mea-
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sured using a Shimadzu gas chromatograph with flame
ionization detector (Dahm et al. 1991).

Following sampling, the water in the microcosms
was allowed to recirculate by attaching the inlet tube
to the outlet tube (Fig. 3C). During recirculation, dis-
solved gas concentrations should change as a result of
respiration. The water was allowed to recirculate for
60–90 min, and then dissolved gases were sampled.
Four or five samples were taken every 60–90 min dur-
ing incubations that lasted 240–400 min. Gas concen-
trations in the water reservoir were also measured at
each sampling time to account for changes in gas con-
centration within the microcosms as a result of water
replacement during sampling. Total respiration was cal-
culated as the change in CO2-C 1 CH4-C with time.
Aerobic respiration was calculated as the change in DO
with time. The respiratory quotient (RQ) was deter-
mined as the molar ratio of CO2:O2 (Wetzel 1983). A
molar ratio close to one indicates that most of the me-
tabolism is via aerobic respiration. A molar ratio much
greater than one is indicative of anaerobic metabolism.

A repeated-measures ANOVA followed by Tukey’s
multiple comparisons tested for differences in meta-
bolic rates between interface and floodplain locations.
Seasonal differences (time was the repeated variable)
were identified by Wilks’ l (SAS Institute 1985). Be-
cause two hydrologic regimes were studied, base flow
and snowmelt, a paired t test tested the hypothesis that
total heterotrophic metabolism differed between base
flow (winter, summer, and autumn measurements, av-
eraged by location, n 5 8) and snowmelt (spring mea-
surement, n 5 8 locations) periods.

Repeated-measures ANOVA followed by Tukey’s
multiple comparison tests were used to determine the
influence of location (interface or floodplain) and sea-
son (spring, summer, and autumn) on microcosm or-
ganic matter content, extractable DOC, and bioavail-
able DOC. Season was the repeated variable in this
analysis, and seasonal differences were identified using
Wilks’ l. Differences were considered statistically sig-
nificant at P # 0.05. Finally, a two-way ANOVA and
Tukey’s multiple comparisons (proc GLM, SAS Insti-
tute 1985) were used to determine the influence of lo-
cation (floodplain or interface) and season on respi-
ratory quotient. Repeated-measures ANOVA was not
used for this data set due to its unbalanced design.

Environmental parameters that best explain variation
in metabolic rates measured in field microcosms were
assessed with a multiple-regression analysis. The en-
vironmental variables we tested were water table ele-
vation, DOC, DO, temperature in the nearest well on
the day of excavation, incubation temperature, the per-
centage of organic matter, extracted DOC, and bio-
available extracted DOC in microcosms. Factors were
entered into the model using stepwise linear regression
(SAS Institute 1985) with an inclusion criterion of a
# 0.1.

Factors influencing heterotrophic metabolism

To experimentally assess the influence of DOC, dis-
solved inorganic nitrogen (DIN), soluble reactive phos-
phorus (SRP), season, and incubation temperature on
total respiration, aquifer sediments were obtained from
below the water table at a single location upstream of
the study reach at Rio Calaveras. Mean porosity of the
sediment was 35%, and organic matter content was
;1%. Water for incubations was obtained from a
groundwater well using a peristaltic pump, and was
degassed as we have described. Sediments were en-
cased in a tube comparable to that used for field mi-
crocosms, topped with degassed water, and connected
to the water source. Resident interstitial water was
flushed out of the tubes, and five replicates were used
in each experimental treatment. Experimental manip-
ulation of baseflow sediments included (1) control (no
additions), (2) added DOC, (3) added DIN, (4) added
SRP, (5) added DOC and DIN, and (6) added DOC and
SRP. Dissolved organic carbon (as equal parts dextrose
and sodium acetate carbon) was added to inlet water
to increase the total DOC concentration to 10 mg C/L
above background. Dissolved inorganic nitrogen as
NH4-N was increased to 2 mg NH4-N/L above back-
ground, and SRP was increased to 0.2 mg PO4-P/L
above background, and reflect the highest concentra-
tions observed in our long-term data record. Baseflow
incubation temperature was 228C. The nutrient addition
experiments were repeated using sediments obtained
during spring snowmelt. Incubations were performed
at 228C and 58C. In all experiments, total respiration
was measured as the change in CO2 concentration with
time. No changes in dissolved CH4 were observed dur-
ing the experiments, so these data were not included
in the calculation of total heterotrophic metabolism.

