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We developed an underetching technique to define submicrometer channel length polymer

field-effect transistors. Short-channel effects are avoided by using thin silicon dioxide as gate

insulator. The transistors with 1 and 0.74 mm channel length operate at a voltage as low as 5 V with

a low inverse subthreshold slope of 0.4–0.5 V/dec, on–off ratio of 10
4, and without short-channel

effects. The poly~3-alcylthiophene!’s still suffer from a low mobility and hysteresis does occur, but

it is negligible for the drain voltage variation. With our underetching technique also device

structures with self-aligned buried gate and channel length below 0.4 mm are fabricated on polymer

substrates. © 2004 American Institute of Physics. @DOI: 10.1063/1.1758775#

Organic field-effect transistors ~OFETs! are of interest

for many applications including organic displays, comple-

mentary circuits, and all-polymer integrated circuits.1–3

Low-cost fabrication requires the use of solution-processible

polymers instead of vacuum deposited low-molecular

weight organics. Although mobilities of up to 0.1 cm2/V s

have been demonstrated for soluble regioregular poly~3-

alkylthiophene!,3,4 poly-~9,9-dioctylfluorene-bithiophene!,5

and pentacene from soluble precursors,6 OFETs needed for

high-performance circuits still require extremely small gate

length to be modulated at competitive frequencies. The cut-

off frequency f 05gm /(2pCGS) is determined by the maxi-

mum transconductance gm and the gate–source capacitance

CGS . Neglecting parasitic capacitances, the latter is approxi-

mated by the gate oxide capacitance. Using the simple

Shockley current characteristics one obtains as an estimation

f 0,mUGS ,eff /(2pL2), where UGS ,eff is the gate-source volt-

age relative to the threshold voltage. With a voltage of at

most 10 V, a realistic upper value of 0.01 cm2/V s for the

mobility and a lower limit for the cut-off frequency of 100

kHz, one obtains as an upper limit for the channel length L

,4 mm. Since additional parasitic capacitance cannot be

avoided, only submicrometer devices lead to applicable cir-

cuits. Demonstrations of different patterning techniques such

as screen printing,7 soft lithographic stamping,8 or inkjet

printing9 have so far not demonstrated both resolution and

alignment accuracy desired. Photolithography2 is expected to

be costly for the submicrometer regime. Recently, Stutzmann

et al.10 used embossing to fabricate vertical-channel field-

effect transistors with submicrometer channel lengths, but

could not observe saturation in the measured output charac-

teristics. These authors also presented a self-aligned gate

structure with reduced overlap capacitance. We demonstrate

the fabrication of submicrometer field-effect transistor chan-

nels by employing an underetching technique for submi-

crometer patterning, to enable the use of low-resolution pho-

tolithographic steps and standard microelectronic processes.

Transistor design and dimensions are closely related to

the material properties. At first, in order to reach the off-state

and saturation, the active layer thickness must be less than

the depletion length.11 We use poly~3-octylthiophene!

~P3OT! and poly~3-hexylthiophene! ~P3HT!, which are both

unintentionally highly doped ~of the order 1017 cm23 Refs.

11–13!. To successfully deplete the layers their thickness

must be of the order of 30 nm or less, which can be achieved

by controlling the solution concentration and the spin-

coating process.11 Down-scaling comprises also the gate in-

sulator thickness in order to avoid short-channel effects.

They have been analyzed by two-dimensional simulations

~method and standard parameters are described in Refs. 12

and 14!. With an organic insulator ~poly-4-vinylphenol,

P4VP! thickness of 400 nm one can prevent leakage cur-

rents, but the simulated output characteristics show satura-

tion only for channel length larger than 1 mm and a large

supralinear current for shorter channels. A reduction of the

insulator thickness down to 50 nm for devices with 0.5 and

0.3 mm channel length reduces this effect sufficiently. Since

such organic insulators are not yet available, we demonstrate

the short-channel OFET fabrication here with a hybrid struc-

ture: The gate insulator is a 30 nm silicon dioxide layer on a

n1-silicon wafer serving as the gate electrode.

Undercutting is a phenomenon well known in

microelectronics15 and usually occurs unintentionally leading
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to an increased effective channel length.16 We used un-

deretching technique, in combination with low-resolution

photolithographic steps and further standard microelectronic

processes, for the inexpensive and manufacturable definition

of the submicrometer channel length devices. The following

fabrication steps are carried out. First, a large-area gold layer

is sputtered ~50 nm! on top of the oxidized highly doped

silicon wafer. Then a low-resolution photolithographic step is

used to fabricate a structured photoresist layer @Fig. 1~a!#.
Subsequently, a wet chemical etching and underetching is

applied to remove the gold. We have systematically investi-

gated this etch process to determine the etch rate of gold on

different substrates. As a result, the underetched length can

be controlled in the submicrometer region and ultimately de-

fines the channel length of the transistor @Fig. 1~b!#. To com-

plete the source/drain structure, a 10-nm-thick chromium and

40-nm-thick gold layer are evaporated @Fig. 1~c!# followed

by a lift-off process to remove the photoresist @Fig. 1~d!#. A

separation step @Fig. 1~f!# defines an addition electrode by

low-resolution photolithography and an etch step. Finally,

the active organic layer of a thickness ;30 nm is deposited

~unpatterned!. An example for the cross section of the result-

ing structure is depicted in Fig. 1~f!. For the photolitho-

graphic steps, we used a mask layout realizing transistor

channels with different widths w in the range of 200 up to

2000 mm. The optical micrograph @Fig. 1~g!# shows the

source and drain regions as well as the 200 mm channel

situated in between. In the scanning electron microscopy

~SEM! image @Fig. 1~h!# the source and drain are again vis-

ible and separated by a 1 mm channel length. Considering the

uniformity of the channel, even for shorter channels ~few

hundred nonometers! the variation of the prepared channel

length remains small over the channel width.

