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ABSTRACT Recent progress in printed optoelectronics and their integration in wearable sensors have

created new avenues for research in reflectance photoplethysmography (PPG) and oximetry. The reflection-

mode sensor, which consists of light emitters and detectors, is a vital component of reflectance oximeters.

Here, we report a systematic study of the reflectance oximeter sensor design in terms of component geometry,

light emitter and detector spacing, and the use of an optical barrier between the emitter and the detector to

maximize sensor performance. Printed red and near-infrared (NIR) organic light-emitting diodes (OLEDs)

and organic photodiodes (OPDs) are used to design three sensor geometries: (1) Rectangular geometry,

where square OLEDs are placed at each side of the OPD; (2) Bracket geometry, where the OLEDs are

shaped as brackets and placed around the square OPD; (3) Circular geometry, where the OLEDs are shaped

as block arcs and placed around the circular OPD. Utilizing the bracket geometry, we observe 39.7% and

18.2% improvement in PPG signal magnitude in the red and NIR channels compared to the rectangular

geometry, respectively. Using the circular geometry, we observe 48.6% and 9.2% improvements in the red

and NIR channels compared to the rectangular geometry. Furthermore, a wearable two-channel PPG sensor

is utilized to add redundancy to the measurement. Finally, inverse-variance weighting and template matching

algorithms are implemented to improve the detection of heart rate from the multi-channel PPG signals.

INDEX TERMS Reflection photoplethysmography sensor, organic optoelectronics, pulse oximetry, wear-

able sensors, printed electronics, flexible electronics.

I. INTRODUCTION

In the human body, cardiac rhythm changes the blood vol-

ume passing through the arteries, which generates a pul-

satile signal that can be optically measured using a light

source and a detector; this optical sensing technique is known

as photoplethysmography (PPG). Generally, the PPG sig-

nal is used for calculating heart rate by utilizing only one

light source, and for measuring oxygen saturation (SpO2)

by employing two light sources. Pulse oximeters measure

SpO2 of blood by using PPG signals at two distinct wave-

lengths where light absorption in oxygenated and deoxy-

genated blood is different [1]. PPG and oximetry can

be performed in both transmission and reflection mode.

Conventionally, transmission-mode pulse oximeter sensors
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composed of solid-state light-emitting diodes (LEDs) and

photodiodes (PDs) are used to measure SpO2 at the extrem-

ities of the body where light can easily penetrate thin

regions of tissue, such as the earlobes and the fingertips.

However, this method of measuring SpO2 presents a few

limitations - (i) Transmission-mode oximetry has limited

sensing locations [2], and (ii) Solid-state LEDs and PDs do

not conform well to the skin, therefore, reduce the signal-to-

noise ratio (SNR) [3].

Over the past few years, flexible and wearable sensors are

getting significant attention in both academic research and

industry due to their skin conformable form factors [4]–[16].

Consequently, flexible optical sensors are extensively studied

for PPG and oximetry as they enhance SNR and provide

design versatility [2], [3], [17]–[21]. Sensor fabrication and

sensing methodology remain a strong focus of recent reports.

However, the reflectance oximeter sensor design, which is
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FIGURE 1. Multi-channel reflectance PPG sensor overview. (a) Schematic illustration of a wearable two-channel PPG sensor, where the PPG sensor
pixels are mounted on the wristband. (b) Setup for the multi-channel PPG sensor. Two circular sensors are spaced 4 cm apart to collect data from the
ulnar artery (Ch 1) and the radial artery (Ch 2). The sensor pixels are driven using an AFE, while multiplexers are used to switch between the pixels. Both
red and NIR PPG signals are collected and processed for extracting HR and pulse oxygenation data. (c) Photograph of the multi-pixel reflectance PPG
sensor bent to a radius of curvature of 5 cm.

a crucial component of reflection-mode PPG and oximetry,

is not well-reported in the literature. In addition, wearable

reflection-mode PPG sensors and oximeters are prone to

different kinds of noises, such asmotion artifacts (MAs), ther-

mal noise, and electromagnetic interference [22]. Thermal

noise and electromagnetic interference are high-frequency

noise and can be eliminated through filtering. MA, however,

is challenging to remove from the PPG signals. Adaptive

filtering [23]–[25] and comparing PPG signal to a reference

accelerometer signal [25], [26] are popular techniques for

reducing MAs. Furthermore, multi-channel PPG signals can

also be utilized to extract heart rate and oxygenation informa-

tion from channels that are less affected by MAs [27], [28].