One-way ANOVA followed by Fisher’s multiple
comparisons (SAS Institute 1985) was used to compare
among nutrient additions during baseflow experiments.
Two-way ANOVA and Fisher’s multiple comparison
tests (SAS Institute 1985) were used to test for differ-
ences in rate of heterotrophic metabolism between sea-
sons (base flow and snowmelt) and carbon addition
(1DOC or no addition). The same statistical analysis
was also used to determine the influence of carbon
addition (1DOC or no addition) and temperature (58C
and 228C) on heterotrophic metabolic rates during
snowmelt. In all tests, differences were considered sta-
tistically significant at P # 0.05.

RESULTS

Catchment hydrology

During this study, snowmelt was the predominant
hydrologic event in the surface stream (Fig. 4A). The
highest discharge (102 L/s) was observed on 2 May
1995, and the stream did not return to base flow (;1.5
L/s) until October 1995 (Fig. 4A). A severe drought
occurred from winter 1995–summer 1996, when only
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FIG. 4. Snowmelt influence on (A) surface water dis-
charge, and water table elevation for (B) interface wells and
(C) floodplain wells, during February 1995–October 1997.
Snowmelt occurred with varying magnitudes in May of each
year (arrows).

23 mm of precipitation was recorded during October
1995–May 1996 (National Weather Service, Los Ala-
mos, New Mexico, USA, and on-site weather station).
As a result of the lack of precipitation, peak discharge
during water year 1996 was only 1.8 L/s on 7 May
1996 and the stream returned to base flow within two

weeks (Fig. 4A). During the 1997 water year, maximum
discharge (30.8 L/s) occurred on 20 May 1997 (Fig.
4A).

Water table elevation in interface and floodplain
wells significantly increased in response to spring
snowmelt in all years (repeated measures ANOVA, Tu-
key, P , 0.001; Fig. 4B, C, Table 1). During 1995, the
water level increased nearly 40 cm and 70 cm in in-
terface and floodplain wells, respectively (Fig. 4B, C).
In 1996, water table elevation peaked during the sum-
mer, and in spring 1997 the water table increased 20
and 30 cm for interface and floodplain wells, respec-
tively (Fig. 4B, C). Differences in water table elevation
between floodplain and interface locations were not
statistically significant (ANOVA P . 0.05, Table 1).

On an areal basis, region of seasonal saturation
(RoSS) sediments (2498 m2) accounted for 94.9% of
the study catchment area during snowmelt. In contrast,
Wroblicky et al. (1998) showed that the surface water–
ground water (SW/GW) interface accounted for only
0.066% (1.73 m2) at this time. The RoSS remained
partially linked to the saturated zone through most of
the summer months; for example, the water table was
elevated above baseflow conditions for 181 d in 1997
(Fig. 4B, C). During autumn base flow, the RoSS was
not saturated, except only transiently during rain-
storms, when the water table may rise several centi-
meters for a few days at a time (data not shown). Under
baseflow conditions, the SW/GW interface had an area
of 4.07 m2 (Wroblicky et al. 1998), accounting for
0.15% of catchment area.

Biogeochemical dynamics

Dissolved organic carbon in the surface stream peak-
ed prior to maximum discharge during snowmelt of
each year (Fig. 5A). In water year 1995, the highest
mean DOC concentration (7.4 mg C/L) was observed
on 20 March, approximately six weeks prior to max-
imum discharge. In 1996, a high DOC concentration
of 2.5 mg C/L occurred five weeks before maximum
discharge, and in 1997 peak DOC (3.4 mg C/L) was
observed six weeks before maximum runoff (Fig. 5A).
Repeated-measures ANOVA indicated that season was
a significant factor influencing stream DOC concentra-
tion (Table 1). In nondrought years (1995 and 1997),
DOC concentration prior to and during snowmelt were
significantly higher than the concentration observed
during base flow (repeated measures ANOVA, Wilks’
l, P , 0.05, Tables 1 and 2).

