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Abstract

Background: Metabolomics experiments involve generating and comparing small molecule (metabolite) profiles

from complex mixture samples to identify those metabolites that are modulated in altered states (e.g., disease,

drug treatment, toxin exposure). One non-targeted metabolomics approach attempts to identify and interrogate all

small molecules in a sample using GC or LC separation followed by MS or MSn detection. Analysis of the resulting

large, multifaceted data sets to rapidly and accurately identify the metabolites is a challenging task that relies on

the availability of chemical libraries of metabolite spectral signatures. A method for analyzing spectrometry data to

identify and Quantify Individual Components in a Sample, (QUICS), enables generation of chemical library entries

from known standards and, importantly, from unknown metabolites present in experimental samples but without a

corresponding library entry. This method accounts for all ions in a sample spectrum, performs library matches, and

allows review of the data to quality check library entries. The QUICS method identifies ions related to any given

metabolite by correlating ion data across the complete set of experimental samples, thus revealing subtle spectral

trends that may not be evident when viewing individual samples and are likely to be indicative of the presence of

one or more otherwise obscured metabolites.

Results: LC-MS/MS or GC-MS data from 33 liver samples were analyzed simultaneously which exploited the

inherent biological diversity of the samples and the largely non-covariant chemical nature of the metabolites when

viewed over multiple samples. Ions were partitioned by both retention time (RT) and covariance which grouped

ions from a single common underlying metabolite. This approach benefitted from using mass, time and intensity

data in aggregate over the entire sample set to reject outliers and noise thereby producing higher quality

chemical identities. The aggregated data was matched to reference chemical libraries to aid in identifying the ion

set as a known metabolite or as a new unknown biochemical to be added to the library.

Conclusion: The QUICS methodology enabled rapid, in-depth evaluation of all possible metabolites (known and

unknown) within a set of samples to identify the metabolites and, for those that did not have an entry in the

reference library, to create a library entry to identify that metabolite in future studies.

Background

Metabolomics is the study of the small molecules (i.e.,

metabolites or biochemicals), contained in a cell, tissue,

organ or biological fluid [1-3]. Metabolomics data can

be generated from an array of sources such as liquid or

gas chromatography coupled to mass spectrometry (e.g.,

LC/MS, GC/MS), capillary electrophoresis (CE), and

nuclear magnetic resonance (NMR) spectroscopy [4].

Typically, metabolomics uses non-targeted methods

where the analytical conditions are optimized to detect

and identify as many molecules as possible. However,

targeted metabolomics methods where the chromatogra-

phy is optimized for detection of a specific molecule or

class of molecules (e.g., lipids) are also used. In either

case, the structure of metabolomics data is generally

three dimensional. For example, the data for a separa-

tion method coupled with mass spectrometry includes

values for time, intensity and mass (m/z).

The fundamental goal of metabolomics analysis is to

quickly and accurately identify the metabolites detected

in a complex biological sample and determine which

change (increase or decrease) in response to experimen-

tal conditions (e.g., disease state, drug treatment, etc).

Typically, data for a set of biological samples are* Correspondence: cdehaven@metabolon.com
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collected, plotted and stored in individual files with each

file corresponding to each biological sample. Using var-

ious software tools, the raw three-dimensional data for

the sample set are integrated into ion peaks organized

by mass, retention time (RT), and peak area. The inte-

grated ion peaks are aligned by time and may be nor-

malized by intensity across the set of samples. Then,

each individual sample is processed for the identification

of metabolites which, in most cases, involves the com-

parison of individual spectra to standard reference

libraries. Such standard reference library data consist of

known spectra corresponding to certain metabolites that

may be present in a given sample. While individual ions

may be detectable in such spectra, the combinations and

interplay of such ions to indicate specific individual

metabolites may not be immediately discernable, espe-

cially in only a single biological sample. If the individual

sample contains substantially pure components (such as

small molecule metabolites), the spectrum of the com-

ponent can be easily matched with the spectra of known

metabolites in order to identify the biochemical. How-

ever, in many cases, the fractionation of a particular bio-

logical sample (in a liquid or gas chromatograph, for

example) is incomplete. In this case, two or more bio-

chemicals may co-elute from the incomplete chromato-

graphic separation process giving rise to an impure

mixture of metabolites going into the spectrometer. The

conventional methods of analyzing datasets by grouping

and organizing related ions on a per sample basis fall

short when faced with this level of data complexity

[5-7].

An analytical method that is capable of performing

statistical analysis on a set of ions in a given population

(sample set) could address these shortcomings [7].

