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Organization at criticality enables processing of

time-varying signals by receptor networks

Angel Stanoev, Akhilesh P Nandan & Aneta Koseska*

Abstract

How cells utilize surface receptors for chemoreception is a recurrent

question spanning between physics and biology over the past few

decades. However, the dynamical mechanism for processing time-

varying signals is still unclear. Using dynamical systems formalism

to describe criticality in non-equilibrium systems, we propose

generic principle for temporal information processing through phase

space trajectories using dynamic transient memory. In contrast to

short-term memory, dynamic memory generated via “ghost” attrac-

tor enables signal integration depending on stimulus history and

thereby uniquely promotes integrating and interpreting complex

temporal growth factor signals. We argue that this is a generic

feature of receptor networks, the first layer of the cell that senses

the changing environment. Using the experimentally established

epidermal growth factor sensing system, we propose how recycling

could provide self-organized maintenance of the critical receptor

concentration at the plasma membrane through a simple, fluctua-

tion-sensing mechanism. Processing of non-stationary signals, a

feature previously attributed only to neural networks, thus uniquely

emerges for receptor networks organized at criticality.
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Introduction

In a wide variety of biological processes including embryogenesis,

immune cells motility, wound healing or cancer metastasis, cells

sense and interpret time-varying chemical signals that reflect the

non-stationary environment to which they readily adapt. It has

been, for example, demonstrated that time-varying growth factor

signals not only trigger corresponding phenotypic output in cells,

but a range of input frequencies can bias towards a specific function

(i.e. differentiation), irrespective of growth factor identity (Ryu et al,

2015). Cells can also direct their motility through continuously

changing patterns of chemical signals such as travelling waves of

chemoattractants (Skoge et al, 2014), using memory of stimulus

history to integrate conflicting signals (Foxman et al, 1999; Welf

et al, 2012). Generally, a transient memory of stimulus history is a

main requirement for systems that process time-varying signals, as

a means to integrate temporal dependencies inherent in the signal

(Hochreiter & Schmidhuber, 1997; Maass et al, 2002).

How cells sense the growth factors from their environment has

been extensively studied using equilibrium and non-equilibrium

descriptions of sensing through ligand binding/unbinding dynamics

for stationary levels of receptors and ligands (Berg & Purcell, 1977;

Bialek & Setayeshgar, 2005; Wang et al, 2007; Rappel & Levine,

2008; Endres & Wingreen, 2009; Mora & Wingreen, 2010). These

studies provide analysis of the fundamental limits of ligand concen-

tration sensing by direct mapping to receptor occupancy that serves

as a proxy for receptor activity. However, these mapping properties

cannot satisfy and thereby do not apply to systems where memory

requirements are necessary for integrating time-varying signals.

Receptor activity dynamics, on the other hand, is not only influ-

enced by ligand binding dynamics, but rather reflects the dynamics

of the biochemical network in which the receptor is embedded (Sta-

noev et al, 2018). Non-trivial dynamical solutions can hereby

emerge, in particular due to recurrent interactions between the

network components (Reynolds et al, 2003; Tischer & Bastiaens,

2003). In a broad range of biological systems, positive feedback

interactions give rise to bistable dynamics, which is considered to

underlie memory features (Xiong & Ferrell, 2003; Wang et al, 2009;

Burrill & Silver, 2010; Doncic et al, 2015). However, signal-induced

switching between basal and high receptor activity states, and

thereby permanent memory formation, limits response to upcoming

stimuli (Stanoev et al, 2018). To overcome equivalent limitations of

stable states, information processing in the context of real-time

computations of sensory stimuli by neural microcircuits, universal

frameworks using transient dynamics and state-dependent trajecto-

ries have been proposed (Maass et al, 2002; Durstewitz, 2003;

Jaeger & Haas, 2004). These formalisms typically contain high-

dimensional state representations and non-linear intrinsic activation

dynamics of the neuron components (Maass et al, 2002; Jaeger &

Haas, 2004; Ozturk & Principe, 2005) and thus cannot be directly

translated to biochemical networks. Therefore, a conceptual frame-

work that describes processing of time-varying signals on the level

of cellular sensing networks is lacking.

We propose here a saddle-node (SN) “ghost” as a minimal

dynamical mechanism that enables processing of time-varying
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growth factor signals. Critical organization in a vicinity of a SN

bifurcation enables transient memory of receptor activity to be real-

ized via the metastable “ghost” state. In contrast to the short- or

long-term memory that stem from stable attractors, we demonstrate

that this transient memory is dynamic and thereby uniquely

promotes integrating and interpreting complex temporal growth

factor signals. A clear distinction between a transient memory that

reflects a dynamical state to a kinetic relaxation of receptor activity

in terms of the signal integration capabilities is also shown. Using

single-molecule reaction–diffusion simulations on the other hand,

we depict how such dynamic memory can be realized on molecular

level. Based on the experimental findings that the epidermal growth

factor receptor (EGFR) system operates at critical organization (Sta-

noev et al, 2018), we propose a fluctuation-sensing mechanism as a

basis for self-organized maintenance at the critical region and

discuss its limitations. We further discuss why organization at criti-

cality represents a generic dynamical mechanism which enables

processing of time-varying growth factor signals by cell surface

receptors.

Results

Organization at criticality enables transient temporal memory of

growth factor signals to be manifested in receptor activity

Systems that sense time-varying signals require memory in order to

integrate the signal information (Hochreiter & Schmidhuber, 1997).

A minimal cellular sensing network that accounts for memory in

receptor activity (Ra) is a two-component toggle switch (Fig 1A),

where the double-negative feedback (DNF) interaction (Reynolds

et al, 2003; Tischer & Bastiaens, 2003; Stanoev et al, 2018) between

the active receptor and an inactivating enzyme (e.g. a phosphatase),

PDNF,a, follows the law of mass action:

dRa

dt
¼ kR Ri a1Ri þ a2Ra þ a3LRað Þ � ĉDNFPDNF;aRa

� �

dPDNF;a

dt
¼ k1 PDNF;i � k2=1PDNF;a � b̂DNFPDNF;a Ra þ LRað Þ

h i

(1)

The system combines autocatalytic receptor activation and

mutual inhibition mechanisms (Fig 1A) that govern the protein state

transitions between the active (Ra, PDNF,a) and inactive (Ri, PDNF,i)

states of the switch components. They are described in further detail

in Materials and Methods with the corresponding parameters.