DOC response in the surface stream during snowmelt
exhibited a typical flushing response, as evidenced by
logarithmic declines in mean DOC concentration with
time (Fig. 5A, Table 3). The time constant for DOC flush-
ing ([slope of the line relating log DOC vs. time]–1) was
251, 163, and 680 d for 1995, 1996, and 1997, respec-
tively (Fig. 5A, Table 3).

There was a significant increase in DOC concentra-
tion of 1–2 mg C/L above mean baseflow concentration
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TABLE 1. Repeated-measures analysis of variance for biogeochemistry and water table ele-
vation in three water years, 1995–1997.

Year

Mean square

Location Season Interaction

F statistic

Location Season Interaction

Dissolved organic carbon
1995
1996
1997

0.511
16.676

0.218

15.745
0.920
0.729

1.506
0.915
0.242

0.43NS

2.23NS

0.51NS

38.75***
2.15NS

6.74*

3.71*
2.13NS

2.24NS

Dissolved oxygen
1995
1996
1997

224.752
265.552
129.101

10.757
18.286

5.319

3.869
2.972
0.996

52.79***
42.66***
30.05***

11.00**
23.04***

3.91*

3.96*
3.75*
0.73NS

Water table elevation
1995
1996
1997

0.174
0.013
1.913

1.048
0.011
0.543

0.118
0.000
0.043

1.713NS

0.01NS

0.85NS

154.14***
15.76***
52.74***

17.35***
0.60NS

4.2*

Note: Location (stream water, interface, or floodplain groundwater) is the independent vari-
able; season (premelt, snowmelt, base flow) is the repeated variable.

* P 5 0.05, ** P # 0.001, *** P # 0.0001; NS, P $ 0.05.

in both well types during premelt of nondrought years
(repeated measures ANOVA, P , 0.05; Fig. 5B, C,
Tables 1 and 2). Similar to stream water responses, the
DOC maximum generally occurred several weeks prior
to highest water table elevation and peak surface water
discharge (Fig. 5B, C). In many wells (42%), DOC
response during snowmelt exhibited a typical flushing
response, as evidenced by logarithmic declines in DOC
concentration with time (Fig. 5B, C, Table 3). The time
constants for DOC flushing ranged 56–550 d (Fig. 5B,
C, Table 3).

Dissolved oxygen was always significantly higher in
surface water compared to either groundwater type (Ta-
bles 1 and 2). During base flow 1995, interface ground-
water had significantly lower DO levels than floodplain
groundwater (Tables 1 and 2). Dissolved oxygen in
interface and floodplain groundwater also increased
significantly during snowmelt of all years (Tables 1 and
2). Dissolved oxygen concentration indicated a loga-
rithmic decline following snowmelt import in 62% of
wells (Fig. 6A, B, Table 3). Time constants for DO
decline ranged 42–550 d (Table 3).

Characterization of organic matter content
in the RoSS

Highest organic matter content, 25% by mass, was
observed in the soil organic horizon, but organic matter
content varied greatly with depth below the ground
surface (Fig. 7A). Mean organic matter in the soil or-
ganic horizon (0–20 cm below the ground surface) was
7.8% and was 2.8% and 1% by mass in the RoSS and
the permanently saturated zone, respectively (Fig. 7A).
Differences among all three sediment layers were sta-
tistically significant (ANOVA, Tukey, P 5 0.001).

Extractable DOC was present at all sediment depths
and there were no significant differences in the amount
of DOC leached from each depth (Fig. 7B). A mean
value of 0.04 mg C/g dry sediment was leached from
RoSS sediments, and 0.07 mg C/g dry sediment was

leached from the entire unsaturated zone (RoSS 1 or-
ganic horizon; Fig. 7B). The extracted DOC was con-
sumed by resident microbiota in laboratory assays (Fig.
7C).The mean value of bioavailable DOC was 45% of
the initial DOC concentration, and there were no sig-
nificant differences among sediment depths (Fig. 7C).

