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Abstract

Influenza virus ribonucleoprotein complexes (RNPs) are central to the viral life cycle and in
adaptation to new host species. RNPs are composed of the viral genome, viral polymerase and
many copies of the viral nucleoprotein. In vitro cell expression of all RNP protein components
with four of the eight influenza virus gene segments enabled structural determination of native
influenza virus RNPs by cryo-electron microscopy. The cryo-EM structure reveals the architecture
and organization of the native RNP, thereby defining the attributes of its largely helical structure
and how polymerase interacts with NP and the viral genome. Observations of branched-RNP
structures in negative stain EM and their putative identification as replication intermediates
suggest a mechanism for viral replication by a second polymerase on the RNP template.

Influenza A virus is a single-stranded RNA virus that causes frequent epidemics as well as
sporadic pandemics (1). The constant threat of pandemic influenza is highlighted by the
emergence of novel pandemic H1N1 viruses in 2009 (2) and the potential for highly
pathogenic avian H5N1 viruses to gain human-to-human transmissibility (3). Several studies
on influenza virus have pointed to components of the ribonucleoprotein complex (RNP) as
key factors in host adaptation (4). The RNPs are responsible for viral transcription and
replication as well as assembly of the genome segments into progeny virions (1).

The RNP is comprised of a single polymerase bound to the complementary RNA termini
and multiple copies of the viral nucleoprotein (NP) that decorate the length of each of the
eight single-stranded viral genome segments such that the RNP resembles a large loop,
twisted into a helical filament (5). The RNA polymerase is composed of PB1, the catalytic
subunit, and PB2 and PA subunits, which carry activities for priming transcription (1, 6, 7).
Some fragment crystal structures have been determined (8), but how the subunits form a
functional polymerase, interact with NP and the viral genome, or modulate interactions with
host factors is still unclear.

Oligomerization of NP into a non-physiologic trimer, as observed in crystal structures, is
facilitated by insertion of a long `tail-loop' from each NP monomer into a binding site on the
adjacent monomer (9). The `tail-loop' has been shown biochemically to be important for
oligomerization of NP monomers within the RNP (10–12), but structural information on the
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native RNP has been lacking and it is unclear how the NPs form the helical filament
structures that are characteristic of influenza virus RNPs (5) Electron microscopy studies
have previously been performed on constrained mini-RNPs (10) via truncation of the RNA
genome to 254 nucleotides. The mini-RNP is not expected to recapitulate all of the
interactions of native RNP complexes, which contain 890–2,341 nucleotides, particularly in
formation of native-like filaments. To address the plethora of biological questions
surrounding the influenza virus RNP, we used cryo-EM to analyze the structure of
recombinant RNPs.

The RNPs were derived from influenza virus gene segments 1, 2, 3 and 5, which encode the
protein components of the RNP complex, using a plasmid-based system (13). The co-
expression of RNP protein components with viral genomes facilitates in vivo assembly of
native RNP complexes with viral transcription and replication activity. The RNPs in the
electron micrographs are highly flexible along their length (fig. S1), but display a regular
diameter and repeat allowing 3-D reconstruction of the three main regions: the RNA-
polymerase end, the central filament, and the looped-end (Fig. 1A,B, table S1) (5, 14).

Reconstruction of the central filament region was performed by selecting short, overlapping
regions along the length of the RNP and applying helical symmetry based on initial analysis
of non-symmetrized reconstructions. To reconstruct both ends of the RNP, putative RNP
end regions (blunt and loop ends) were identified, selected and subsequently classified using
a 3-D maximum likelihood approach (15, 16) to separate images of the loop end from the
polymerase end. A polymerase in isolation reconstruction was obtained by digesting and
disassembling the RNPs with ribonuclease. The 3-D maps are low-pass filtered at a
resolution indicated by the Fourier shell coefficient curve at 0.5. Back projections of all 3-D
reconstructions are in good agreement with their corresponding 2-D class averages (fig. S2–
S5).