Recently, a correlation-based deconvolution approach

was reported for LC/MS datasets [8]. In this report, we

present QUICS, a method to identify and organize the

ions related to metabolites of known and unknown

identity from complex mixtures. The function of QUICS

is to go beyond a single sample approach to the identifi-

cation of the multiple ions that are related to any given

metabolite by correlating ion data across a set of sam-

ples. Consequently, when viewed over many individual

biological samples of the same type, subtle spectral

trends indicative of the presence of one or more other-

wise obscured metabolites may be revealed. Once these

related ions are grouped based upon the correlation

across samples, there exists the capability of searching

for these organized ion groups in reference library data-

bases to identify the corresponding metabolites. Further-

more, new library entries can be created when grouped

ions represent a new, undocumented metabolite

(unknown). Here, we show the utility of this method for

the deconvolution and analysis of GC-MS and LC-MSn

data sets.

Results and Discussion

To demonstrate the ability of the QUICS method to

accurately separate and organize ions related to co-elut-

ing biochemicals, a sample set of 33 liver samples was

analyzed by GC/EI-MS. In this study three known meta-

bolites, leucine, phosphate and glycerol, consistently co-

elute as shown in Figure 1. Without prior knowledge of

the content of this scan it would be difficult to deter-

mine whether the spectrum shown in Figure 1 is a mix-

ture of metabolites or a single metabolite. Using the

QUICS methodology this spectrum is separated into its

three biochemical components by grouping highly corre-

lated individual ions based on instrument response

across the sample set. This is possible because the ions

originating from a single biochemical will exhibit similar

biological variability across the study and therefore cor-

relate, as can be seen in Figure 2. Consequently, indivi-

dual ions belonging to a single component can be

grouped based on correlation. In Figure 2, Panel A

demonstrates the chromatographic profile of two ions

generated during a GC/EI-MS analysis of leucine, 158

and 232 m/z. Note that the intensities of the ions trend

the same way across the four different liver samples

shown. More specifically, the liver sample shown in

black has the highest amount of 158 and 232 m/z, fol-

lowed by the liver sample represented in red, then

green, then blue. As a result, these two ions correlate

when the ion response is compared across all of the

sample injections in the study which is shown in Figure

3. This is in contrast to the ions related to glycerol (Fig-

ure 2, panel B), in which the liver sample labelled in

black has the highest amount of both ions (205 and 103

m/z), followed by green, then blue, then red. The three

ion groups that were created from a set of 33 liver sam-

ples and their respective authentic standard spectrum

matches are shown in Figure 4.

The examples discussed thus far are from data gener-

ated from electron ionization (EI) GC/MS analyses,

where all of the ions detected are a result of fragmenta-

tion of the intact molecule during ionization. However,

the QUICS method is also useful with other types of

data. Deconvoluting LC/MS data where a biochemical

compound does not necessarily fragment in the source

but instead readily forms adducts and multimers is also

possible. Shown in Figure 5, Panel A is an example of

ions from an LC/MS sample injection that were grouped

based on correlation. The ions presented are various

adducts, isotopes, multimers and in-source fragments

for inosine, as confirmed by the authentic standard

library spectrum in Panel B. Shown in Panel C is the
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correlation between the protonated molecular ion at 269

m/z with the in-source fragment at 137 m/z across the

sample set. The QUICS method is also applicable to

LC/MS applications where all ions eluting from the

chromatographic system are fragmented rather than

individual masses being isolated and then fragmented.

In this case, the fragment ions from the individual meta-

bolites will also correlate depending on biological

variability.

The ability the QUICS method to separate co-eluting

species is dependent upon the correlation of the

detected ion area responses across an entire study. One

potential complication to this type of analysis is that

ions from compounds that have limited biological varia-

bility across the sample set will not be highly correlated

because there is limited variation in ion signals. In addi-

tion, correlation calculations can be confounded by ions

that are shared among the co-eluting compounds. In

these cases, the ion response is the sum of all the co-

eluting compounds and therefore correlation might be

compromised. An example of this phenomenon is the

147 and 72.9 m/z ions shown in Figure 1. These ions

are common to all three co-eluting compounds as can

be seen in the authentic standard spectra in Figure 4,

panels B, D, and F. Ultimately these ions were grouped

with the compound that had a sufficient degree of cor-

relation, specifically 73 with phosphate (Figure 4, panel

A) and 147 with glycerol (Figure 4, panel E); neither ion

correlated sufficiently to be grouped with other leucine

ions (Figure 4, panel C) even though the leucine stan-

dard also produced these ions (Figure 4, panel D).