The multi-channel PPG approach does not require additional

hardware blocks or a reference signal.

In this work, we systematically study the reflectance

oximeter sensor design in terms of device geometry, light

emitter and detector spacing, and the use of an optical bar-

rier between the emitter and the detector to maximize sen-

sor performance. Additionally, we utilize a printed, flexible,

and two-channel reflectance oximeter to collect PPG sig-

nals using red and near-infrared (NIR) organic light-emitting

diodes (OLEDs) and organic photodiodes (OPDs).We imple-

ment inverse-varianceweighting and templatematching algo-

rithms to improve the detection of heart rate from the

multi-channel PPG signals. Overall, we report sensor design,

optimization, and implementation of a two-channel organic

optoelectronic sensor which is promising for wearable smart-

watches and wristbands.

II. RESULTS
A. REFLECTANCE OXIMETER SENSOR GEOMETRIES AND

OPERATION
A schematic illustration of a two-channel wrist-worn

reflectance PPG sensor is shown in Fig. 1a. Themulti-channel

sensor is designed using two circular sensors to collect PPG

signals from the radial and the ulnar arteries (Fig. 1b). The

sensor is interfaced to multiplexers that switch between the

pixels and connects to an analog front end (AFE). The AFE

sequentially drives the OLEDs and reads out the OPD signals.

Since the focus of this article is sensor design and optimiza-

tion, we use a wired interface for data collection. However,

the AFE can be interfaced with a wireless transceiver for

wearable applications. Both red and NIR PPG signals are

collected using the two pixels. Since most wearable PPG

sensors are wrist-worn, we utilize the two-channel PPG sen-

sor for on-wrist measurements. The underside of the wrist,

especially on the radial and ulnar arteries, provide the best

PPG signal magnitudes. One pixel (Ch 1) is placed on the

ulnar artery, while the other pixel (Ch 2) is placed on the

radial artery. A photograph of the multi-pixel sensor is shown

in Fig. 1c, where the sensor is bent to a radius of curvature

of 5 cm to resemble bending on the wrist.

Reflection-mode sensors require light emitters and detec-

tors assembled on a substrate or a circuit board. Traditionally,

red and NIR LEDs are placed on either side of the PD

to assemble the sensor. The designs of commercially avail-

able optoelectronic sensors are limited in shape - typically

rectangular, which do not provide much versatility to vary

the sensor geometry. On the other hand, printed optoelec-

tronics can be fabricated in various shapes and sizes [29].

In this work, we explore three different sensor geometries

as shown in Fig. 2a-c: (1) Rectangular geometry (R), where

the OLEDs are placed at either side of the OPD; (2) Bracket

geometry (B), where the OLEDs are shaped as brackets and

placed around the square OPD; (3) Circular geometry (C),

where the OLEDs are shaped as block arcs and placed around

the circular OPD. The rectangular sensor design is chosen

to represent conventional sensors that use side-by-side opto-

electronics placement. The bracket and the circular sensor
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FIGURE 2. Reflectance PPG sensor design and placement on the wrist. (a-c) Different sensor geometries with the same active areas.
(a) Rectangular geometry (R), where the OLEDs are placed at either side of the OPD. (b) Bracket geometry (B), where the OLEDs are shaped as
brackets and placed around the square OPD. (c) Circular geometry (C), where the OLEDs are shaped as block arcs and placed around the circular
OPD. (d) Photograph of the printed reflectance oximeter sensor placed on the underside of the wrist. The radial and ulnar artery sensing locations
are marked to show sensor placement locations. The inset shows a circular sensor with red and NIR OLEDs on the top and the bottom side of the
OPD, respectively. (e) Normalized electroluminescence (EL) of the red (red line) and NIR (peach line) OLEDs and EQE of the OPD (brick line). The
OPD shows similar EQE at both red and NIR wavelengths.