Metabolic consequences of hydrologic linkages
among the RoSS, groundwater, and stream

Total heterotrophic metabolism did not differ sig-
nificantly between interface and floodplain locations
(repeated measures ANOVA P 5 0.54; Table 4). In
addition, the repeated measures ANOVA did not detect
seasonal differences in total heterotrophic metabolic rates
(P 5 0.14; Table 4). When the data were grouped by
hydrologic regime, total heterotrophic metabolism was
significantly higher during snowmelt compared to base
flow (paired t test P 5 0.002; Fig. 8). Total heterotrophic
metabolism ranged from 0.084 mg C·(L sediment)–1·h–1

during winter to 0.470 6 0.094 mg C·(L sediment)–1·h–1

during spring in interface microcosms, and ranged from
0.212 6 0.124 mg C·(L sediment)–1·h–1 during autumn
to 0.513 6 0.115 mg C·(L sediment)–1·h–1 in summer
in floodplain microcosms (Table 4). Aerobic respiration
rates did not differ significantly between locations or
flow regimes (repeated measures ANOVA P . 0.05;
Table 4). Methanogenesis did not occur in either lo-
cation during winter, and the rate of change in CH4

during incubations in other seasons was #1% of the
rate of change in CO2 in the microcosms in which it
was observed. In all cases, the respiratory quotient
(RQ, CO2:O2 molar ratio) was $1 (Table 4). The RQ
was lowest during winter and highest during summer
in both groundwater locations (Table 4).

Organic matter content in microcosms did not differ
significantly between locations or among seasons (re-
peated measures ANOVA P . 0.05; Table 5). Mean
organic matter content in microcosms was 1% (Table
5). Extractable DOC in microcosms ranged 0.011–
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FIG. 5. Dissolved organic carbon flushing responses (bold
lines) during the study period (February 1995–October 1997)
for (A) surface water, (B) interface wells, and (C) floodplain
wells. Dashed lines in each panel represent hydrologic data
shown in Fig. 4. Bold lines are best-fit regression lines (P ,
0.05) describing the relationship between individual measures
of log(DOC) and time. For groundwater [panels (B) and (C)],
bold lines represent the regression lines for a single well, and
individual sample points are not shown for clarity. Regression
statistics are given in Table 3.

0.019 mg C/g dry sediment, and 50–60% of the DOC
leached from microcosm sediments was bioavailable
(Table 5).

According to multiple regression analysis, the best
predictors of total respiration were DO concentration

in the nearest well (parameter estimate 5 20.180),
percentage of bioavailable DOC measured in the mi-
crocosm sediment (parameter estimate 5 1.783), and
water table elevation in the nearest well (parameter
estimate 5 0.185; r25 0.67; P 5 0.0578; Table 6).

Factors influencing heterotrophic metabolism

Experimental addition of DOC to floodplain sedi-
ments obtained during base flow significantly increased
heterotrophic metabolic rate, from a minimum of 0.25
mg–0.9 mg CO2·[L sediment]–1·h–1 (ANOVA, Fisher’s
LSD, P 5 0.0286; Fig. 9). Addition of DIN or SRP
did not influence heterotrophic metabolism during base
flow (Fig. 9). Furthermore, addition of these nutrients
in combination with DOC did not further stimulate res-
piration beyond that observed from DOC additions
alone (Fig. 9).

This experiment was repeated using floodplain sed-
iments obtained during snowmelt, at which time ad-
dition of DOC, DIN, or SRP failed to significantly in-
fluence heterotrophic metabolism (ANOVA P 5 0.52).
Metabolic rates during snowmelt, with and without
DOC addition, were similar to metabolic rates observed
during base flow when DOC was added to sediments
(two-way ANOVA, Tukey, P , 0.01; Fig. 10). Re-
peating the DOC addition experiment at 58C showed
that neither DOC or temperature (58C vs. 228C) influ-
enced heterotrophic metabolism during snowmelt (two-
way ANOVA, P 5 0.9).

DISCUSSION

Catchment hydrology, biogeochemistry, and
hydrologic linkages among the RoSS,

groundwater and stream

Our results show that snowmelt imported dissolved
organic carbon (DOC) into the saturated zone, and that
the region of seasonal saturation (RoSS) sediments
were the likely DOC source. In years with sufficient
snow accumulation, DOC concentration significantly
increased before and during snowmelt in both surface
water and groundwater. The DOC peak generally oc-
curred before maximum discharge and water table el-
evation, and exhibited logarithmic declines in concen-
tration with time; all of which are characteristics of
DOC flushing from the RoSS (Hornberger et al. 1994,
Boyer et al. 1996, 1997).