Bistability in receptor activity is exhibited between two saddle-

node bifurcation points for a broad range of the bifurcation parame-

ter—the PDNF,T/RT concentration ratio / ĉDNF—in the absence of

stimulus input (Fig 1B, green shaded region). The two stable states

correspond to the basal and the high receptor activity states. The

system maintains bistability also for a certain range of inputs

(Fig 1C, green shaded region). The effective input for the cells in

this case is the fraction of ligand-bound receptors (LRa) that reflects

the extracellular ligand concentration (Materials and Methods).

Since the temporal receptor activity dynamics upon changes in

growth factor stimulation is governed by the receptor dose–response

dynamics, it will also depend on the system’s organization in

parameter space (the PDNF,T/RT concentration ratio). We therefore

investigate next whether the stable attractor solutions could underlie

emergence of transient memory in receptor activity.

For PDNF,T/RT concentration ratio that corresponds to organiza-

tion in the bistability region in the absence of growth factors (Fig 1C,

green line), the numerical simulations show irreversible receptor

activation. This is reflected both, in the receptor’s steady-state

response to changes of growth factor doses (Fig 1D, green) and in

the temporal receptor activity profile (Fig 1E, green) upon step-wise

modulation of growth factor input (Fig 1E, grey). The system

thereby exhibits a temporal long-term memory to the presence of

single growth factor stimulus: the receptor activity is irreversibly

maintained at high levels after growth factor removal. In contrast,

for system’s organization in the reversible bistable regime (Fig 1C,

yellow line), the receptor’s activity response displays hysteresis with

respect to the input doses that activate/deactivate it (Fig 1D,

yellow). This induces a short-term memory only regarding the

growth factor dose that activates the system, but the memory is not

reflected in the temporal receptor activity profile (Fig 1E, yellow).

Thus, the receptor activity is not prolonged in time upon removal of

the growth factor input. Temporal response without prolonged

receptor activity after input removal was also observed for PDNF,T/RT

concentration ratios that correspond to organization in the monos-

table regime (Fig 1C and E, blue lines). In this regime however, there

is no hysteresis and thus no memory of the growth factor dose that

activates the system (Fig 1D, blue). These results indicate that both
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Figure 1. Memory manifestation depending on parameter organization.

A Diagram of a two-component toggle switch between active receptors (Ra)

and the deactivating enzyme, protein PDNF,a. Input—fraction of ligand-

bound receptors (LRa). Molecular details described in Materials and

Methods.

B Bifurcation diagram of the R-PDNF toggle switch, depicting Ra response with

respect to PDNF,T/RT, in the absence of input. Shading: blue—monostable

region, magenta—vicinity of the saddle-node (SN) bifurcation point and

green—bistable region. Solid/dashed lines—stable/unstable steady states.

C Two-parameter (LRa, PDNF,T/RT) bifurcation diagram depicting the parameter

space where bistability exists (green area). Vertical lines denote

organization in irreversible bistable (green), critical (magenta), reversible

bistable (yellow) and monostable (blue) organization.*—cusp bifurcation.

D Steady-state receptor activity response for increasing input doses in the

different organizations. Solid/dotted lines—stable/unstable steady states.

Arrows—switch on/off points.

E Temporal receptor activity responses to step-wise modulation of the input

(LRa, grey) for organization in the distinct parameter regimes.

Data information: In (D, E), the colours correspond to the respective system

organization depicted with vertical lines in (C).
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the long- and the short-term memory that result from the presence of

stable attractors do not fulfil the conditions necessary for processing

time-varying inputs. The long-term memory is not transient and

thereby it will inhibit responsiveness to upcoming cues (Stanoev

et al, 2018), whereas the short-term memory only corresponds to the

growth factor dose that activates the system and is not reflected in

the temporal receptor activity profile.

For organization in the vicinity of the saddle-node bifurcation point

(Fig 1B and C, magenta), the numerical simulations demonstrate the

presence of memory of the dose that activates the receptor (Fig 1D,

magenta). The activation of the receptor, similarly as in the reversible

and irreversible bistable regimes, occurs in a switch-like manner at a

threshold input dose, indicating that spurious activation is filtered

out. However, additionally, high receptor activity was transiently

maintained over time after removal of the growth factor (Fig 1E,

magenta). This shows that critical organization confers to the sensing

system a transient memory of the previous input-driven activation.

Saddle-node “ghost” as a dynamical mechanism of transient

temporal memory

To understand how transient memory occurs for critical organization

of the system in the vicinity of the saddle-node bifurcation point, and

in particular how it is distinguished from short- and long-term

memory, we studied qualitatively the dynamical Ra-PDNF,a beha-

viour. We analysed how the phase space trajectories evolve in rela-

tion to the changes in the geometry of the underlying phase space as

a function of a pulsed stimulus. Generally, the relative positioning of

the nullclines, which are determined by the system parameters,

shapes the phase space geometry. In non-autonomous or input-

driven systems, either the geometry of the underlying phase space

can be altered (change in the positioning, shape and size of the

attractors), or its topology (change in the number or stability of the

attractors) (Verd et al, 2014; Jimenez et al, 2017). We also estimated

the associated quasi-potential landscapes (Strogatz, 2018; Fig 2;

Materials and Methods; and Verd et al, 2014) that depict the energy-

like levels associated with the states. The phase space trajectories

flow downhill the landscapes, towards the valleys defined by the

stable steady states.

We first consider organization in the monostable regime (Fig 1B

and C, blue), where the system does not exhibit any memory in

receptor activity (Fig 1E). In this case, the pulsed stimulus induced

changes in the phase space geometry of the system (adding/remov-

ing stimulus: i ! ii=ii ! iii, blue transitions, Fig 2A), thereby trig-

gering continuous and reversible re-positioning of the single steady-

state attractor that captivates the state trajectory. This leads to

receptor response that closely follows the input (Fig 2A left and

inset). However, when in the absence of stimulus, the system is

poised in the valley of basal receptor activity in the double-well

quasi-potential landscape characteristic for the bistable organization

(Fig 1B and C, green), a topological phase space change where this

state vanishes occurs at a threshold signal concentration. This

results in a transition to the high receptor activity state (Fig 2B,

i ! ii green transition), which also explains the previously demon-

strated switch-like response to increased growth factor doses

(Fig 1D, green). Upon signal removal, the reverse topological

change leads to re-establishing of bistability (ii ! iii green transi-

tion). However, the trajectory remains in the occupied high activity

stable steady state (green circle in Fig 2B middle). Thus, the first

pulse will activate the receptors and this will hinder further respon-

siveness to upcoming stimuli due to the long-term memory that

results from this stable attractor organization (Fig 2B left, inset). In

contrast, for organization in the reversible bistable regime, the

changes in the topology of the phase space induced by the pulsed

stimulus allow for reversible switching between the two stable

attractors, the basal and high receptor activity (topological transi-

tions are omitted from Fig 2 for clarity). These topological changes

thereby also guide the phase space trajectory such that the time

spent in the stable attractors is equivalent to the administration time

of the stimuli, resulting in the absence of prolonged receptor activity

upon growth factor removal (Fig 1E, yellow).