FIGURE 3. PPG signal variation on the wrist. (a) Three sensor placement locations are shown - (i) On top of the wrist, (ii) on top of the ulnar artery,
and (iii) on top of the radial artery. (b) PPG signals from the wrist, ulnar and radial arteries are shown. Red color for the red channels and peach color
for the NIR channels. Since the signal on the wrist is weak, a 10x gain setting is used to resolve the pulsatile PPG signal. (c) PPG signal magnitudes at
the wrist, ulnar and radial arteries. The error bars represent data from 3 separate trials.

geometries are non-traditional geometries chosen to improve

PPG SNR. Fig. 2d shows the sensor placement on the under-

side of the arm. Radial and ulnar arteries are marked to show

sensor placement. All sensors are composed of printed red

and NIR OLEDs with emission peaks at 630 and 725 nm

respectively, and OPDs with external quantum efficiency

(EQE) of∼20% at the aforementioned wavelengths (Fig. 2e).

PPG signal magnitudes vary appreciably based on the

sensor placement locations on the wrist. We explored three

sensing locations: (i) On top of the wrist, (ii) on top of the

ulnar artery, and (iii) on top of the radial artery and recorded

PPG signals (Fig. 3a and b). While the radial artery provided

the cleanest signal (49.50 mV for red and 19.08 mV for NIR),

the pulsatile PPG signal on top of the wrist was the weakest
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FIGURE 4. Assembly of the printed sensor. (a) Schematic depicting the sensor assembly. Polyethylene naphthalate is used
as the base substrate. Inkjet-printed silver traces are used to connect the optoelectronic sensor to the control electronics.
Red and NIR OLEDs and the OPD are then connected to complete the sensor. (b) Photograph of the assembled sensor.

FIGURE 5. Pulsatile signal magnitudes for different sensor geometries. (a) Photographs of the rectangular sensors
with emitter-detector spacing, d = 2, 4, 6 mm. The devices are labeled as R2, R4, and R6. (b-c) Similar to a,
photographs of the bracket and circular sensors with emitter-detector spacing, d = 2, 4, 6 mm. The devices are labeled
as B2, B4, B6, C2, C4, and C6. (d) The pulsatile signal magnitudes for all rectangular, bracket and circular sensors.
Red-colored bars represent data for the red channel, while the peach-colored bars represent data from NIR channel.
The error bars represent data from 3 separate trials.

(Fig. 3c). At the ulnar artery an order of magnitude improve-

ment (26.12 mV for red and 9.02 mV for NIR) in PPG signal

is observed over the wrist (3.24 mV for red and 0.94 mV for

NIR). Therefore, we used our sensor on the underside of the

wrist for both single and multi-channel measurements.

B. SENSOR ASSEMBLY AND CALIBRATION
A base polyethylene naphthalate (PEN) substrate is used to

assemble the reflectance sensor. Inkjet-printed silver traces

are used to route connections from the optoelectronics to

the control electronics that consists of an AFE and a micro-

controller with a universal serial bus (USB) interface to a

computer. The OLEDs and the OPD are printed on separate

plastic substrates and then assembled on the PEN substrate

with silver traces as shown in Fig. 4a. The photograph of

the assembled sensor with the OLEDs and the OPD is shown

in Fig. 4b. Since we are comparing different sensor geome-

tries, a two-step calibration is used to account for the batch-

to-batch device variability of the OLEDs and the OPDs.

A calibration platform composed of a silicon photodiode

and a red LED is used to calibrate the assembled sensor.

In the first step, the OLEDs are calibrated using the sili-

con photodiode by operating the OLEDs at a fixed current

and recording the photodiode current. The OLEDs of the

assembled sensor are turned on sequentially to measure their

intensities using the silicon photodiode. Each OLED is then
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FIGURE 6. Performance comparison of different sensor geometries. (a) Photographs of the rectangular, bracket and
circular sensors with an emitter-detector spacing of 2 mm. (b) PPG signals from the red and NIR channels for the sensors
shown in a. (c) The pulsatile signal magnitudes for the smallest rectangular, bracket and circular sensors. Red-colored bars
represent data for the red channel, while the peach-colored bars represent data from NIR channel. The error bars
represent data from 3 separate trials.

calibrated to the maximum current measured in a batch of

devices, κOLED =
max(ISiPD)
ISiPD

. In the second step, the OPDs

are calibrated by recording the OPD current while running

the solid-state red LED at a fixed drive current. The red

LED of the calibration platform is turned on and the OLEDs

are turned off for calibrating the OPDs. The fabricated OPD

detects light from the red LED and the measured photocur-

rent is recorded. Similar to the OLEDs, each OPD is then

calibrated to the maximum OPD current measured in a batch

of devices, κOPD =
max(IOPD)
IOPD

. The obtained values are then

used together with the measured PPG signal to calculate the

calibrated signal magnitude. The calibration equation is given

below, which is used to compare sensor performances for the

three different geometries.