While these potential complications do exist they rarely

interfere to a significant enough extent to compromise

the quality of the generated spectrum.

While the example in Figure 4 focuses on a region of

chromatography where three known compounds co-

elute, the QUICS method is most powerful when the

chemical composition of a sample set is unknown. In

that instance, individual ions originating from each indi-

vidual chemical can be grouped even when the chemical

identity is unknown and possibly co-eluting with other

unknowns. Presented in Figure 6, Panel A is an example

Figure 1 A single scan from an EI GC/MS analysis of a liver biopsy.
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of a spectrum that was created using the QUICS

method. The ions that were grouped (Figure 6, panel A)

as originating from an unknown source were later iden-

tified as Equol (4’,7-isoflavandiol), an isoflavandiol meta-

bolized from daidzein, a type of isoflavone, by bacterial

flora in the intestines [9] (Figure 6, panel B).

The ultimate goal of the QUICS method is to permit

the deconvolution of the many redundant ion signals

that each individual biochemical entity produces. One of

the standard approaches of data analysis in the bio-

chemical profiling field is to perform statistical analyses

using every individual ion signal whether or not they are

redundant ions produced by a single chemical [10-12].

This ion-centric approach leads to a greater number of

false discoveries as a result of increased numbers of

measurements processed in the statistical analysis. This

approach also has the potential to skew statistics since

different chemicals will produce different numbers of

ion signals. For example, multivariate techniques such

as Principal Component Analysis (PCA) can be skewed

in favor of chemicals that produce more ion signals. In

contrast, the QUICS method enables a chemo-centric

approach to data analysis. Once the related ion features

that belong to a given biochemical are organized and

grouped, a single ion from that group can be used to

represent that metabolite in statistical analyses. By using

the chemo-centric approach the number of false discov-

eries is reduced since the number of ions processed in

statistical analyses is reduced to a single representative

ion for each metabolite and, furthermore, the potential

for skewed statistical results is decreased.

Similar use of correlation analysis across samples has

been used with NMR data. In that analysis, the multiple

chemical shift peaks generated by a single molecule can

be correlated across samples, grouped, and used to aid

identification of detected molecules [13-16]. While simi-

lar in concept to the method presented here, the ulti-

mate outcome has different advantages since the

underlying data streams are so unique. One of the goals

of the QUICS method was to deconvolute the highly

Figure 2 The selected ion chromatogram (SIC) for two different ions from leucine (A) and two ions from glycerol (B) as measured

from 4 different liver sample analyses. The ions from leucine, 158 and isotope 232 m/z, trend across the different liver samples and the ions

related to glycerol share a different trend.
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redundant ion features generated by a single molecule

traditionally seen in most mass spectrometric based

technologies. As discussed, this redundancy of data can

alter statistical analysis and lead to greater numbers of

false discoveries. Using the QUICS method, it is possible

to group all of the redundant ions related to the

detected metabolites within a set of experimental sam-

ples with or without the use of a known spectral library.

By utilizing both the chromatographic time domain and

ion response the QUICS method is able to gain an addi-

tional degree of specificity not seen in NMR data

streams. As a result only those ions that co-elute and

correlate are grouped, thus removing the confounding

redundancies. It should be noted that this method

represents an automated package that also enables the

generation of spectral library entries for unnamed/

unknown metabolites–those molecules where a refer-

ence library entry of chemical spectral signatures does

not yet exist. Taking a statistical approach to the analy-

sis of all ions in a sample and evaluating the entire sam-

ple set simultaneously enables the system to not only

identify metabolites with spectral matches to known bio-

chemicals in the reference library, but also enables iden-

tification of biochemicals that are not in the reference

library. The identification of these so-called unnamed

metabolites capitalizes on the fact that ions originating

from a single biochemical will exhibit similar biological

variability across the study samples and therefore corre-

late. The QUICS method has been used successfully for

diverse experimental studies including disease biomarker

identification, drug mode of action, toxicology, aging

and characterization of variation in complex mixtures

such as milk and on a variety of sample matrices (e.g.,

biological fluids, tissue, milk) [17-22].