When the system is positioned in the vicinity of the saddle-node

bifurcation point (Fig 1B and C, magenta), a supra-threshold input

pulse induces transition from the basal monostable to the high activ-

ity monostable state (Fig 2C, i ! ii magenta transition) via the

bistable region in a switch-like manner (Fig 1D). Upon input

removal, these consecutive topological transitions are reversed.

However, there is a delay between establishing the single stable

attractor (magenta state iii) and the system trajectory converging to

it (magenta state iv), resulting in prolonged receptor activity before

relaxation to basal level (Fig 2C left). This delay results in a tran-

sient memory of receptor activity that does not hinder further

responsiveness of the system (Fig 2C inset).

The transient memory is a consequence of the critical dynamical

behaviour near the SN bifurcation point. In this organization, the

nullclines intersect only once, indicating a single stable steady state

of basal receptor activity. However, they are positioned very close

to one another in the phase space area where the steady state of

high receptor activity is stable for bistable organization (compare

Fig 2B and C, middle), resulting in a quasi-potential landscape with

a very shallow slope (Fig 2C middle, inset). Thus, when the system

transits back from the bistable to the monostable region, the

remnant of the saddle node that disappeared in this transition gener-

ates a metastable state that continues to capture the incoming trajec-

tories (see Movie EV1 for a stochastic simulation of this process).

Such delayed dynamics, different from a slow relaxation kinetics, is

referred to as a feature of a “ghost” attractor (Strogatz & Westervelt,

1989) and has been previously shown in some driven dynamical

systems such as ferroelectrics or semiconductor lasers (Rogister

et al, 2003). We have demonstrated here, however, that saddle-

node “ghost” serves as a unique dynamical mechanism of transient

temporal memory, enabling receptor activity to be maintained at

high levels for a limited period of time after growth factor removal.

Dynamic temporal memory is a prerequisite for processing time-

varying growth factor signals

To integrate and interpret the information contained in time-

varying growth factor profiles however, the transient temporal

memory in receptor activity must be dynamic. In other words, the

total duration of the receptor activity should depend on the previ-

ous stimulus history. We therefore probed the features of the tran-

sient memory resulting from the saddle-node “ghost” using a train

of two subsequent growth factor pulses with inter-pulse interval

shorter than the duration of the memory. The numerical simula-

tions demonstrated that the receptor activity dynamics could
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rapidly adapt to the second growth factor pulse, and the period in

which the receptor activity is maintained high is longer than in the

case of a single pulse stimulation (compare Fig 3A, magenta to

Fig 2C, left). In contrast, the time-frame in which the receptor

activity was maintained high for the other temporal memory mani-

festation, organization in the irreversible bistable regime, was

equivalent as for a single pulse (Fig 3A, green). The receptor activ-

ity profile in the absence of temporal memory on the other hand,

such as for organization in the reversible bistable and monostable

regimes (Fig 3A yellow and blue, respectively), closely followed

that of the growth factor stimuli.

We next simulated 1,000 different non-periodic growth factor

pulse trains by randomly distributing twelve 5-min growth factor

pulses over period of 480 min. The total duration of high receptor

activity, reflecting the degree of history-dependent signal integra-

tion, was estimated for the individual realizations. The resulting

distributions strongly depended on the organization of the system in

parameter space. In the reversible bistable and monostable regimes,

the distributions were narrow and closely reflected the total dura-

tion of growth factor pulses (Fig 3B, yellow and blue), whereas for

irreversible bistable positioning, the receptor activity was constant

over all realizations and equivalent to the integration time (Fig 3B,

green). In contrast, for positioning in the critical vicinity of the SN

bifurcation, the total duration of receptor activity was highly vari-

able (Fig 3B, magenta), reflecting the varying degrees of history-

dependent signal integration that depend on the temporal signature

of the signal profile. This variability is also depicted by the exem-

plary temporal receptor activity profiles following different periodic

growth factor pulse trains (Fig 3D).

For the different growth factor pulse trains, we also estimated

the number of disjoint intervals of receptor activity over the integra-

tion time (black line segments in Fig 3D, middle), thereby reflecting

whether the response follows the temporal partitioning of the signal.

Again, in the presence of dynamic memory, the respective distribu-

tion was broad (Fig 3C, magenta), emphasizing the varying degrees

of partitioning in response to complex signals. In the irreversible

A

B

C

Figure 2. Qualitative Ra-PDNF,a behaviour with respect to phase space changes to pulsed input.

A Left: receptor response (blue) to single growth factor pulse (yellow) and respective profile of ligand-bound receptors (LRa, grey) for positioning in the monostable

regime (PDNF,T/RT = 4.3). Inset: responsiveness to subsequent input pulses. Middle/right: phase space diagram and nullclines intersecting at the basal/high activity

receptor steady state denoted with blue squares/circles, respectively. Blue arrows: phase space transitions upon administering and removal of stimulus (i ! ii, ii ! iii,

respective time points denoted in left plot). Insets: calculated quasi-potential landscapes.

B Same as in (A), only for positioning in the bistable regime (PDNF,T/RT = 2.5). Green arrows: phase space transitions (i ! ii, ii ! iii).

C Same as in (A), for positioning at the critical transition between monostability and bistability (PDNF,T/RT = 2.957). Magenta arrows: signal administration (i ! ii) and

removal (ii ! iii ! iv). The iii ! iv transition and the associated phase space plot demonstrate the existence of a “ghost” attractor. Parameters for (A–C) as in Fig 1.
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bistable organization, a single disjoint interval was observed for all

pulse train realizations (Fig 3C, green), since the receptor is irre-

versibly activated upon the first pulse. In the reversible bistable and

monostable organization on the other hand, narrow skewed

distributions were identified (realizations between 7–8 and 12 were

identified, Fig 3C, yellow and blue). This reflects small degree of

partitioning that results from immediate signal re-occurrences

within the relaxation time of the system.
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Figure 3. Dynamic transient memory uniquely enables processing time-varying growth factor signals.

A Receptor responsiveness to two subsequent 5-minute growth factor pulses for different organizations of the system, denoted by colours as in Fig 1C. Yellow shaded

area: growth factor pulse duration. Grey temporal profile: input (LRa).