PPGcal = κOLED · κOPD · PPGmeas[mV ] (1)

C. PERFORMANCE COMPARISON AMONG DIFFERENT

SENSOR GEOMETRIES

After the calibration step, a fair comparison among the three

different geometries can be performed. Additionally, we eval-

uate another important design parameter, emitter-detector

spacing, d . Fig. 5a-c show the photographs of the rectangular,

bracket, and circular sensors with an emitter-detector spacing

of 2, 4, and 6 mm, which are labeled as R2, R4, R6, B2, B4,

B6, C2, C4, and C6. These labels are used in Fig. 5d to show

pulsatile PPG signal magnitude, PPGcal based on (1).

The rectangular sensor consists of OLEDs and an OPD that

are all square-shapedwhich are placed side-by-side. Since the

OLEDs do not surround OPD from the top and the bottom,

this scheme is susceptible to ambient light, which contributes

to the noise of the measurement. Also, a significant amount

of light coming out from the left edge of the red OLED

and the right edge of the NIR OLED do not contribute to

the measurement, hence, gets lost. Ideally, a perimeter light

source that surrounds the OPD would be the best. The two

new schemes, the bracket, and the circular designs, where the

light sources encompass the perimeter of the OPD enhance

measurement SNR. As shown in Fig. 5d, all three designs

show an exponential decay with increasing d . Due to the

perimeter lighting and better light collection by theOPD, both

bracket and circular geometries outperform the rectangular

design in terms of pulsatile PPG signal magnitude. While

comparing the bracket and circular design, we observe a

negligible difference in PPGcal .

For a direct comparison of the different geometries,

we kept the emitter-detector spacing constant at 2 mm, and

kept the device area of the OLEDs and the OPDs same for

all three geometries as shown in Fig. 6a. The OPD areas are

kept fixed at 16 mm2 and the OLED areas are kept fixed at

28 mm2. The PPGwaveforms for the different geometries are

shown in Fig. 6b. Utilizing the bracket geometry, we observe

39.7% and 18.2% improvements in PPG signal magnitude in

the red and NIR channels, respectively over the rectangular

geometry. For the circular geometry, we observe 48.6% and

9.2% improvements in the red andNIR channels, respectively

over the rectangular geometry. The bracket and the circular

design show similar performance in the PPGcal (Fig. 6c).

Additionally, the two new designs bring down the overall

length of the sensor from 18.6 mm for the rectangular geom-

etry to 12 mm for the bracket and 13.2 mm for the circular

geometry.
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FIGURE 7. The effect of an optical barrier in sensor performance. (a)
Schematic of a reflectance oximeter sensor, where an optical barrier is
placed in between the emitters and the detector. (b) The pulsatile signal
magnitudes of the red and NIR channels without and with the optical
barrier. The error bars represent data from 3 separate trials.

In reflectance PPG and oximetry, the light coming back

from the arteries contributes to the signal, while the light scat-

tered from the skin surface contributes to noise. Therefore,

blocking the light scattered from the skin surface enhances

SNR.We incorporated the light blocking feature in our design

by utilizing an optical barrier between the OLEDs and OPD.

Black tape is cut into the shape that fits the area between

the OLEDs and the OPD and is used to block scattered light.

Fig. 7a shows the schematic of the sensor. With the blocking

layer, we observe 26.5 % improvement in PPGcal in the

red channel, and while PPGcal remained almost the same

in NIR. Red light scatters more on the skin surface than the

NIR. Therefore, more red light scattered by skin surface gets

blocked by the optical barrier, resulting in an improved red

PPGcal (Fig. 7b).

D. MULTI-CHANNEL PPG SENSOR OPERATION AND

DATA PROCESSING

Wearable PPG sensors are susceptible to thermal noise, elec-

tromagnetic interference, and MAs. While thermal noise and

electromagnetic interference can be reduced with filtering,

reducing MAs requires additional hardware and software

processing. Adaptive filtering is a popular technique for

addressing MAs in PPG signals [23]–[25]. Another approach

is to simultaneously record PPG and a reference signal such

as an accelerometer signal and apply hybrid algorithms to

determine heart rate (HR) and pulse oxygenation [25], [26].