The output characteristics for an OFET with P3HT

('30 nm) as active layer, channel length L50.88 mm, and

width w52000 mm @Fig. 2~a!# indicate high performance

with the following peculiarities: ~i! The transistor operates at

the desired voltage below 5 V. ~ii! There is a clear transition

into saturation indicating that short-channel effects are al-

most suppressed in the device. From the transfer character-

istics @Fig. 2~b!# one obtains ~iii! an approximately linear

slope in the active region indicating that the contact resis-

tances are negligible ~a small curvature at lower drain volt-

ages is seen for the sweep from positive to negative gate

voltage, since this curvature does not occur in the opposite

sweep direction, it is unlikely to be caused by contact effects

and is probably related to hysteresis!, ~iv! a high on–off ratio

~larger than 104), and ~v! a low inverse subthreshold slope of

S'400 mV/dec. This performance compares well with the

usually unfavorable high values of several V/dec in

OFETs.12,17,18 In all cases, S is larger than estimated solely

from the insulator thickness. This deviation may be caused

by recharging of interface states.12 Since we focused on the

short-channel fabrication, regioregular P3HT for the active

layer was used, purified ~by Dr. S. Janietz, IAP Golm, Ger-

many! but without special steps for higher ordering. Corre-

spondingly the hole mobility estimated from the current

characteristics is with m'331025 cm2/V s below the best

values mentioned above. We also observe the hysteresis

which is well known for OFETs,14,19,20 but which can be

reduced by using a higher-mobility polymer for the active

layer as in Ref. 10. However, the hysteresis occurs only in

the gate voltage sweep and the difference between the

threshold voltages for up and down sweeps of the gate-

source voltage is less than 1.5 V for a given drain voltage,

much smaller than usually reported. We observe also a drain-

source voltage dependence of the subthreshold current, typi-

cally attributed to short-channel effects, that can be also

caused by rechargeable interfaces or bulk traps.12,13 For de-

vices with P3OT similar properties are obtained.

With the underetching technique, the channel length can

be defined in a controlled manner well below L51 mm. Fig-

ure 3 shows the output characteristics of a P3HT OFET with

channel length L50.74 mm and with w/L'1350. The main

features are the same as before, with mobility m'4

31025 cm2/V s. The hysteresis resulting from the variation

of the gate voltage sweep direction does occur again. How-

FIG. 1. Fabrication steps for the OFET ~a!–~f!, cross section of two tran-

sistors T1 and T2 ~f!, optical micrograph ~g!, and a SEM image of the

transistor with L51 mm.

FIG. 2. Output ~a! and transfer characteristics ~b! on a linear and logarith-

mic scale for a P3HT OFET with L50.88 mm, w52000 mm. For the out-

put characteristics the gate-source voltage is varied as 25(1)3 V and back

as 3(21)25 V, depicted are the curves between 25 and 0 V. For the

transfer characteristics the drain-source voltage is varied as 27(1)21 V.

For each VDS the gate-source voltage is varied from VGS525 to 3 V and

back from 3 to 25 V.
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ever, in Fig. 3 now the influence of the drain voltage sweep

direction is shown. For each gate voltage the drain voltage is

varied from 0 to 25 V and back from 25 to 0 V. In this case

practically no hysteresis is observed, similar to Ref. 10. A

possible asymmetry in the I – V characteristics due to the

differently prepared contacts was investigated by switching

source and drain. The difference in the drain current is very

small and it is partly covered by the hysteresis in subsequent

measurements.

Underetching in combination with low resolution lithog-

raphy and simple lift-off processing enables the efficient fab-

rication of organic field-effect transistors with well-defined

and controllable channel lengths in the submicrometer re-

gion. Hybrid-design transistors feature low voltage opera-

tion, saturation, negligible short-channel effects, high on–off

ratio, and low inverse subthreshold slope. A small hysteresis

does occur only for the gate voltage sweep. It is expected to

become sufficiently small by using improved polymers3–6,10

with higher mobilities.

All-organic circuits must ultimately be fabricated on

plastic substrates, with an organic gate insulator, and with

self-aligned gates. Furthermore, high cut-off frequencies are

only possible for transistors with low parasitic capacitances.

In our fabricated hybrid OFET @Fig. 1~f!# the silicon wafer is

the gate leading to high overlap capacitances. As a first step,

using a plastic substrate ~Mylar!, a self-aligned, buried gate

structure has been prepared. The same technological steps as

shown in Figs. 1~a!–1~e! are realized to fabricate the source/

drain contacts. Subsequently, a trench between source and

drain is prepared by reactive ion etching followed by gold

evaporation. A SEM image of such a structure is shown in

Fig. 4, with a channel length of 0.37 mm and much reduced

overlap capacitances. The completion of this transistor re-

quires solution-processable organic insulators better than

available at present. For an optically transparent substrate,

the fabrication of a self-aligned gate could be accomplished

by using the source and drain as opaque optical mask for the

gate definition as demonstrated recently for wide-channel ~20

mm! devices.21
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FIG. 3. Output characteristics for a P3HT OFET with L50.74 mm, w

51000 mm. The gate-source voltage is varied as 25(1)0 V. For each VGS

the drain-source voltage is varied from VDS50 to 25 V and back from

VDS525 to 0 V.

FIG. 4. Structure with a self-aligned buried gate on a plastic

substrate.
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