Hydrologic connection between the RoSS and
groundwater dominated surface–subsurface interaction
during snowmelt. The RoSS remained partially linked
to the saturated zone through most of the summer
months. As the aquifer drained during summer, hydro-
logical connectivity between the RoSS and ground-
water declined. During autumn base flow, the RoSS
and saturated zone were generally disconnected; there-
fore, during base flow, the magnitude of surface water–
ground water (SW/GW) interactions increased in im-
portance (Morrice et al. 1997, Wroblicky et al. 1998).
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TABLE 2. Mean 6 1 SE for dissolved oxygen (DO) and dissolved organic carbon (DOC) in
stream surface water, interface, and floodplain groundwater; and water table elevations for
three seasons (premelt, snowmelt, and base flow) in three water years (1995–1997).

Measurement Premelt Snowmelt Base flow

1995
Stream

DO (mg/L)
DOC (mg/L)

5.99 6 0.19a

4.02 6 0.44a
8.22 6 0.17a

3.14 6 0.15a
7.87 6 0.21a

1.67 6 0.12a

Interface
DO (mg/L)
DOC (mg/L)
Water table (cm)

1.38 6 0.13b

3.31 6 0.25a

61.2 6 5.4a

1.65 6 0.14b

3.28 6 0.14a

75.3 6 4.9a

1.17 6 0.11b

3.11 6 0.21b

45.9 6 5.1a

Floodplain
DO (mg/L)
DOC (mg/L)
Water table (cm)

1.84 6 0.22b

3.74 6 0.32a

69.3 6 8.3a

3.00 6 0.26b

3.30 6 0.18a

87.3 6 12.0a

3.12 6 0.21c

3.11 6 0.21b

45.9 6 5.1a

1996
Stream

DO (mg/L)
DOC (mg/L)

8.21 6 0.18a

1.68 6 0.051a
6.71 6 0.13a

2.18 6 0.19a
8.92 6 0.41a

1.75 6 0.092a

Interface
DO (mg/L)
DOC (mg/L)
Water table (cm)

1.95 6 0.19b

2.06 6 0.06a

50.4 6 4.5

1.30 6 0.20b

2.45 6 0.42a

52.0 6 6.90a

2.29 6 0.23b

1.87 6 0.10a

50.2 6 4.52a

Floodplain
DO (mg/L)
DOC (mg/L)
Water table (cm)

3.12 6 0.21a

3.11 6 0.21a

45.9 6 5.1a

1.62 6 0.18a

3.01 6 0.22a

52.8 6 9.0a

3.12 6 0.21b

2.41 6 0.14a

59.9 6 6.2a

1997
Stream

DO (mg/L)
DOC (mg/L)

6.45 6 0.15a

2.43 6 0.69a
7.31 6 0.087a

2.22 6 0.028a
6.67 6 0.16a

1.75 6 0.09a

Interface
DO (mg/L)
DOC (mg/L)
Water table (cm)

2.29 6 0.25b

2.14 6 0.12a

56.0 6 5.4a

1.82 6 0.23b

2.15 6 0.07a

67.5 6 6.6a

1.17 6 0.15b

1.8 6 0.05a

53.8 6 7.0a

Floodplain
DO (mg/L)
DOC (mg/L)
Water table (cm)

3.03 6 0.32b

2.31 6 0.13a

79.0 6 8.5a

2.74 6 0.21b

2.12 6 0.13a

94.2 6 9.0a

1.85 6 0.20b

1.98 6 0.077a

78.3 6 10.0a

Note: Within each water-year and season, significant differences (ANOVA, Tukey P , 0.05)
among locations are indicated if superscripts differ.

Throughout the year, SW/GW interaction via the hy-
porheic zone was continuous; however, the magnitude
of this interaction during snowmelt was small com-
pared to the terrestrial–aquatic interaction between the
RoSS and saturated zone.

Geomorphological constraints may influence the ex-
tent of RoSS–groundwater interactions. Constrained
and unconstrained stream reaches differ in the degree
of alluvial deposition and floodplain development
(Gregory et al. 1991, Stanford and Ward 1993). Surface
water/groundwater interactions are more extensive in
unconstrained reaches, relative to reaches constrained
by hillslopes or valley ‘‘nick points’’ (Lamberti et al.
1989). In a similar way, RoSS–groundwater interac-
tions may be more important in broad valleys with
considerable alluvial deposits, while in other catch-
ments the RoSS may be constrained to alluvium within
the valley floor.

