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SUMMARY 

 With the increasing awareness of environmental impact from electronic waste and 

increasing demand for flexible electronic devices, novel substrates with both 

biodegradability and flexibility have been studied in various fields. To develop such 

electronic devices, organic electronic technology has attracted attention because of its 

low process temperature at a range of 60 to 100 °C which is compatible with substrates 

having these two features. Among organic electronic devices, organic field-effect 

transistors (OFETs) are an important building block because transistors can implement 

circuits to integrate with other organic electronic devices such as organic light-emitting 

diodes (OLEDs) and organic photovoltaics (OPVs). 

 This dissertation reports solution-processed high-performance top-gate OFETs 

with operational and environmental stability on novel renewable substrates. The first 

achievement is demonstrating top-gate OFETs with a bilayer CYTOP/Al2O3 gate 

dielectric on environmentally friendly renewable cellulose nanocrystal (CNC):glycerol 

substrates. OFETs were fabricated on water soluble CNC:glycerol substrates with a 

protection layer of Al2O3 by atomic layer deposition. OFETs with that protection layer 

have better operational and environmental stability compared to that of OFETs on bare 

CNC:glycerol substrates. The second achievement is reducing contact resistance of top-

gate OFETs. By depositing 1.5 nm of Mo(tfd)3 on source/drain electrodes, contact 

resistance can be 0.25 of that from contact electrodes using the conventional PFBT 

treatment. The third achievement is developing a nanolaminate structure comprised of 

Al2O3 and HfO2 to replace Al2O3 in the gate dielectric bilayer in top-gate OFETs to 

improve their environmental stability while achieving comparable operational stability. 



 xvii 

OFETs with a modified gate dielectric have comparable electrical properties, operational 

stability, and environmental stability compared to that of OFETs with CYTOP/Al2O3; 

furthermore, OFETs with a modified gate dielectric are functioning after storing in hot 

water at 95 °C for up to 1 h that is much longer than that of OFETs with the original 

bilayer gate dielectric. The last achievement is presenting top-gate OFETs with modified 

gate dielectric and reduced contact resistance on cellulose-based paper substrates. OFETs 

on this type of paper can achieve comparable electrical properties, operational stability, 

and bending characteristics by the proper choice of a buffer layer coated on top of the 

paper substrate. 

 In this dissertation, the development of OFETs on novel substrates have been 

described, and the future study is suggested.



 

 

CHAPTER 1 

INTRODUCTION 

1.1 Printed electronics 

Electronic waste has been increasing dramatically with economic development for 

decades. With growing awareness of the environmental impact of electronic waste, the 

electronics industry is devoting a great deal of attention not only to its profitability but 

also to establishing environmentally friendly manufacturing processes such as printing 

techniques. 

Electronic devices manufactured by printing techniques are referred as printed 

electronics. Printed electronic devices can be large, thin, light-weight, and flexible 

because they are processed from solution at temperatures near room temperature, and 

they can be fabricated on plastic substrates. The process of printing such electronics has 

several potential advantages including low production cost, mass production capability, 

and reduced environmental impact because it potentially avoids using traditional 

electronics subtractive manufacturing processes such as photolithography and vacuum 

processes for metallization and etching that consume more energy and materials. 

These simplified processes are currently used to produce radio frequency 

identification tags and printed electrodes for Si solar panels [1, 2]. Novel products such as 

organic field-effect transistor (OFET) array-based sensors, wearable and bendable 

displays (electronic papers) using OFETs and organic light-emitting diodes (OLEDs) 

have been launched in to the market, and devices such as transparent displays and organic 

photovoltaics (OPVs), using printed electronics, are under development [3]. According to 
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an IDTechEX forecast, the market value of printed electronics is about $ 30 billion in 

2015 and by 2025, is expected to be $ 70 billion [4]. 

1.2 An introduction to organic field-effect transistors 

1.2.1 Organic semiconductors 

Organic semiconductors are carbon-based organic materials that display 

semiconducting properties used as the transport layer in OFETs [5]. The semiconducting 

properties arise from interactions between carbon atoms. When two carbon atoms bind to 

form a molecule, the orbitals in each carbon atom can hybridize into sp, sp2, and sp3 

orbitals. One example of a type of bond that can be formed between two carbon atoms is 

the bonding in an ethylene molecule.  An illustration of such a molecule is presented in 

Figure 1. In the ethylene molecule, each carbon atom contains one pz orbital and three sp2 

hybridized orbitals, which form coplanar  bonds. 

 
Figure 1. An ethylene molecule. 
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 The linear superposition of wave functions of pz electrons leads to the formation 

of two orbitals in molecules:  a bonding orbital, referred to as the highest occupied 

molecular orbital, HOMO), and an antibonding orbital, referred to as  (the lowest 

unoccupied molecular orbital, LUMO), as shown in Figure 2. The  bonding is stronger 

than the  bonding, and the electrons participating in this type of  bonding are more 

delocalized.  Electrons on  bonds are generally referred to as  electrons. In organic 

molecules,  bonds and  bonds are formed alternatively in structures known as 

conjugated structures, over which the  electrons are delocalized. Molecules displaying 

this type of structure are known as conjugated molecules.  When molecules coexist in 

bulk materials, their intermolecular interactions lead to homogeneous broadening of these 

HOMO-LUMO energy states, forming energy bands.  Between the HOMO and LUMO is 

a gap, which is only an approximation of the fundamental gap, defined as the difference 

between the ionization potential (IP) and the electron affinity (EA). The IP and EA 

correspond to the bottom of the conduction band and the top of the valence band. This 

energy band description of organic semiconductors is analogous to that of inorganic 

semiconductors. 

 
Figure 2. Bonding and antibonding orbitals. 
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1.2.2 The evolution of OFETs 

The principle of operation of a field-effect transistor [6] was first proposed by 

Lilienfeld between 1926 and 1930. The field-effect transistor structure is illustrated in 

Figure 3: the source and the drain are connected to the two sides of the channel; the gate 

is isolated from the channel by an insulating layer. By applying the proper voltage on the 

gate electrode, the capacitor between the gate and the channel can modulate charges 

inside the channel. However, this idea had not been realized until the first field-effect 

transistor, a metal-oxide-semiconductor field-effect transistor [7], was demonstrated by 

Kahng and Atalla in 1960. 

In the organic electronic field, the first highly conducting polymer, polyacetylene 

[8], was discovered in 1977 by Heeger, MacDiarmid, and Shirakawa, who were awarded 

the Nobel Prize in Chemistry in 2000. This discovery initiated plenty of research on 

conducting polymers, and the use of organic semiconductors for transistors started in the 

1980’s. Ebisawa was the first one to use polyacetylene [9] in OFETs with a small current 

modulation in 1982. The first OFET [10] was realized by Tsumura, Koezuka, and Ando 

in 1986. They demonstrated the first OFET with a polythiophene thin film. The carrier 

mobility of the first OFET was of the order of 10-5 cm2/Vs and the threshold voltage was 

-13 V. Not only conducting polymers but also small molecules play important roles in 

organic electronics. The first small-molecule OFET [11], using alpha-sexithienyl film as 

an active layer, was demonstrated in 1989 by Horowitz et al. The carrier mobilitywas 3.3 

× 10-4 cm2/Vs, better than the first polymer OFET, and the threshold voltage was only -2 

V. Over decades, the carrier mobility of OFETs has made a great progress on both p-

channel materials to the range of 10 to 20 cm2/Vs [12-15] and n-channel materials to the 
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range of 1 to 10 cm2/Vs [16-18] respectively. Single crystal rubrene-based p-channel 

OFETs demonstrated carrier mobility on 10.4 to 11.2 cm2/Vs [12, 13, 15], and n-channel 

OFETs also displayed high carrier mobility on small molecules such as PTCDI with 1.7 

to 2.1 cm2/Vs [16, 17] and C60 with 2.2 cm2/Vs [18]. Furthermore, printed OFETs 

achieved high average carrier mobility at 16.4 cm2/Vs (up to 31.3 cm2/Vs) on single 

crystalline p-channel C8-BTBT film [14] and on n-channel polymer P(NDI2OD-T2) with 

carrier mobility at 0.45 to 0.85 cm2/Vs [19]. These evolution makes that OFETs can 

compete with a-Si and poly-Si thin-film transistors (TFTs). 

1.2.3 The basic working principle of OFETs 

 An OFET is an electronic device with three terminals:  a gate, a source, and a 

drain. As shown in Figure 3, an OFET consists of a channel composed of an organic 

semiconducting material between the drain and the source electrodes and separated from 

the gate electrode by a gate dielectric layer. The basic principle of an OFET is similar to 

that of a conventional transistor based on inorganic field-effect transistors. A field-effect 

transistor is a voltage-controlled electronic device. With a voltage applied between the 

gate and source electrode (VGS), a voltage drop between the gate and source electrodes  

controls the current flowing through the channel between the source and drain electrodes. 

In case of an ideal n-channel OFET, when VGS is below a certain value, known as the 

threshold voltage VTH, no current flows between the source and the drain electrodes, and 

the transistor is turned off. When VGS is larger than VTH, current flows between the source 

and the drain, and the transistor is turned on. 
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Figure 3. Schematic representation of an OFET. 
 
 An OFET can display three regimes of operation:  the cut-off regime, the linear 

regime, and the saturation regime.  All of the regimes are determined by relationships 

between the VGS, VTH, and the drain-to-source voltage VDS. When VGS < VTH, OFETs are 

in the cut-off regime, and charges are not induced to form the channel, so drain to source 

current IDS equals zero.  When VGS > VTH and VGS - VTH > VDS, OFETs are in the linear 

regime, where increased VGS induces a charge density in the channel, and current IDS can 

flow, which increases linearly with VDS. In this regime the current is given by [20]: 

   .   (1) 

where is carrier mobility, Cox is the capacitance density of the gate oxide layer (in our 

case is gate dielectric layer), W is the channel width, L is the channel length. As VDS 

increases, a transition from the linear regime to the so-called saturation regime occurs 

when the voltage drop between the drain and the gate, VGS - VDS, at the drain end of the 

channel equals VTH. Under this circumstance, VGS - VDS at the drain end of the channel is 

barely above the threshold, a condition referred to as “pinch-off.” When VDS > VGS - VTH, 

the pinch-off point approaches the source end of the channel, and carriers are swept into 

the pinch-off region at a saturation drift velocity because of the high electric field along 
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the channel. When VGS > VTH and VGS - VTH ≤ VDS, OFETs operate in the saturation 

regime, where current IDS does not increase with VDS but with VGS - VTH, and is given by 

[20]: 

   .    (2) 

From the current-voltage relations discussed above, we can investigate many 

important parameters of OFETs such as the carrier mobility (), VTH, the on/off current 

ratio, (Ion/Ioff), and the contact resistance, (Rc). Carrier mobility  and threshold voltage 

VTH are extracted in the saturation regime: VTH is first extracted by linear extrapolation 

from VGS - VTH versus the square root of the IDS plot; will then be extracted from 

equation (2) with known channel width W, channel length L, gate dielectric capacitance 

density Cox, IDS, and |VGS| - |VTH|.  On/off current ratios Ion/Ioff can be calculated by 

measuring the off-state IDS and maximum on-state IDS. Contact resistance Rc can be 

extracted in the linear regime of OFETs with different W/L ratios by using the transfer 

length method. According to this method, the on-state resistance RON is extracted as VDS 

approaches 0 V using the following expression [21]:  

   ,   (3) 

where Rch is the channel resistance and Rsh is the sheet resistance of the channel. The 

ordinate in the plot of RON vs. L when L equals zero corresponds to 2Rc. High , high 

Ion/Ioff, low |VTH|, and low Rc are the most common indicators of a high-performance 

OFET. 
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1.2.4 More parameters and modeling of OFETs 

 In addition to the basic working principal of OFETs, more parameters are taken 

into account when it comes to the real world. The first thing will be the subthreshold 

slope (SS) coming from the leakage current from the source to the drain when gate 

voltage is below but close to the threshold voltage. SS can be extracted from the transfer 

characteristic and is defined as: 𝑆𝑆 ≡ 𝑑𝑉𝐺𝑆𝑑(log⁡(𝐼𝐷𝑆))      (4) 

and it is approximately [22]: 𝑆𝑆 ≈ 𝑙𝑛10 𝑘𝑇𝑞 [1 + 𝐶𝐷+𝐶𝑖𝑡𝐶𝑂𝑋 ]    (5) 

where k is Boltzmann constant, T is temperature in Kelvin scale, q is elementary electron 

charge, Cox is the capacitance density of the gate oxide layer (in our case is gate dielectric 

layer), CD is the capacitance of the semiconductor depletion region, and Cit is the 

capacitance of interface traps equals to qDit where Dit is the interface trap density. Since 

there is no depletion region in OFETs, CD is zero in equation (5) and the interface trap 

density can be extracted from equation (5) and given as [22]: 𝐷𝑖𝑡 ≈ [𝑞𝑆𝑆𝑙𝑜𝑔(𝑒)𝑘𝑇 − 1] 𝐶𝑂𝑋𝑞     (6) 

 In reality, equation (3) and (4) cannot completely describe the current-voltage 

characteristics of OFETs, for examples: 1) drain current will still increase while OFETs 

are in the saturation region, therefore the transition from triode region to saturation region 

and channel length modulation should be considered; 2) the transition below and above 

threshold will not always be abrupt, therefore subthreshold swing should be considered, 

too; 3) contact resistance is not negligible on OFETs, therefore the output characteristics 
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may not be linear in linear region. There have been several compact models consistent 

with equation (3) and (4) to describe the current-voltage characteristics of OFETs. Three 

representative compact models were selected and discussed in Kim et. al. [23]: Marino et. 

al. [24, 25] focusing on a practical below-to-above threshold transition and linear-to-

saturation transition by a small number of parameters, Estrada et. al. [26, 27] focusing on 

the use of a power-law relationship between mobility and gate overdrive voltage, and Li 

et. al. [28] focusing on the potential barrier between grains in a polycrystalline organic 

film. Based on the emphasized aspect, the model of Marion et. al. is chosen to fit OFET 

characteristics here. In their models, empirical fitting parameters are mostly eliminated, 

and developed models are also in close correspondence to physicals, parametric, and 

limiting models for current-voltage and mobility characteristics. The mobility is assumed 

to follow a power-law dependence featuring the characteristic exponent  and the 

mobility enhancement voltage Vaa. The choice of a power-law mobility is related to the 

charge-transport through localized states that have exponential density-of-states. By 

applying modified carrier mobility in the derivation (not discussed here) of current-

voltage equations of OFETs, the final current-voltage equation is given as: 𝐼 = 𝑊𝐿 𝜇0𝑉𝑎𝑎𝛾 𝐶𝑂𝑋 [𝑓(𝑉𝐺,𝑉𝐷)]𝛾+2−[𝑓(𝑉𝐺,𝑉𝑆)]𝛾+2𝛾+2 (1 + 𝜆|𝑉𝐷 − 𝑉𝑆|)   (7) 

where  is the channel length modulation parameter, and the effective gate overdrive 

function is given by: 𝑓(𝑉𝐺 , 𝑉) = 𝑉𝑆𝑆𝑙𝑛 {1 + 𝑒 [− (𝑉𝐺−𝑉𝑇)−𝑉𝑉𝑆𝑆 ]}   (8) 

where VSS is the subthreshold voltage. 
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Theories used in these models are based on charge drift in the presence of tail-

distributed traps (TDTs) [29] and variable range hopping (VRH) [30]. TDTs assumes a 

significant portion of charge is localized in the exponential tail, and the mobile charge 

attributed to the conduction or the valence band is only a portion of the total charge, and 

the effective mobility becomes proportional to the ratio of the free-to-trapped charge. 

