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EVE LYN FOX KE LLE R∗

Organisms, Machines, and Thunderstorms: 
A History of Self-Organization, Part Two. 
Complexity, Emergence, and Stable Attractors

ABSTRACT

Part Two of this essay focuses on what might be called the third and most recent
chapter in the history of self-organization, in which the term has been claimed to de-
note a paradigm shift or revolution in scientific thinking about complex systems. The
developments responsible for this claim began in the late 1960s and came directly
out of the physical sciences. They rapidly attracted wide interest and led to yet an-
other redrawing of the boundaries between organisms, machines, and naturally oc-
curring physical systems (such as thunderstorms). In this version of self-organization,
organisms are once again set apart from machines precisely because the latter de-
pend on an outside designer, but—in contrast to Kant’s ontology—they are now as-
similated to patterns in the inorganic world on the grounds that they, too, like many
biological phenomena, arise spontaneously. 

K EY WO R D S: self-organization, organisms, dynamical systems, organized complexity, edge of
chaos, dissipative systems, self-organized criticality

I NTROD UCTION

The term self-organization is often used to describe a paradigm shift or revolu-

tion in scientific thinking that, according to numerous authors, has been in

motion for the last three decades. New theoretical developments, it is argued,

have finally enabled scientists to transcend their traditionally static and reduc-

tionist worldview, to turn their attention to the global dynamics of complex

systems, and to expand their domain of competence from the world of being
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to that of becoming; indeed, to life itself. More specifically, it is claimed that

new techniques of analysis make it possible to account for the spontaneous

emergence of macroscopic architectures from microscopic interactions—i.e.,

for the origin of order in complex systems. 

Such claims derive considerable support from citation figures. Numbers

alone, of course, are not generally very informative, but in this case they clearly

indicate a change of some magnitude. Figure 1 graphs the frequency of the term

self-organization as it appears in the cumulative citation index of Inspec, Com-

pendex, and NTIS.1 Still, questions remain: What exactly do these numbers tell

us? What is the nature of the change to which they attest? And who are the

critical players in this transformation?

One of the first to call general attention to such a transformation was the Aus-

trian physicist Erich Jantsch, who dedicated his 1980 book The Self-Organizing

Universe to Ilya Prigogine, a “catalyst of the self-organization paradigm.”2

2 | K E L L E R

1. Inspec, Compendex, and NTIS (National Technical Information Service) are databases pro-

viding access to bibliographic citations searching over 7.7 million abstracts from scientific and

technical literature. Materials covered include journal articles, conference proceedings, reports,

dissertations, patents, and books; http://www.engineeringvillage2.org (accessed 15 Jul 2008).

2. Erick Jantsch, The Self-Organizing Universe: Scientific and Human Implications of the Emerg-

ing Paradigm of Evolution (Oxford: Pergamon Press, 1980), v. This book was published the same

year as Ilya Prigogine, From Being to Becoming (New York: Freeman, 1980).

FIG. 1 Cumulative citations of self-organization (all spellings) in Inspec, Compendex, and
NTIS (National Technical Information Service), 1960–2006.
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Others making similar claims have pointed to earlier, more diverse and ex-

pansive origins, crediting, in addition to Prigogine, cyberneticists Ross Ashby

and Heinz von Foerster, mathematician René Thom, physicists Hermann Haken

and Manfred Eigen, and others, interpreting their interventions as providing

different perspectives on, and different contributions to, an essentially unified

concept. For example, in their 1990 book Self-Organization: Portrait of a Sci-

entific Revolution, Wolfgang Krohn and his colleagues3 argued that, while cer-

tainly not homogeneous, ideas developed from the 1960s to the present (or at

least to 1990) can be integrated into a single paradigm, all relying on the idea

of “self-organization.” These authors began their modern chronology with the

work of von Foerster (much as they began their volume with an essay by Hum-

berto Maturana, the Chilean biologist who, in the early 1960s, first developed

the concept of autopoiesis4), and they moved smoothly from those beginnings

to the work of physicists Prigogine and Haken and the mathematics of limit

cycles and attractors in nonlinear dynamical systems.

My own view is somewhat different. While it is certainly possible to find

connections linking the various developments that find shelter under the um-

brella term self-organization, I argue that they represent fundamentally differ-

ent approaches to the problem of spontaneously self-organizing systems, only

some of which are reflected in the mainstream scientific literature and, hence,

in the citation data reported here. Furthermore, I assert that the change these

data indicate has additional roots that tend not to be included in these accounts.

If a new paradigm of self-organization is in evidence in the scientific literature,

I contend both that it is considerably narrower than these accounts suggest and

that it grew less out of efforts in cybernetics and philosophy (such as the efforts

described in Part One of this essay) and more out of technical developments,

primarily in the Soviet Union, that had little if anything to do either with Kant’s

understanding of this term or with any of the nineteenth-century or early twen-

tieth-century thinking on this subject—and indeed, at least in the early days,

had little to do with living organisms.5

In my interpretation of this history (and the data of Figure 1), the view

of self-organization that arose out of cybernetics—especially the efforts of

O R G A N I S M S ,  M A C H I N E S ,  A N D  T H U N D E R S TO R M S | 3

3. Wolfgang Krohn, Gunter Küppers, and Helga Nowotny, eds., Self-Organization: Portrait

of a Scientific Revolution (Dordrecht: Kluwer Academic, 1990).

4. See Maturana’s account of the development of his concept in Humberto Maturana Romesin,

“Autopoiesis, Structural Coupling, and Cognition,” http://www.isss.org/maturana.htm (accessed

20 Jan 2008).

5. Evelyn Fox Keller, “Organisms, Machines, and Thunderstorms: A History of Self-Organization,

Part One,” HSNS 38, no. 1 (2008): 45–75.
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Marshall Yovits (director of the Information Systems Branch at the U.S. Of-

fice of Naval Research), von Foerster, and their colleagues to promote self-

organization as a central topic for mainstream research in the U.S.—reached

an end with the triumph of the vision of artificial intelligence promoted at MIT

by Marvin Minsky and the demise of Frank Rosenblatt’s Perceptron project

(Rosenblatt himself dying a few years later).6 Indeed, lists of conferences on

self-organization show a substantial gap of almost twenty years, starting in the

mid-1960s and continuing to the early 1980s. Furthermore, when such con-

ferences did resume, they bore little relation to the work on self-organization

that was just then bursting onto the scene.7

The history of contemporary understandings of self-organization has been re-

counted in a number of popular accounts that have tended to emphasize either

particular technical achievements8 or larger cultural dynamics responsible for a

trans-disciplinary shift in episteme.9 My own recounting of this history is more

complex, perhaps even chaotic: it admits of no simple narrative, but instead seeks

to recognize (and briefly describe) the many different dynamics crucial to the story. 

CONTR I B UTION S TO S E LF-ORGAN I ZATION 

FROM MATH E MATICS AN D PHYS ICS

Nonlinear Mathematics and Dynamical Systems

My account begins in the early 1960s (thus demarcating the third chap-

ter of my history of self-organization), but instead of looking to second-

order cybernetics, I choose a different starting point: the sudden awakening of

4 | K E L L E R

6. For a fuller account of these events, see E. F. Keller, “Marrying the Pre-Modern to the Post-

Modern: Computers and Organisms after WWII,” in Growing Explanations: Historical Perspec-

tives on Recent Science, ed. M. Norton Wise (Durham, NC: Duke University Press, 2004), 181–200.