B Distribution of total duration of receptor activity (as a fraction of total time, 480 min) calculated for growth factor pulse trains constructed from 12 subsequent

5-min pulses randomly distributed over time. Different colours denote responses for different system’s organization (equivalent to Fig 1C). The distributions are

generated from 1,000 independent realizations.

C Distribution of number of disjoint intervals of receptor activity (top black lines in D), estimated for the growth factor pulse trains in (B).

D Exemplary temporal receptor activity profiles for different growth factor pulse trains realizations for critical organization. Black line segments: disjoint intervals of

receptor activity. Yellow shaded area: growth factor pulse duration. Grey temporal profile: input (LRa).

E Dynamic range of receptor activation for input that activates the system (LRa = 0.15), as a function of
PDNF;T
RT

. Parameters for (A–E) as in Fig 1.
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To increase the degree of integration of a monostable system in

general, its kinetic parameters can be tuned to match the relaxation

time to the transient memory length (Fig EV1, Materials and Meth-

ods). However in this case, a slow decay rate will greatly decrease

the number of disjoint intervals in comparison with the one for criti-

cal organization, due to the absence of rapid reversibility in the

response. Increasing the decay rate on the other hand will diminish

the history-dependent signal integration, and the total duration of

receptor activity will resemble the total duration of growth factor

pulses. Thus, to avoid the trade-off between history-dependent

signal integration and adaptation to the temporal partitioning of the

signal, the response must exhibit transiently maintained steady

levels of high receptor activity, followed by rapid reversibility to

basal levels. Hence, simple relaxation kinetics of a monostable

system cannot account for processing time-varying signals by recep-

tor networks.

At the critical organization, the emergence of the dynamic

memory is additionally complemented with a maximal increase in

receptor activity to minimal growth factor dose that activates the

system. Scanning the PDNF,T/RT ratio demonstrated that the dynamic

range of the response amplitude rapidly increases when transiting

from the monostable towards the bistable regime, with a clear peak

at the SN bifurcation (right to left, Fig 3E). These results therefore

demonstrate that critical organization is crucial for robust respon-

siveness to and processing of time-varying growth factor signals.

Molecular realization of transient memory in receptor activity

To understand how transient memory can be realized on a molecu-

lar level, we studied how transient receptor activity can be

generated and maintained in the absence of stimulus using single-

molecule reaction–diffusion simulation framework on a two-dimen-

sional surface (Materials and Methods). By analogy to the main

model (Equation 1), single receptor molecules (R) are susceptible to

activation, and once active they can propagate their state via direct

contact to other inactive molecules. The receptor molecules can

become susceptible again following deactivation by the active PDNF
molecules, with which they interact in double-negative feedback

manner. To characterize the activity dynamics of the system, we

use the basic reproduction number R0 (Dietz, 1993) that reflects the

transmission potential—the average number of newly activated

molecules by a single active receptor molecule in the course of its

active lifetime, i.e. before its deactivation. If R0 < 1, the overall

receptor activity in the system decays to a basal level (Fig 4A, top),

whereas for R0 > 1, the system exhibits supercritical behaviour and

the receptor activity propagates in a branching fashion across the

cell surface (Fig 4A, bottom).

To relate the R0 values to the qualitative changes observed when

crossing the saddle-node bifurcation points, we derived analytically

the dependence of R0 to the main parameter that determines the

positioning of the system in the vicinity of the SN bifurcation point.

For simplicity, we use cDNF as a bifurcation parameter, which repre-

sents the specific reactivity of PDNF to Ra (cDNF / PDNF;a=RT , Fig 1B).

The activation transmission potential in every point of the macro-

scopic phase space can be therefore described as R0 �
a2RT 1�Rað Þ

cDNFPDNF;TPDNF;a
,

where a2RT 1� Rað Þ and 1= cDNFPDNF;TPDNF;a
� �

are the average molec-

ular activation rate and lifetime, respectively (kinetic parameters

given in Materials and Methods). The estimations show that when

initiated at the basal state, hence with a fully susceptible population

(Ra ¼ 0; PDNF;a ¼ k1
k1þk2

), the critical threshold R0 = 1 is crossed at the

cDNF value corresponding to SN1 (Fig 4B bottom and middle) due to

R0 ¼
a2RT k1þk2ð Þ
cDNFPDNF;Tk1

/ 1
cDNF

. For cDNF smaller than SN1, activity propaga-

tion is ensued as R0 > 1. However, once the system reaches the high

activity steady state, R0 is maintained at 1 (Fig 4B top and middle),

because mass conservation limits the number of susceptible mole-

cules. The system loses the transmission potential for cDNF values

higher than SN2.

Looking into the spatial organization, the reaction–diffusion

simulations demonstrated that the high activity state was main-

tained over the whole integration time for bistable organization

(Fig 4C, top and Movie EV2). For critical organization, the simula-

tions show that local pockets of active receptors are sustained, that

transiently maintain and thereby further propagate the high activity

state across the surface to other local pockets (Fig 4C, middle and

Movie EV3). This results in interchanging periods of inactivation

and re-activation bursts around the “ghost” attractor state, mani-

fested as prolonged receptor activity before the system settles to

basal state. Thus, the proximity of R0 to 1 together with the diffu-

sion-induced local spatial inhomogeneities in PDNF,T/RT concentra-

tion effectively increases the local transmission potential above the

critical value 1 in certain areas, thereby generating local pockets of

active receptor that transiently sustain and further propagate this

state across the surface (Movie EV4). In contrast, for organization in

the monostable region where R0 < 1, the system rapidly converged

to basal receptor activity state (Fig 4C, bottom and Movie EV5).

Self-organized positioning at criticality by fluctuation sensing

Positioning at criticality uniquely endows receptor networks with

the features necessary for processing time-varying growth factor

signals. Recently, such organization has been experimentally

revealed for the proto-oncogenic epidermal growth factor receptor

(EGFR; Stanoev et al, 2018). Since it is unclear how the critical posi-

tioning is maintained over time despite other regulation mecha-

nisms that reduce the EGFR concentration on the membrane, we

use this example to investigate which molecular features of receptor

tyrosine kinases are crucial for this. We note that we seek a qualita-

tive rather than quantitative description of a possible dynamical

mechanism that will maintain critical organization of receptor

networks.

The EGFR activity dynamics is regulated by a four-component

spatially distributed network, where the interactions of EGFR (R)

with three specific membrane-associated enzymes—protein tyrosine

phosphatases via a double negative (PDNF, PTPRG), a negative feed-

back (PNF, PTPN2) and a negative regulation (PNR, PTPRJ), are

coupled via the vesicular trafficking of the receptor (Fig 5A).