VRH does not separate between free and localized charges, and excess charge is induced 

in the states by the gate bias voltage in terms of Gauss’ law. Therefore, both theories 

define the dependence of mobility on gate bias voltage. 

1.2.5 OFET geometry 

 As shown in Figure 4, OFETs can be realized in two main geometries:  bottom- 

and top-gate geometries. In the so-called bottom-gate geometry the OFET is comprised 

of a gate electrode at the bottom of a transistor on top of which is a gate dielectric layer, 

an organic semiconductor layer, and source/drain electrodes. In the top-gate geometry the 

OFET is comprised of source/drain electrodes at the bottom, an organic semiconductor 

layer on top, a gate dielectric layer, and a gate electrode. The bottom-gate OFET 

geometry is the most commonly used, in part because it prevents potential damage to the 

organic semiconductor layer that may occur if a gate dielectric is solution-processed onto 

it [31]. However, bottom-gate OFETs have an organic semiconductor layer exposed to 

the environment, which often leads to reduced environmental and operational stability. 

To improve the stability of bottom-gate OFETs in air or harsher environments such as 

high temperature and humidity, either an environmental barrier layer [32] that protects 

the organic semiconductor layer or a stable organic semiconductor layer [33] that can 

withhold damage from the environment must be used. 
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Figure 4. OFET geometry:  (a) Top-gate bottom-contact. (b) Top-gate top-contact. (c) Bottom-gate bottom-
contact. (d) Bottom-gate top-contact. 

 

In contrast to bottom-gate OFETs, top-gate OFETs, in which a gate dielectric is 

deposited on top of the organic semiconductor layer, can improve environmental stability 

in air or harsher environments without an extra protection layer.  To prevent damage to 

the organic semiconductor layer when gate dielectric forming on top of it, fluorinated 

polymers such as CYTOP have been used. CYTOP is highly chemically stable and 

hydrophobic, and it dissolves in fluorinated solvents that will not dissolve most organic 

semiconductor materials.  In Hwang et al., top-gate OFETs with a bilayer CYTOP/Al2O3 

gate dielectric have shown high  environmental and operational stability in air for over 

two years and under oxygen plasma treatment for five min at 750 W [34]. These OFETs 

also have displayed recoverable performance on  and VTH after systematic investigation 

under exposure to air, oxygen plasma, and water immersion [35]. 

An important feature of OFET geometries are substrates. The conventional 

substrates of OFETs and organic electronics are rigid materials such as Si and glass 

substrates.  However, flexible, foldable, and even renewable substrates have been 
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developed for various applications and purposes. Among these substrates, paper is the 

preferred substrate because it is low-cost, recyclable, and produced from natural 

feedstock [36] (i.e., it is derived from trees).  However, paper is porous, introducing a 

challenge for solution-based fabrication of organic electronics on top of it; and compared 

to glass or plastic, this substrate limits the performance of organic electronics.  In contrast 

to traditional cellulosic material such as paper, cellulose nanocrystal (CNC), an emerging 

material also derived from trees, has been an attractive new material because it can be 

processed into freestanding films with low surface roughness, good transparency, a low 

coefficient of thermal expansion, and high thermal stability [37].  Several reports have 

demonstrated that the performance of organic electronic devices such as OPVs [38, 39] 

and OLEDs [40] on CNC substrates is comparable to the performance of such devices on 

glass or plastic substrates. 

1.3 Organization of this dissertation 

Chapter 1 introduces printed electronics and OFETs, and Chapter 2 describes the 

experimental methodology including details of OFET fabrication and equipment used for 

that. Chapter 3 describes stable low-voltage operation top-gate OFETs on CNC:glycerol. 

Chapter 4 describes top-gate OFETs using modified bilayer gate dielectric with 

comparable performance to achieve better environmental stability. Chapter 5 describes a 

method to reduce contact resistance of OFETs. Chapter 6 describes OFETs on paper. 

Chapter 7 provides conclusions and future work.  
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CHAPTER 2 

EXPERIMENTAL METHODOLOGY 

2.1 Device fabrication 

This chapter describes fabrication and measurements for OFETs and capacitors. 

In the first part of this chapter, an overview will introduce process details of organic 

electronics, and the differences with conventional lithography will be described; 

evaporation methods will also be introduced such as e-beam evaporation, thermal 

evaporation, and atomic layer deposition. In the second part of this chapter, OFET 

measurements, the measurement system and frequently used characterization will be 

described. In the third part of this chapter, capacitor measurements will be described. 

2.1.1 Overview 

For organic device fabrication, additive process is widely used because organic 

materials usually cannot survive in conventional semiconductor processes such as solvent 

cleaning, wet/dry etching, chemicals for lithography, etc. In the process used in this 

dissertation, glass substrates for OFET fabrication were only cleaned at the beginning of 

the fabrication; for novel substrates other than glass, the cleaning step was skipped to 

avoid potential damages on substrates. The cleaning steps consisted of putting glass 

substrates in acetone, distilled water, and isopropanol in a sonicator for five min in each 

step. The set-up for the cleaning process is shown in Figure 5. After substrate cleaning, 

source/drain electrodes were patterned through shadow masks. The source/drain 

electrodes were evaporated by either e-beam evaporation or thermal evaporation. A 

picture of shadow masks is shown in Figure 6. With shadow masks attached on 
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substrates, metal was only deposited on the open area. After source/drain electrode 

deposition, contact treatment can be applied at this stage to decrease the energy barrier 

between an organic semiconductor layer and source/drain electrodes. On top of the 

source/drain electrodes was the organic semiconductor layer. The preparation of 

semiconductor layers in this study used spin-coating and then annealing of the organic 

semiconductor layer.  

 

Figure 5. A Branson sonicator for substrate cleaning. 
 

The organic semiconductor layer was followed by a bilayer gate dielectric layer. 

The bilayer gate dielectric layer was comprised of a spin-coated and annealed polymer 

dielectric, CYTOP, and a metal-oxide dielectric layer deposited by atomic layer 

deposition (ALD) at 110 °C. The last step was the gate electrode deposition on top of the 

gate dielectric. The gate electrodes were deposited by thermal evaporation because e-

beam evaporation may damage the organic semiconductor layer. Patterning of gate 

electrodes was also done by shadow masks. 

For capacitor fabrication, everything was the same except for the organic 

semiconductor layer. The purpose of capacitor fabrication was to measure the capacitance 
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density of the OFET gate dielectric layer and to evaluate the quality of the gate dielectric 

layer. Therefore, layers of structure from the bottom to the top were bottom electrodes, 

bilayer gate dielectric, and top electrodes. Electrodes were patterned through shadow 

masks and bilayer dielectric was first spin-coated and then deposited by ALD. 

 

Figure 6. A shadow mask for source and drain electrodes of OFETs. 
 

2.1.2 Electron beam evaporation 

The electron beam (e-beam) evaporator used in this study for source/drain 

electrode deposition was a Denton Explorer. An e-beam system uses high voltage (kV) 

electron beam to bombard materials under high vacuum (10-5 to 10-7 torr) with a water 

cooling system underneath the source pocket [41]. The electron beam is generated by an 

electron gun using the thermionic emission of electrons produced by an incandescent 

filament. The direction of the electron beam is controlled by a magnetic field. Materials 

are heated up to the melting point for evaporation by the bombardment. During the 

deposition process, the material is heated regionally only at the area bombarded by 

electron beam, and the rest of the source is still solid. Therefore, this method is more 

sufficient, applicable for high melting point metals and oxides compounds, and creates 

less contamination. However, X-rays generated during the electron beam hitting the 

sources may cause device damage. That is the reason that the e-beam system is only used 
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for source/drain electrode fabrication before the formation of the organic semiconductor 

layer. A schematic of an e-beam system is shown in Figure 7. 

 

Figure 7. A schematic of e-beam evaporator system (JEOL Ltd.) [42]. 
 

2.1.3 Thermal evaporation 

The thermal evaporation system used in this study is a SPECTROS 200 system 

from Kurt J. Lesker. It is connected to an MBraun glovebox avoiding exposure to the 

atmosphere. Typical vacuum condition of the deposition is below 10-7 torr. Thermal 

evaporation is a resistive heating technique using a tungsten boat carrying a material [41]. 

The material is heated by the heat generated from injecting current through the tungsten 

boat. After the material reaches its melting point, it vaporizes and deposits on targeted 

samples. The advantage of this technique is that it won’t generate X-rays during the 

deposition, so it will not cause potential damage to devices. Therefore, thermal 

evaporation can be used in not only source/drain electrode deposition, but also for the 

deposition of the gate electrode after organic material formation on the organic electronic 
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devices. However, it cannot use high melting point materials because heating up the 

whole tungsten boat is not efficient for raising the temperature above 1000 °C, and 

potential contamination is a possibility because parts other than the materials are also 

heated. A schematic of a thermal evaporation system is shown in Figure 8. 

 

Figure 8. A schematic of thermal evaporator [41]. 
 

2.1.4 Atomic layer deposition 

The atomic layer deposition (ALD) system used here is a Savannah S200 ALD 

from Ultratech Inc. (Cambridge NanoTech Inc.) ALD provides precise control down to 

the atomic scale. The principle of atomic layer deposition is similar to chemical vapor 

deposition (CVD) except the ALD reaction breaks the CVD reaction into two half-

reactions, keeping the precursor materials separate during the reaction [41]. The sequence 

of ALD starts from a pulse of water vapor and then a pulse of a metal-organic precursor. 

An example of ALD for Al2O3 deposition is shown in Figure 9. A layer of Al2O3 forms as 
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described: In the pulse of water vapor, water adsorbs on the substrate surface and then 

forms a hydroxyl group (Figure 9 (a)); another pulse of precursor, in this case trimethyl 

aluminum (Al(CH3)3), flows in and interacts with the hydroxyl group to have bonding 

between an oxygen atom and an aluminum atom, and a methyl group forms a bonding 

with hydrogen from a hydroxyl group to yield a by-product, methane (Figure 9 (b)). After 

a layer of Al2O3 forms, another pulse of water vapor is introduced (Figure 9 (c)), this time 

water adsorbs on aluminum atoms, and oxygen atoms bonded with aluminum atoms 

replace all methyl groups connected to aluminum (Figure 9 (d)). Repeated cycles work as 

described above to form a dielectric. 
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Figure 9. An illustration of ALD process of Al2O3 (Ultratech Inc.) [43]. 
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2.2 OFET measurements 

The measurement set-up of OFET characterization uses a Signatone probe station 

in a MBraun glovebox. The probe station is connected to an Agilent E5272A system for 

electrical characterization and to an Agilent 4284A for capacitance characterization. 

Agilent systems are connected to a computer for remote control by LabVIEW programs. 

A picture of this measurement set-up is shown as Figure 10. 

 

Figure 10. The OFET characterization set-up. 
 

Characterization of OFETs used in this study includes transfer characteristics, 

output characteristics, DC bias stress measurements, and repeated scans of transfer 

characteristics. 

2.2.1 Transfer characteristics 

The transfer characteristics are drain-to-source current as a function of gate 

voltage at a certain drain-to-gate voltage. An example is shown in Figure 11. OFETs are 
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usually measured from off-state (low gate voltage) to on-state (high gate voltage) then 

on-state to off-state to observe if fabricated OFETs have hysteresis, and the quality of 

OFETs can be determined. The carrier mobility can be extracted by putting the slope of 

the linear fitting of the square root of drain current as a function of gate voltage into 

Equation (2). From the same linear fitting, the threshold voltage can be extracted by the 

intercept of the gate voltage axis. The on/off current ratio can be extracted by dividing 

on-state drain current by off-state drain current. 

 

Figure 11. An example of transfer characteristics. 
 

2.2.2 Output characteristics 

The output characteristics are drain-to-source current as a function of drain-to-

source voltage at different gate-to-source voltage. An example is given in Figure 12. 

From this plot, on-resistance can be extracted by the slope of tangents from each curve at 

a given drain-to-source voltage as described in Equation (3). With different channel 

widths at a channel length, different on-resistance changes linearly with different channel 
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widths. The intercept of resistance when channel width equals to zero represents the sum 

of the contact resistance of a source and a drain. 

 

Figure 12. An example of output characteristics. 

2.2.3 DC bias stress 

The DC bias stress test here is to monitor the drain-to-source current variation at 

on-state. It is an indicator of the operational stability of OFETs. An example of this 

characteristic is shown in Figure 13. 

 

Figure 13. An example of DC bias stress of an OFET at on-state. 
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2.2.4 Repeated transfer characteristics 

The repeated transfer characteristic is another indicator of operational stability of 

OFETs. It is usually conducted continuously from off-state to on-state to observe if 

OFETs are stable or degraded during repeated scans. 

 

Figure 14. An example of repeated transfer characteristics. 
 

2.3 Capacitor measurements 

To investigate the quality of capacitors, there are four frequently used 

measurements to evaluate capacitors. The first measurement is to measure capacitance as 

a function of applied DC voltage at several given frequencies as shown in Figure 15. In 

this case, the stability of capacitance will be evaluated at a range of DC biases with 

several given frequencies. 
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Figure 15. An example of measured capacitance at different frequencies under a range of applied DC 
voltages. 

 
In Figure 16, the second measurement is to measure capacitance as a function of 

frequency at zero bias. In this case, the quality of a capacitor will be evaluated because 

the capacitance is usually unstable at high frequency. 
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Figure 16. An example of measured capacitance as a function of frequency at zero bias. 
 

In Figure 17, the third measurement is to measure capacitors with various areas at 

a given frequency and a given bias. In this case, capacitance will be in a linear relation 
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with areas of capacitors, and the slope of this linear relation is capacitance density. With 

this value extracted, carrier mobility can be calculated through Equation (3) in page 6. 
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Figure 17. An example of capacitance measured at different areas. 