7. Also, the citations that did appear during the 1960s and 1970s refer primarily to literature

published in the Soviet Union, where the term self-organization had a still different set of refer-

ences. There, although many of the techniques were taken from the work in the U.S., the term

was more likely to refer to applications of Rosenblatt’s Perceptron algorithms to pattern recog-

nition in data fields than to the design of animal-like machines or to basic principles biological

or machine organization. Oddly enough, almost none of the Soviet citations relate to the robust

tradition of mathematical work on nonlinear dynamics that had been flourishing in the Soviet

Union since the early part of the century.

8. See, e.g., Heinz R. Pagels, The Dreams of Reason: The Rise of the Sciences of Complexity (New

York: Simon & Schuster, 1988).

9. N. Katherine Hayles, Chaos Bound: Orderly Disorder in Contemporary Literature and

Science (Ithaca, NY: Cornell University Press, 1990).
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American researchers in the late 1950s and early 1960s to the remarkably rich

and flourishing tradition of work in the Soviet Union on stability in nonlinear

dynamical systems—a tradition beginning with the Russian mathematician A.

M. Lyapunov (1857–1918) in the late nineteenth and early twentieth centuries,

but one which had been virtually unknown in the U.S.10 Although virtually

none of this literature made explicit use of the term self-organization, I claim

that its new availability after 1960 had a direct and unmistakable impact on the

course of research (especially American research) in a number of different, al-

beit related, fields (mathematics, theoretical physics, and control engineering)

in ways that were critical to the emergence of modern understandings of self-

organization. 

Its impact was most immediately evident in control theory, and for obvious

reasons. Control theory is the branch of engineering concerned with guaran-

teeing that the output of a dynamical system with a finite input remains itself

finite, i.e., that the system remains stable. Classical control theory flourished

in the U.S., but prior to 1960 it had been limited to systems in which the out-

put was a linear function of the input; most real systems, however, are nonlin-

ear. In 1960 the first conference of the newly formed International Federation

of Automatic Control was held in Moscow, and in that same year R. E. Kalman

and J. E. Bertram introduced American researchers in control theory to the

early work of Lyapunov, thereby helping to inaugurate the era of modern con-

trol theory.11 The crucial realization of Kalman and Bertram was that Lya-

punov’s methods made it possible to extend the classical theory into the domain

of nonlinear systems. A year later, the U.S. Atomic Energy Commission pub-

lished a comprehensive account of Lyapunov’s methods and their applications

in English.12 Similarly, in the early 1960s, the work of A. A. Andronov, L. S.

Pontryagin, N. Kryloff, N. Bogoliuboff, and the Romanian V. M. Popov began

to be widely distributed in the U.S. 

O R G A N I S M S ,  M A C H I N E S ,  A N D  T H U N D E R S TO R M S | 5

10. Lyapunov’s work is now sometimes credited as the beginning of nonlinear stability

theory, i.e., of the analysis of the stability of solutions to nonlinear differential equations de-

scribing the behavior of dynamical systems. 

11. R. E. Kalman and J. E. Bertram, “Control System Analysis and Design via the Second

Method of Lyapunov,” American Society of Mechanical Engineers D 82 (1960): 371–400. See also

R. E. Kalman, “Lyapunov Functions for the Problem of Lur’e in Automatic Control,” Proceed-

ings of the National Academy of Sciences 49 (1963): 201–05.

12. V. I. Zubov, Mathematical Methods of Investigating Automatic Regulation Systems, AEC-tr-

4494, Office of Technical Services, Department of Commerce, Washington, DC, Sep 1961, and

Methods of A. M. Lyapunov and Their Applications (1957 in Russian); English trans., AEC-tr-4439,

Office of Technical Services, Department of Commerce, Washington, DC, Oct 1961. 
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To be sure, some American mathematicians were already familiar with the

Soviet literature on nonlinear dynamical systems, primarily as a result of the

efforts of the Russian-born mathematician Solomon Lefschetz at Princeton

University. Lefschetz was introduced to the rich vein of research on nonlinear

oscillations and stability by Nicholas Minorsky in the course of his work for

the U.S. Navy during World War II, and he immediately set out to redress its

long neglect among his colleagues and students. In 1943, he translated the work

of Andronov and Chaiken on the theory of oscillations, and in 1949 translated

an introduction to nonlinear mechanics by Kryloff and Bogoliuboff.13 In 1946,

with the support of the Office of Naval Research, Lefschetz organized a research

center at Princeton on differential equations that he directed until he retired

in 1953. The center was phased out after Lefschetz’s retirement, but in No-

vember 1957, one month after the launching of Sputnik, Lefschetz received a

new mandate to establish a center for differential equations, this time based in

industry. Originally called RIAS (Research Institute for Advanced Studies), the

center moved to Brown University in 1964, where it was renamed the Lefschetz

Center for Dynamical Systems.14 By this time Lefschetz’s efforts were joined

by a massive (mostly government-sponsored) program to make the Soviet re-

search on this subject available to English-speaking readers—a program launched

independently of Lefschetz’s own endeavors. Translation projects initiated by,

among others, General Dynamics Corporation, the Wright Air Development

Center (WADC/WADD), NASA, the AEC, and the NSF, as well as a private

initiative of the Consultants Bureau (later to become Plenum Publishing Cor-

poration), resulted in the sudden availability to English-speaking students in

6 | K E L L E R

13. A. A. Andronov and C. E. Chaikin, Theory of Oscillations (Princeton: Princeton University

Press, 1949); N. Kryloff and N. Bogoliuboff, Introduction to Non-Linear Mechanics (Princeton:

Princeton University Press, 1943). 

14. This brief account is taken mainly from Sir William Hodge, “Solomon Lefschetz,” Con-

temporary Mathematics 58, pt. 1 (1986): 7–46. As Hodge wrote, “By making available translations

of the leading Russian workers in the field, by lecturing, by writing textbooks and review arti-

cles, as well as by original papers of his own, he stirred up enthusiasm and created one of the

leading schools in the country. Many younger men owe their introduction to the subject to his

books” (41). In a similar vein, H. A. Antosiewicz wrote in his review of Lefschetz’s 1961 book

(co-authored by Joseph LaSalle), Stability by Liapunov’s Direct Method with Applications (New

York: Academic Press, 1961): “The fact that [these methods] begin to be used now is in no small

measure due to the authors’ persistent efforts to acquaint engineers and mathematicians alike

with this area of stability theory, which was developed almost entirely in the Soviet Union.”

Quoted in H. A. Antosiewicz, Bulletin of the American Mathematical Society 69, no. 2 (1961):

209–10.
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mathematics and control theory of a huge literature that had previously been

largely unknown.15

Why this sudden expansion of interest in Soviet mathematics, and especially

in the work of Lyapunov? The answer seems clear: the successful launching of

Sputnik in October 1957 stunned American scientists and engineers and served

as a wake-up call. Before Sputnik (and apart from Lefschetz’s school), not much

attention was paid to the work being done in the Soviet Union on nonlinear

dynamics, but the situation changed, decisively, in its aftermath. Looking back-

wards, F. L. Lewis observes that, “Given the history of control theory in the

Soviet Union, it is only natural that the first satellite . . . was launched there.”16

Studies of nonlinear dynamical systems in the West exploded after 1960, and

not only in control theory. Indeed, one of the more conspicuous features of the

Soviet literature on nonlinearity is the remarkably close (and apparently seam-

less) interaction it suggests between mathematical theory and at least some areas

of engineering practice.17 Given this proximity, it was perhaps inevitable that

it would also have a noticeable impact on American researchers in mathemat-

ics (both pure and applied) and theoretical physics. But there were other path-

ways through which this literature exerted influence, such as via earlier

translations or the intermediary of Russian-speaking mathematicians in the

West. Stephen Smale, for example, began his important mathematical work on

dynamical systems in 1958, just prior to this wave of translations, by extending

the earlier works of Kolmogoroff, Andronov, and Pontryagin. David Ruelle en-

tered the fray in the late 1960s and early 1970s with his pioneering work on the

O R G A N I S M S ,  M A C H I N E S ,  A N D  T H U N D E R S TO R M S | 7

15. By 1963, over half of the items in the bibliography for stability theory in ordinary differ-

ential equations provided by Cesari’s widely used textbook were from Soviet publications; two

years later, R. L. Drake from NASA updated that bibliography, adding another 891 references,

the overwhelming majority from Soviet sources. Lamberto Cesari, Asymptotic Behavior and Sta-

bility Problems in Ordinary Differential Equations, 2nd ed. (Berlin: Springer-Verlag, 1963); R. L.