Experimental

To begin, GC/MS and LC/MSMS data are collected as

part of an automated, high-throughput processing sys-

tem. These data consist of ions peaks that have been

automatically detected and integrated from raw 3D GC/

MS or LC/MSMS analyses for each sample. These data

are characterized by the mass (m/z) of the ion, the area

(representing the amount of the ions), and retention

time (RT) and retention index (RI) representing the

chromatographic characteristics that tell when the

related biochemicals elute. Retention indices are

assigned to all ion peaks by calibration with the reten-

tion index of internal standards, added into each sample,

and their retention time for each sample [6]. These raw

signal data and integrated ion peak data are both loaded

and stored in a relational database system which pro-

vides data structures that are optimal for the storage

Figure 3 Correlation of m/z 158 and 232, two ions related to leucine, across all injections in a study. All ions were pulled from all sample

injections in a study and analyzed all for correlation. Ions are then grouped based on a user-specified correlation limit.
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Figure 4 The creation of 3 different groups of correlating ions, A,C, and E, and their respective authentic standard library entries are

shown for comparison, B, D, and F. The ions within the groups correlated with a minimum of 0.8. From the single scan in Figure 1, 3

different compounds are present; phosphate, leucine and glycerol.
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and retrieval of large chromatographic datasets. Immedi-

ately after data acquisition has been completed for a

sample, that data file has been retrieved by the system,

and automated loading and peak detection have been

completed, the resulting data is compared using a

matching algorithm against an existing spectral library

which contains the spectral definitions of both known

standards as well as unknown metabolites. Any matches

between ion peak data and the spectral library that

occur are scored for confidence, and that information is

stored within the relational database system.

To determine which groups of ions are common

across samples, all the ions are binned by mass window

and RI window. Ions from the same chemical that are

determined to be common across samples are then

grouped by correlation. Table 1 shows the processing

thresholds for ion binning and bin grouping.

Ion Bin

The first step is to begin a binning process where ions

from samples in the same study set are binned by mass

and retention index (RI) [23]. A bin is a space

Figure 5 (A) An ion group including the protonated molecular ion, isotopes, adducts, and multimers of inosine (m + H+ 269) based

on correlation across a 33 sample set study. (B) The authentic standard spectrum of inosine. (C) The correlation between the protonated

molecular ion of inosine at 269 m/z and an in-source fragment at 137 m/z.
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partitioning data structure that enables fast region

queries and nearest neighbor search. Each bin is charac-

terized by a center mass and a center RI. Ions from

across the set of samples are put into the same bin if

their masses and RIs fall into the windows around the

center mass and the center RI.

Two kinds of ions can be defined in this process, a

singlet and a multiplet. A singlet ion comes from a

Figure 6 (A) An ion group created from an EI-GC/MS analysis of urine that when created was an unknown. (B) The authentic standard

spectrum of equol, later permitted the identification of the unknown.

Table 1 Binning and Grouping Threshold Parameters

Name Description Normal Values

Ions to Analyze

RI +/- Range of retention indexes of ions across samples for analysis 0~9000 +/- 100

Ion Binning

Mass Window Mass window for ions to be binned together 0.4

Extended Mass
Window

Mass window to look for ions missing from samples in neighboring bins. 0.5

RI Window RI window for ions to be binned together 25 to 50, default 25

Extended RI Window RI window to look for ions missing from samples in neighboring bins. 25 to 50, default 38

Bin Grouping

Max. RI Difference Maximal difference of the average RIs of the two bins 0~999

Min. Correlated Ions Minimal number of common singlet ions existing in the two bins 1~999

Max. Linear Area Maximal area of ions that can be included for correlation calculation Large enough to include all
ions

Max. RSD (%) Maximal Relative Standard Deviation (%) of common singlet peak area ratio between the
two bins

0~100

Min. Correlation Minimal correlation value for grouping 0 ~ 1 with default of 0.8
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sample that has one and only one ion in the same bin.

A multiplet ion comes from a sample that has more

than one ion in the same bin. Multiplet ions from the

same sample imply the co-elution of several compounds

and are termed a collision. The number of collisions, i.e.

the number of times multiple ions were detected in all

bins, seen in a loaded data set is displayed in Figure 5

(C).

Binning includes the following steps:

1. Sorting ions by their areas in descending order.

2. Bin ions with smaller areas around ions with lar-

ger areas, with the larger ions serving as the bin

centers.

3. Calculate the statistics of each ion bin: mean

mass, mean area, mean RI and their standard devia-

tions, respectively, from all singlet ions in the bin.

4. Reset the bin center mass and center RI to its

mean mass and mean RI to take into account the

ion distribution within the bin. Remove all bins that

have no singlet ions.

5. Re-binning all ions into these bins. If an ion can’t

be binned into any of them, a new bin is created

with its mass and RI as the center mass and RI.

6. Repeat steps 3 and 4 for optimized binning of all

ions.