 
In Figure 18, the last measurement is the current density of a capacitor as a 

function of applied electric field. It provides a direct observation on a capacitor for its 

breakdown electric field which is an indicator of the quality of a dielectric. 
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Figure 18. An example of the vertical breakdown field measurement for a capacitor. 
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CHAPTER 3 

OFETS ON CELLULOSE NANOCRYSTAL SUBSTRATES 

3.1 Introduction 

OFETs have the potential for low-cost fabrication and flexibility over large areas 

which make them important building blocks for the development of flexible electronic 

applications. With growing awareness of the environmental impact of electronic waste, 

there is a need for new substrates for emerging flexible organic printed electronic 

technologies with a small environmental footprint. The replacement of conventional 

substrates, such as glass and plastic, with substrates made from abundant and 

environmental-friendly materials can make the recycling and/or disposal of new 

engineered products potentially more efficient and less polluting. Although OFETs are 

typically fabricated on glass or plastic substrates, paper would be the preferred substrate 

[36] because of its low cost, recyclability, and the use of natural materials derived from 

renewable feedstock. However, the fabrication of electronic components on paper 

presents several challenges resulting from the high porosity of traditional cellulosic 

materials, their high surface roughness, and complex surface chemistry. Consequently, 

performances of OFETs fabricated from solution on paper continue to be limited 

compared to devices fabricated on glass or plastic substrates.  

In recent years, cellulose nanomaterials derived from sustainable feedstock, such 

as cellulose nanofibers (CNFs) and CNCs, have emerged as an attractive new class of 

materials for flexible electronic applications because they can be processed into free-

standing and flexible films that display low surface roughness, good transparency, a low 

coefficient of thermal expansion and high thermal stability [37]. Several reports exist on 
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organic electronic devices such as OFETs [44-48], OPVs [38, 39, 49-51], and OLEDs 

[40, 52-55] fabricated on cellulose nanomaterial substrates. OFETs fabricated on CNF-

based substrates have shown good flexibility and transparency [44, 45], and a majority of 

studies focused on processes using evaporation [46-48] and ink-jet printing [56, 57]. In 

addition to be a substrate, cellulose materials were also employed as a gate dielectric [58-

62] for OFETs. To date, only a few reports demonstrated stability tests [44] and 

improvements are still needed in lowering the threshold voltage and increasing carrier 

mobility using cellulose as a part of the OFETs. Solution-processed OFETs containing 

cellulose with a low threshold voltage [63] and a high carrier mobility with 

environmental stability remains a goal to be achieved. 

In this chapter, stable low-voltage operation top-gate OFETs are demonstrated. 

OFETs were fabricated on water soluble CNC:glycerol substrates protected by ALD-

grown Al2O3. The carrier mobility of fabricated OFETs has an average value of 0.11 

cm2/Vs and a highest value of 0.23 cm2/Vs. Operational and environmental stability will 

be demonstrated. For comparison, OFETs on bare CNC:glycerol were also fabricated and 

measured. The OFETs structure used here was reported by our group [34, 35]. 

3.2 Design of experiments 

The advantage of this recyclable substrate is its water solubility at room 

temperature. However, it is also its disadvantage because a droplet of water can form a 

hole on bare CNC:glycerol within seconds as shown in Figure 19 (a). A proposed 

solution is to deposit a layer of ALD-grown Al2O3 on top of CNC:glycerol to protect the 

substrate, and Figure 19 (b) shows a droplet of water staying on the protected 

CNC:glycerol without dissolving it to make a hole. After deciding to add a protection 
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layer for potential damages, the wettability of tetralin, the solvent we used for the organic 

semiconductor, was verified by conducting contact angle measurements of tetralin on 

bare CNC:glycerol and CNC:glycerol with ALD-grown Al2O3. The results in Figure 20 

show that tetralin wets on both CNC:glycerol and CNC:glycerol with ALD-grown Al2O3; 

that confirms the film formation on this novel substrate. 

(a)                                                                  (b) 

 

Figure 19. A water droplet on (a) Bare and (b) Al2O3 protected CNC:glycerol. 
 

In this section, top-gate OFETs with a bilayer CYTOP/Al2O3 gate dielectric will 

be characterized. These OFETs used a solution-processed semiconductor channel layer 

made of a blend of TIPS-pentacene and PTAA fabricated on recyclable CNC:glycerol 

substrates. These OFETs exhibited low operating voltage between 0 to -10 V, low 

threshold voltage in the range of -2 V, an average field-effect mobility of 0.11 cm2/Vs, 

and good shelf and operational stability in ambient. In addition to protecting substrates 

from solution process, the barrier layer of Al2O3 was grown by ALD directly onto the 

CNC:glycerol substrates, which was also expected to improve the operational stability in 

ambient air. This same layer was reported contributing stable OFETs in air, therefore it 
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may protect the organic semiconductor film from moisture and other chemicals that can 

either permeate through or diffuse out of the substrate. 

(a)                                                                    (b) 

 
Figure 20. Tetralin on (a) Bare and (b) Al2O3 protected CNC:glycerol. 

 

3.3 Device fabrication 

 OFETs were fabricated in top-gate bottom-contact geometry, as shown in Figure 

21. First, CNC:glycerol substrates were prepared as described in Zhou et. al. [38]. OFETs 

fabricated on bare CNC:glycerol substrates, will be referred to hereafter as D1 devices. 

OFETs fabricated on CNC:glycerol substrates coated with 300 cycles of ALD-grown 

Al2O3 at 110 °C (Savannah 100 ALD system, Cambridge Nanotech Inc.), will be referred 

to as D2 devices.  

D1- and D2-type OFETs were fabricated as follows: a 2 mm-thick layer of PDMS 

(Gelest OE 41 with 1:1 weight ratio) was cast onto 3.8 cm by 3.8 cm glass substrates to 

hold the CNC:glycerol substrates. CNC:glycerol substrates were attached on top of the 

PDMS film and secured by Kapton tape at the edges, and 50 nm-thick Au source/drain 

electrodes were deposited through a shadow mask  using an electron-beam deposition 

system  (Denton Explorer), at a deposition rate of 1.0 Å/s and an initial pressure of 9.0 × 

10-7 Torr. A TIPS-pentacene (Sigma Aldrich) and PTAA (Sigma Aldrich) blend solution 

was used as the organic semiconducting layer. The (1:1 weight ratio) TIPS-
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pentacene:PTAA solution was dissolved in anhydrous tetralin, (Sigma Aldrich) at a 

concentration of 30 mg/ml. The TIPS-pentacene:PTAA blended solution was spin-coated 

at 500 rpm for 10 s (acceleration of 500 rpm/s) and ramped to 2,000 rpm for 20 s 

(acceleration of 1,000 rpm/s) to yield a ca. 70 nm-thick layer [64]. Spin coated films were 

then thermally annealed at 100 °C for 15 min on a hot plate in a N2-filled glove box. The 

preparation of a bilayer gate dielectric was starting from diluting CYTOP (Asahi Glass, 

CTL-809M) with a solvent (Asahi Glass, CTL-SOLV180) to a concentration of 2% by 

volume.  

 

 
Figure 21. (a) Cross-section of OFETs on bare CNC:glycerol substrates, D1. (b) Cross-section of OFETs 
on CNC:glycerol substrates with an Al2O3 barrier layer, D2. (c) Chemical structures of the compounds and 
polymers used in the OFETs. 

 

A layer of CYTOP was spin-coated on top of the organic semiconducting layer at 

3,000 rpm for 60 s (acceleration of 10,000 rpm/s) to yield a ca. 35 nm-thick layer [64]. 

Samples were then thermally annealed at 100 °C for 10 min on a hot plate in a N2-filled 
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glove box. After that, 500 cycles of ALD-grown Al2O3 were deposited at 110 °C to yield 

a ca. 40 nm-thick layer [64]. Later, 100 nm-thick Ag gate electrodes were deposited 

through a shadow mask in a thermal evaporator (Kurt J. Lesker, SPECTROS) with initial 

pressures below 1.0 × 10-6 Torr and at an average deposition rate of 1.0 Å/s. 

3.4 Device characterization 

D1- and D2-type OFETs were characterized in a N2-filled glove box (O2 and H2O 

< 0.1 ppm, 25 °C) and at ambient conditions (25 °C and 20% to 40% RH) using an 

Agilent E5272A source/monitor unit. The operational stability was investigated by 

performing 1,000 continuous scans of the transfer characteristic and by applying a DC 

bias stress (VGS = -10 V, VDS = -10 V) for 60 min inside a N2-filled glove box and at 

ambient conditions. To investigate environmental stability, devices were stored at 

ambient conditions and measured periodically over a period of 16 days. 

3.4.1 Pristine condition in nitrogen 

Figure 22 displays the transfer and output characteristics of representative D1- 

and D2-type OFETs. Maximum carrier mobility values of 0.13 cm2/Vs and 0.23 cm2/Vs 

were extracted from the transfer characteristics (in the saturation regime) of devices D1 

and D2, respectively. Figure 22 also shows the transfer characteristics of the D1- and D2-

type OFETs kept in N2 for one month. In the D1 OFET, the carrier mobility decreased to 

0.08 cm2/Vs, while in the D2 OFET the carrier mobility remained unchanged with a 

value of 0.23 cm2/Vs. The decreased mobility in the D1 OFET suggests that chemical or 

physical interactions occur between the substrate and the organic semiconductor. 

However, these interactions are clearly suppressed in the D2 OFET. The threshold 
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voltage of D1- and D2-type OFETs does not change more than 0.1 V within this time 

frame. 

 

Figure 22. (a) Transfer characteristics of a D1-type OFET before and after one month in N2. (b) Output 
characteristics of a D1-type OFET before and after one month in N2. Larger current with larger |VGS|, VGS 
from 0 to -10 V, the step is 2 V. (c) Transfer characteristics of a D2-type OFET before and after one month 
in N2. (d) Output characteristics of a D2-type OFET before and after one month in N2. Larger current with 
larger |VGS|, VGS from 0 to -10 V, the step is 2 V. 
 

Table I displays average values of carrier mobility µ, average variation of carrier 

mobility, threshold voltage VTH, and on/off current ratio Ion/Ioff measured on the D1- and 

D2-type OFETs with labeled dimensions and yield at pristine condition in N2, storing in 

N2 for one month, and storing in ambient for 6 days on D1-tpye OFETs and 16 days on 

D2-type OFETs. 
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Table I. Device dimensions, average mobility, average threshold voltage, and average on/off current ratio 
of OFETs. 
 

To identify the interactions between the substrate and the organic semiconductor 

layer, we conducted X-ray photoelectron spectroscopy (XPS) measurements on bare 

CNC:glycerol substrates (D1’) and CNC:glycerol substrates with an ALD-grown Al2O3 

barrier layer (D2’). Figure 23 displays the binding energy spectra measured by XPS, 

wherein clear differences are observed between the spectra obtained for the two 

substrates. First, Al2p and Al2s peaks are detected on D2’ because of the Al2O3 barrier 

layer deposited by ALD. More notably, sulfur and sodium peaks are detected on D1’, but 

not on D2’. 

 

Figure 23. Binding energy spectra from XPS of a bare CNC:glycerol (D1’) substrate and a CNC:glycerol 
(D2’) substrate with ALD-grown Al2O3. (a) Binding energy from 0 to 1,400 eV. (b) Zoomed-in 0 to 300 eV 
region of binding energy. (c) Zoomed-in 900 to 1,100 eV region of binding energy. 
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The presence of sulfur suggests that sulfate half-esters are on the surface of the 

CNCs:glycerol substrates as a result of the sulfuric acid hydrolysis process used for the 

CNC production. Sulfate half-esters hydrolyzed by water during casting of the 

CNC:glycerol film could produce negatively charged sulfates that would act as hole 

traps, which may explain the decreased mobility values observed in D1 devices after 

being stored in N2 for one month, as shown in Figure 22, thus eliminating the possibility 

that these effects could be caused by oxygen or water from the ambient. In contrast, the 

mobility displayed by D2 devices stored under the same conditions remained unchanged, 

as shown in Figure 22. On the other hand, the presence of sodium on the surface of the 

CNC:glycerol substrate suggests the presence of sodium cations which may be very 

mobile and could lead to an increased channel conductivity. However, in pristine devices, 

the off current in both types of devices originates from the gate-to-drain leakage current 

as displayed in Figure 24 (a) and (c). The slightly larger value of gate-to-drain leakage 

current in D1 devices therefore indicates that the quality of the bilayer gate-dielectric and 

the semiconductor layer is affected by the direct fabrication of top-gate OFETs on bare 

CNC:glycerol substrates. The presence of sodium is an unintended consequence of the 

addition of glycerol to the CNC films, which improves its mechanical properties. 

Furthermore, we have to keep in mind that glycerol is a dipolar molecule which may be 

mobile, and as such, could affect the threshold voltage values [65] and operational 

stability of devices directly fabricated on CNC:glycerol substrates. In summary, the 

improved shelf stability, under N2, and performance characteristics displayed by D2 

devices, as compared to D1 devices, arises from the passivation of the chemical species 

present on the CNC:glycerol surface that results from the deposition of the Al2O3 barrier 
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layer. In the following discussion, we will show that the presence of this passivation layer 

has further consequences for the environmental and operational reliability of top-gate 

OFETs. 

 

 

Figure 24. (a) Transfer characteristics and the gate leakage of the D1-type OFET at first scan. (b) Transfer 
characteristics and the gate leakage of the D1-type OFET at tenth scan. (c) Transfer characteristics and the 
gate leakage of the D2-type OFET at first scan. (d) Transfer characteristics and the gate leakage of the D2-
type OFET at tenth scan. 
 

3.4.2 Operational stability in nitrogen and air 

Figure 25 displays the results of scanning 1,000 times of transfer characteristics 

on both the D1- and D2-type OFETs inside a N2-filled glove box and at ambient 

conditions. D1 devices display two distinctive effects in both environments: 1) a 

reduction in the magnitude of the threshold voltage and 2) an increased off-current. As 
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displayed on Figure 24 (b), the increased off-current is not attributed to an increased gate-

to-drain leakage current but to an increased channel conductivity which probably arises 

from the diffusion of sodium cations upon device operation. On D2 devices, the off-

current increase is greatly suppressed, particularly in air, and variations of the transfer 

characteristics are primarily associated with smaller reductions in the magnitude of the 

threshold voltage than the ones observed in D1 devices. Hence, the presence of the Al2O3 

barrier layer prevents the increase of the channel conductance and leads to more stable 

transfer characteristics on D2 devices than on D1 devices, in both N2 and ambient 

conditions. This can be seen from the summary of extracted carrier mobility, threshold 

voltage, and on-off current ratio in Figure 26. 

 
Figure 25. (a) 1,000 cycles of transfer characteristics measured in N2 on the D1-type OFET. (b) 1,000 
cycles of transfer characteristic measured at ambient conditions on the D1-type OFET. (c) 1,000 cycles of 
transfer characteristics measured in N2 on the D2-type OFET. (d) 1,000 cycles of transfer characteristics 
measured at ambient conditions on the D2-type OFET. 
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Figure 26. Extracted parameter values from measurements at ambient conditions after storing in N2 for one 
month. (a) Mobility. (b) Threshold voltage. (c) On/off current ratio. 

 

To further investigate the operational stability of D1- and D2-type OFETs in N2 

and ambient conditions, DC bias stress tests were also carried on the same devices for 1h. 