Drake, Reference List for Stability Theory in Ordinary Differential Equations, Contract No. NAS

9-11196, Drexel Institute of Technology Project No. 243, 1965.

16. F. L. Lewis, Applied Optimal Control and Estimation (New York: Prentice-Hall, 1992);

http://www.theorem.net/theorem/lewis1.html (accessed 3 Nov 2007).

17. Bissell suggests that the role of Aleksandr Aleksandrovich Andronov was of particular im-

portance in these interactions. See Chris Bissell, “A. A. Andronov and the Development of

Soviet Control Engineering,” IEEE Control Systems 17, no. 1 (1998): 56–62. See also his “Control

Engineering in the Former USSR: Some Ideological Aspects of the Early Years,” IEEE Control

Systems 19, no. 1 (1999): 111–17, as well as A. Dahan (in collaboration with I. Gouzevitch), “Early

Developments of Nonlinear Science in Soviet Russia: The Andronov School at Gor’kiy,” Science

in Context 17, nos. 1/2 (2004): 235–65.

HSNS3901_01  1/12/09  4:19 PM  Page 7



mathematics of turbulence and phase transitions, and he too made good use

of the Soviet literature.18 Similarly, Edward Lorenz, working at MIT in mete-

orology in the early 1960s and relying on the computer to simulate global

weather patterns, drew on earlier translations of Nemytskii and Stepanov for

his understanding of the aperiodic behavior he had observed in a simple, de-

terministic model, and perhaps even for his recognition that minute variations

in initial conditions could yield dramatically different results (the so-called

“butterfly effect”).19 The actual term chaos was not introduced until 1975 when

T. Y. Li and James Yorke20 used it to refer to the unpredictable behavior of non-

linear deterministic systems, in which small changes in initial conditions can

lead to very large changes over time; all the same, Lorenz’s 1963 paper is often

claimed to have initiated the history of chaos theory. By the mid-1980s, the

study of equilibrium states into which such systems may settle until disrupted

by a perturbation (stable attractors and limit cycles) had become a veritable in-

dustry. Since then, chaos theory has inspired numerous historical accounts; but

for my purposes the important point is that, despite the diversity of those ac-

counts, they all begin in the early 1960s. 

Thermodynamics, Statistical Mechanics, and the Term Self-Organization

There are, of course, other ways to chart the history of this third chapter of

self-organization—ways that make no explicit mention of the mathematical

prehistory in the Soviet Union—and these too date back to the 1960s. Per-

haps it is not accidentally so; indeed, I suggest there are at least implicit links

tying these different histories together. Here is one, particularly familiar, alter-

native account that features the Russian-born physicist who later received a

8 | K E L L E R

18. For a more complete account see, e.g., David Aubin, “From Catastrophe to Chaos: The

Modeling Practices of Applied Topologists,” in Changing Images in Mathematics: From the French

Revolution to the New Millenium, ed. A. Dahan Dalmedico and U. Bottazini (London: Routledge,

2001), 255–79, and David Aubin and Amy Dahan Dalmedico, “Writing the History of Dynam-

ical Systems and Chaos: Longue Durée and Revolution, Disciplines, and Cultures,” Historia Math-

ematica 29, no. 3 (2002): 273–339. 

19. Edward N. Lorenz, “Deterministic Nonperiodic Flow,” Journal of Atmospheric Sciences 20

(1963): 130–41; V. V. Nemystkii and V. V. Stepanov, Qualitative Theory of Differential Equations

(Princeton: Princeton University Press, 1947, 1960). 

20. Tien-Yien Li and James A. Yorke, “Period Three Implies Chaos,” American Mathematical

Monthly 82, no. 10 (1975): 985–92. Interestingly, this paper contains no references to the Soviet

literature, relying instead on references to Lorenz and Smale. 
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Nobel Prize for this work. Ilya Prigogine was director of the Solvay Interna-

tional Institutes of Physics and Chemistry in Brussels from 1959 and of the

Center for Statistical Mechanics and Complex Systems at the University of

Texas, Austin from 1967, holding both positions until his death in 2003.There

is no doubt about Prigogine’s role in the surge of papers and conferences in the

self-organization industry, but he was far from the sole contributor. In partic-

ular, his contributions need to be set not only against the backdrop of the grow-

ing prominence of nonlinear mathematics and dynamical systems, but also

alongside the work of such contemporaries as Hermann Haken and Manfred

Eigen. Furthermore, the role he did play in this history was a complex one—

part scientific, part synthesizing, and part promotional.

In 1967, after over two decades of work on the thermodynamics of irreversible

(but close-to-equilibrium) processes, Prigogine and his student Grégoire Nicolis

published a paper, “On Symmetry-Breaking Instabilities in Dissipative Sys-

tems.”21 The principal scientific aim of the paper was threefold: first, to under-

score that the kinds of instability familiar from fluid dynamics (as in

Raleigh-Bénard convection, where a homogeneous horizontal fluid layer heated

from below becomes unstable at a critical rate of heating and subsequently set-

tles into a stable hexagonal pattern) also occur in “purely dissipative systems”

that involve chemical reactions and diffusion but no hydrodynamic forces; sec-

ond, to integrate all of these findings into the language and established princi-

ples of thermodynamics; and third, to show that such phenomena require that

the system in question be both thermodynamically open and far from equilib-

rium. The authors began with the reaction-diffusion model that Alan Turing had

introduced fifteen years earlier to illustrate a possible mechanism for the bio-

logical phenomenon of morphogenesis,22 and proceeded to submit this model

to detailed analysis over a far greater range of parameters than Turing had done. 

Prigogine and Nicolis’s primary focus was not nonlinearity per se, but the

thermodynamic properties of a system in which instabilities can give rise to

new stable states that “break” the symmetry of the original states. That such

effects depend on nonlinearity was less striking to them than was their de-

pendence on the flow of free energy that keeps the system far from equilibrium.

There is no mention in this paper of bifurcation—the term that mathematicians

O R G A N I S M S ,  M A C H I N E S ,  A N D  T H U N D E R S TO R M S | 9

21. I. Prigogine and G. Nicolis, “On Symmetry-Breaking Instabilities in Dissipative Systems,”

Journal of Chemical Physics 46, no. 9 (1967): 3542–50.

22. A. M. Turing, “The Chemical Basis of Morphogenesis,” Physics Today B237 (1952): 37–72.
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would have used in lieu of symmetry breaking 23 (and a term most authors used

in subsequent years)—nor is there any mention of phase transitions—another

analogy that later became ubiquitous.24 For now, the authors were content to

unify Turing’s reaction-diffusion patterns with the spontaneous structures ob-

served in fluid dynamics under the category of dissipative structures and to

draw out some rather striking and large implications. 

For one, they argued that the formation of novel spatial and temporal struc-

tures, far from being rare, is to be expected wherever there is a large flux of en-

ergy through a system. To my knowledge, the first time the term self-organization

appeared in this context is on the second page of the Prigogine and Nicolis

paper, where it was introduced, almost as an aside, by way of indicating the

second significant implication the authors wanted to draw. After summarizing

their main argument, they wrote: “We also have the opportunity to indicate

briefly the implications of such ‘self-organizing’ open systems for biogenetic

processes.”25 Here the term self-organizing appears as an effective synonym for

the spontaneous formation of “dissipative structures,”26 or, more specifically, for

the emergence of such structures in low-entropy, far-from-equilibrium systems.