The number of singlet ions in an ion bin indicates

how popular this ion is across the samples. The size of

a bin is represented by the percentage of singlet ions

among the total number of samples, the percentage of

“filled” in Figure 5 (C, % column).

When a bin is not 100% filled, that is, when there are

samples that have no ions in the bin, it might be possi-

ble that these samples might have the same ions but

they might be just outside the mass window and/or the

RI window of the bin. Should these outlier ions be the

same as those in the bin, their areas would be within

four standard deviations of the areas of singlet ions in

the bin. To recover these outlier ions from the missing

samples, ions within an extended mass window and/or

RI window are searched for those samples in the bins

with lower “filled” percentage; if found, such ions are

migrated from the less “filled” bin to the more “filled”

bin.

For example, suppose there are 30 samples in total,

and there are 25 samples that have singlet peaks in bin

B1, and sample A does not have any peak in it. To

check if sample A has an outlier peak that is similar to

peaks from other samples in bin B1, peaks from sample

A in neighbor bins are searched in an extended RI and

mass window. Peaks from sample A must have their

peak areas in the window of four standard deviations of

peak areas in bin B1. The best matched peak from

sample A in the neighbor bins would be migrated to bin

B1, making bin B1 more “filled” (sample A is now

included).

This process is looped from the more filled bins to the

less filled bins.

Grouping Ion Bins

In GC/MS or LC/MS, many ions may be produced from

the same metabolite during the ionization and fragmen-

tation processes. In LC/MS, different adducts and aggre-

gates may form from the same metabolite. These ions

from the same metabolite should be well correlated. On

the other hand, ions from different chemical origin are

largely non-covariant.

Once ions from across the set of samples are properly

binned, each bin represents a common ion that is com-

mon in many samples in the sample set. Bins represent-

ing ions from the same metabolite should be well

correlated when analyzed across multiple samples. Sup-

pose a majority of the samples contain a common meta-

bolite A, which has ionized to N ions, then there would

be N bins that are well correlated. The goal of grouping

bins is to find those well correlated ions that could

represent a known or unknown metabolite in those

samples.

Correlation between the Normalization Bin and

Correlation Bin

The Pearson’s correlation is calculated to measure the

correlation between two ion bins. Only singlet ions that

are common in both ion bins are included in the

calculation.

Bins are sorted by their mean area in descending

order. Using the larger bins as the normalizer, smaller

bins are grouped around the larger bins as if the corre-

lation is above the correlation threshold value. The cor-

relation between the normalizer bin and correlation bin

is calculated as follows:

Pearson s Correlation

S S S S

S S S S

iN N iC C
i

iN N
i

iC C

’
( )( )

( ) (
 =

− −

− −

∑
∑ 2 ))2

i
∑

(1)

where Si is the area of a common singlet ion, S is the

average area of the common singlet ions in a bin.

Thresholds for the minimal correlation and the number

of singlet ions that are common in both the normaliza-

tion bin and the correlation bin are user specified and

can be altered prior to the process being started.

The correlation threshold is chosen by trial-and-error.

Usually it is between 0.70 and 0.90. It depends on the

matrix type and the sample set size (number of samples

in the sample set). A too low correlation threshold

would group too many bins into a group, whereas a too
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high threshold would miss some ions from the group,

which can be judged from metabolites in the samples

known from library match.

Chemical Intelligence

The ions originating from the same chemical will have

different m/z values and include various in-source frag-

mentations, isotopes, adducts and multimers. In LC/MS,

ions could be aggregates of monomers or adducts with

solvent/mobile phase ions such as H+, Na+, K+, Cl-,

OH-, NH4
+, H2O, COO-, etc. The true mass could be

calculated from the measured mass:

( / )
( / ) ( / )

m z
m z m z

N
Mono

Measured Adduct

IMER

=
−

(2)

where NIMER is the number of monomers in the

aggregate, (m/z)adduct is the (m/z) of the adduct, (m/z)

monomer, is the (m/z) of the monomer, and (m/z)measured

is the measured (m/z) for the ion.

Table 2 shows the most common aggregates and

adducts. All ions in the group are checked against these

possible aggregates and/or adducts to determine the

most probable form of the ion.

To calculate the monomer mass of a metabolite, each

ion in the grouped bins is tested against the above pos-

sible ion form and the possible monomer mass is calcu-

lated and scored by the product of the ion peak area

and the ion form probability.

To do so, possible monomer masses for all the ions in

all ion forms are calculated and binned and scored in

Table 3:

1. For each ion from big (large ion peak area)to small

(small ion peak area) in the group AND each ion form

from the most probable to less probable in the possible

ion forms

○ Calculate the monomer mass (m/z)Mono and its

score.