VDS and VGS were both biased at -10 V. Figure 27 shows that after 1 h of biasing under 

these conditions, the source-to-drain current of both devices increased. Consistent with 

the relative reductions in the magnitude of the threshold voltage observed in cycling 

experiments, D1 devices display a higher increase in the source-to-drain current than D2 

devices, in both N2 and ambient conditions. As we have discussed in the past [34], the 
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reduction of |VTH| observed is consistent with the presence of mobile dipoles, such as 

glycerol, which have a stronger effect in D1 devices than in D2 devices.      

 

Figure 27. Turn-on DC bias stress measurement measured both in N2 and at ambient conditions on D1- and 
D2-type OFETs. 
 

3.4.3 Environmental stability in air 

Finally, shelf environmental stability tests of D1 and D2 were conducted. Figure 

28 shows electrical characteristics of D1- and D2-type OFETs stored at ambient 

conditions. The off-current in D1 OFETs increased 1,000 times to the same level as on-

current within 6 days. Meanwhile, the off-current of D2 OFETs increased only 100 times 

after 16 days at ambient conditions. This indicates that the Al2O3 barrier layer also 

improves the shelf environmental stability of OFETs on CNC:glycerol substrates, and 

provides a route towards optimizing the stability of these types of OFETs.  The 
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performance of D2 devices is comparable to the performance of OFETs with identical 

geometry fabricated on glass [34, 35] or plastic substrates [66]. 

 

Figure 28. (a) Transfer characteristics of the D1-type OFET before and after storage at ambient conditions 
for 6 days. (b) Output characteristics of the D1-type OFET before and after storage at ambient conditions 
for 6 days. (c) Transfer characteristics of the D2-type OFET before and after storage at ambient conditions 
for 16 days. (d) Output characteristics of the D2-type OFET before and after storage at ambient conditions 
for 16 days. 

3.5 Device modeling 

The software for device modeling is Advanced Design System (ADS) from 

Keysight Technologies, and equation (7) is used to fit the current-voltage characteristics 

of OFETs. Equation (7) applied here is from Marinov et. al. [24, 25] having fitting 

parameters such as carrier mobility , threshold voltage VTH, the characteristics exponent 

, mobility enhancement voltage Vaa, subthreshold slope SS, and the channel length 

modulation parameter  where  and VTH were extracted from our experimental data. 
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Figure 29 displays the fitting of the OFET on base CNC:glycerol substrates shown in 

Figure 22. Extracted  and VTH were 0.13 cm2/Vs and -1.5 V. Fitted SS is 0.74 V/decade, 

and the corresponding interface trap density, between gate dielectric and organic 

semiconductor layer, Dit calculated by equation (6) is 2 × 1012 cm-2. Empirical parameters 

such as Vaa, , and  are 40 V, 0.11, and 0.03 respectively. The current-voltage 

characteristics at large gate bias do not follow the model can be explained by the 

effectiveness of ions from CNC:glycerol substrates found in XPS. These impurities 

contribute the lower current compared to the model. 

(a)      (b) 
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Figure 29. (a) Fitting of transfer characteristics on a D1-type OFET. (b) Fitting of output characteristics on 
a D1-type OFET. 
 

Meanwhile Figure 30 displays the fitting of the OFET on CNC:glycerol with an 

ALD-grown Al2O3 buffer layer shown in Figure 22. Extracted  and VTH were 0.23 

cm2/Vs and -2.8 V. Fitted SS is 0.74 V/decade, and the corresponding interface trap 

density Dit calculated by equation (6) is 2 × 1012 cm-2. Empirical parameters such as Vaa, 

, and  are 40 V, 0.11, and 0.039 respectively. The current-voltage characteristics follow 

the model with similar empirical parameters and support our claim that the buffer/barrier 
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layer protects organic semiconductor layer by preventing the diffusion of ions from 

CNC:glycerol substrates. 
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Figure 30. (a) Fitting of transfer characteristics on a D2-type OFET. (b) Fitting of output characteristics on 
a D2-type OFET. 

3.6 Summary 

 In this section, we have demonstrated top-gate OFETs on CNC:glycerol 

substrates with a solution-processed semiconductor layer that operates at low voltages 

with good shelf and operational stability. We have found that the key to achieving top-

gate OFETs with stable characteristics is to isolate the organic semiconductor layer from 

the chemical species in the substrate. We have achieved that by deposition of a thin layer 

of ALD-grown Al2O3, which is also clearly shown to lead to much improved 

environmental stability. XPS data and device modeling support our assumption. While 

the thickness and barrier properties of this layer can be further optimized, our results 

show that such a barrier will be needed to achieve OFETs with stable performance when 

fabricated on substrates with poor oxygen and water barrier properties.  
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CHAPTER 4 

NANOLAMINATE GATE DIELECTRIC OF OFETS 

4.1 Introduction 

OFETs could enable flexible displays [67, 68], wearable electronics [69], and 

sensors [70, 71]. OFETs with state-of-the-art performance now surpass that of thin-film 

amorphous silicon transistors [72]. As the performance of OFETs continues to improve, 

studies that focus on the environmental stability of high performance OFETs [19, 32, 33, 

73, 74] become critical to assessing potential applications. To date, OFETs with a top-

gate geometry display superior environmental stability over OFETs with a bottom gate 

geometry. This is because chemical or physical interactions between reactant molecules 

in the environment, such as oxygen and water, and the organic semiconductor channel 

layer lead to changes (reversible or irreversible) in the electrical properties of an OFET. 

Indeed, this intrinsic sensitivity has been used to realize chemical and biological OFETs 

sensors, which underscore the need for environmental barriers if OFET-based 

applications are to display stable operation. 

Although environmental barriers have been used to encapsulate bottom-gate 

OFETs that, for example, operate even after immersion in 100 °C water using a bilayer of 

parylene and gold [32], most efforts have been concentrated in improving the 

environmental stability of organic semiconductor layers from a synthetic chemistry 

perspective. However, OFETs with top-gate geometry have been shown to display 

improved environmental stability over bottom gate OFETs [19] even in the absence of 

encapsulation layers because the top-gate gate dielectric also acts as an environmental 

barrier.  Indeed, we and others have demonstrated that properly engineered gate dielectric 
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layers can yield n- or p-channel top-gate OFETs [34, 75], OFET-based sensors [76] and 

circuits [64] with remarkable long-term operational and environmental stability, even 

under aqueous conditions. The bilayer gate dielectric in such OFETs is comprised of an 

amorphous fluoropolymer layer, CYTOP, and layer of Al2O3 synthesized by ALD.  

However, in the context of corrosion, single layers of Al2O3 by ALD have been 

investigated and found to be easily corroded in humid environments [77], and single 

layers of other metal oxides such as TiO2 [77] and ZrO2 [78, 79] by ALD showing similar 

performance on organic electronics protection. Furthermore, the barrier properties of a 

single metal-oxide layer by ALD have also been found to be significantly inferior to 

those displayed by ALD nanolaminates (NLs) wherein ultrathin layers [77-80], a few tens 

of nanometer to a few nanometers thick, of two different metal oxides are intercalated to 

form a thicker layer. Therefore, NL layers are denser and have low water vapor 

transmission rate [81] which improves the barrier properties. In the context of OFETs, the 

use of NLs by ALD as gate dielectrics have been reported in bottom-gate OFETs [82], 

but not in the context of top-gate OFETs. 

This chapter reports on the properties top-gate OFETs with a bilayer gate 

dielectric comprising a NL layer (Al2O3 and HfO2 by ALD) and an amorphous 

fluoropolymer layer, CYTOP. We show that the use of such an NL layer yields OFETs 

with a comparable level of performance, operational and environmental stability 

compared to OFETs with a CYTOP/Al2O3 bilayer gate dielectric we have previously 

reported, but that in addition, are able to sustain immersion in hot water at 95 °C for up to 

1 h. 
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4.2 Design of experiments 

Because of this highly stable top-gate OFET structure, there is potential to apply it 

for medical applications, which require sterilization usually by steam, dry heat, or simply 

in boiling water at atmosphere. However, a single layer of ALD-grown Al2O3 has been 

shown to be less resistive than a combination of metal oxides [80] in water corrosion 

tests. In addition, a NL structure, alternating nanometer-thick layers of two materials for 

periods, has displayed excellent properties for encapsulation of OPVs [83] and OLEDs 

[78, 79]. ALD-grown HfO2 will be chosen because of its availability, characteristics, and 

stability. To validate OFETs with a CYTOP/NL bilayer gate dielectric that can survive in 

harsher environments, OFETs with CYTOP/ Al2O3 and CYTOP/NL will be fabricated on 

3.8 cm by 3.8 cm Corning glass substrates (Eagle 2000). The details of device fabrication 

will be described in the next section.  

4.3 Device fabrication 

Top-gate OFETs were fabricated with a bottom-contact geometry on glass 

substrates as shown in Figure 31. Source/drain electrodes comprised of Ti/Au 6/70 nm 

were deposited in a Denton Explorer E-beam system through a shadow mask at a 

deposition rate of 1.0 Å/s and at an initial pressure of 1.0 × 10-5 Torr. On top of the 

source and drain electrodes a layer of pentafluorobenzenethiol (PFBT) (Sigma Aldrich) 

was formed by immersion in a 10 mmol PFBT solution for 15 min in a N2-filled glove 

box, followed by rinsing in pure ethanol for a few seconds and annealing on a hot plate 

for 5 min at 60 °C to dry it. A TIPS-pentacene and PTAA blend (1:1 weight ratio) was 

used as the organic semiconducting layer. TIPS-pentacene and PTAA blend were 

dissolved in 1, 2, 3, 4-Tetrahydronaphthalene anhydrous, 99%, (Sigma Aldrich) at a 
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concentration of 30 mg/ml. A 70 nm-thick [64] layer of TIPS-pentacene and PTAA was 

spin-coated onto source and drain electrodes at 500 rpm for 10 s (acceleration of 500 

rpm/s) and ramped to 2,000 rpm for 20 s (acceleration of 1,000 rpm/s). Spin-coated films 

were then annealed at 100°C for 15 min on a hot plate in a N2-filled glove box. A bilayer 

gate dielectric was fabricated by diluting CYTOP (Asahi Glass, CTL-809M) with solvent 

(Asahi Glass, CTL-SOLV180) to concentration of 2% by volume. A layer of CYTOP 

was spin-coated on top of the organic semiconducting layer at 3,000 rpm for 60 s 

(acceleration of 10,000 rpm/s) to yield a ca. 35 nm-thick layer [64]. Samples were then 

annealed at 100 °C for 10 min on hot plate in a N2-filled glove box. After that, an Al2O3 

and HfO2 NL was deposited in a Savannah 100 ALD system at 100°C. The NL 

comprised 200 cycles of Al2O3 on CYTOP to serve as a nucleation layer, followed by 

five cycles of Al2O3 and five cycles of HfO2 repeated 20 times, which yielded a ca. 38 

nm-thick layer. 100 nm-thick Ag or Au gate electrodes were then deposited through a 

shadow mask in a SPECTROS thermal evaporator with initial pressures below 1.0 × 10-6 

Torr and at an average deposition rate of 1.0 Å/s.  Reference OFETs with CYTOP/Al2O3 

bilayer gate dielectric were also fabricated as previously reported [34]. 

 

Figure 31. The device structure of top-gate OFETs with CYTOP/NL gate dielectric. 
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4.4 Device characterization 

OFET devices were characterized in a N2-filled glove box (O2 and H2O < 0.1 

ppm, 25°C) and at ambient conditions (25°C and 20 to 40% RH) using an Agilent 

E5272A source/monitor unit. The environmental stability was investigated by storing 

OFETs in an environmental chamber under different conditions as will be described next 

and transferred to a N2-filled glove box for characterization. OFETs were also immersed 

in water at 95 °C and their properties characterized under ambient conditions after 

different immersion times. The barrier properties of the CYTOP/NL bilayer were also 

characterized by immersion in water at 95 °C on samples comprising Ca sensors 

deposited on glass and encapsulated using CYTOP/Al2O3 or CYTOP/NL bilayers 

fabricated as previously described. Photo images were taken during the hot water test to 

monitor the degradation rate of calcium under the two types of bilayer dielectric. 

4.4.1 Pristine condition in nitrogen 

The transfer characteristic of top-gate OFETs with CYTOP/NL bilayer gate 

dielectrics and Au gate electrodes are shown in Figure 32. Average hole mobility values 

of 0.92 ± 0.22 cm2/Vs and average threshold voltage values of -1.9 ± 0.5 V where found 

on these OFETs. These values are comparable to those displayed by top-gate OFETs with 

CYTOP/Al2O3 bilayer gate dielectric. 
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Figure 32. Transfer characteristics of OFETs with CYTOP/NL gate dielectric. 
 

4.4.2 Environmental stability in various critical conditions 

Then, we subjected top-gate OFETs through the following conditions of 

environmental exposure: ambient air for 30 days; vacuum annealing at 100 °C for 16 h; 

damp air (50 °C and 80% RH for 24 h); vacuum annealing at 100 °C for 16 h; ambient air 

for 24 h; immersion in distilled water at room temperature for 16 h; vacuum annealing at 

100 °C for 16 h; ambient air for 24 h; vacuum annealing at 100 °C for 16 h; immersion in 

50 °C distilled water for 16 h; and vacuum annealing at 100 °C for 16 h. Figure 33 

displays the evolution of the charge mobility, threshold voltage, and the number of 

operating OFETs after different conditions of environmental exposure. This data is 

consistent with previous reports on the environmental stability of top-gate OFETs with 

CYTOP/Al2O3 bilayer gate dielectric [74] in that the mobility values remain nearly 
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constant and the threshold voltage values decrease after vacuum annealing and increase 

with exposure to humid atmospheres.  Throughout these experiments, five out of seven 

OFETs remained working. 

 

Figure 33. Performance of top-gate OFETs exposed to various environments. 
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4.4.3 Operational stability in air 

Next, a new batch of top-gate Ref-OFETs and NL-OFETs were fabricated. Figure 

34 displays a comparison of typical transfer characteristics measured in air-exposed 

devices. NL-OFETs displayed average hole mobility values of 0.71 ± 0.14 cm2/Vs and 

average threshold voltage values of 0.1 ± 0.4 V. Ref-OFETs displayed average hole 

mobility values of 0.64 ± 0.12 cm2/Vs and average threshold voltage values of 0.0 ± 0.4 

V. The performance of both types of devices is comparable and within the range of batch-

to-batch variations. 

 
Figure 34. Transfer characteristics of Ref- and NL-OFETs with Ag gate. 

 

Figure 35 displays DC bias stress characteristics for 1h on top-gate Ref-OFETs 

and NL-OFETs. In this measurement, the step is 10 s and gate-to-source voltage and 

drain-to-source voltage are both at -10 V. Negligible on-current variation observed on 
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both Ref-OFETs and NL-OFETs in the DC bias stress measurement for 1 h showing 

CYTOP/NL bilayer gate dielectric provides the same operational stability as that of 

CYTOP/Al2O3 provided. 