1 0 | K E L L E R

23. In the 1960s, given its enormous importance in high-energy physics, the term “symmetry

breaking” probably carried considerably more cachet than “bifurcation,” and this too may have

influenced the authors’ choice of terms. By 1974, however, they seem to have incorporated the

mathematical term as well (see G. Nicolis and I. Prigogine, “Introductory and Inorganic Oscil-

lations: Thermodynamic Aspects and Bifurcation Analysis of Spatio-Temporal Dissipative Struc-

tures,” Faraday Symposium of the Chemical Society 9 (1974): 7–20).

24. I would guess that the analogy with phase transitions originated with Hermann Haken

(see below) and first showed up in Prigogine’s work in 1971. See G. Nicolis and I. Prigogine, “Fluc-

tuations in Nonequilibrium Systems,” Proceedings of the National Academy of Sciences 68, no. 9

(1971): 2102–07.

25. Prigogine and Nicolis, “Symmetry-Breaking” (ref. 21), 3543.

26. In Prigogine’s autobiographical notes (http://nobelprize.org/nobel_prizes/chemistry/

laureates/1977/prigogine-autobio.html) (accessed 5 Nov 2007), he wrote that he introduced this

term in 1967 in his paper on “Structure, Dissipation and Life,” presented at the first International

Conference on Theoretical Physics and Biology, held in Versailles, Jun 1967. See M. Marois, ed.,

Theoretical Physics and Biology (Amsterdam: North-Holland, 1969), 23–52. In fact, however, what

was novel was not so much the term as his focus. The expression “dissipative systems” had been

the subject of extensive study in fluid dynamics and thermodynamics ever since the work of Lord

Raleigh and Lord Kelvin in the nineteenth century, and the term “dissipative structures,” though

not common, was used on several occasions in the twentieth century to refer to various kinds of

structures that arise in dynamical systems. See, e.g., Gregory H. Wannier, “The Threshold Law

for Single Ionization of Atoms or Ions by Electrons,” Physical Reviews 90 (1953): 817–25. Never-

theless, after 1967 the term became so closely associated with Prigogine that it can be taken as his

trademark.

HSNS3901_01  1/12/09  4:19 PM  Page 10



The principal point—and what distinguishes such patterns from, for instance,

the formation of oil drops or snowflakes—is precisely their dependence on a

flow of energy (and, in some cases, of matter). The link to biology is, at this

point, merely a promissory note; indeed, the authors would have to wait three

years for the first proposal of a direct link between such symmetry breaking

and a real biological system, and this came with the publication of a Turing-

like model of spontaneous aggregation in cellular slime mold that was devel-

oped in the U.S.27 The promise of a link to biology was not entirely new,

however, for the whole point of Turing’s original model was an attempt to ac-

count for embryogenesis. But Prigogine and Nicolis were confident “that the

importance of such instabilities goes far beyond the morphogenetic problem

discussed originally in Turing’s paper”28—they envisioned an important role

for such instabilities in the origin of life. 

A particularly important landmark in this history of self-organization was

the publication in 1971 of Manfred Eigen’s extensive monograph on “Self-

organization of Matter and the Evolution of Biological Macromolecules.”29

Eigen, awarded the Nobel Prize for chemistry in 1967 for his work on high-

speed chemical reactions, here turned his attention to biology, specifically to

the problem of emergence of large macromolecules (like DNA) in the origin

of life (as if taking up Prigogine’s challenge). He explicitly referred to the work

of Prigogine and Nicolis on instabilities in the vicinity of far-from-equilibrium

steady states, but he drew an important distinction: “The type of organization

we need at the beginning is not so much organization in physical (i.e., geo-

metrical) space. We need functional order among a tremendously complex va-

riety of chemical compounds. . . . We need organization in a different ‘space,’

which one may call ‘information space.’”30

Indeed, Eigen focused directly on the recent findings of molecular biology

and asked how such a complex informational molecule as DNA, and such a

sophisticated relation to protein synthesis as suggested by the genetic code,

might ever have arisen in the first place. Although Eigen did not completely

solve the problem, he made two crucial contributions that appeared in all
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subsequent discussions of the topic: first, he discovered the “error catastrophe”

(i.e., the limit that the need for fidelity in replication placed on the size of nu-

cleic acid molecules that might spontaneously evolve), and second, he devel-

oped the idea of hypercycles (referring to a doubly autocatalytic system in which

the synthesis of two molecules is mutually reinforcing). This model had its dif-

ficulties, but generations of future researchers were inspired to improve upon it.

Eigen’s name may not be as well known today as Prigogine’s, but his work

was influential, and certainly sufficiently so as to draw serious scientific atten-

tion to the new context in which Prigogine had begun to use the term self-or-

ganization, whether or not the focus was the origin of life. In June 1971—shortly

before his papers appeared in Naturwissenschaften—Eigen presented his work

at the Third International Conference on Theoretical Physics and Biology, held

in Versailles.31 Prigogine, Nicolis, and Hermann Haken were all in attendance. 

Haken, a theoretical physicist from Stuttgart, was known for his work on the

statistical mechanics of lasers and nonlinear optics (the branch of optics con-

cerned with the behavior of high-intensity light, such as that emitted by lasers,

in nonlinear media). He also had been present at the Versailles conferences in

1967 and surely would have recognized a connection between his own interest in

cooperative phenomena in nonlinear systems and those of Eigen and Prigogine.

But Haken’s focus was neither on the origin of biological macromolecules nor

on thermodynamics; rather, he aimed to forge a new discipline linking nonlin-

ear dynamical systems theory with statistical physics and, relatedly, linking what

Prigogine and Nicolis had called “symmetry breaking” with phase transitions.

He called this discipline synergetics.32 In 1972 Haken organized the first of a se-

ries of workshops on synergetics (subtitled “cooperative phenomena in multi-

component systems”), and in 1975 he published an extensive review of what he

called “cooperative phenomena in systems far from thermal equilibrium.”33

As already mentioned, Prigogine focused on thermodynamics rather than

on statistical mechanics, and he had his own preferred terminology. By 1975,

the terms self-organization and dissipative structures had begun to assume a
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31. M. Marois, ed., From Theoretical Physics to Biology: Proceedings of The Third International

Conference on Theoretical Physics and Biology, Versailles, 21–26 June 1971 (Basel: S. Karger, 1973).

32. Haken introduced the term synergetics in 1971 to describe the cooperative behavior (Zusam-

menwirken) of individual atoms in a monochromatic light beam. H. Haken and R. Graham,

“Synergetik—Die Lehre vom Zusammenwirken,” Umschau in Wissenschaft und Technik Heft 6

(1971): 191–95.

33. H. Haken, “Cooperative Phenomena in Systems Far from Thermal Equilibrium and in

Nonphysical Systems,” Reviews of Modern Physics 47 (1975): 67–121.
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characteristic prominence in his published papers, and finally, in 1977, a com-

prehensive account appeared in a book he co-authored with Grégoire Nicolis,

Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order

through Fluctuations.34 Part One of this book provided a brief overview of the

“Thermodynamic Background,” while Part Two gave a more extensive intro-

duction to the “Mathematical Aspects of Self-Organization,” including lengthy

discussions of classical analysis of stability (linearization), Lyapunov instabil-

ity, bifurcation theory, and so on. In the same year Prigogine was awarded the

Nobel Prize in chemistry “for his contributions to non-equilibrium thermo-

dynamics, particularly the theory of dissipative structures.”35

Haken published his own book in 1977, Synergetics, An Introduction: Non-

equilibrium Phase Transitions and Self-Organization in Physics, Chemistry and

Biology.36 This work expanded on his earlier review article, with the notable

difference that he now claimed self-organization as a synonym for synergetics.