○ If some monomer masses have already been calcu-

lated AND this monomer mass is within one of

them, add its score. e.g., if (m/z)Mono
i - 0.3 <= (m/z)

Monomer <= (m/z)Mono
i + 0.3, then SCOREi += (Peak

Area) * (Ion Form Probability)

○ Otherwise, add this monomer mass and its score

to the possible monomer mass list as another possi-

ble monomer mass.

2. Among the all possible monomer masses, the

monomer mass with the maximal mass score is the

most probable mass.

After the monomer mass is calculated from the well

correlated bins in a group, other forms of adduct/aggre-

gate ions from the same metabolite not existing in the

bins in the group could be searched. These missing

forms of adduct/aggregate ions could be more variant

across samples and so their correlations with the nor-

malize bin are below the threshold value used for group-

ing and so bins representing these adducts/aggregates

are mis-grouped into different groups. The QUICS

method attempts to correct these misgrouped ions by

Table 2 Possible aggregate and adducts in measured

ions

(m/z)adduct NIMER Ion Form PROBABILITY(%)

1.00728 3 3 m + H 1

1.00728 4 4 m + H 1

1.00728 5 5 m + H 1

22.98977 3 3 m + Na 1

22.98977 4 4 m + Na 1

22.98977 5 5 m + Na 1

1.00728 1 m + H 100

0 1 m- 10

1.00728 2 2 m + H 50

22.98977 1 m + Na 90

22.98977 2 2 m + Na 25

39.954 1 m + K 10

39.954 2 2 m + K 5

-1.00728 1 m-H 100

39.954 4 4 m + K 1

-1.00728 2 2 m-H 50

44.9971 1 m + Form 99

-18.01002 1 m-H2O 80

39.954 5 5 m + K 1

1.00728 3 3 m-H 1

-1.00728 4 4 m-H 1

-1.00728 5 5 m-H 1

20.9741 2 2 m + Na-2H 50

1.00728 6 6 m + H 1

1.00728 7 7 m + H 1

1.00728 8 8 m + H 1

-17.01 1 m + H-H20 1

34.9689 1 m + Cl35 12

36.9659 1 m + Cl35[Cl37] 4

18.03437 1 m + NH4 1

Table 3 List of possible monomer masses, binned and

scored

Ion Calculated Monomer Mass Calculated Score Assigned Bin

1 (m/z)Mono
1 Score1 X

2 (m/z)Mono
2 Score2 X

... ... ... X

n (m/z)Mono
n Scoren X
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lowering the required correlation threshold for those

ions which have masses consistent with the monomer

mass of the metabolite.

To find the missing adduct/aggregate in a bigger

group (with a larger peak area of normalize bin) with its

monomer mass calculated as described above, for each

possible form of adduct/aggregate:

1. Calculate the measured mass from the monomer

mass assuming there is an ion in this form of

adduct/aggregate.

2. Bins in smaller groups within are searched within

the mass window (±0.4) of calculated mass and the

RI window of the normalize bin of the larger group.

3. Calculate the correlation of these adduct/aggre-

gate bins with the normalize bin of the big group.

4. The bin with the highest correlation above 0.4 will

be one of the missing adduct/aggregate ions and will

be migrated from the smaller groups to the big

group.

This process is repeated for each group from big to

small.

Isotope ions are checked the same way except they

require the ion peak area to be no more than half of the

normal ion.

As discussed above, each primary ion peak bin repre-

sents the average of a common ion across samples, and

each group of correlated bins represents ions of a com-

mon metabolite. For LC/MS/MS, secondary MS2 ions

for each primary ion are also retrieved from all the sing-

let samples in the primary ion peak bin and similarly

binned. Among the MS2 ion bins that satisfy the mini-

mal number of singlet ions, the maximal bin with the

maximal mean intensity will be used as the normalize

bin to normalize other bins that satisfy both the mini-

mal number of singlet ions and the minimal relative

intensity against the normalize bin, are included into the

library to represent the MS2 ions for the primary ion. In

summary, integrated primary ion chromatographic peaks

from all the samples are binned based on chromato-

graphic features of retention index and ion mass, well

correlated bins within the retention index window are

grouped to create a library entry to represent a chemical

entity. Each mass with their characteristic values from

the averages of mass, area, RI, and RT from a bin in the

group, represents one of the fragmented ions from a

pure chemical entity or its adducts/aggregate. For LC/

MS/MS, secondary masses are also created from the

bin/group of all secondary ions across the samples and

the averages represent the secondary ions from one of

the primary fragments of the chemical entity. Such cre-

ated library entries for each chemical entity may match

well to an entry in the library, or as an unknown to be

added to the library and to be further identified with

more studies.