Geomorphology may interact with climate to struc-
ture RoSS–groundwater interactions. In mesic systems
(e.g., Hornberger et al. 1994, Boyer et al. 1997, Mul-
holland and Hill 1997), the water table in hillslopes as

well as floodplains may rise during wet periods, ex-
tending the lateral boundaries of the RoSS beyond the
floodplain and valley floor. In arid systems where there
is exposed bedrock or hydrophobic soils, terrestrial–
aquatic linkages may be more largely impacted by
overland flow (Grimm and Fisher 1992).

Temporal variation in regional climate is likely to
strongly influence terrestrial–aquatic linkages like
RoSS–groundwater interactions. Catchments in the
southwestern United States region are influenced by
large-scale climatic phenomena like the El Niño–
Southern Oscillation (Molles and Dahm 1991). The
semiarid system we studied differs from previously
studied mesic and alpine streams (e.g., Hornberger et
al. 1994, Boyer et al. 1997, Mulholland and Hill 1997,
Hinton et al. 1998) in that large temporal variation in
snow accumulation alters the degree of interaction be-
tween the RoSS and groundwater. For example, in
1996, a severe drought resulted in little hydrologic
change and subsequently little biogeochemical change
at Rio Calaveras. Changes in hydrological connectivity
between the RoSS and groundwater due to climate var-
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TABLE 3. Linear regression statistics relating log DOC and
log DO with time and time constants ([slope of line]21, in
days) in surface water, interface, and floodplain wells dur-
ing snowmelt of three water years (1995–1997).

Year

DOC

r2
Time

constant (d)

DO

r2
Time

constant (d)

Stream
1995
1996
1997

0.9835
0.9911
0.5337

251
163
680

†
†
†

†
†
†

Interface
1995 0.8757

0.8398
0.5037
0.7282
0.5074

…
…

200
99

289
56

289
…
…

0.8386
0.9118
0.9034
0.7412
0.9052
0.8963
0.7798

110
79

115
98
73
52
68

1996 ‡
‡

‡
‡

0.7383
0.8408

42
72

1997 0.8467
0.982
0.6687
0.5147
0.4399

…

202
346
482
342
550
…

0.6843
0.8742
0.8779
0.6937
0.7321
0.8671

84
550
114

66
84
67

Floodplain
1995 0.9873

0.5733
0.6913

224
445
253

0.8453
0.8132
0.8071

88
45

123
1996 0.9627

0.6174
169
334

0.6282
…

146
…

1997 0.7645
0.9414
0.7272
0.9627
0.8399

362
262
188
169

89

0.8525
0.8917
0.7495
0.8577
0.6453
0.7411
0.4529
0.3671
0.6441
0.6582
0.8079

441
503
147
205
267

87
235
144
100

99
173

† Stream does not exhibit DO flush due to atmospheric
saturation.

‡ No wells exhibited flush.

FIG. 6. Relationship between log(DO) and time for (A)
interface and (B) floodplain groundwater (bold lines). Water
table elevation is shown with dashed lines. Regression sta-
tistics are given in Table 3.

iability can have important ecological ramifications in
groundwater ecosystems, especially when subsurface
heterotrophic metabolism is limited by organic matter
availability.

Ecological consequences of hydrologic linkages
among the RoSS, groundwater, and the stream

The hypothesis that snowmelt-derived DOC import-
ed from the RoSS fuels heterotrophic metabolism in
the alluvial aquifer was supported. First, the analysis
of organic matter in seasonally saturated floodplain
sediments showed that a substantial amount of organic
carbon could be liberated from unsaturated sediments
and transported to the saturated zone by meltwater.
Soil-derived DOC is generally comprised of fulvic and
humic acids (e.g., Thurman 1985, McDowell and Lik-

ens 1988) that are believed to be recalcitrant to de-
composition by biota. However, a mean value of 45%
of the RoSS-leached DOC was consumed by subsurface
microorganisms, suggesting that much of RoSS-de-
rived DOC is relatively labile.