Ligand-bound EGF receptors (LR) promote autocatalytic activation

of ligandless receptors (red arrows; Reynolds et al, 2003; Tischer &

Bastiaens, 2003; Baumdick et al, 2015, 2018) and thereby transfer

information about the extracellular environment before they are

internalized and degraded (LRE; Schlessinger, 2002; Baumdick et al,

2015). The vesicular recycling, on the other hand, brings the inter-

nalized and deactivated ligandless EGFR (RE) back to the plasma

membrane, establishing the EGF signal processing network.
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Numerical simulations using a two-compartment model that takes

the trafficking-induced redistribution of receptors explicitly into

account (Equation (2) in Materials and Methods) showed that the

unidirectional internalization of the ligand-bound receptors

decreases the EGFR concentration on the plasma membrane, which

rapidly shifts the operation of the system into the monostable

regime in the absence of compensating mechanisms. As a result, the

dynamic range of the activation amplitude is decreased and there is

loss of the transient memory (Fig 5B, compare blue to magenta

lines). This implies that dynamical maintenance of EGFR concentra-

tion (the determining bifurcation parameter) at the plasma

membrane is required for existence of transient memory. Thus, to

counteract the shift of the system away from the SN bifurcation, the

loss of EGFR receptors must be compensated with an increase of the

recycling rate of ligandless receptors. A two-parameter bifurcation

analysis shows how the position of the SN bifurcation depends on

these two parameters (Fig 5C) and thus how krec up-regulation, as a

result of the decrease in total receptor concentration RT, would

effectively retain the system in the vicinity of the SN for several

subsequent growth factor pulses (Fig 5D, compare red with blue

dots in Fig 5C). It should be noted, however, that the SN positioning

asymptotically approaches a minimal receptor concentration below

which the receptor recycling rate can no longer sufficiently compen-

sate for the loss of receptors from the membrane (Fig 5C, dashed

line). Additionally, the receptor recycling machinery may also

impose an upper bound on krec, further limiting the resetting capac-

ity. How many pulses are required to bring the system to the limit

depends on the pulse duration and growth factor dose. Thereafter,

the system will rely on synthesis of new receptors to re-establish

critical positioning (not included in our model).

Dynamical regulation of the recycling rate and thereby mainte-

nance of the critical organization require a mechanism for sensing

receptor abundance to estimate the divergence from the saddle-node

bifurcation point, coupled to an actuating mechanism to translate

this positioning into a corresponding recycling rate. One possibility

to realize the sensing of receptor abundance is through the

t0

t1

t2

t3
R0<1

t0

t1

t2

t3

R0>1

Ra

PDNF,a

DNF

~

CBA

Figure 4. Molecular realization of transient memory.

A Schematic representation of activity propagation in relation to microscopic single-molecule activation/inactivation dynamics. Top: diminished activity for R0 < 1.

Bottom: propagated activity for R0 > 1.

B Basic reproduction number for varying ĉDNF values estimated by single-molecule reaction–diffusion simulations. Middle: estimated high (dark red) and basal (light

red) receptor activity states, black lines—estimated bifurcation profile; magenta—critical behaviour. Top/bottom plots: R0 values around the higher (top) and basal

(bottom) stable steady state. From N = 10 realizations for each ĉDNF value, mean � SD is shown.

C Snapshots of reaction–diffusion simulations for organization in bistable regime (ĉDNF = 4.55=ðr2pÞ, top), criticality (ĉDNF = 4.95=ðr2pÞ, middle) and monostable regime

(ĉDNF = 6=ðr2pÞ, bottom), where r is the bimolecular interaction radius. Empty/filled circles denote inactive/active receptor molecules. PDNF molecules are not

displayed for clarity. Details of the simulations and other parameters in Materials and Methods.
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fluctuations in the active state of the receptor: the dominant

frequency in basal EGFR activity fluctuations estimated as an aver-

age of multiple stochastic activity profiles (Materials and Methods)

is minimal in the vicinity of the saddle-node bifurcation (Rogister

et al, 2003; Fig 5E). This is because the temporal signature of the

fluctuations depends on the alignment of the nullclines (Durstewitz,

2003), and thus in this case, by the concentration of the receptors

that determines the positioning in parameter space. Therefore, an

krec actuating component that would readout these fluctuations

through a low-pass filter can provide such coupling and maintain

the critical organization of the system (Fig 5F). Previous experimen-

tal work has demonstrated that Akt, a serine–threonine kinase

downstream of EGFR, promotes recycling of EGFR (Er et al, 2013;

Stallaert et al, 2018), and furthermore, the Akt pathway has been

implicated to serve as a low-pass filter (Fujita et al, 2010), suggest-

ing it as a possible actuating component. Although the proposed

implementation details of this dynamical mechanism remain to be

experimentally probed, it represents a minimal sensing-actuation

mechanism that dynamically maintains the system at the critical

position based on the molecular details of the system.

Discussion

Cells continuously sense and interpret time-varying chemical signals

that reflect their changing environment, as a means to determine

their functional output (Foxman et al, 1999; Welf et al, 2012; Skoge

et al, 2014; Ryu et al, 2015). As receptors are the first layer of the

cell that interprets the complex signals, their activity must exhibit

transient memory features in order to enable sensing and interpret-

ing of the temporal dependencies inherent in the complex signals.

Here, we demonstrated that positioning of the receptor system in

the vicinity of a saddle-node bifurcation provides a unique mecha-

nism for processing time-varying growth factor signals. The meta-

stable state that is thereby generated facilitates a dynamic transient

memory which is a prerequisite for the computations. In contrast,

for organization in the bistable regime—a classical example how

“memory” is realized, receptor activity is sensitive neither to the

number of growth factor pulses, nor to the temporal distribution of

the signal.

It has been experimentally demonstrated that the EGFR sensing

system is organized in a vicinity of a saddle-node bifurcation

A B C

D E F

Figure 5. Dynamical mechanism for self-organization at criticality.

A Schematic representation of the spatially distributed EGFR network. At the plasma membrane, ligandless EGFR (R) is coupled to PTPRG (PDNF) in a double-negative

feedback manner and negatively regulated by PTPRJ (PNR). Activated receptors are then endocytosed in the perinuclear area (RE), deactivated by PTPN2 (PNF) and

recycled back to the plasma membrane, which amounts to a spatially established negative feedback. Ligand (L) binding converts R to ligand-bound species (LR) that

are internalized (LRE) and subsequently degraded. LR promotes autocatalytic activation of R (red arrows).