 

Figure 35. DC bias stress in air for 1 h on Ref- and NL-OFETs with Ag gate. 
 

4.4.4 Environmental stability in hot water at 95 °C 

We immersed both types of OFETs into 95 °C water, to avoid boiling, and their 

transfer characteristics monitored in air as a function of immersion time. Figure 36 

displays the charge mobility and threshold voltage values as well as the number of 

functional OFETs as a function of immersion time, revealing major differences in device 

stability. First, the electrical properties of ref-OFETs remain stable in 95 °C water for two 

min and irreversibly get damaged after three min of immersion. In contrast, NL-OFETs 
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voltage values decrease monotonically at least up to 1 h of immersion time. Remarkably, 

throughout the entire 1 h of immersion time, the average hole mobility values remain 

stable and in the range between 0.5 to 0.7 cm2/Vs. With 50% of the NL-OFET remaining 

functional after these harsh conditions of environmental exposure, it is clear that the 

CYTOP/NL bilayer does offer superior barrier properties over the CYTOP/Al2O3 bilayer. 

 

Figure 36. Extracted carrier mobility, threshold voltage, and the number of working OFETs. 
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To further investigate the barrier properties and to provide insight into the failure 

mechanism, we conducted similar immersion experiments on samples with Ca sensors 

encapsulated by either CYTOP/Al2O3 or CYTOP/NL bilayers. The cross section is shown 

as Figure 37. 

(a)                                                                 (b) 

  

Figure 37. Ca encapsulated by (a) CYTOP/Al2O3 and (b) CYTOP/NL. 
 

The degradation of calcium is easily recognized because it becomes transparent as 

it is oxidized. Figure 38 (a), (b), and (d) display photographs of the calcium sensors after 

30 s and three min of immersion time in water at 95 °C which reveal the sudden 

disappearance of the Ca sensors encapsulated with a CYTOP/Al2O3 bilayer after three 

min of immersion. In contrast, the degradation of the Ca sensors encapsulated with a 

CYTOP/NL bilayer is much slower and inhomogeneous, arising from point defects in the 

sample, resulting in several areas of Ca throughout the substrate after three min of 

immersion. In contrast, on a sample having a CYTOP/NL bilayer, oxidized Ca was 

observed only on areas with particles and defects in the metal-oxide layer. These 

observations are consistent with recently published studies where we have found that the 

residual stress of ALD layers is the primary mechanism of mechanical failure due to the 

propagation of cracks that start around areas of concentrated stress (i.e. around particles 

and defects) [84]. The NL layer is then believed to lead to a superior solution for 
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encapsulation under harsher environments without changing transistor electrical and 

operational characteristics. 

 

Figure 38. Photographs of encapsulated 100 nm Ca samples with (a) Encapsulated by CYTOP/Al2O3 in 
water at 95 °C for 30 s (b) Encapsulated by CYTOP/Al2O3 in water at 95 °C for 3 min (c) Encapsulated by 

CYTOP/NL in water at 95 °C for 30 s (d) Encapsulated by CYTOP/NL in water at 95 °C for 3 min. 
 

4.5 Device modeling 

The software for device modeling in this section is also ADS from Keysight 

Technologies, and the same equation (7) applied here is from Marinov et. al. [24, 25] is 

used to fit the current-voltage characteristics of OFETs. Figure 39 displays the fitting of 

the Ref-OFET shown in Figure 34. Extracted  and VTH were 0.66 cm2/Vs and -0.1 V. 

Fitted SS is 0.30 V/decade, and the corresponding defect density Dit calculated by 

equation (6) is 9 × 1011 cm-2. Empirical parameters such as Vaa, , and  are 10 V, 0, and 

(a) (b) 

(c) (d) 
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0.016 respectively. The non-linearity of measured output characteristics at low drain-to-

source bias voltage in Figure 39 (b) can be attributed to current injection barrier on 

source and drain contacts discussed in details in Chapter 5. In the same figure of Figure 

39 (b), measured data follow the model at high drain-to-source bias voltage indicates that 

current-voltage characteristics follow the model again after overcome the injection barrier 

on source and drain contacts. 

(a)      (b) 
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Figure 39. (a) Fitting of transfer characteristics on a Ref-OFET. (b) Fitting of output characteristics on a 
Ref-OFET. 
 

Meanwhile Figure 40 displays the fitting of the NL-OFET shown in Figure 34. 

Extracted  and VTH were 0.49 cm2/Vs and -0.3 V. Fitted SS is 0.40 V/decade, and the 

corresponding defect density Dit calculated by equation (6) is 1 × 1012 cm-2. Fitted 

empirical parameters such as Vaa, , and  are 10 V, 0, and 0.016 respectively are the 

same as the Ref-OFET. Similar injection barrier is also shown in Figure 40 (b) and will 

be discussed in details in Chapter 5. The representative Ref-OFET and NL-OFET have 

similar extracted and fitted parameters displaying that environmental stability is 

improved while preserving the electrical characteristics. 
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(a)      (b) 
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Figure 40. (a) Fitting of transfer characteristics on a NL-OFET. (b) Fitting of output characteristics on a 
NL-OFET. 

4.6 Summary 

We have demonstrated enhanced stability of top-gate OFETs by using 

CYTOP/NL to replace CYTOP/Al2O3 gate dielectric which also served as a barrier layer. 

The electrical characteristics of the original (CYTOP/Al2O3) and the modified 

(CYTOP/NL) structure are comparable in terms of mobility, threshold voltage, on/off 

current ratio, and stability in different environments. OFETs with CYTOP/NL gate 

dielectric further show even better stability in 95 °C water over 1 h with functional 

OFETs. This contrasts with OFETs having a CYTOP/Al2O3 gate dielectric which can 

only sustain in 95 °C water for less than three min. These results can be rationalized by 

the fact that nanolaminate structures display better environmental barrier properties 

compared to a single metal-oxide layer. Device modeling was also performed and 

indicating a current injection barrier existing in the source and drain contacts that can be 

improved to elevate device performance. We believe that these results contradict 

conventional wisdom that OFETs can only be robust to harsh environments providing 

that the structure of the device and the choice of materials are judicious.  
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CHAPTER 5 

REDUCTION OF CONTACT RESISTANCE IN OFETS 

5.1 Introduction 

Despite significant progress in the development of high mobility organic 

semiconductors and OFETs with high operational and environmental stability [34, 35, 

75], limitations still exist in reducing the size of OFETs since their performance becomes 

limited by parasitic contact resistance. The contact resistance is related to the existence of 

energetic barriers for the injection of charge carriers at the source/drain contacts and 

resistive power losses that may occur between the contact and the channel. Reductions of 

the energetic barriers at the contacts have been achieved by contact doping in both n-

channel [18, 85, 86] and p-channel [87-102] OFETs. In case of p-channel OFETs, contact 

doping has been implemented using: F4TCNQ [90-95], derivatives such as F6TCNNQ 

[96], transition metal oxides such as MoO3 [97-99], Mo(tfd)3 [100-102], and FeCl3 [87-

89]. In most cases, contact doping has been implemented in bottom-gate top-contact 

OFET geometries by co-evaporation of the dopant and the organic semiconductor layer 

or direct evaporation of the dopant on the contact area. A drawback of the bottom-gate 

OFETs geometry is that it leaves the organic semiconductor layer exposed to the ambient, 

and consequently poor, environmental stability.  

Our group and others have shown that the use of top-gate OFET geometries 

greatly improve their operational and environmental stability [34, 35, 75, 103, 104]. In 

particular, we have shown that top-gate OFETs using a bilayer CYTOP/Al2O3 gate 

dielectric comprising a ca. 40 nm-thick CYTOP on top of which is a ca. 40 nm-thick 

ALD-grown Al2O3 layer leads to both n-channel [75] and p-channel [34, 35] OFETs with 
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excellent stability. Top-gate OFETs with the bilayer CYTOP/Al2O3 gate dielectric offer a 

suitable platform for the development of chemical and biological sensors [105] and 

complex electronic circuits [64]. However, previous demonstrations of p-channel top-

gate OFETs with bilayer CYTOP/Al2O3 gate dielectrics have relied on the use of PFBT 

modified Au source/drain electrodes. PFBT is primarily used to increase the work 

function of Au and improve the wetting of acene-based channel layers but leads to 

appreciable contact resistance-caused effects such as high threshold voltage values 

(typically larger than ca. -2.0 V, on pristine devices [34, 35]) and nonlinear behavior on 

the output characteristics at low drain-to-source voltage values.  

Contact doping on top-gate OFETs has been scarcely reported in the literature. In 

p-channel top-gate C8-BTBT-based OFETs, it has been shown that FeCl3 doped 

source/drain electrodes lead to 10 to 20 times lower contact resistance values than the 

ones displayed by OFETs with undoped electrodes [89]. Zhou et al. also showed that 

polyethylenimine-coated Au source/drain electrodes significantly reduce the threshold 

voltage in n-channel transistors [106]. 

5.2 Design of experiments 

To develop high-performance OFETs, reducing the contact resistance is part of 

my study. The same top-gate OFETs on glass substrates with TIPS-pentacene:PTAA as 

the active layer and bilayer CYTOP/Al2O3 as gate dielectric have been used. Comparative 

studies of the contact resistance displayed by top-gate bottom-contact TIPS-

pentacene:PTAA OFETs were carried out in devices with source/drain electrodes using 

bare Au, PFBT treated Au, and Mo(tfd)3 coated Au. The results shows that using 
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Mo(tfd)3 coated Au electrodes leads to a huge decrease in contact resistance compared to 

the widely used PFBT Au modification approach. 

5.3 Device fabrication 

Top-gate OFETs with three types of device geometry are shown in Figure 41. A1-

type OFETs correspond to devices with bare Au source/drain electrodes; A2-type OFETs 

correspond to devices with PFBT-treated Au source/drain electrodes; A3-type OFETs 

correspond to devices with Mo(tfd)3-coated Au source/drain electrodes. 

         

 

Figure 41. (a) A1, top-gate TIPS-pentacene:PTAA OFETs with bare Au as source/drain electrodes. (b) A2, 
top-gate TIPS-pentacene:PTAA OFETs with PFBT treated Au as source/drain electrodes and the chemical 
formula of PFBT. (c) A3, top-gate TIPS-pentacene:PTAA OFETs with Mo(tfd)3 coated Au as source/drain 

electrodes and the chemical formula of Mo(tfd)3. 
 

OFETs were fabricated as the following: A layer of 50 nm-thick Au source/drain 

electrodes were deposited through a shadow mask on cleaned 3.8 cm by 3.8 cm Corning 
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glass substrates (Eagle 2000) in a Denton Explorer e-beam system at a deposition rate of 

1.0 Å/s at an initial pressure below 1.0 × 10-5 Torr. After deposition of the source/drain 

metal electrodes, the substrates were transferred to a N2-filled glovebox. For A1-type 

OFETs, the electrodes consisted of untreated bare Au electrodes. For A2-type OFETs, the 

Au source/drain electrodes were treated with PFBT by first dipping the samples in a 10 

mmol PFBT solution in ethanol (Sigma-Aldrich) for 15 min and rinsing into pure ethanol 

for one min to remove excess PFBT molecules. After rinsing, samples were dried on a 

hot plate at 60 °C for five min. For A3-type OFETs, a layer of 1.5 nm-thick Mo(tfd)3 was 

deposited onto the Au source/drain electrodes through a shadow mask. For all devices, 

the fabrication procedure of organic semiconductor layer coating, bilayer gate dielectric 

coating and deposition, and gate electrodes deposition are the same as description below. 

A TIPS-pentacene (Sigma Aldrich) and PTAA (Sigma Aldrich) blend solution was used 

as the organic semiconducting layer. The (1:1 weight ratio) TIPS-pentacene:PTAA 

solution was dissolved in anhydrous tetralin, (Sigma Aldrich) at a concentration of 30 

mg/ml. The TIPS-pentacene:PTAA blended solution was spin-coated at 500 rpm for 10 s 

(acceleration of 500 rpm/s) and ramped to 2,000 rpm for 20 s (acceleration of 1,000 

rpm/s) to yield a ca. 70 nm-thick layer [64]. Spin-coated films were then thermally 

annealed at 100 °C for 15 min on a hot plate in a N2-filled glove box. A bilayer gate 

dielectric was started from diluting CYTOP (Asahi Glass, CTL-809M) with Asahi Glass, 

CTL-SOLV180 to a concentration of 2% by volume. A layer of CYTOP was spin coated 

on top of the organic semiconducting layer at 3,000 rpm for 60 s (acceleration of 10,000 

rpm/s) to yield a ca. 35 nm-thick layer [64]. Samples were then thermally annealed at 100 

°C for 10 min on a hot plate in a N2-filled glove box. After that, 500 cycles of ALD-
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grown Al2O3 were deposited at 110 °C to yield a ca. 40 nm-thick layer [64]. Later, 100 

nm-thick Ag gate electrodes were deposited through a shadow mask in a thermal 

evaporator (Kurt J. Lesker, SPECTROS) with initial pressures below 1.0 × 10-6 Torr and 

at an average deposition rate of 1.0 Å/s. 

5.4 Device characterization 

A1, A2, and A3-type OFETs were characterized inside a N2-filled glove box (O2 

and H2O < 0.1 ppm, 25°C) using an Agilent E5272A source/monitor unit. Figure 42 

displays a comparison between the transfer and output characteristics measured on the 

best A1-, A2- and A3-type OFETs with different W to L ratios. 

 
Figure 42. (a) Transfer characteristics of bare Au, PFBT-treated Au, and Mo(tfd)3-coated Au OFETs with 
W/L = 4500 m/190 m. (b) Transfer characteristics of bare Au, PFBT-treated Au, and Mo(tfd)3-coated Au 
OFETs with W/L = 4500 m/70 m. 
  

Figure 42 (a) displays the transfer characteristics of OFETs with W/L = 4500 

μm/190 μm, wherein the on-current value found in an A1-type OFET, IDS (-8V) = 0.4 A 

(average 0.3 ± 0.1 A), is significantly smaller when compared to values found in A2-

type OFETs, IDS (-8V) = 11.8 A (average 10.5 ± 1.0 A) and A3-type OFETs, IDS (-8V) 
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= 13.7 A (average 12.3 ± 1.6 A).  At this point, it is worth noting that the transfer 

characteristics of A1-type OFETs differ so drastically from the square law approximation 

that values of carrier mobilityand threshold voltage cannot be extracted from the transfer 

curves. As summarized, differences in the on-current values between A2- and A3-type 

OFETs can be attributed to reduced threshold voltage found on A3-type OFETs, -0.9 ± 

0.1 V, compared to threshold voltage found on A2-type OFETs, -1.8 ± 0.2 V.  As shown 

in Figure 42 (b),  a similar trend is found in OFETs having W/L = 4500 μm/70 μm, 

wherein the on-current value at -8V displayed by a representative A3-OFET is higher, IDS 

(-8V) = 35.2 μA (average 30.4 ± 3.4 A), than the value of IDS (-8V) = 23.2 μA (average 

19.9 ± 2.0 A) displayed by A2-OFETs and much higher than on-current value displayed 

by A1-OFETs ,  IDS (-8V) = 0.4 μA (average 0.3 ± 0.1 A).  As before, the transfer 

characteristics of A1-type OFETs do not allow extractions of mobilityand threshold 

values using the square law approximation. Here again, the higher on-current value on 

A3-type OFETs than A2-type OFETs is assigned to a reduced average threshold voltage 

of -1.4 ± 0.1 V, compared to threshold voltage found in A2-type OFETs, -2.7 ± 0.3 V. 