Snowmelt resulted in higher rates of heterotrophic
metabolism in field microcosms, presumably because
of the supply of labile DOC via hydrologic connections
between the RoSS and groundwater. Multiple-regres-
sion analysis further supported this conclusion. Fea-
tures of the groundwater (dissolved oxygen [DO], and
water table elevation) and alluvial sediments (extracted
bioavailable DOC) were important predictors of het-
erotrophic metabolic rates. While there were no sea-
sonal differences in extracted bioavailable DOC, both
DO and water table elevation were highest during
snowmelt. The negative correlation between DO and
heterotrophic metabolism suggests that high rates of
respiration during snowmelt rapidly consume available
DO. In addition, it implies that higher rates of total
respiration may occur under hypoxic or anoxic con-
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FIG. 7. Organic matter distribution in nine floodplain sediment cores: (A) percentage organic matter (as ash-free dry
mass), (B) extractable DOC, and (C) bioavailable DOC. RoSS sediments are highlighted by the shaded area. Mean baseflow
water table was 100 cm below the ground surface.

FIG. 8. Total heterotrophic metabolic rate during snow-
melt and base flow. Mean rates (1 1 SE) are significantly
different at P , 0.01 (paired t test, n 5 8 locations).

TABLE 4. Total (CO2 1 CH4) and aerobic respiration rates
(mean of four sites 6 1 SE) and respiratory quotient (CO2:
O2 molar ratio) for microcosms submerged in interface and
floodplain locations at Rio Calaveras.

Season
Total

respiration
Aerobic

respiration

Respiratory
quotient
(CO2:O2)

Interface
Winter†
Spring
Summer
Autumn

0.084
0.470 6 0.094
0.100 6 0.055
0.352 6 0.178

0.212
0.370 6 0.106

0.00 6 0.00
0.465 6 0.06

1.0
6.6 6 3.3

999 6 0‡
2.7 6 0.88

Floodplain
Winter†
Spring
Summer
Autumn

0.286
0.334 6 0.118
0.513 6 0.115
0.212 6 0.124

0.455
0.275 6 0.106
0.148 6 0.085
0.233 6 0.106

1.7
2.66 6 1.8
501 6 287
33.2 6 17

Note: Total respiration is measured in units of milligrams
C per liter of sediment per hour; aerobic respiration is mea-
sured in units of milligrams O2 per liter of sediment per hour.

† n 5 1 site.
‡ Mean respiratory quotient is significantly higher during

summer relative to other seasons; ANOVA, Tukey test, P 5
0.003. (Differences between floodplain and interface loca-
tions were not significantly different; ANOVA, Tukey test, P
. 0.05.)

ditions, undoubtedly using a greater diversity of an-
aerobic metabolic processes (Baker et al. 1999, 2000).
Conversely, low rates of total respiration may occur
during base flow because of DOC limitation. The po-
tential for DOC limitation is reflected by the fact that
extracted bioavailable DOC also was a good predictor
of heterotrophic metabolism. Under conditions of low
DOC concentrations, labile DOC may dictate respira-
tion rates. Finally, a positive correlation between het-
erotrophic metabolism and water table elevation indi-
cates that hydrologic connection between the RoSS and
groundwater is an important determinant of interstitial
microbial activity.

Experimental analysis of factors that influence het-
erotrophic metabolism during base flow and snowmelt

further supports our hypothesis that RoSS-imported
DOC supplies energy for subsurface heterotrophic me-
tabolism. During base flow, heterotrophy in floodplain
groundwater was limited by labile DOC availability,
but respiration was not DOC limited during snowmelt.
Furthermore, experimental addition of bioavailable
DOC to the SW/GW interface at Rio Calaveras during
summer base flow increased both aerobic and anaerobic
respiration (Baker et al. 1999). Together, these studies
support the hypothesis that metabolic activity of both
floodplain and interface locations are DOC limited dur-
ing base flow. Our experiments did not show nutrient
(N and P) limitation of respiration during these short-
term incubations. Microbial respiration could be nu-
trient limited over the longer term (e.g., Christensen et
al. 1996), however.

Import of RoSS-derived DOC clearly plays an im-
portant role in determining respiration rates during
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TABLE 5. Organic matter content, extracted DOC (exDOC),
and bioavailable DOC (bioDOC), from interface and flood-
plain microcosms.