B Response of active (blue) and ligand-bound (grey) receptors at the cell surface, when degradation of ligand-bound receptors is explicitly considered for critical

organization (RT = 1.3499; Materials and Methods, compared to the case without degradation (dashed magenta line).

C Two-parameter (krec, RT) bifurcation diagram depicting the positioning of the saddle-node bifurcation point SN2 (magenta line). Green shaded area: bistability region

and red dashed line: asymptotic limit of the saddle-node positioning.

D Dynamically maintained transient memory in receptor activity (red) upon train of stimulus pulses. Grey line—fraction of ligand-bound receptors.

E Continuation plot of receptor activity (red) as a function of total receptor concentration and dominant frequency of fluctuations in basal receptor activity (blue)

estimated for specific RT values. Solid/dashed red line—stable/unstable steady states. Shading equivalent to Fig 1B.

F Schematic representation of a fluctuation-sensing and actuating system that dynamically poises receptor concentration at the plasma membrane in the vicinity of

the saddle-node bifurcation point. Parameters: Materials and Methods.
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(Stanoev et al, 2018). However, given that the critical organization

uniquely enables responsiveness to time-varying growth factor

signals, we propose that this is likely a generic feature of receptor

sensing networks. In particular, several members of the receptor

tyrosine kinase (RTK) family, such as FGFR, PDGFR and VGFR,

share similar response and trafficking dynamics with EGFR

(Miaczynska, 2013) that helps us substantiate this hypothesis. As

for EGFR, it has been also experimentally verified for the aforemen-

tioned RTKs that ligand-induced phosphorylation initiates produc-

tion of reactive oxygen species (ROS) via PI3K-induced activation of

the NADPH oxidase complex (Chen et al, 2007; Paletta-Silva et al,

2013; Ornitz & Itoh, 2015) at the plasma membrane, thus facilitating

oxidation and subsequent reversible inactivation of the protein tyro-

sine phosphatases in the vicinity. This establishes the conditions for

these RTKs to be embedded in a double-negative feedback network

motifs, equivalently to the ROS-mediated EGFR-PTPRG toggle

switch (Stanoev et al, 2018), ensuring the presence of a SN bifurca-

tion. Even more, ligand-induced Akt activation which has been

demonstrated to promote vesicular recycling of these receptors

(Miaczynska, 2013; Stallaert et al, 2018) could, in a similar manner,

maintain the sensing systems at the critical positioning. As these

receptors play a key role during embryogenesis, adult physiology

and pathophysiology (Miaczynska, 2013) during which processing

time-varying growth factor signals is prevalent, it remains to be

experimentally verified that similar to EGFR, these systems also

have critical organization.

On the other hand, the largest family of signalling receptors, the

G-protein coupled receptors (GPCRs), detect complex chemokine

signals and transduce them to the actin network to direct cell migra-

tion (Chung et al, 2001). Within this complex environment, such as

the movement of the social amoeba D. discoideum through travel-

ling waves of chemoattractant, the dynamics of the receptor

networks allows for the cell to maintain memory of the signals in

order to sustain its directed forward motion (Skoge et al, 2014). In

the case of GPCRs, a double-negative feedback and thereby associ-

ated SNs have been identified within the receptor network, between

the direct downstream components that GPCRs activate, PI3K and

PTEN (Matsuoka & Ueda, 2018). Similarly as in the EGFR sensing

systems, the activity dynamics of these receptors is also tightly regu-

lated by the endosomal trafficking. Even more, this regulation is

mediated via PI3K, an Akt activator (Uchida et al, 2017). Thus,

given that conditions for critical organization and maintenance in

the vicinity of a SN bifurcation are also possible, it is likely that

similar mechanism can confer responsiveness of GPCRs to time-

varying growth factor signals.

The proposed conceptual framework therefore implies that the

notion of “computation with stable attractors” (Turing, 1937; Hop-

field, 1984; Hirsch & Baird, 1995) likely should be adapted for cellu-

lar processing of non-stationary signals. Crucial in the proposed

information processing with state-dependent trajectories is the

dynamic transient memory emerging at criticality. This ensures

history-dependent signal integration, feature that was previously

only attributed to large-scale neural networks (Beggs & Plenz, 2003;

Haldeman & Beggs, 2005; Chialvo, 2006; Kinouchi & Copelli, 2006;

Legenstein & Maass, 2007; Levina et al, 2007). We propose that this

dynamical mechanism uniquely balances stability with overall cellu-

lar responsiveness, as pervasive for systems that operate in a contin-

uously changing environment.

Materials and Methods

Modelling the R-PDNF toggle switch

With Equation (1), we model a minimal network motif that exhibits

bistability, a double-negative feedback, using law of mass action.

Both the receptor and the deactivating enzyme have active (Ra,

PDNF,a) and inactive (Ri, PDNF,i) states, and their state transition rates

are described by the model equations. Therefore, mass is conserved

in the system and the total protein concentrations of both species

(RT, PDNF,T) are constant parameters. This allows Ri = 1 � Ra and

PDNF,i = 1 � PDNF,a to be expressed as fractions from the total

protein concentrations. Since the fraction of ligand-bound receptors

(LRa) is mapped to the cell from the ligand concentration in the

environment (Stanoev et al, 2018), it is considered as an input

parameter in the system.

Autonomous, autocatalytic and ligand-bound-induced activation

of ligandless Ri ensue from bimolecular interactions with distinct

rate constants a1-3, respectively. Other parameters are as follows:

k2/1—inactivation/activation constant ratio of PDNF, kR, k1—kinetic

constants that do not influence the steady-state values of the

system, b̂DNF ¼ bDNFRT=k1 —receptor-induced regulation rate

constant of PDNF and ĉDNF ¼ cDNFPDNF;T=RT—specific reactivity of

the enzyme towards the receptor, thus proportional to the local

effective PDNF,T/RT ratio. In the analysis, we refer to changes of

PDNF,T/RT when numerically ĉDNF is varied.