Multi-channel PPG acquisition and processing can also be

used to reduce MA by utilizing channels that are lightly

influenced by MA [27], [28]. Multiple PPG channels add

redundancy to the measurement for signal quality assess-

ment, which is vital for properly extracting HR and pulse

oxygenation values. To processmulti-channel data, we imple-

mented two algorithms: (1) Template matching (TM) with an

ideal PPG signal, and (2) Inverse-variance weighting (IVW).

The efficacy of both methods in acquiring high-quality PPG

signal, and extracting HR are examined. The process flow of

the template matching and inverse-variance weighting algo-

rithms are shown in Fig. 8a and b, respectively.

Both TM and IVW algorithms are used to obtain a

weighted PPG signal from multi-channel PPG. The equation

for obtaining the weighted PPG is given in (2).

PPGw=
W1×PPG1+W2 × PPG2+. . . +Wn × PPGn

W1+W2+. . .+Wn
(2)

Here, PPGw is the weighted PPG from all channels, Wi

is the weight for channel i determined by either of the two

methods discussed in following subsections and PPGi is the

PPG signal from channel i.

E. TEMPLATE MATCHING (TM) WITH AN IDEAL

PPG SIGNAL

Template matching is a popular data processing techniques

in biomedical signal processing. TM has been widely used in

processing electroencephalography (EEG), electrocardiogra-

phy (ECG), and PPG data [30]–[32]. We use an ideal PPG

template to determine the fidelity of the signal from each

channel. The ideal template can be obtained from experimen-

tal data [33] or by modeling [34]. A small window is acquired

from each channel after filtering. Then, troughs are detected

to find the pulses in eachwindow. Next, the correlation coeffi-

cient of each pulse with the ideal template is calculated. If the

correlation coefficient is positive, the correlation coefficient

is used as a weight to calculate the weighted average of

the two signals. If the correlation coefficient for a pulse is

negative, the pulse is ignored, i.e., the weight for that pulse in

that channel is set to zero. Thus, using this method, the weight

Wi’s in (2) can be given by (3).

Wi = ρi, if ρi ≥ 0,

= 0, if ρi < 0 (3)

Here, ρi is the correlation coefficient between a pulse in

channel i and the PPG template. HR and oxygenation values

are determined from the weighted signal. The process flow

for TM is presented in Fig. 8a.

F. INVERSE-VARIANCE WEIGHTING (IVW) BASED ON

HEART RATE

In inverse-variance weighting algorithm, Wi, weight for

channel i in (2) are assigned based on the standard deviation

of heart rate variability in a specific time window. First, peaks

and troughs of the signal from each window are determined.

Then, the HR is calculated from the distances in between

peaks or troughs. The channel with higher standard deviation

in HR is assigned a lower weight, because, in a small time-

window of PPG signal, HR should not change too drastically.

The weight assignment, in this case, is described by (4).

Wi =
1

σi
(4)

Here, σi is the standard deviation of HR in channel i.

After assigning the weight, the weighted average of the sig-

nals (PPGw) is computed and the HR and other features

are extracted from the signal. The process flow is presented

in Fig. 8b.
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FIGURE 8. Process flow of the (a) Template matching (TM) and (b) Inverse-variance weighting (IVW) algorithms.

FIGURE 9. Heart rate detection using TM and IVW algorithms from a simulated dataset. (a) 8 min long pristine PPG signal (Ch 1, top panel) and a PPG
signal with 10 dB SNR (Ch 2, middle panel) are used as the multi-channel PPG data. Calculated HR from Ch 1 and Ch 2 using TM and IVW algorithms and
the ground truth are shown in the bottom panel. (b) Zoomed-in data from 60 to 80 s of a - Ch 1, Ch 2, weighted PPG signal using TM and IVW
algorithms, and calculated HR are shown.

G. IMPLEMENTATION OF TM AND IVW ALGORITHMS ON

A SIMULATED PPG DATASET

To test the efficacy of the TM and IVW algorithms, a simu-

lated dataset is used to determine HR variability over time.