Season Interface Floodplain

Percentage organic matter
Spring
Summer
Fall

1.25 6 0.15
1.10 6 0.32
0.78 6 0.21

0.86 6 0.09
0.81 6 0.08
1.13 6 0.12

exDOC (mg C/[g dry sediment])
Spring
Summer
Fall

0.012 6 0.003
0.012 6 0.002
0.011 6 0.001

0.011 6 0.001
0.013 6 0.001
0.019 6 0.019

bioDOC (percentage of exDOC)
Spring
Summer
Fall

63 6 6.0
61 6 5.3
52 6 2.2

55 6 6.9
65 6 1.4
61 6 2.5

Note: Values are mean of four sites 6 1 SE.

FIG. 9. Factors influencing total heterotrophic metabolism
(mean 1 1 SE) during base flow. Bars with the same letter
are not significantly different (ANOVA, P 5 0.0293; Fisher’s
LSD, P . 0.05). Metabolic rates for treatments with added
DOC (open bars) are significantly higher than treatments with
ambient DOC (shaded bars).

TABLE 6. Multiple regression model to predict rate of total heterotrophic metabolism from
independent variables.

Variable
Parameter
estimate Partial r2 Model r2 F P

DO (mg/L)
bioDOC (%)
Water table elevation (m)
Full model

20.180
1.783
0.185

…

0.3465
0.267
0.0751

…

0.3465
0.6135
0.6886
0.6886

4.2423
4.8363
1.4472
4.423

0.0734
0.0638
0.2743
0.0578

Note: Of the six variables entered into the model (water table elevation, DOC in nearest
well, DO in nearest well, percentage organic matter in microcosm, DOC extracted from mi-
crocosm, and bioavailable DOC [bioDOC] extracted from microcosm), only data from the three
variables used to fit the model are shown (inclusion criterion, a # 0.100).

snowmelt, and it may also determine ambient rates for
the majority of the saturated zone later, during baseflow
conditions. Using the time constants determined from
the regression analysis as a proxy for DOC residence
time within the subsurface, RoSS-derived DOC sup-
ported groundwater respiration for most of the year
(mean time constant over entire study period 5 268 d).

Total respiration rate did not differ between interface
and floodplain microcosms, indicating that both envi-
ronments have similar metabolic capacities. Respira-
tion rates measured in this study are within the same
order of magnitude of those published for the hyporheic
zone (e.g., Pusch and Schwoerbel 1994, Jones et al.
1995, Nageli et al. 1995) and are much higher than
those reported for deep oligotrophic groundwaters
(e.g., Chapelle and Lovley 1990). Within a catchment,
heterotrophic metabolism in both floodplain and inter-
face locations can strongly influence organic carbon
availability and biogeochemistry in surface and
groundwater. While several studies have documented
the importance of the SW/GW interface in channel
structure and function (e.g., Triska et al. 1989, Valett
et al. 1994, 1996, Jones et al. 1995), expanding bound-
aries to include floodplain and hillslope environments
may enhance our understanding of catchment ecosys-
tems and mechanisms of terrestrial–aquatic interac-
tions.

The hydrologic linkage between the RoSS and shal-

low groundwater clearly fuels subsurface heterotrophic
metabolism. While surface water–groundwater inter-
actions certainly influence the biogeochemistry and
ecology of groundwater, the RoSS comprises a large
area of catchments that can greatly influence ground-
water ecosystems during periods of hydrologic con-
nection. Thus, the RoSS represents a critical interface
between aquatic and terrestrial ecosystems, and this
region affects the organic carbon dynamics of the
catchment as a whole. Aboveground primary produc-
tion, soil organic matter, subsurface metabolism, and
in-stream retention of organic matter are linked via this
aquatic–terrestrial interface. The terrestrial–aquatic
linkage represented by the RoSS shows how processes
in hillslopes (Webster et al. 1983) and floodplains (Bay-
ley 1995) impact the functioning of alluvial ground-
water ecosystems. This aquatic–terrestrial linkage,
moderated through alluvial groundwater (sensu Stan-
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FIG. 10. Influence of experimental DOC addition on total
heterotrophic metabolism during base flow and snowmelt
(mean 1 SE). Bars with the same letter are not significantly
different (two-way ANOVA, Fisher’s LSD, P , 0.01).

ford and Ward 1993), likely influences energy and nu-
trient dynamics of streams, floodplains, and aquifers,
and may impact the quantity and quality of water re-
sources in stream–riparian corridors (Dahm et al.
1998).
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