For simulations with growth factor pulses in Figs 1E and 2A–C,

and 3A–D, binding/unbinding of ligand LT to modulate LRa was

introduced. Thus, �konRaLT þ 1
2 koffLRa was added as additional

term to the differential equation of Ra, and the dynamics of LRa was

modelled with dLRa

dt
¼ kon Ra þ Rið ÞLT � koffLRa. For the simulations

in the Movie EV1, a stochastic differential equation model was

constructed from Equation (1) by adding a multiplicative noise term

rXi 1� Xið ÞdWt, where r = 0.05, dWt is the Brownian motion term

and Xi 1� Xið Þ is the state-dependent function for each variable i

that accounts for mass conservation and normalization of the vari-

ables. The model was solved with Dt = 0.01 using the Euler solver

from the “Financial Toolbox” in MATLAB. The parameters corre-

sponding to Figs 1–3 are as follows: a1 = 0.0017, a2 = 0.3, a3 = 1.0,

b̂DNF ¼ 36:0558, ĉDNF 2 2:5; 2:957; 3:5; 4:3f g (bistability, criticality,

reversible bistability, monostability), k1 = 0.01, k2/1 = 0.5, KR = 0.8,

kon = 0.003, koff ¼ 0:01668. The LT amplitude during the pulse

was set to produce LRa = 0.15 in steady-state. In all figures,

Response = Ra + LRa.

Quasi-potential landscape computation

The numerical computation of the quasi-potential landscapes,

corresponding to the phase space diagrams in Fig 2A–C, was

conducted using an approach adapted from the one in Bhat-

tacharya et al (2011). Multiple trajectories were calculated start-

ing from initial conditions distributed on a grid in the phase

space. Rate of change in the quasi-potential (initiated arbitrarily

to 0) was calculated by �dRa

dt
dRa

dt
�
dPDNF;a
dt

dPDNF;a
dt

in every iteration,

and the quasi-potential was integrated by the ODE solver

together with the system trajectory integration. Quasi-potentials
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of trajectories converging to the same attractor were aligned to

match at the steady-state level. Quasi-potentials in basins of dif-

ferent attractors were subsequently aligned at the initial points,

close to one another, of trajectories that converge to the dif-

ferent respective attractors, i.e. at the separatrix points. Addition-

ally, neighbouring separatrix pairs were weighted by the angle

between their derivatives (h), according to the formula:
1
2 1� cos hð Þ. This gives greater weight to diverging pairs, effec-

tively aligning the separatrix quasi-potential values at the saddle

steady-state point. The quasi-potential landscape at every point

in phase space was finally estimated by interpolation from the

aligned quasi-potential values of all of the trajectory points.

Estimation of the basic reproduction number using single-

molecule reaction–diffusion framework

We considered a two-dimensional domain representing the plasma

membrane containing reacting and diffusing single molecules. The

spatial coordinates of the molecules were updated using Brownian

dynamics, and time was discretized to intervals of length Dt. First-

order unimolecular reactions occur spontaneously with probability

~kDt , where ~k is the intrinsic reaction rate constant. Second-order

bimolecular reactions on the other hand are modelled using the Doi

method (Doi, 1976), following the Smoluchowski single-particle

framework for describing diffusion influenced reactions (Smolu-

chowski, 1917). An interaction takes place between two molecules

that have diffused within a proximity distance r of each other, and

a reaction ensues with a probability ~gDt, where ~g is the microscopic

bimolecular reaction rate constant. r is of order of the molecule

radius. In the rare event that a substrate molecule is in proximity of

n > 1 other enzyme molecules, the reaction takes place with proba-

bility 1� ð1� ~gDtÞn, assuming any of the enzyme molecules can

affect the state of the given substrate molecule. Formation of the

product proceeds immediately upon successful bimolecular

enzyme–substrate interaction, i.e. the state of the substrate mole-

cule is directly changed. To model the interactions between R and

PDNF (Fig 1A), we assumed that both particles diffuse across the 2D

domain with equal diffusion rates DR ¼ DPDNF ¼ D ¼ 0:1lm2=s. The

interaction radius r was set to 2q, where q ¼ 10nm is the molecule

radius. Receptor and PDNF molecules, with density of 60 and 80

molecules per square micrometre, respectively, were randomly

deployed on a 3:5lm � 3:5lm or 2:5lm � 2:5lm surface area

and allowed to diffuse using Brownian dynamics with periodic

boundary conditions. Dt was set to 1 × 10�4 s to ensure that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 2Dð ÞDt
p

�r, i.e. any interaction between two molecules that

come in proximity is detected, and also to ensure that no reaction

probability is greater than one. The state transitions of R and PDNF

occur in accordance with the macroscopic description—

Equation (1), only in the absence of external input (LRa = 0). The

microscopic rate constants are generally proportional to the

ones in our main ODE model—~a1 ¼ 0:0017= r2pð Þ, ~a2 ¼ 0:3= r2pð Þ,

~bDNF ¼ 9= r2pð Þ, ~k1 ¼ 5, ~k2 ¼ 0:5. They were set to produce faster

kinetics, due to numerical and data storage constraints. By analogy

to the macroscopic bifurcation analysis (ĉDNF / PDNF;T=RT), ~cDNF

was varied between 0 and 9= r2pð Þ (PDNF,T and RT were kept

constant) to modulate the specific reactivity of PDNF,a towards Ra.

To calculate the basic reproduction number R0, the number of

substrate receptor molecules R0;j tð Þ that each Ra,j molecule success-

fully activated within its activation lifetime was recorded, after that

molecule has been previously activated itself at time t. R0 was

calculated as an average of these figures within a certain time inter-

val (approximately 200ms). Theoretically, R0 depends on the proba-

bility of activating a susceptible receptor molecule and the duration

of the activity lifetime. Neglecting the effect from autonomous acti-

vation of R (with low rate a1), we arrive at the following definition

R0 �
a2RT 1�Rað Þ

cDNFPDNF;TPDNF;a
. From Equation (1), it is straightforward to deter-

mine the basal activity stable steady state as Ra ¼ 0; PDNF;a ¼ k1
k1þk2

and thus R0 ¼
a2RT k1þk2ð Þ
cDNFPDNF;Tk1

. By employing linear stability analysis, we

could determine that the condition for stability of this steady state

is indeed R0 < 1. On the other hand, it follows readily from the

first equation that R0 = 1 around the high activity stable steady

state, where Ra 6¼ 0. There we could also find that cDNF ¼
a2R

2
T

k1PDNF;T
1� Rað Þ k1þk2

RTbDNF
þ Ra

� �

, and thus, there is approximately a

quadratic dependence between ~cDNF and Ra. Quadratic form was

therefore used in Fig 4B, middle, to estimate the bifurcation profile

from the extensively occupied high and basal receptor activity

states. To estimate the extensively occupied high and basal receptor

activity states from the trajectories in Ra-PDNF,a phase space, Gaus-

sian mixture distribution was fitted to the data with two compo-

nents and data points were pruned iteratively with 90th percentile

cut-off until convergence.