In fact, the subject matter of the two books was strikingly similar: although

Haken’s work included a discussion of laser physics not found in Nicolis and

Prigogine’s, and the latter included an extensive discussion of thermodynam-

ics not found in the former, both books covered much the same mathematical

ground, each emphasizing nonlinearity. (In a second edition appearing a year

later, Haken added a final chapter on “the rapidly growing field of chaos.”37)

The reference to biology in Haken’s title was borne out with examples in ecol-

ogy and morphogenesis.

A New Paradigm

With the publication of these two volumes, things took off quickly. A num-

ber of international conferences on self-organization convened over the next

few years (Rostock in 1977; Berlin and Bavaria in 1982; Austin, Texas, and the

Soviet Union in 1983).38 Both Haken and Prigogine were cited extensively in
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all of the published proceedings. A more detailed analysis of the literature on

self-organization during this period, as cited in Google Scholar,39 shows more

than a doubling in the overall (exponential) growth rate, with a particularly

marked growth in the physical science literature (see Figure 2). Figure 3 dis-

plays a further breakdown of this growth in which the relative influence of

Prigogine and Haken in the scientific community is parsed by tracking the

frequency of the characteristic (and idiosyncratic) terminology of each author
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und Evolution (Berlin: Akademie-Verlag, 1982); “Evolution of Order and Chaos in Physics, Chem-
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Equilibrium (Berlin: Springer-Verlag, 1984).
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in the technical literature: synergetics in the case of Haken, dissipative structures

in the case of Prigogine.40

The explosive growth of the literature at this time surely counted as a serious

factor in the emerging view that a scientific revolution was in process and a new

paradigm had emerged. But taken alone, citation counts can never fully reveal

the enthusiasm with which a new paradigm is heralded by the larger community—

and perhaps especially not at this moment when popular accounts of “hot” sci-

entific advances were fast becoming a surprisingly lucrative publishing industry

phenomenon.41 The dissemination of Prigogine’s vision was particularly im-

portant. Following the relatively technical overview that he had published with

Nicolis in 1977, a series of remarkably successful accounts popularized the wider

implications of what he had seen. The first of these, La Nouvelle alliance,
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co-authored by Isabelle Stengers, appeared in French in 1979 and in English in

1984 (under the title Order Out of Chaos: Man’s New Dialogue with Nature); the

second, From Being to Becoming, was published in 1980.42 Both books became

runaway best sellers, attesting to the importance of the expanding cultural res-

onances that N. Katherine Hayles has described.43 But at the same time, it also

attests to the influence that Prigogine himself was able to wield, especially as a

Nobel laureate. By all accounts, he exercised consummate skill in both pro-

moting his vision and rallying together the various kinds of interest to which

this vision appealed, and he deserves much of the credit attributed to him (at

least in the popular literature) for its success. That he also tends to emerge with

the lion’s share of credit for its origin—despite the fact that he was not directly

associated with the development of the methods of nonlinear dynamics itself,

and despite the critical role played by many others in drawing attention to the

peculiar features of dynamical systems, far from equilibrium, governed by non-

linear interactions—is equally unsurprising.

Prigogine may have prevailed over his European rivals, but even so, he was

still not the only claimant to credit; nor was his the only characterization to at-

tract attention to the new understanding of self-organization. The new para-

digm could be equally well described without reference to either dissipative

structures or synergetics, but simply in terms of nonlinear dynamics and stable

attractors—i.e., as the production of stable patterns observed in nonequilib-

rium systems governed by nonlinear dynamics, for which the dominant meth-

ods of analysis were those of nonlinear differential equations and, after the

mid-1980s, their computational analog of cellular automata as well.44 Indeed,

it was in the terms of this (ostensibly more neutral) formulation, now subsumed

under the label of chaos, that a major new contender for popular attention ap-

peared on the scene in the U.S.

Complexity, Self-Organized Criticality, and the Edge of Chaos

The Santa Fe Institute (SFI) was founded in 1984, in Santa Fe, New Mexico,

by a group made up primarily of physicists (many of them from Los Alamos)
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under the enthusiastic leadership of Murray Gell-Mann. Fifteen years earlier

Gell-Mann had been awarded the Nobel Prize for his work in particle physics,

but his interests were now greatly expanded. The aim of the new institute was to

bring the experience of physicists in nonlinear dynamics and phase transitions

to the study of large complex systems in as many disciplines as such systems

appear, doing so in an environment that fostered productive and adventure-

some interdisciplinary exchange. SFI was located in an exquisitely beautiful

setting, and it soon attracted a core of smart, ambitious, intrepid, and mostly

young scientists devoted to the creation of a new science of complex systems.

It also attracted a great deal of public attention. In 1986, Jim Crutchfield and

his colleagues published a celebratory essay on the powers of the new science

that was widely read and widely cited; entitled “Chaos,” it was published in

Scientific American, and a year later, James Gleick published his widely-ac-

claimed book under the same name.45 Other popular accounts, focusing more

specifically on the new institute, followed soon after.

The scientists drawn to SFI were well aware that self-organization, as it was

understood at that time, had its home in the physical sciences (referring to

patterns of fluid dynamics, optics, chemical reactions, phase transitions, and

so on), and many of them had their original training in physics. But at SFI

their horizons greatly expanded to include the social, computational, eco-

nomic, behavioral, and biological sciences as well. Indeed, to them, self-

organization knew no bounds. As the physicist Paul Davies somewhat

provocatively wrote, “Mathematically we can now see how nonlinearity in far-

from-equilibrium systems can induce matter to ‘transcend the clod-like nature

it would manifest at equilibrium, and behave instead in dramatic and unfore-

seen ways, molding itself for example into thunderstorms, people and umbrel-

las.’”46 Life itself was reconceptualized as a self-organizing system, with the same

kinds of properties that had previously been encountered in fluid dynamics and

statistical mechanics. 

In the late 1980s, at roughly the same time, Chris Langton and Norman

Packard, building on Steven Wolfram’s analyses of the behavior of cellular au-

tomata, intuited that complex phenomena (patterns) might not simply emerge
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spontaneously, but under certain conditions might even evolve, giving rise

to ever more adaptive and more complex patterns of organization. Langton

referred to what he regarded as the necessary conditions for such evolution as

the “onset of chaos”47; Packard’s term was the “edge of chaos,” and it was the

latter that stuck.48 In 1987, Per Bak (an expert on phase transitions who was

based at the Brookhaven National Laboratory, but also a member of the fac-

ulty at SFI), together with two postdoctoral researchers, Chao Tang and Kurt

Wiesenfeld, introduced the closely related notion of self-organized criticality. The

concept referred to the spontaneous approach of complex systems to states ex-

hibiting behavior like that seen at the critical points of phase transitions in sta-

tistical mechanics. In their paper, Bak and his colleagues presented a general

mechanism by which systems that are out of thermal equilibrium may evolve to

a fractal, or scale-invariant, distribution.49 Self-organized criticality was another

term that took hold at SFI, and even though the original Bak-Tang-Wiesenfeld

paper made no reference to biology, others were quick to apply this sort of analy-

sis to spontaneously forming patterns wherever they might appear, from earth-

quakes, forest fires, traffic jams, and economic markets to biological phenomena

ranging from natural selection to the distribution of species of trees in a forest.50

Stuart A. Kauffman was in some ways the odd man out. He had no train-

ing in physics; indeed, his only advanced degree had been a medical degree.