Figure 43 summarizes the average values of carrier mobility , and threshold 

voltage VTH for A2- and A3-type OFETs having different channel length values of L = 

70, 110, and 190 m with a channel width value W = 4500 m. In Figure 43 (a), the 

average values of carrier mobility in A2- and A3-type are statistically comparable in all 

devices; however, statistically significant differences in the average values of threshold 

voltage in Figure 43 (b) are clearly observed. A3-type OFETs with lower average values 

of threshold voltage improve charge injection at the source/drain electrodes when 
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compared to devices having PFBT-treated Au source/drain electrodes, A2-type OFETs, 

or with devices having pristine Au source/drain electrodes, A1-type OFETs. 

 
Figure 43. (a) Mobility of PFBT-treated Au and Mo(tfd)3-coated Au OFETs at different channel lengths. 
(b) Threshold voltage of PFBT-treated Au and Mo(tfd)3-coated Au OFETs at different channel lengths. 
 

It is also known that contact resistance produces a parasitic nonlinear dependence 

of the IDS when VDS values approach 0 V. These effects are readily observed on the output 

characteristics of A1- and A2-type devices displayed on Figure 44. These figures also 

show that the linearity of IDS at VDS values approaching 0 V is greatly improved in A3-

type OFETs. Contact resistance value Rc on each type of OFETs can be calculated from 

the output characteristics of OFETs having different W/L rations using the transfer length 

method. First, the on-current RON as VDS approaches 0 V is extracted according to 

equation (3) (see chapter 1) and that is reproduced below [21, 107, 108]: 

  , (3) 

where Rch is the channel resistance, and Rsh is the sheet resistance of the channel. The 

ordinate in the plot of RON vs. L when L equals zero corresponds to 2Rc. 

0

2 2
DS

DS
ON ch c sh c

DS V

V L
R R R R R

I W



    




 - 63 - 

 
 

Figure 44. (a) On-state output characteristics of bare Au, PFBT-treated Au, and Mo(tfd)3-coated Au OFETs 
with W/L = 4500 m/190 m. (b) On-state output characteristics of bare Au, PFBT-treated Au, and 
Mo(tfd)3-coated Au OFETs with W/L = 4500 m/70 m. (c) A zoom-in plot of (a). (d) A zoom-in plot of 
(b). 
 

As displayed on Figure 45, the normalized contact resistance RcW on A2- and A3-

type OFETs was extracted following this method at VGS = -4, -6, and -8 V.  In A3-type 

OFETs, this method yields nearly constant average RcW values of 42 and 34 kcm, at -

4V and -8V respectively. In contrast, in A2-type devices, average RcW values of 335 

kcm and 156 kcm were determined at -4V and -8V, respectively. These results clearly 

show a significant reduction of parasitic contact resistance in OFETs having Mo(tfd)3-

coated Au source and drain electrodes. To further illustrate this point, we can extract a 

characteristic channel length value, Lc, for which Rch = 2Rc, at fixed VGS. For a channel 
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width W of 4500 µm and VGS at -8 V, Lc equals to 103 µm for A3-type OFETs, while for 

A2-type OFETs  Lc  equals to 345 m. This suggests that OFETs size could be reduced 

by a factor of ca. 3.4 before parasitic contact resistance starts dominating device 

performance by using Au/Mo(tfd)3 source and drain electrodes when compared to OFETs 

using Au/PFBT electrodes. 

  

Figure 45. Normalized contact resistance of PFBT-treated Au and Mo(tfd)3-coated Au OFETs at VGS = -4, -
6, and -8 V. 
 

It should be pointed out that a decrease in the contact resistance may arise from 

reduction of the injection barrier at the electrodes and/or from increased conductivity of 

the organic semiconductor around the electrode region.  Preliminary analysis was done 

after this discovery. The work function value from another batch of bare Au, Au/PFBT, 

and Au/Mo(tfd)3 has been measured by using a Kelvin probe placed in a nitrogen-filled 

glovebox, and found values of 4.94 ± 0.04, 5.43 ± 0.01 and 5.47 ± 0.02 eV, respectively. 
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Having these values in mind, it is worth pointing out that energy level alignment at 

interfaces involving organic semiconductors can be complex and hard to predict.  

However, it is well established that if the work function of an electrode is higher than a 

certain critical value, known as the pinning level, the energetic barrier height at the 

contact remains fixed. For instance, Davis and co-workers [109] measured the work 

function of samples comprising a thin TIPS-pentacene film on conductive substrates 

having different work function values ranging from 3.7 to 5.2 eV. They found that the 

work function of the substrate/TIPS-pentacene samples remained pinned at 4.8 ± 0.1 eV 

for conductive substrates displaying work function values larger than 4.8 eV. The IP 

value for PTAA is 5.2 eV from Logan and co-workers [110]. From the above points, it is 

reasonable to conclude that the differences in the work function values between bare Au, 

Au/PFBT, and Au/Mo(tfd)3 are not responsible for the drastic decrease in the contact 

resistance. Instead, the reduction of contact resistance values observed in OFETs using 

Au/Mo(tfd)3 electrodes might be primarily attributed to a combination of increase in 

work function of the Au electrode and p-doping of the semiconductor layer induced by 

Mo(tfd)3. 

5.5 Device modeling 

The same software and model are applied in this section for device modeling. 

Figure 46 displays the fitting of an OFET with Au/Mo(tfd)3 source and drain electrodes. 

Extracted  and VTH were 0.87 cm2/Vs and -1.6 V. Fitted SS is 0.70 V/decade, and the 

corresponding defect density Dit calculated by equation (6) is 2 × 1012 cm-2. Empirical 

parameters such as Vaa, , and  are 10 V, 0, and 0.012 respectively. The current-voltage 

characteristics follow the model and no non-linearity of measured output characteristics 
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at low drain-to-source bias voltage as shown in Figure 39 (b) and Figure 40 (b). This 

indicates that the current injection barrier on source and drain contacts was eliminated by 

contact doping using Mo(tfd)3. 
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Figure 46. (a) Fitting of transfer characteristics on an OFET with Au/Mo(tfd)3 source and drain electrodes. 
(b) Fitting of output characteristics on an OFET with Au/Mo(tfd)3 source and drain electrodes. 

5.6 Summary 

 Top-gate TIPS-pentacene:PTAA p-channel OFETs with Au/Mo(tfd)3 source/drain 

electrodes display the lowest contact resistance among OFETs with bare Au contacts and 

PFBT-treated Au contacts. The normalized contact resistance of OFETs having 

Au/Mo(tfd)3 source/drain electrodes varied from 42 to 34 kcm for VGS in the range from 

-4 V to -8 V, respectively. In contrast, the normalized contact resistance of OFETs having 

PFBT-treated Au electrodes was found to range from 335 to 156 kcm for VGS varying 

between -4 V to -8 V, respectively. Decreased contact resistance leads to improved 

linearity of the transfer and output characteristics, decreasing values of the threshold 

voltage, and the Ion/Ioff of OFETs with Au/Mo(tfd)3 and Au/PFBT OFETs are at the same 

level of 104. Reduction in contact resistance values are attributed to Mo(tfd)3 induced p-
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doping of the TIPS-pentacene:PTAA blend in the vicinity of the source and drain 

electrodes, rather than to differences in the work function of the modified Au electrodes. 

Device modeling on an OFET with Au/Mo(tfd)3 shows good fitting also support this 

assumption from the theoretical aspect. Our group also studied on different contact 

treatments on source and drain electrodes and can be found from Choi et. al. [111] for 

comparisons among using Mo(tfd)3, MoO3, and PFBT.  
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CHAPTER 6 

OFETS ON PAPER 

6.1 Introduction 

Paper is perhaps the most economical, ecologically-friendly and sustainable 

material onto which printed electronics can be built upon. OFETs can be fabricated at 

low-temperatures over large areas and with fabrication methods that are compatible with 

roll-to-roll processing techniques; widely used in the paper industry. However, 

fabricating printed electronics on paper is challenging because its fibrillar nature leads to 

porous films, with a large surface roughness [36], that are not appropriate for the 

fabrication of the ultrathin layers required for the realization of an OFET. To overcome 

this problem, two approaches have been proposed in the literature. In the first approach, 

ionic gate dielectrics (paper-based, ion gels, polymer electrolytes, etc.) have been used 

for the realization of ion modulated transistors, this approach has been demonstrated 

using both metal-oxide [112] as well as organic thin-film transistors [113, 114]. In the 

second approach, a buffer layer (either the gate dielectric or a separate layer coating the 

paper) is used to reduce its surface roughness [44, 46, 47, 115-122] and to insulate the 

device structure from chemical impurities on the surface of the substrate [119].  

In the literature, most studies report on bottom-gate OFETs on paper [44, 46, 47, 

115, 116, 118, 120-122] wherein the gate electrode and gate dielectric planarize the 

paper’s surface on the channel region or, wherein a planarization layer, typically parylene 

by chemical vapor deposition, is deposited onto the paper’s surface prior to the 

fabrication of the bottom-gate OFET structure. With the exception of recent work by 

Zschieschang and Klauk [120], which reported on the low voltage operation of bottom-



 - 69 - 

gate OFETs that use an AlOx/self-assembled-monolayer gate dielectric, the operational 

voltage of bottom-gate OFETs on paper has been on the order of tens of volts due to the 

use of relatively thick gate dielectric layers which lead to small capacitance density 

values (< 16 nF/cm2). Although bottom-gate OFETs can display low-voltage operation, 

high-mobility values and excellent short-term operational stability, the exposure of the 

semiconductor layer to the ambient will eventually lead to changes of the device 

performance, which have been exploited to develop sensors but are undesirable when 

developing electronic circuits. On the other hand, reports on top-gate OFETs on paper are 

rare. Recently, Mirari, et. al. [117] reported on C8-BTBT-based top-gate OFETs 

fabricated on inkjet printing paper planarized with parylene. These OFETs displayed high 

mobility values up to 2.5 cm2/Vs at operational voltages on the tens of volts range. 

Although the transfer characteristics of these devices present no hysteresis, no systematic 

study was conducted on their long-term operational stability. 

Despite great progress in recent years, there is still a need to develop approaches 

that allow OFETs to operate at low voltages and with good stability on paper. Hence, we 

believe that the use of a top-gate OFET geometry is desirable because, as we have shown, 

this geometry inherently protects the organic semiconductor layer while at the same time, 

the gate dielectric can be engineered to enable top-gate OFETs to operate at low voltage 

values and to display exceptional operational and environmental stability even in aqueous 

environments [34, 35, 123, 124]; as well as when fabricated on plastic [66] or on CNC 

substrates [119].   

In this chapter, the realization of solution-processed top-gate OFETs fabricated on 

specialty paper PowerCoat™ HD 230 from Arjowiggins Creative Papers is reported. 
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PowerCoat™ HD 230, here on referred to as HD 230 paper substrates, is a 200 µm-thick 

ultra-smooth paper (root-mean squared surface roughness < 20 nm) substrate designed 

for applications in advanced printed electronics such as high-definition patterning of 

microelectronics and electroplating. We demonstrate that the use of a buffer layer 

comprising of a 1:1 wt.% blend of polyvinyl alcohol (PVA) and polyvinylpyrrolidone 

(PVP) mixture coated leads to the demonstration of high performance top-gate OFETs. 

PVA and PVP are water-soluble, biodegradable, and low-cost materials that are highly 

miscible [125] and form polymer blends with very low crystallinity [126].  Top-gate 

OFETs fabricated on HD 230 paper display low threshold voltage values in the range of -

2 to -3 V and high carrier mobility in the range of 0.1-1.0 cm2/Vs. Furthermore, we also 

report on the high operational stability of these OFETs by demonstrating high 

reproducibility during 1000 scans of transfer characteristics and less than 6% source to 

drain current changes during on-state ( at a drain and gate voltage value of -10 V) DC 

bias stress test for 1 h.  This level of electrical performance is comparable to our previous 

reports on top-gate OFETs fabricated on conventional glass substrates. Finally, initial 

studies on the mechanical properties of these OFETs also demonstrate that stable 

electrical properties are retained during bending tests with a small strain of 0.82%.  

6.2 Design of Experiments 

The goal of this chapter is to demonstrate OFETs on CNC-based paper which is 

HD 230 from Arjonwiggins. To fabricate OFETs with comparable performance as they 

were on glass substrates, a buffer layer serving as planarization/barrier/nucleation is 

required in between the OFET structure and the CNC paper. A buffer layer composed of 

PVA (Sigma Aldrich) and PVP (Sigma Aldrich) mixture is applied because of its non-
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crystallinity and ability for nucleation for the next layer. Furthermore, Al2O3 by ALD has 

been proven a good barrier layer for OFETs on CNC substrates in our previous 

publication, and in Chapter 4 we also demonstrated that Al2O3- and HfO2-composed NLs 

provide better OFET environmental stability. To find a best combination for suitable 

buffer layers, a design of experiment is depicted as Table II including conditions: 1) 

OFETs directly fabricated on HD 230; 2) OFETs on HD 230 with a PVA:PVP buffer 

layer; 3) OFETs on glass  with a PVA:PVP buffer layer (as a reference for condition 2); 

4) OFETs on HD 230 with a buffer layer composed of PVA:PVP/Al2O3/NL; 5) OFETs 

on glass  with a buffer layer of PVA:PVP/Al2O3/NL (as a reference for condition 4). 

Type Substrate Buffer layer OFET geometry 
1  PowerCoat™ HD 230 None Top-gate 
2 PowerCoat™ HD 230 PVA:PVP Top-gate 
3 Glass (Corning Eagle 2000) PVA:PVP Top-gate 
4 PowerCoat™ HD 230 PVA:PVP/Al2O3/NL Top-gate 
5 Glass (Corning Eagle 2000) PVA:PVP/Al2O3/NL Top-gate 

Table II. Design of experiments of OFETs on HD 230. 
 