Compartmental model of spatial–temporal EGFR

activation regulation

The experimentally derived EGFR-PTP network (Stanoev et al,

2018) was implemented using a two-compartment model that

includes explicitly the vesicular trafficking between the plasma

membrane and the endosomal compartments (Fig 5A), as described

using the following system of ODEs:

dRPM
a

dt
¼RTR

PM
i a1R

PM
i þa2R

PM
a þa3LR

PM
a

� �

�cDNFPDNF;TPDNF;aR
PM
a

�cNRPNR;TR
PM
a �kinR

PM
a �konR

PM
a LTþ0:5koffLR

PM
a

dRPM
i

dt
¼�RTR

PM
i a1R

PM
i þa2R

PM
a þa3LR

PM
a

� �

þcDNFPDNF;TPDNF;aR
PM
a

þcNRPNR;TR
PM
a �kiinkinR

PM
i þkrecR

E
i �konR

PM
i LT

þ0:5koffLR
PM
a

dPDNF;a

dt
¼k1 1�PDNF;a

� �

�k2=1PDNF;a�bDNFPDNF;aRT RPM
a þLRPM

a

� �� �

dLRPM
a

dt
¼kon RPM

a þRPM
i

� �

LT�koffLR
PM
a �kdegkinLR

PM
a

dRE
a

dt
¼kinR

PM
a �cNFPNF;TR

E
a

dRE
i

dt
¼kiinkinR

PM
i þcNFPNF;TR

E
a�krecR

E
i

dLRE
i

dt
¼kdegkinLR

PM
a

(2)

PDNF (PTPRG), PNF (PTPN2) and PNR (PTPRJ) represent the major

protein tyrosine phosphatases that regulate EGFR (R, LR) activity,

cx—specific reactivity that each PX 2 {PDNF (PTPRG), PNF (PTPN2),

10 of 13 Molecular Systems Biology 16: e8870 | 2020 ª 2020 The Authors

Molecular Systems Biology Angel Stanoev et al



PNR (PTPRJ)} has towards EGFR. kin, krec and kdeg denote receptor

internalization, recycling and degradation rate constants, respec-

tively, i,a—inactive and active species, and E,

PM—endosomal and plasma membrane species. kdeg = 0 for the

magenta profile in Fig 5B. LRE
i is the accumulated endosomal

ligand-bound EGFR and thus the effective degraded fraction of

EGFR. For the self-organizing criticality model (Fig 5D), the

dynamically maintained kdynrec ¼
RT�RT;asymp

RT 1�LRE
ið Þ�RT;asymp

krec, where RT,asymp =

1.086 is the lower bound asymptotic value of R
T
in dependence to

krec (dashed line, Fig 5C). Saturation level of 2.5 for the multiplier

term is also assumed, beyond which the recycling rate can no

longer increase. Parameters are as follows: cDNF = 3.0, cNF = 3.0,

cNR = 0.001, bDNF = 36.0558, kin = 0.02, krec = 0.042, kiin ¼ 0:2,

kdeg = 0.2, RT = 1.3499, LT = 0.2926 and PDNF,T = PNF,T = PNR,T =

1.0. Other parameters are the same as in Fig 1 (Materials and

Methods).

Model calibration

The parameters in the model (Figs 1A and 5) were described in

Stanoev et al (2018) and calibrated with the single-cell dose–

response data described therein, from where the topology of the

sensing network (Fig 5A) was derived. We convert from dimension-

less time to minutes by equating the EGFR phosphorylation kinetics

and duration in the simulations using the kinetic parameters to the

experimental values in Stanoev et al (2018). The parameters for the

microscopic dynamics in the single-molecule reaction–diffusion

simulations were set to scale the macroscopic ODE parameters and

set to produce faster kinetics due to numerical reasons, as described

in the corresponding section.

Stochastic simulations

To model the contribution of random fluctuations in the activity

dynamics of the network constituents, a multiplicative noise term

was added to the first equation in the ODE system (Equation 2):

g RPM
a

� �

n tð Þ. n tð Þ is a Gaussian white noise with zero mean and

temporal correlation \n tð Þn t0ð Þ[ ¼ r2ad t � t0ð Þ, d t � t0ð Þ is the

Dirac delta function and r2a is a constant that characterizes the noise

intensity The multiplicative noise term is interpreted according to

Stratonovich (Gardiner, 2009), as a stochastic interpretation for a

realistic noise with small temporal autocorrelation (Garcı́a-Ojalvo &

Sancho, 2012). This noise term can incorporate both intrinsic and

extrinsic sources (Koseska et al, 2007). We establish the function

g RPM
a

� �

by means of simple approximation, assuming that the rela-

tive fluctuations scale is the inverse square-root of the amount of

active protein. Such scaling is generic for many stochastic processes

(e.g. Poisson processes or birth–death processes) and provides

means to investigate the implications of fluctuations on the dynam-

ics of biochemical networks in general (Koseska et al, 2007). To

avoid negative values of the protein concentrations due to the intro-

duced stochasticity in the system, a custom-made adaptive step size

algorithm (Kloeden & Platen, 1992) employed to Euler integration

scheme was developed in C. N = 50 realizations of stochastic time

series were simulated with r2a ¼ 8� 10�4 and for each of them the

dominant frequency in basal receptor activity was extracted by

computing the dominant mode of the wavelet power spectrum

using the “WaveletComp” package in R (Roesch & Schmidbauer,

2018). The average dominant frequency from these realizations is

plotted in Fig 5E.

Exponential decay model

To model a receptor activity profile that follows an exponentially

decaying relaxation process, we implemented:

dRa

dt
¼ Ia RT � Rað Þ � bRa (3)

where I denotes the growth factor pulse, a and b—the activation

and decay rate constants, respectively, and RT—the total protein

concentration. For Fig EV1, five distinct b values are used, for

which the degree of history-dependent signal integration and the

degree of partitioning in response to complex growth factor train

pulses are estimated. For all model realizations, RT was set such

that the temporal receptor activity profiles from the exponential

decay models reached the same maximal steady state amplitude as

the one for organization at criticality. Parameters: a = 0.023; (b,

RT) 2 {(1.5 × 10�4, 0.8206), (5.5 × 10�4, 0.8351), (0.001, 0.8513),

(0.0035, 0.9416), (0.01, 1.1765)}.

The numerical bifurcation analysis was performed using the

XPP/AUTO software (Ermentrout, 2016). All simulations except

where explicitly noted were performed using custom-made code in

MATLAB (MATLAB and Statistics Toolbox Release R2018a, The

MathWorks, Inc., Natick, Massachusetts, United States).

Data and software availability

All data and code used in this study are available in the following

location: https://github.com/astanoev/ReceptorNetworks.

Expanded View for this article is available online.
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