But he had established himself as a theoretical biologist, first working with War-

ren McCulloch and later taking his place as an important proponent of the

nascent discipline of mathematical biology during the 1970s and early 1980s.

SFI provided the ideal setting for Kauffman to integrate and develop his ideas

about biological organization, development, and evolution, and in the late 1980s

he worked vigorously to promote the view that the dynamic created by

the notions of edge of chaos and self-organized criticality demanded a radical
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revision of the traditional approaches to biological evolution. At a philosophy

of science conference held in 1990, he began his summary of the main argu-

ment of his forthcoming book The Origins of Order by announcing: “A new

science, the science of complexity, is birthing. This science boldly promises to

transform the biological and social sciences in the forthcoming century.” In

particular, it promised to transform our understanding of evolution. As Kauff-

man put it, “Since Darwin, we have viewed organisms, in Jacob’s phrase, as

bricolage, tinkered together contraptions” but then he asked, “Must selection

have struggled against vast odds to create order? Or did that order lie to hand

for selection’s further molding? If the latter, then what a reordering of our view

of life is mandated!” Order, he concluded, “is in fact ready to hand”; “extremely

complex systems exhibit ‘order for free’”; and they achieve this order “in a law-

like way,” at “the edge of chaos.”51

What Kauffman was after, and believed he had found, was an alternative to

the neo-Darwinian worldview—a view in which

organisms are ad hoc solutions to design problems [and] the answers lie in the spe-

cific details wrought by ceaseless selection. In contrast, the explanatory approach

offered by the new analysis rests on examining the statistically typical, or generic,

properties of an entire class, or “ensemble” of systems all sharing known local fea-

tures of genomic systems. If the typical, generic, features of ensemble members

correspond to that seen in organisms, then explanation of those features em-

phatically does not rest in the details. It rests in the general laws governing the typ-

ical features of the ensemble as a whole. Thus an “ensemble” theory is a new kind

of statistical mechanics. It predicts that the typical properties of members of the

ensemble will be found in organisms. Where true, it bodes a physics of biology.52

By the time Origins of Order appeared in 1993, the Santa Fe Institute was widely

perceived as the center of a new science of complexity. Analysis of the frequency

of the terms edge of chaos and self-organized criticality in the literature of self-

organization at this time shows much of the rhetorical control of this literature

already shifting away from the “Brussels school” of Prigogine to SFI (see

Figure 3). Indeed, enthusiasm for the achievements (or perhaps one should

say, for the promises) issuing from Gell-Mann’s brainchild was at its height,

and the expectations generated by that enthusiasm were extraordinary. Kauffman’s

O R G A N I S M S ,  M A C H I N E S ,  A N D  T H U N D E R S TO R M S | 1 9

51. Stuart A. Kauffman, “The Sciences of Complexity and Origins of Order,” Philosophy of

Science Association, vol. 2: Symposia and Invited Papers (East Lansing, MI: PSA, 1990), 299–322, on

299; Stuart A. Kauffman, Origins of Order: Self Organization and Selection in Evolution (Oxford:

Oxford University Press, 1993).

52. Kauffman, “Sciences of Complexity” (ref. 51), 300–01.

HSNS3901_01  1/12/09  4:19 PM  Page 19



book followed on the heels of the immensely popular (and exceedingly cele-

bratory) accounts of Santa Fe, first by Mitchell Waldrop, and soon after by

Roger Lewin, and although considerably more difficult to read, Lewin’s book,

too, became a scientific best seller.53

In his own book How Nature Works, published three years later, Per Bak re-

ferred to Origins of Order as “the first serious attempt to model a complete

biology,” and he lauded Kauffman’s efforts to apply his (Bak’s) own ideas about

self-organized criticality to evolution.54 That Kauffman’s vision of evolution

operating on “coupled dancing landscapes”55 spontaneously approaching crit-

icality turned out to be premature was of little consequence, for almost im-

mediately afterwards, Bak and Sneppen did succeed in developing a highly

simplified model for a kind of evolutionary dynamics that exhibited the de-

sired characteristics.56 However artificial their model may have appeared to bi-

ologists, it contained the essentials required to produce the desired behavior.

Here was a model of an open and dissipative system that organizes itself into

a critical state simply by virtue of its intrinsic dynamics, independent of any

control parameter. Drawing on an analogy with the physics of phase transi-

tions, the existence of a critical state was said to be signaled by a power-law dis-

tribution in some variable—to physicists familiar with the behavior of systems

at thermodynamic critical points, a seemingly clear indication that short-range

interactions had induced long-range correlations and a form of global organi-

zation had emerged in which details of the particular system got obliterated. Bak

and his colleagues built on this model to propose a “comprehensive theory” for

complex systems, suggesting that

systems that are far from equilibrium become critical through self-organization.

They evolve through transient states, which are not critical, to a dynamical at-

tractor poised at criticality . . . The system jumps from one metastable state to

another by avalanche dynamics. These avalanches build up long range correla-

tions in the system.57
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To many, self-organized criticality provided the latest key to an understanding

of emerging structure in complex systems. In his preface to How Nature Works,

Bak reported that since the coining of the phrase in 1987, “more than 2,000

papers have been written on the subject,” making this initial paper “the most

cited in physics.”58

One might argue, however, that by 1996 the allure of SFI’s sweeping asser-

tions had already begun to fade. One year earlier, a lead-in on the cover of the

June issue of Scientific American provocatively asked, “Is Complexity a Sham?”

The reference was to an article by John Horgan reporting a growing disillu-

sionment with promises of a comprehensive or unified theory of complexity,

even among some of the major figures at SFI.59 Horgan quoted Jack Cowan

(one of the founders of SFI) complaining of the high “mouth-to-brain ratio”

of the excessive hype, as well as John Maynard Smith’s reference to Langton’s

“Artificial Life” as “a fact-free science.” Theories about the edge of chaos and

self-organized criticality came in for particular critique, above all for being ap-

plied too expansively. Philip Anderson, a member of the SFI board, said that

he did not believe in “a theory of everything”: “You mustn’t give in to the temp-

tation that when you have a good general principle at one level it’s going to

work at all levels.” And even Murray Gell-Mann expressed concern about “a

certain tendency toward obscurantism and mystification.”60

Nevertheless, the lure of a science of complexity, and especially of self-

organized criticality as the basis of a unified theory of complexity, persisted.

SFI may have lost some of its allure, but just a few years later Laszlo Barábasi

and his colleagues extended Bak’s idea to the world of network topology, claim-

ing to have found a universal architecture for complex systems occurring in

biology, sociology, technology—in short, everywhere.61 This work provided
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yet another boost to expectations about what the physics of phase transitions

might do for biology, and it sparked yet another upsurge of scientific enthusi-

asm and wider media acclaim.62 It would seem that, to many readers, the at-

tractions of such a program were just too strong to resist.

R E FLECTION S

Organisms and Thunderstorms

One great appeal of the analogy between biological organization and phase

transitions has been the hope that looking at organisms in this way might eman-

cipate biology from its traditional dependence on and commitment to partic-

ularity. A major triumph of modern statistical physics was its theory identifying

the universal aspects of critical phenomena—a theory in which the macroscopic

(thermodynamic) properties of a system near a phase transition are insensitive

to the particularities of the system, namely, its underlying microscopic prop-

erties. Perhaps, some hoped, a similar approach would finally make it possible

to identify those aspects of biological organization that were universal, and we

could stop worrying about all the messy details.

This is a literature that began in the world of physics (especially in thermo-

dynamics and statistical mechanics), written for the most part by physicists and

published primarily in physics journals. Yet it rapidly spread to other fields,

and was soon taken up by the flourishing industry of science popularization.