Reference Library Entries

Once the binned ions are grouped by correlation, the

groups can be searched against a reference library in

order to determine whether the group of ions represents

a known entity or whether the group of ions represents

a new or an unknown (a biochemical that is not in the

library) chemical entity. If the group of ions is deter-

mined to represent an unknown chemical with no refer-

ence library entry, a new spectral entry is added to the

library so that the unknown entity can be tracked in

future studies. An attempt is made to assign chemical

intelligence to the ions belonging to the unknown entity

based on previously defined mass relationships, e.g. Na

adduct m + 23.

Conclusion

The QUICS method greatly accelerates the organization

of ions into chemically related sets and expedites the

creation of chemical library entries and the identification

of metabolites. It is immensely beneficial to track both

the chemicals for which there are authentic standard

spectra in the chemical library and the chemicals for

which there are no current library entries. Consequently

new spectral libraries can be created automatically; the

method is not limited by the availability of a chemical

library of authentic standard spectra. Furthermore, the

ability to access data across multiple samples provides a

unique and powerful method to resolve co-eluting che-

micals. Taken together these features greatly facilitate

the chemo-centric approach to the analysis of metabolo-

mics studies leading to the discovery of novel biomar-

kers and understanding of the underlying biochemical

processes.

Authors’ contributions

CD, AE and HD participated in the design and analysis of this study. CD, AE,

HD and KL participated in manuscript preparation and read and approved

the final manuscript.

Competing interests

CD, AE, HD and KL are employees of Metabolon, Inc.

Received: 28 December 2009 Accepted: 18 October 2010

Published: 18 October 2010

References

1. Schnackenberg LK, Beger RD: Monitoring the health to disease

continuum with global metabolic profiling and systems biology.

Pharmacogenomics 2006, 7:1077-1086.

2. Nobeli I, Thornton JM: A bioinformatician’s view of the metabolome.

Bioessays 2006, 28:534-545.

3. Griffin JL: The Cinderella story of metabolic profiling: does metabolomics

get to go to the functional genomics ball? Philos Trans R Soc Lond B Biol

Sci 2006, 361:147-161.

DeHaven et al. Journal of Cheminformatics 2010, 2:9

http://www.jcheminf.com/content/2/1/9

Page 11 of 12

http://www.ncbi.nlm.nih.gov/pubmed/17054417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17054417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16615085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16553314?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16553314?dopt=Abstract


4. Dunn WB, Bailey NJ, Johnson HE: Measuring the metabolome: current

analytical technologies. Analyst 2005, 130:606-625.

5. Nordstrom A, O’Maille G, Qin C, Siuzdak G: Nonlinear Data Alignment for

UPLC-MS and HPLC-MS Based Metabolomics: Quantitative Analysis of

Endogenous and Exogenous Metabolites in Human Serum. Anal Chem

2006, 78:3289-3295.

6. Evans AM, Dehaven CD, Barrett T, Mitchell M, Milgram E: Integrated,

Nontargeted Ultrahigh Performance Liquid Chromatography/

Electrospray Ionization Tandem Mass Spectrometry Platform for the

Identification and Relative Quantification of the Small-Molecule

Complement of Biological Systems. Anal Chem 2009, 81:6656-6667.

7. Young SS, Barrett TH Jr, Beecher C: System, Method and Computer

Program Product for Analyzing Spectrometry Data to Identify and

Quantify Individual Components in a Sample. 2009, US Patent 7,561,975,

Issued.

8. Scheltema R, Decuypere S, Dujardin J, Watson D, Jansen R, Breitling R:

Simple data-reduction method for high-resolution LC-MS data in

metabolomics. Bioanalysis 2009, 1:1551-1557.

9. Setchell KD, Brown NM, Lydeking-Olsen E: The clinical importance of the

metabolite equol-a clue to the effectiveness of soy and its isoflavones. J

Nutr 2002, 132:3577-3584.

10. Tolstikov VV, Fiehn O: Analysis of highly polar compounds of plant origin:

combination of hydrophilic interaction chromatography and

electrospray ion trap mass spectrometry. Anal Biochem 2002, 301:298-307.