6.3 Device fabrication 

Top-gate bottom-contact OFETs were fabricated on Corning glass (Corning Eagle 

2000) as reference samples and on HD 230 from Arjonwiggins. OFET structures with 

nominal thickness in type 1 to 5 are shown in Figure 47. Reference OFETs started from 

glass substrates cleaning by acetone, distilled water, and isopropanol in an ultrasonic 

cleaning bath for five min for each step. OFETs on HD 230 started from PDMS 

preparation as the adhesion layer between HD 230 and glass as holding substrates. PDMS 

was prepared from Gelest OE 41 base and cross-linker mixture at 1 to 1 weight ratio then 

spun-coated on 3.8 cm by 3.8 cm glass substrate at 2,000 rpm for 60 s (acceleration: 928 



 - 72 - 

rpm/s) and curing at 80 °C for 1 h to cure PDMS; after PDMS curing, HD 230 substrates 

were attached to it and secured with Kapton tapes. 

(a)    (b)    (c) 

   
Figure 47. (a) The OFET structure of type 1. (b) The OFET structure of type 2 and 3. (c) The OFET 

structure of type 4 and 5. 

 
For buffer/barrier layers, 1 to 1 PVA:PVP blend buffer layer prepared from 

PVA:PVP (7.5 wt.%, 150 mg + 150 mg in 4 mL distilled water) buffer layer coating at 

1,000 rpm for 60 s (acceleration: 928 rpm/s) and annealing at 60 °C for five min; ALD-

grown NL layers were deposited at 100 °C for 200 cycles of Al2O3 and NL (20 times of 

five cycles of Al2O3 and five cycles of HfO2). Buffer layer coating sequence was 

prepared as a design of experiments. Later, substrates were deposited with 50 nm-thick 

Ag as source/drain electrodes through shadow masks in a SPECTROS followed by 1.5 

nm of Mo(tfd)3 deposition on source/drain electrodes with the same shadow mask in 

SPECTROS for contact resistance reduction. On top of source/drain electrodes was a 

spin-coated organic semiconductor layer: TIPS-pentacene (Sigma Aldrich) and PTAA 

(Sigma Aldrich) blend. TIPS-pentacene and PTAA blend solution was prepared as 

follow: TIPS-pentacene and PTAA were weighted by electronic scales (60 mg for each) 

to put into a bottle and dissolved in 1, 2, 3, 4-Tetrahydronaphthalene anhydrous, 99%, 

(Sigma Aldrich) (4 mL) for a concentration of 30 mg/mL and stirred overnight by a 
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magnetic stirrer. Organic layers were spin-coated (filtered with a 0.2 m filter) at 500 

rpm for 10 seconds (acceleration: 500 rpm/s) and 2,000 rpm (acceleration: 1,000 rpm/s) 

for 20 seconds. The organic film was then annealed at 100°C for 15 minutes. The organic 

active layer was followed by a CYTOP layer (ca. 45 nm) coating at 3,000 rpm 

(acceleration: 10,000 rpm/s) for 60 s and annealing at 100 °C for 10 min. To deposit a 45 

nm of CYTOP, we needed to dilute the 9% CYTOP (CTL-809M) with CYTOP solvent 

(CT-SOLV180) by 1 to 3.5 volume ratio to have 2% CYTOP and then spin-coated as 

described above. After CYTOP coating, 200 cycles of Al2O3 and NL were deposited at 

100 °C by a Savannah 100 ALD system from Cambridge Nanotech Inc. On top of the 

CYTOP/NL bilayer gate dielectric, 100 nm of Ag gate electrodes were deposited through 

a shadow mask by a thermal evaporator. 

6.4 Device characterization 

All measurements were conducted in a glove box with O2 and H2O < 0.1 ppm. 

Transfer characteristics and output characteristic measured at the pristine condition and 

statistics of device parameters are summarized in Table III. The channel width and length 

ratio (W/L) of OFETs is 2550 m/180 m. 

Type Buffer layer Substrates  (cm2/Vs) VTH (V) ION/IOFF Yield 

1 None HD 230 3.7 ± 2.1 × 10
-4

 -3.0 ± 1.9 2.2 x 10
2
 8/10 

2 PVA:PVP HD 230 1.7 ± 1.1 × 10
-1

 -1.4 ± 0.2 2.3 x 10
5
 7/8 

3 PVA:PVP Glass 1.6 ± 0.6 × 10
-1

 -4.1 ± 0.4 1.2 x 10
5
 10/10 

4 PVA:PVP/Al2O3/NL HD 230 5.8 ± 3.8 × 10
-2

 -0.8 ± 0.2 3.4 x 10
4
 9/10 

5 PVA:PVP/Al2O3/NL Glass 6.6 ± 1.5 × 10
-1

 -2.0 ± 0.3 3.7 x 10
5
 7/10 

Table III. Statistics of OFETs in each type. 
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6.4.1 Pristine condition in nitrogen 

Representative OFETs in different conditions are shown in the following figures. 
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Figure 48. OFETs on bare HD 230 (a) Transfer characteristics (b) Output characteristics (c) A photograph 

of OFETs from type 1 (d) A 500× microscope image of an OFET from type 1. 
 

Figure 48 displays characteristic of a representative OFET of type 1, OFETs on 

bare CNC paper. Figure 48 (a), transfer characteristics, shows drain current (left axis, 

black) and the square root of drain current (right axis, blue) as a function of gate voltage 

at a given drain voltage, and carrier mobility, threshold voltage, and on/off current ratio 

can be extracted from the relation between the square root of drain current and the drain 

voltage; Figure 48 (b), output characteristics, shows drain current as a function of drain 

voltage at given gate voltages from 0 to -10 V with a step of 2 V. The carrier mobility is 

as low as 10-4 cm2/Vs level, and drain current is at nA range. Figure 48 (c) is a photo 
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image of organic semiconductor (OSC) film displaying scattered drops of OSC, and poor 

film quality contributes to poor OFET performance. Figure 48 (d) is a 500× microscope 

image in between orthogonal polarizers showing no crystalline film. 
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Figure 49. OFETs on PVA:PVP-coated HD 230. (a) Transfer characteristics. (b) Output characteristics. (c) 
A photograph of OFETs from type 2. (d) A 500× microscope image of an OFET from type 2. 

 

Figure 49 displays characteristics of a representative OFET in type 2, OFETs on 

CNC paper with PVA:PVP buffer. The average carrier mobility is 0.17 cm2/Vs, and 

average threshold voltage is -1.4 V. Figure 49 (a), transfer characteristics, provides 

extracted carrier mobility at 0.13 cm2/Vs which is at the same range (0.1-1.0 cm2/Vs) we 

reported for this OFET structure on glass; Figure 49 (b), output characteristics, shows 
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linear increased drain current at low drain voltage representing low energy barrier 

between the work function of source/drain contact and the IP of the organic 

semiconductor layer. Figure 49 (c) is a photo image displaying severe dewetting of OSC 

film on CNC paper with PVA:PVP buffer, and only source/drain area surrounded by 

OSC. However, Figure 49 (d), a 500× microscope image in between orthogonal 

polarizers, shows highly crystalized OSC film in channel area contributes to OFETs with 

best performance on CNC paper, and that is similar to performance of OFETs on glass 

substrates. 

Meanwhile, a representative OFET in type 3, OFETs on glass with PVA:PVP 

buffer (reference to type 2) is shown in Figure 50. The average carrier mobility is 0.16 

cm2/Vs, and average threshold voltage is -4.1 V. Figure 50 (a), transfer characteristics, 

provides extracted carrier mobility at 0.25 cm2/Vs; Figure 50 (b), output characteristics, 

shows non-linear increased drain current at low drain voltage representing barrier 

between the work function of source/drain contact and the IP of organic semiconductor 

layer. Figure 50 (c) is a photo image displaying severe dewetting of organic OSC film on 

glass with PVA:PVP buffer, and only source/drain area surrounded by OSC. This is 

similar to condition 2, and again Figure 50 (d), a 500× microscope image in between 

orthogonal polarizers, shows highly crystalized OSC film in channel area. However, 

OFETs in this condition show inferior performance to type 2. In conditions of OFETs 

with a PVA:PVP buffer on CNC paper and on glass (as reference), PVA:PVP provides a 

good buffer for OFET fabrication on CNC paper and this buffer layer provides superior 

OFET performance on CNC paper than that on glass although worse dewetting of OSC 

film was observed after PVA:PVP buffer applied. 
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Figure 50. OFETs on PVA:PVP-coated glass. (a) Transfer characteristics. (b) Output characteristics. (c) A 
photograph of OFETs from type 3. (d) A 500× microscope image of an OFET from type 3. 
 

The other buffer layer is composed of PVA:PVP/Al2O3/NL, and a representative 

OFET in type 4, OFETs on CNC paper with PVA:PVP/Al2O3/NL buffer, is shown in 

Figure 51. The average carrier mobility is 0.06 cm2/Vs, and average threshold voltage is -

0.8 V. Figure 51 (a), transfer characteristics, provides extracted carrier mobility at 0.08 

cm2/Vs which is lower than that in type 2, OFETs on CNC paper with PVA:PVP buffer; 

Figure 51 (b), output characteristics, also shows linear increased drain current at low 

drain voltage similar to type 2. Figure 51 (c) displays improved wetting of organic OSC 

film on CNC paper with PVA:PVP/Al2O3/NL buffer, but less crystalized OSC film is 
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observed under a 500× microscope image in between orthogonal polarizers in Figure 51 

(d). Even with improved wetting of film, OFETs in this condition shows inferior 

performance to type 2 because of the less crystalized OSC film. 
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Figure 51. OFETs on PVA:PVP/NL-coated HD 230. (a) Transfer characteristics. (b) Output characteristics. 
(c) A photograph of OFETs from type 4. (d) A 500× microscope image of an OFET from type 4. 

 
In type 5, a representative OFET on glass with PVA:PVP/Al2O3/NL buffer 

(reference to type 4), is shown in Figure 52. The average carrier mobility is 0.66 cm2/Vs, 

and average threshold voltage is -2.0 V. Figure 52 (a), transfer characteristics, provides 

extracted carrier mobility at 0.80 cm2/Vs; Figure 52 (b), output characteristics, shows 

linear increased drain current at low drain voltage similar to type 2. Figure 52 (c) also 

displays improved wetting of organic OSC film on glass with PVA:PVP/Al2O3/NL 
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buffer, and highly crystalized OSC film is also observed under a 500× microscope image 

in between orthogonal polarizers in Figure 52 (d). OFETs with a PVA:PVP/Al2O3/NL 

buffer on CNC paper, HD 230, and on glass (as reference) indicate that 

PVA:PVP/Al2O3/NL buffer improved wetting on both HD 230 and glass. However, 

PVA:PVP served as nucleation layer for Al2O3/NL only works on glass substrate instead 

of CNC paper. Highly crystalized and homogeneous wetted OSC film in this condition 

contribute to OFETs with highest carrier mobility among this design of experiments. 
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Figure 52. OFETs on PVA:PVP/NL-coated glass. (a) Transfer characteristics. (b) Output characteristics. (c) 

A photograph of OFETs from type 5. (d) A 500× microscope image of an OFET from type 5. 
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6.4.2 Operational stability in nitrogen 

 The operational stability was tested by 1,000 times of transfer characteristic scans 

and DC bias stress at VDS = VGS = -10 V on each representative OFET. Figure 53 displays 

1,000 scans of transfer characteristic of OFETs from type 2 to 5, and type 1 is skipped 

because of its poor performance. OFETs on PVA:PVP buffer has less increased off-

current shown in Figure 53 (a) on CNC paper and Figure 53 (b) on glass; OFETs on 

PVA:PVP/Al2O3/NL buffer has the same low off current at the beginning, and later they 

have stabilized off current with small increment shown in Figure 53 (c) on CNC paper 

and Figure 53 (d) on glass. Overall OFETs have stable operational stability when 1,000 

scans are applied on each of them. 
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Figure 53. Comparison of 1,000 consecutive scans of the transfer characteristics of type 2-5 top-gate 

OFETs. 
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Another operational stability test shown in Figure 54 is the DC bias stress 

measurement. OFETs were biased at on-state at VDS = VGS = -10 V for 1 h, and on-current 

variation is less than 4%. From this design of experiments we can tell that OFETs were 

successfully demonstrated on CNC paper with optimized buffer layer on top of the CNC 

paper. 
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Figure 54. DC bias stress tests of type 2-5 top-gate OFETs. 

6.4.3 Bending tests in nitrogen 

The other operational stability test involved measuring OFETs under a bending 

condition of radius of curvature equaling to 13.5 mm. The substrate of HD 230 is 0.222 

mm, there the strain is 0.82% calculated from dividing the substrate thickness by twice 

the radius of curvature. The bending direction is parallel to the channel of OFETs. The 

condition used in this bending test is the same as our previous study [66] to compare 
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similar OFET structures on different substrates. The set-up of this bending test is shown 

in Figure 55. 

 

Figure 55. The set-up of bending tests for OFETs on paper. 
 

OFETs on paper coated with PVA:PVP (type2) and PVA:PVP/Al2O3/NL (type 4) 

were both tested. Figure 56 displays transfer characteristics and output characteristics on 

a type-2 OFET in a bending test. In this bending test, slight degradation was found during 

the test and it was exciting because OFETs on flexible recyclable substrates were 

demonstrated. The extracted parameters such as carrier mobility, threshold voltage, and 

on/off current ratio were summarized in Table IV. 
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Figure 56. A type-2 OFET in a bending test. (a) Transfer characteristics. (b) Output characteristics. 
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Conditions  (cm2/Vs) VTH (V) ION/IOFF 

On paper attached on glass 2.2 × 10
-1

 -1.1 4.1 × 10
3
 

On paper 2.1 × 10
-1

 -1.0 2.3 × 10
5
 

Bending 2.0 × 10
-1

 -1.0 2.2 × 10
5
 

After bending 2.0 × 10
-1

 -0.9 1.1 × 10
4
 

Table IV. Parameters of a type-2 OFET in the bending test 
 

In Table IV, a representative type-2 OFET had a slightly degraded carrier 

mobility from 0.22 to 0.20 cm2/Vs, slightly changed threshold voltage from -1.1 to -0.9 

V, and on/off current ratio varied in the range of 103 to 105. Statistical data of type-2 

OFETs in the bending test is displayed in Table V. It provides information that type-2 

OFETs with high yield and small variation during the bending test. The yield of OFETs is 

eight out of eight through the entire bending test. Average carrier mobility slightly 

degraded from 0.15 ± 0.09 to 0.12 ± 0.08 cm2/Vs, and average threshold voltage slightly 

changed from -1.2 ± 0.2 to -0.9 ± 0.2 V. On/off current ratio stayed at the range of 104. 

Conditions  (cm2/Vs) VTH (V) ION/IOFF Yield 

On paper attached on glass 1.5 ± 0.9 × 10
-1

 -1.2 ± 0.2 3.3 × 10
4
 8/8 

On paper 1.4 ± 0.8 × 10
-1

 -0.9 ± 0.1 5.7 × 10
4
 8/8 

Bending 1.2 ± 0.8 × 10
-1

 -0.9 ± 0.2 4.7 × 10
4
 8/8 

After bending 1.2 ± 0.8 × 10
-1

 -0.9 ± 0.2 1.2 × 10
4
 8/8 

Table V. Statistical data of type-2 OFETs in the bending test 
 

In contrast, type-4 OFETs cannot sustain through the bending test. Only a type-4 

OFET shows recoverable transfer characteristics and output characteristics after a 

bending test in Figure 57. Even recoverable performance was observed, severe 

degradation happened while the type-4 OFET was bending. None of the rest of type-4 

OFETs worked functionally during and after the bending test. This bending test 

confirmed that PVA:PVP is the better buffer layer compared to PVA:PVP/Al2O3/NL. 
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Figure 57. A type-4 OFET in a bending test. (a) Transfer characteristics. (b) Output characteristics. 