Juxtaposed with earlier literatures on self-organization, however, this literature

severed the term self-organization from both its original biological meaning and

its later engineering sense, stripping it of all resonance with either natural or

engineering design and appropriating it instead to categorize complex phe-

nomena arising out of random ensembles, essentially uniform distributions of

simple physical entities. Not only eddies, whirlpools, and Bénard cells were to

be understood as arising from homogeneous gases, fluids, and lattices, but also

more dramatic eruptions such as thunderstorms, earthquakes, and living

organisms. Indeed, this literature claimed that self-organized criticality could

describe the emergence of life itself.

In this assimilation of life and familiar physical processes, is biology being

reduced to physics, or is physics being revived by the infusion of life? To some
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it is undoubtedly the former; but Lee Smolin, one of the subject’s more thought-

ful writers, has seen in self-organization the possibility of revitalizing physics.

He has argued that viewing the universe as a nonequilibrium, self-organizing

system has many advantages: in particular, it allows for a world in which “a

variety of improbable structures—and indeed life itself—exist permanently,

without need of pilot or other external agent, [and] offers the possibility of

constructing a scientific cosmology that is finally liberated from the crippling

duality that lies behind Plato’s myth.”63 But from the perspective of the life

sciences, such assimilation seems to carry a considerable cost. Despite Smolin’s

caution, and for all his hopes, the wedding of statistical physics to biological

processes effects a serious elision, hints of which are concealed in the semantic

spread of the terms stability and complexity. Let me first address the question

of stability, and then turn to complexity. 

Meanings of Stability

Part One of this essay described the prominence of notions of equilibrium, sta-

bility, and constancy in the thinking of Fechner, Bernard, and others, and the

range of meanings these terms took on in nineteenth-century discussions of

vital phenomena. What does it mean to speak of the constancy (or stability) of

the internal environment of an organism, and what relation is there between

this notion and the properties discussed by physical chemists under the same

name? A.V. Hill and others took a significant step forward in the early twentieth

century with their clarification of the distinction between equilibrium (as un-

derstood in closed mechanical and chemical systems) and steady states (which

necessarily refer to open systems). This important distinction was not enough

to remove all ambiguity, however. Many different kinds of steady states could

be described, some clearly amenable to treatment by the available methods of

physics. But, crucially, the kinds of “steady state” in which physiologists were

most interested—“conditions maintained constant by delicate governors and

by a continual expenditure of energy”—could not.64 Indeed, it was because

physiological stability (or equilibrium) could not be assimilated either to the

equilibria or to the steady states of traditional physics that Walter B. Cannon

felt compelled to introduce the new term homeostasis. 
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But with the arrival of techniques for analyzing nonlinear dynamical sys-

tems, the compass of physics was substantially enlarged, now extending beyond

the lowest-order approximations mandated by the assumption of linear inter-

actions. Of particular significance here is the fact that physics now encompassed

the entire realm of phenomena for which mathematically stable solutions could

be found to the corresponding different equations. This extension encouraged

the assumption that all phenomena exhibiting stability, in whatever sense of

the term, could be subsumed under the new set of modeling techniques, and

with that assumption came a widespread reversion to the category of stability

as the operative umbrella for self-organizing phenomena. 

Attractors are, as it were, attractive, and in more senses than one. Techni-

cally, the term refers to a subset of phase space (a point, a curve, or a space) to

which the solutions of a nonlinear set of differential equations (a dynamical

system) eventually converge, provided that the system starts out in what is called

a basin of attraction. Trajectories that get close enough to the attractor must re-

main close even if they are slightly disturbed. In other words, attractors are lures

for trajectories in phase space. But they are conceptual lures as well, inviting

the expansion of the term to refer to many different kinds of stability, robust-

ness, or homeostasis. Thus, for instance, Stuart Kauffman wrote, “For a dy-

namical system . . . to be orderly, it must exhibit homeostasis; that is, it must

be resistant to small perturbations. Attractors are the ultimate source of home-

ostasis as well, ensuring that a system is stable.”65 And a little later he asked,

“Is homeostasis hard to create, making the emergence of stable networks vastly

unlikely? Or can it, too, be part of order for free?”66 His answer: yes, home-

ostasis too can be part of order for free.
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In a similar extension, Kauffman also subsumed the phenomenon of ro-

bustness (of long-standing interest to engineers, and one that has become

of enormous interest to biologists in recent years) under the same category.

Concerned with how evolution could have led to the construction of more

robust systems, he wrote, “Nonequilibrium systems can be robust as well.

A whirlpool dissipative system is robust in the sense that a wide variety of

shapes of the container, flow rates, kinds of fluids, and initial conditions of

the fluids lead to vortices that may persist for long periods.”67 These vari-

ous terms—stability, homeostasis, robustness—have been employed in many

different contexts to describe many different kinds of phenomena, and the

question must be asked: Can the various phenomena to which they refer in

fact be so easily assimilated, the terms so readily interchanged? Have Cannon’s

(or Hill’s) concerns been met by the mathematics of nonlinear dynamical

systems? And what about the robustness of engineered systems (e.g., air-

planes or the Internet) with respect to the kinds of disturbances engineers

worry about, disturbances that need not be small? Can the robustness of sys-

tems in response to such disturbances also be explained in terms of Lyapunov

stability?

The terms stable and robust have a common colloquial sense, and even in

the technical literature they are often used interchangeably. But neither has a

clear technical meaning unless we first specify both the feature of interest and

the kinds of disturbance that threaten its survival or persistence. And gener-

ally, the term robustness, especially as used in engineering and biology, encom-

passes a far greater range of both features and disturbances. In particular, many

features of complex systems, and many kinds of disturbance, are difficult if not

impossible to quantify. For example, what if we are interested in the persist-

ence of a system’s architecture through changes in its composition; the per-

sistence of a function through changes in components or architecture; or the

persistence of an organism through changes in the structure or composition of

its environment? Furthermore, as David Krakauer has pointed out, it is often

necessary to consider the effect of multiple disturbances acting on multiple

levels.68 Stability theory provides powerful methods for analyzing the effects of

small perturbations of well-defined parameters on equally well-defined variables,
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but these comprise only a small fraction of the problems with which engineers

and biologists are concerned.69

Also, although many of the systems treated by the methods of nonlinear

dynamics are energetically open, they are not generally open to material or

informational input or output. Indeed, the widespread use of these methods

in their field has been a chief complaint of control theorists. Where classi-

cal control theory allowed for the explicit inclusion of many different kinds

of input and output, modern control theory based on nonlinear differential

equations does not. Eduardo Sontag wrote, “the [classical] control theory

formalism—in contrast to dynamical-systems theory, which deals with iso-

lated systems—is not only reasonable, but natural.”70 And in a similar vein,

Jan Willems, another control theorist, complained that while the mathe-

matics coming from “planetary motion, the n-body problem and Hamil-

tonian dynamics” has certainly proven fruitful for many kinds of problems,

the question arises as to whether “closed systems, as flows on manifolds and

dx/dt = f(x), form a good mathematical vantage point from which to embark

on the study of dynamics.”71 In Willems’s view, they do not, for they fail to

account for the dynamical interaction of the system with the specific envi-

ronment in which the system is embedded. “Twenty-five years ago,” he wrote, 

it was my hope that system theory, with its emphasis on open systems, would

by now have been incorporated and accepted as the new starting point for

dynamical systems in mathematics. Better, more general, more natural, more

apt for modeling, offering interesting new concepts as controllability, ob-

servability, dissipativity, model reduction, and with a rich, well developed,

domain as linear system theory. It is disappointing that this didn’t happen.

What seemed like an intellectual imperative did not even begin to happen.