The simulated dataset is designed to represent HR variability

while performing an exercise (Fig. 9a). Here, Ch 1 is a

simulated PPG signal, where the HR goes up in the first few

minutes, stays constant and then goes down slowly. This PPG

signal represents the change in PPG during real-time exercise.

Ch 2 is the same PPG signal with a low-frequency noise added

to it. Slow and fast variations of HR are utilized. In the fast

variation case, HR is varied from 71 beats per min (b.p.m.)
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FIGURE 10. The effect of SNR on the accuracy of HR estimation using TM and IVW algorithms.

FIGURE 11. Heart rate detection using TM and IVW algorithms from the printed multi-channel PPG sensor. (a) The printed sensor is placed on the
underside of the wrist. (b) Ch 1 and Ch 2 are PPG data collected from the ulnar and the radial arteries, respectively. PPGw,TM and PPGw,IVW are the
weighed PPG signals generated by TM and IVW algorithms. HRCh1 and HRCh2 are calculated heart rate by using Ch 1 and Ch 2 PPG data. The bottom
panel shows calculated HR by TM and IVW algorithms.

to 200 b.p.m. in 20 s. Both TM and IVW algorithms suc-

cessfully reconstructed the PPG signals and determine HR

accurately. In the slow variation case, HR was varied from

95 to 105 b.p.m. in 20 s (Fig. 9b), and both the algorithms

successfully determined HR in this test case also.

The effect of noise on the accuracy of determining HR

using TM and IVW algorithms is examined by adding noise

of frequency below 5 Hz to one of the channels. This fre-

quency range of noise is chosen because noise with a fre-

quency above 5 Hz can be removed from the signal using a

low-pass filter (LPF). The effect of SNR is shown in Fig. 10.

The SNR is varied and as long as the SNR is above 3 dB, both

algorithms accurately detect HR. However, at SNR less than

3 dB, the TM algorithm fails to predict HR accurately.
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TABLE 1. Heart rate calculated from a literature dataset [25] using
template matching and inverse-variance weighting algorithms.

In addition to the simulated dataset, we used three sets of

PPG dual-channel data reported by Zhang et al. [25] to test

the efficacy of the TM and IVW algorithms. The results are

summarized in Table 1. For the datasets, I and III the HR

calculated using both methods are close to the ground truth

HR, i.e., within 2 b.p.m. However, in dataset II, both channels

are severely affected byMA, so the calculated HRs are further

away from ground truth HR. For accurate detection of HR,

at least one of the channels should be minimally affected by

MA so that the PPG pulses are recognizable.

H. IMPLEMENTATION OF TM AND IVW ALGORITHMS ON

THE PRINTED MULTI-CHANNEL PPG SENSOR DATA

After validating the TM and IVW algorithms on the simu-

lated and literature datasets, we employed both methods for

processing the data collected by the printed multi-channel

PPG sensor. The sensor is placed on the underside of the

wrist, where Ch 1 collects data from the ulnar artery and

Ch 2 collects data from the radial artery (Fig. 11a and b,

top two panels). The weighed PPG signals generated by

TM and IVW algorithms are shown in panel 3 and 4 of

Fig. 11b. Here, the signal magnitude of Ch 1 is weaker

compared to Ch 2. Therefore, HR calculated using only using

Ch 1 PPG signal demonstrates significant variation (panel 5

of Fig. 11b). After implementing TM and IVW algorithms,

accurate detection of HR is observed for both the algorithms

(bottom panel of Fig. 11b), demonstrating the feasibility

of using these two methods for wearable PPG sensors and

oximeters.

III. DISCUSSION

By utilizing the versatility of printed electronics, opto-

electronic sensors for PPG and oximetry are fabricated in

different shapes and sizes. In this work, we utilized non-

conventional geometries such as bracket and circular designs

to improve sensor performance. The new sensor geometries

demonstrated a clear improvement over the conventional

rectangular sensor design. Moreover, we used a wearable

two-channel PPG sensor to add redundancy to the measure-

ment and demonstrated the effectiveness of inverse-variance

weighting and template matching algorithms to improve the

detection of heart rate from the multi-channel PPG signals.

The new sensor geometries not only improved the PPG sig-

nal magnitudes but also decreased the overall sensor length

and reduced power consumption. These sensor designs cou-

pled with multi-channel redundancy can be incorporated into

wrist-worn devices, making them extremely promising for

wearable reflectance PPG and oximetry.
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