 

6.5 Device modeling 

The same software and model are applied in this section for device modeling. 

Figure 58 displays the fitting of a type-2 OFET, the best combination in this design of 

experiment. Extracted  and VTH were 0.39 cm2/Vs and -1.6 V. Fitted SS is 0.20 

V/decade, and the corresponding defect density Dit calculated by equation (6) is 4 × 1011 

cm-2. Empirical parameters such as Vaa, , and  are 115 V, 0.02, and 0.005 respectively.  

(a)      (b) 

-10-8-6-4-202
10

-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

0.0

0.5

1.0

1.5

2.0

2.5

 
|I

D
S
| 

(A
)

V
DS

 = -10 V

 = 0.39 cm
2
/Vs

V
TH

 = -1.6 V

|I
D

S
|1

/2
 (
A

)1
/2

 

VGS (V)

 Measured

 Modeled

 

 

-10-8-6-4-20
0

-1

-2

-3

-4

-5

-6

 Measured

 Modeled

 

I D
S
 (
A

)

 

V
DS

 (V)

 

V
GS

 = 0 to -10 V

Step = 2 V

 

Figure 58. (a) Fitting of transfer characteristics on a type-2 OFET. (b) Fitting of output characteristics on a 
type-2 OFET. 
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The current-voltage characteristics follow the model and only a slightly difference 

between the measured data and model at the transition from linear regime to saturation 

regime at high gate-to-source bias voltage as shown in Figure 58 (b). 

6.6 Summary 

In this chapter, top-gate OFETs using TIPS-pentacene:PTAA blend as an organic 

semiconducting layer have been demonstrated on CNC-based paper PowerCoatTM HD 

230. Different buffer layers deposited on HD 230 were applied in top-gate OFETs 

including PVA:PVP blend and PVA:PVP/Al2O3/NL. OFETs on HD 230 showed average 

carrier mobility of 1.7 ± 1.1 × 10-1 cm2/Vs, 5.8 ± 3.8 × 10-2 cm2/Vs, and 3.7 ± 2.1 × 10-4 

cm2/Vs with PVA:PVP, PVA:PVP/Al2O3/NL, and no buffer layer that assured buffer 

layers improved device performance. Threshold voltage decrement (from -3.0 ± 1.9 V to 

-1.4 ± 0.2 V and -0.8 ± 0.2 V) and on/off current ratio increment (from 102 to 104 or 105) 

on OFETs were also observed when buffer layers were applied. Stable operational 

stability was demonstrated by conducting 1,000 scans of transfer characteristics and a 1 h 

DC bias stress of OFETs with buffer layer on HD 230. All conditions displayed stable 

performance for these two operational stability tests. Furthermore, only OFETs with 

PVA:PVP work functionally during and after a bending test. Between these two buffer 

layers, PVA:PVP provides better performance for OFETs, and larger crystallinity 

observed on the channel area even though the semiconductor film showed dewetting on 

HD 230. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

This dissertation reported solution-processed high-performance top-gate OFETs 

with highly operational and environmental stability on novel renewable substrates. 

Chapter 3 described top-gate OFETs with a bilayer CYTOP/Al2O3 gate dielectric on 

environmentally friendly renewable CNC:glycerol substrates. OFETs fabricated on bare 

water soluble CNC:glycerol substrates served as a control group, and OFETs on 

CNC:glycerol with an ALD-grown Al2O3 buffer/barrier layer served as an experimental 

group. We found that with a buffer/barrier layer of ALD-grown Al2O3 on top of bare 

CNC:glycerol substrates, it prolonged the process of CNC:glycerol dissolving in water 

and further realized solution-processed organic electronics fabrication meanwhile 

previous results of OPVs [38, 39] and OLEDs [40] fabricated on CNC:glycerol substrates 

used dry process. This work is also one of the scare reports of high-performance solution-

processed OFETs on cellulose material substrates [44]. Operational stability was 

demonstrated by conducting 1,000 scans of transfer characteristics that very few reports 

addressed [44], and we are the only group demonstrating normally-off OFETs on 

cellulose substrates with such operational stability. 

OFETs fabricated on CNC:glycerol with an Al2O3 buffer layer displayed 

comparable average carrier mobility at 0.11 cm2/Vs and average threshold voltage at -2.1 

V to that of OFETs on glass [34, 35] and plastic [66] substrates. Meanwhile, the control 

group had average carrier mobility at 0.06 cm2/Vs and average threshold voltage at -1.0 

V. In various aspects of performance comparison, OFETs fabricated on CNC:glycerol 
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with an Al2O3 buffer layer, the experimental group, displayed superior performance in 

conditions such as storing in nitrogen for one month, stressing OFETs on on-state for 1 h, 

measuring higher on/off current ratio in 1,000 scans of transfer characteristics in both 

nitrogen and air, and especially storing OFETs in air to test their environmental stability. 

The assumption of the origin of instability in the control group are by-products produced 

during the CNC:glycerol synthesis introducing sodium cations and sulfur anions, and the 

assumption was confirmed by XPS measurements on bare CNC:glycerol and 

CNC:glycerol coated with ALD-grown Al2O3 showing byproducts only detected on bare 

CNC:glycerol substrates.  It assures that a barrier/buffer layer is necessary for OFETs on 

novel substrates. 

Chapter 4 described developing a nanolaminate structure comprised of Al2O3 and 

HfO2 to replace Al2O3 in the gate dielectric bilayer in top-gate OFETs to improve their 

environmental stability while maintaining comparable operational stability. ALD-grown 

Al2O3 was known to be corroded in hot water [77], and nanolaminate structure was 

discovered superior barrier properties than a single layer of ALD-grown metal oxide 

layer [77-79]. We discovered that by integrating the nanolaminate structure in our bilayer 

gate dielectric layer in OFETs, the electrical properties were preserved, and 

environmental properties were superior in extreme conditions such as in water at 95 °C. 

Compared to Someya et al. [32, 33] using either a stable organic semiconductor or a m-

thick encapsulation layer for OFETs sustain at temperature above 100 °C, we can use a 

thin layer with thickness less than 100 nm to preserve OFETs’ characteristics for tens of 

minutes at temperature close to 100 °C broadening the applications of our OFETs. 

OFETs with modified gate dielectric were first measured in pristine conditions to confirm 
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comparable electrical properties with average carrier mobility at 0.9 cm2/Vs and average 

threshold voltage at -1.9 V. After that, stable operational stability was demonstrated in air 

by measuring DC stress on on-state for 1 h with less than 3% variation of on-current; 

stable environmental stability was demonstrated by storing OFETs in various 

environments such as air, vacuum annealing at 100 °C, 80% relative humidity, water at 

room temperature, and water at 50 °C with stable average carrier mobility changed only 

from 0.9 cm2/Vs to 0.8 cm2/Vs and reproducible average threshold voltage after storing 

in different environments followed by vacuum annealing. All of these tests displayed 

comparable device performance of OFETs with modified CYTOP/NL gate dielectric to 

that of OFETs with the original CYTOP/Al2O3 gate dielectric. Harsher environmental 

stability was tested in water at 95 °C displaying a huge difference between OFETs with 

CYTOP/Al2O3 and CYTOP/NL gate dielectric. OFETs with modified CYTOP/NL gate 

dielectric can sustain in water at 95 °C for 1 h without average carrier mobility change. In 

contrast, OFETs with original CYTOP/Al2O3 gate dielectric only worked in the first three 

minutes while immersed in water at 95 °C. Further barrier property investigations of 

these two dielectrics were demonstrated by encapsulating Ca and immersing in water at 

95 °C to monitor the oxidation of Ca during the test. From the photographs of Ca 

encapsulated by these two dielectrics in hot water immersion tests, similar durability of 

CYTOP/Al2O3 and CYTOP/NL was observed. 

Chapter 5 described reduction of contact resistance on our top-gate OFETs 

platform by depositing 1.5 nm of Mo(tfd)3 on source and drain electrodes. OFETs were 

fabricated in three conditions: 1) no contact treatment, 2) conventional PFBT contact 

treatment, 3) Mo(tfd)3 on top of contacts. Increased on-current and decreased threshold 
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voltage were observed on OFETs with Mo(tfd)3 treatment compared to PFBT treatment; 

OFETs without contact treatment displayed poor results with lowest on-current and 

highest threshold voltage. Reduced contact resistance on OFETs with Mo(tfd)3 treatment 

can be observed on more linear output characteristics close to origin. Extracted contact 

resistance on OFETs with Mo(tfd)3 treatment is 34 kcm, approximately one fifth of that 

on OFETs with PFBT treatment, 156 kcm, at on-state with gate voltage at -8 V with the 

same range of on/off current ratio. This study provides a dry process for OFETs on novel 

substrates that avoiding damages of novel substrates during a long wet process of contact 

treatment. Further comparison between Mo(tfd)3 and MoO3 done by our lab can be 

referred to reference 95. 

Chapter 6 described top-gate OFETs on cellulose-based paper substrates with 

modified gate dielectric discussed in Chapter 4 and reduced contact resistance discussed 

in Chapter 5. We discovered that by using a buffer layer of PVA:PVP, OFETs have 

comparable performance as that of them fabricated on glass substrates. In literatures, 

many bottom-gate OFETs on paper-based substrates have been reported on many 

applications including memories [47] and display drivers [118], but they usually operated 

at voltages higher than 10 V. Top-gate OFETs were reported scarcely, Mirari et. al. [117] 

reported top-gate OFETs using a C8-BTBT-based organic semiconductor layer on inkjet 

printing paper planarized with parylene. These OFETs had high mobility values up to 2.5 

cm2/Vs, they were operated at large operational voltage with a normally-on characteristic. 

Meanwhile we demonstrated OFETs with low-voltage operation and normally-off 

characteristics. A systematically study of operational stability, in Chapter 6, was also 

usually lack in most of the OFETs fabricated on paper. OFETs on bare paper were the 
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control group, and two kinds of buffer layers prepared on top of this paper: PVA:PVP 

and PVA:PVP/NL. The PVA:PVP is here because of its non-crystallinity and ability to 

serve as a nucleation layer for the organic semiconductor layer; the NL is here because of 

its proven superior environmental barrier properties described in Chapter 3. On paper 

substrates, the best crystallinity of TIPS-pentacene:PTAA blend organic semiconductor 

layer was found on OFETs fabricated on paper with PVA:PVP coating, thought it had a 

dewetting issue; on glass substrates as references, the dewetting issue was also found on 

OFETs on PVA:PVP-coated glass, and the best crystallinity was found on OFETs on 

PVA:PVP/NL-coated glass. Carrier mobility was positively correlated to the crystallinity. 

Therefore, OFETs on PVA:PVP-coated paper can achieve highest average carrier 

mobility, 0.17 cm2/Vs, among OFETs on paper with different buffer layers; OFETs on 

PVA:PVP/NL coated glass have higher average carrier mobility, 0.66 cm2/Vs, compared 

to that of OFETs on PVA:PVP coated glass, 0.17 cm2/Vs. Even OFETs on different 

buffer layers have similar operational stability by demonstrating stable transfer 

characteristics for 1,000 cycles and less than 6% change of on-state DC bias stress for 1 

h, only OFETs with PVA:PVP work functionally during and after a bending test with a 

stain of 0.82%. Among these two buffer layers, PVA:PVP is a better buffer layer because 

of better OFET performance and larger crystallinity observed on channel area even 

though the semiconductor film showed dewetting on HD 230. 

 

 

 

 



 - 91 - 

7.2 Recommendations for future work 

The recommended future works based on this dissertation can be divided into 

several parts: interface property, crystallinity, gate dielectric, and mechanical test. 

7.2.1 Interface property and crystallinity 

In Chapter 3 and Chapter 6, OFETs were fabricated on CNC:glycerol substrates 

and CNC-based paper respectively. Both cases yielded comparable average carrier 

mobility values of 0.1 to 0.2 cm2/Vs and constant resistance near the origin in output 

characteristics. However, there was no contact treatment of OFETs on CNC:glycerol, and 

a contact treatment of a layer of Mo(tfd)3 was deposited on OFETs on CNC-based paper. 

The interface property played an important role for OFETs on different substrates 

affecting the arrangement of organic semiconductor molecules. Therefore, OFETs 

without any contact treatment on CNC:glycerol had comparable carrier mobility to that of 

OFETs with Mo(tfd)3 contact treatment on CNC-based paper. Furthermore, OFETs on 

CNC-based paper had different crystallinity resulting in different carrier mobility when 

different buffer layers were applied on CNC-based substrates. The wettability of organic 

semiconductor film on different substrates will be a good starting point to explore 

physical and chemical interaction in interface. After that, X-ray diffraction can provide 

crystallinity of organic semiconductor films on different buffer layers on various 

substrates. Then, carrier mobility and contact resistance can be correlated to the 

crystallinity and even wettability. 

7.2.2 Gate dielectric 

In Chapter 4, a CYTOP/NL gate dielectric was applied to have superior 

environmental stability on OFETs. From various reports, NL has been shown to have a 
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denser metal oxide dielectric layer [127] and lower VWTR [128] in many applications. 

Developing a method to determine the pinhole density will provide a more direct 

evidence for denser dielectric and lower VWTR. A fully planned study of trying different 

single layers of dielectric serving as gate dielectric will also be valuable because it can 

provide the permeability of these dielectrics and insight into the NL structure. Another 

important aspect is to optimize the thickness of the gate dielectric. Having a thinner gate 

dielectric, lower threshold voltage can be achieved because of higher capacitance density, 

and less material can be put into this layer preparation. 

7.2.3 Mechanical tests 

Mechanical tests such as the bending test is always attractive to organic 

electronics for the potential use of flexible electronics. Several reports demonstrated the 

flexibility of OFETs on CNF [44], specialty paper [47, 115], etc. On our platform, we 

have demonstrated the potential of our OFETs on flexible substrates [66]. In Chapter 6, 

OFETs were fabricated on CNC-based paper substrates with comparable electrical 

properties and operational stability. Only OFETs with a PVA:PVP buffer layer on paper 

worked functionally during and after the bending test. An extended study can be done by 

choosing a thinner thickness of the CNC-based paper to test if OFETs with PVA:PVP/NL 

work when smaller strain is applied. A thinner paper will provide less strain while the 

bending test is conducted because the strain equals to substrate thickness divided by 

twice the radius of curvature. Since paper substrate may create cracks during bending, 

less strain will prevent potential damages by cracks on the substrates during the bending 

test. 
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