Mathematicians and physicists invariably identify dynamical systems with

closed systems.72
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Meanings of Complexity: Organized vs. Disorganized Complexity

There remains a final point to be made, and it may be the most important.

Analyses of nonlinear dynamical systems clearly demonstrate the ease with

which complexity can be generated, but notably lacking from such demon-

strations is any account of the properties for which Immanuel Kant originally

introduced the term self-organization. The patterns that are observed to emerge

spontaneously in the systems studied thus far are complex (sometimes extremely

so), but they remain patterns without meaning. Stripes, rolls, whirls, eddies are

all phenomena indicative of complex, nonlinear dynamics; they are phenom-

ena that can only be found in systems that share with organisms the property

of being open, far from equilibrium, dissipative. But they still lack the prop-

erties that make organisms so insistently different from physical systems. Most

notably, they lack function, agency, and purpose. Perhaps the simplifications

assumed in order to render a system tractable (given the tools currently avail-

able) are so drastic—typically, these assumptions rob both the interacting ele-

ments and their distribution in space of all structure—that they effectively

preclude such quintessentially biological properties. In any case, no one has yet

succeeded in offering an account of how function, purpose, or agency might

emerge from the dynamics of effectively homogeneous systems of simple ele-

ments, no matter how complex those dynamics might be. It would seem, and

indeed it has been suggested, that these properties require an order of com-

plexity going beyond what can spontaneously emerge out of complex interac-

tions between simple elements—an order of complexity that a number of

researchers have come to refer to as organized complexity.

Warren Weaver, writing in 1948, may have been the first to call attention to

the problem—a problem that he saw as being most clearly evident in, but not

restricted to, the life sciences. He lauded nineteenth-century developments in

probability theory and statistical mechanics that permitted so great an advance

over the science of mechanics that dealt with “simple problems” and allowed

us to “deal with what we may call problems of disorganized complexity.”73 But

those methods, he continued, leave “a great field untouched”—the field of

“organized complexity”: 

One is tempted to oversimplify and say that scientific methodology went from

one extreme to the other . . . and left untouched a great middle region. The
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importance of this middle region, moreover, does not depend primarily on the

fact that the number of variables involved is moderate large compared to two,

but small compared to the number of atoms in a pinch of salt. . . . Much more

important than the mere number of variables is the fact that these variables are

all interrelated. . . . These problems, as contrasted with the disorganized situ-

ations with which statistics can cope, show the essential feature of organiza-

tion. We will therefore refer to this group of problems as those of organized

complexity. What makes an evening primrose open when it does? Why does

salt water fail to satisfy thirst? . . . What is the description of aging in bio-

chemical terms?74

Picking up on Weaver’s argument fourteen years later, Nobel laureate Her-

bert Simon argued that organized complexity was complexity with an archi-

tecture. More specifically, the architecture that seems to characterize complex

systems in the behavioral and life sciences is one of hierarchical composition

(or modularity), whereby a system “is composed of interrelated subsystems,

each of the latter being in turn hierarchic in structure until we reach some low-

est level of elementary subsystem.”75 Above all, Simon argued (persuasively)

that such an architecture allows us to make sense of the rapidity with which

biological complexity has evolved.

Today, one of the most articulate proponents of organized complexity is the

biologist John Mattick.76 He too has focused on the question of architecture,

arguing that the organization of complexity is mandated by the meaningless-

ness of the structures generated by the sheer combinatorics of complex inter-

actions: “[B]oth development and evolution have to navigate a course through

these possibilities to find those that are sensible and competitive.”77 More specif-

ically, he has claimed that “organized complexity is a function of regulatory

information,” and accordingly he reads the recently discovered system of
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RNA-based regulation as evidence of a new control architecture that came into

being in the Cambrian era and made multi-cellular life possible.78

Addressing a question similar to Mattick’s, Walter Fontana and Leo Buss

have concluded that “the traditional theory of ‘dynamical systems’ is not

equipped for dealing with constructive processes. Indeed, the very notion of

‘construction’ requires a description that involves the structure of objects. Yet,

it was precisely the elimination of objects from the formalism that make dy-

namical systems approaches so tremendously successful.”79 The main problem,

they argue, is that although conventional dynamical systems theory is “well-

suited to treat changes in the magnitudes of quantitative properties of fixed ob-

ject species, [it is] ill-suited to address interactions that change the objects

themselves.”80 This, of course, is precisely what characterizes objects of bio-

logical systems, crafted by evolution so that they are subject to change not only

by external insult, but also by the internal dynamics of the system. As Fontana

and Buss put it, “Mutation is to construction like perturbation is to dynam-

ics.”81 They call their own interesting effort to expand the traditional theory

to include objects, their internal properties, their construction, and their

dynamics constructive dynamical systems.

CONCLUS ION

To Kant, it seemed “contrary to reason” that “raw material could have origi-

nally formed itself according to mechanical laws, that life could have origi-

nated from the nature of the lifeless, and that matter could have arranged itself

in the form of a self-maintaining purposiveness.”82 Yet he did not rule out the
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possibility that it might have done so. The “reason” to which he refers, and

which he finds so inadequate to the task, is human reason. Perhaps he was

right, perhaps the task is just too difficult—too large—for the mind to en-

compass. Certainly, 200 years of effort have produced a number of challeng-

ing proposals, often enormously fruitful even while promising more than could

be delivered. Yet it remains the case that no one has succeeded in doing for

biology what Newton did for physics: construct a satisfying account either of

the origin of life or of its organization, in terms that can be laid out in a few

graspable equations. 

From cybernetics and dynamical systems theory, we have learned of the im-

portance of feedback and nonlinear interactions. From Herbert Simon and

the many computer scientists who followed his lead, we have learned of the

importance of composition and hierarchical construction. From recent work

in systems biology, a multifaceted interdisciplinary effort triggered by the se-

quencing of the human genome and forged with the aim of “Putting Humpty

Dumpty Together Again,”83 we have learned of the importance of particular-

ity, of heterogeneity, of architecture, and of large numbers. We have learned

that a science of self-organized complexity will have to take into account

processes of self-assembly and self-organization in multilevel systems, operat-

ing on multiple spatial and temporal scales through multilevel feedback, in

which the internal structure and properties of the component elements are

themselves responsive to the dynamics of the system. Rather than trying to

transcend the particularities of the system through statistical averaging and

placing one’s confidence in the significant emerging patterns of maximum

likelihood, we may find the secrets of biological organization residing precisely

in the details that have been washed away. It may be, as suggested by the study

of engineered systems, that the most biologically relevant are usable patterns

arising from such particularities with only low likelihood. The work of John

Doyle, a control theorist who has studied design principles for functional ar-

chitectures in both living and technological systems, provides crucial support

for innovative theorists like Mattick. According to Doyle and his colleagues,

close examination of the Internet and other technologies shows that the best-

performing topologies are precisely those with low likelihood. Indeed, the au-

thors conclude that the “likely” topologies “have such bad performance as to
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make it completely unrealistic that they could reasonably represent a highly

engineered system.”84

To be sure, Kant’s problem still has not been solved. But perhaps the task is

now defined with sufficient clarity to support a degree of optimism. There may

not be any consensus about the best terms in which to describe the organized

complexity exemplified by living organisms, but the challenge has been clearly

laid out. Also, it remains uncertain just what kind of explanation the most so-

phisticated models coming out of systems biology might yield—whether, for

instance, such explanations will fall within the range of human reason, gras-

pable by our cognitive capacities, or whether they will require reliance on com-

puters that are so much better at handling complexity than we are. But that is

another question altogether. Perhaps, in the end, if and when we succeed in

explaining just what it is that is so distinctive about biological entities, Kant

will have been proven right—right, that is, about the relation between such

accounts and the capacities of human judgment. 
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