11. Werner E, Heilier JF, Ducruix C, Ezan E, Junot C, Tabet JC: Mass

spectrometry for the identification of the discriminating signals from

metabolomics: current status and future trends. J Chromatogr B Analyt

Technol Biomed Life Sci 2008, 871:143-163.

12. Katajamaa M, Oresic M: Data processing for mass spectrometry-based

metabolomics. J Chromatogr A 2007, 1158:318-328.

13. Cloarec O, Campbell A, Tseng LH, Braumann U, Spraul M, Scarfe G,

Weaver R, Nicholson JK: Virtual chromatographic resolution enhancement

in cryoflow LC-NMR experiments via statistical total correlation

spectroscopy. Anal Chem 2007, 79:3304-3311.

14. Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C,

Gauguier D, Lindon JC, Holmes E, Nicholson J: Statistical total correlation

spectroscopy: an exploratory approach for latent biomarker

identification from metabolic 1H NMR data sets. Anal Chem 2005,

77:1282-1289.

15. Couto Alves A, Rantalainen M, Holmes E, Nicholson JK, Ebbels TM: Analytic

Properties of Statistical Total Correlation Spectroscopy Based

Information Recovery in (1)H NMR Metabolic Data Sets. Anal Chem 2009,

81:2075-84.

16. Crockford DJ, Holmes E, Lindon JC, Plumb RS, Zirah S, Bruce SJ, Rainville P,

Stumpf CL, Nicholson JK: Statistical heterospectroscopy, an approach to

the integrated analysis of NMR and UPLC-MS data sets: application in

metabonomic toxicology studies. Anal Chem 2006, 78:363-371.

17. Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW,

Kalhan SC, Ryals JA, Milburn MV: Analysis of the adult human plasma

metabolome. Pharmacogenomics 2008, 9:383-397.

18. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B,

Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B,

Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A,

Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic

profiles delineate potential role for sarcosine in prostate cancer

progression. Nature 2009, 457:910-914.

19. Boudonck KJ, Mitchell MW, Nemet L, Keresztes L, Nyska A, Shinar D,

Rosenstock M: Discovery of metabolomics biomarkers for early detection

of nephrotoxicity. Toxicol Pathol 2009, 37:280-292.

20. Watson M, Roulston A, Bélec L, Billot X, Marcellus R, Bédard D, Bernier C,

Branchaud S, Chan H, Dairi K, Gilbert K, Goulet D, Gratton MO, Isakau H,

Jang A, Khadir A, Koch E, Lavoie M, Lawless M, Nguyen M, Paquette D,

Turcotte E, Berger A, Mitchell M, Shore GC, Beauparlant P: The small

molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: strategy

for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-

deficient tumors. Mol Cell Biol 2009, 29:5872-5888.

21. Ohta T, Masutomi N, Tsutsui N, Sakairi T, Mitchell M, Milburn MV, Ryals JA,

Beebe KD, Guo L: Untargeted metabolomic profiling as an evaluative

tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicol

Pathol 2009, 37:521-535.

22. Boudonck KJ, Mitchell M, Wulff J, Ryals JA: Characterization of the

biochemical variability of bovine milk using metabolomics. Metabolomics

2009, 5:375-386.

23. Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM:

Chemical derivatization and mass spectral libraries in metabolic profiling

by GC/MS and LC/MS/MS. J Exp Bot 2005, 56:219-243.

doi:10.1186/1758-2946-2-9
Cite this article as: DeHaven et al.: Organization of GC/MS and LC/MS
metabolomics data into chemical libraries. Journal of Cheminformatics
2010 2:9.

Open access provides opportunities to our 

colleagues in other parts of the globe, by allowing 

anyone to view the content free of charge.

Publish with ChemistryCentral and every

scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours     you keep the copyright

Submit your manuscript here:

http://www.chemistrycentral.com/manuscript/

DeHaven et al. Journal of Cheminformatics 2010, 2:9

http://www.jcheminf.com/content/2/1/9

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/15852128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15852128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16689529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16689529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16689529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19624122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19624122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19624122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19624122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19624122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12468591?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12468591?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11814300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11814300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11814300?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18672410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18672410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18672410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17466315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17466315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17394288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17394288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17394288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15732908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15732908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15732908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19220030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19220030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19220030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16408915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16408915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16408915?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18384253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18384253?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19212411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19212411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19212411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19703994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19703994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19703994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19703994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19458390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19458390?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15618298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15618298?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Experimental
	Ion Bin
	Grouping Ion Bins
	Correlation between the Normalization Bin and Correlation Bin
	Chemical Intelligence
	Reference Library Entries

	Conclusion
	Authors' contributions
	Competing interests
	References