The 3-D cryo-EM reconstruction of a 23 nm segment of the central region of the RNP
filament at 21 Å resolution (Fig. 1C) indicates that the NP-RNA complex forms two
antiparallel strands that twist about one another to and from the RNA polymerase, which is
bound to the RNA termini (5). Single NP protomers derived from the crystal structure (9)
were fit into the EM map with the aid of automated docking procedures using structural,
biological, and symmetry constraints (17) (Fig. 1D and movie S1). Influenza virus is
unusual among RNA viruses in that transcription and replication occur within the cell
nucleus (1). In the fitted model, the NP N-terminal nuclear localization signal (NLS I) is
exposed, whereas a second putative NLS (NLS II) is buried in the protein-protein interface
(fig. S6), in agreement with antibody labeling studies (18). While the modest resolution map
does not allow an atomic interpretation, the protomer arrangement and regions of the NP can
be localized within the RNP. The model is consistent with the finding (19) that the NP `tail-
loop' is used for oligomerization along the NP-RNA strand (fig. S6) and the loss of
transcriptional activity when residues in the NP `tail-loop' are mutated (fig. S7) (10–12). The
RNP helix is stabilized by one NP-RNA strand interacting with the antiparallel NP-RNA
strand near the NP head domains (fig. S8) (20). The NP orientation also directs the proposed
NP RNA-binding regions into the inter-strand NP-NP interface such that the RNA
sequences that are most intimately bound by NP are not directly accessible for transcription
or replication, and suggests that at least local disassembly of the RNP is required for these
processes to occur.

In this central region, adjacent NP protomers rise by 32.6 Å and twist by 73.9°, for an
average of 4.9 NP along the RNA strand in one turn of the helix (21). The average
periodicity of NP on the genomic RNA is 32 ribonucleotides (22) similar to the 26–32
nucleotide periodicity range calculated previously from constrained mini-RNP (10, 23, 24).
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The average NP binding periodicity of the native RNP is understandably somewhat larger
due to its more relaxed conformation. Furthermore, the spacing of the NP RNA-binding sites
leaves large sections of RNA exposed (fig. S9), explaining the susceptibility of influenza
virus RNP to ribonucleases (5). Some of the exposed RNA may present terminal genome
assembly signals to facilitate interactions with the other gene segments and the assembly of
the viral genome into progeny virions (25). These signals would be presented within about
six NP, or 19 nm, from the polymerase end of the RNP, in agreement with recent influenza
virus tomographic studies where interactions between the assembled eight RNPs are
observed within 13–17 nm of the RNP filament end (26, 27).

The loop-end of the RNP was reconstructed from cryo-EM images to a resolution of
approximately 40 Å and demonstrates that the NP-RNA strand makes a sharp U-turn to and
from the central filament region (Fig. 1A and fig. S10). 2-D averages of negatively stained
RNP show the loop is comprised of 5–8 NP monomers. The observed variation is likely due
to different degrees of unwinding of the central filament region.

The polymerase-bound blunt end of the RNP was reconstructed to a resolution of 20 Å from
the cryo-EM images. The heterotrimeric RNA-dependent RNA polymerase has two primary
domains: a large domain and a smaller arm domain. Polymerase directly contacts two NPs
on its large domain (Fig. 2A and fig. S10) and is adjacent to an additional NP monomer. Our
reconstruction is similar to previously published densities (10); however, we identify a mass
previously assigned to polymerase as more likely representing the adjacent additional NP
monomer (fig S11). The structure of purified polymerase was determined by cryo-electron
microscopy to 13 Å resolution (28). This higher-resolution structure could be fitted into the
native RNP-bound polymerase reconstruction after rearrangement of the arm domain (Fig.
2B). Conformational isomerism of the arm domain is consistent with observations made for
polymerases of other segmented negative-sense RNA viruses (29) (fig. S12). The arm
domain is of a size and shape that suggests it is the PA C-terminal domain (30).

To locate the PB2 polymerase subunit within the RNP complex, the C terminus of the PB2
polymerase subunit in RNPs was labeled with 5 nm Nanogold and negatively stained. The
gold label localizes to the base of the polymerase large domain near the contact site of the
NP antiparallel helical screw (Fig. 2C). The PB2 `627' domain is located adjacent to the PB2
C terminus (31). Avian viruses lacking adaptive mutations on the surface of this domain,
particularly Glu627Lys, are inhibited by a mammalian host factor that interferes with
association of the avian polymerase with NP (32–34). Our identification of the `627' domain
near the NP binding site on polymerase suggests a direct competition for polymerase
binding between NP and the mammalian inhibitory host factor leading to host restriction for
most avian viruses.

The NP protomers can be used as markers of the viral RNA genome path near the
polymerase, as the viral RNA is not observable at the resolution of our reconstruction. One
NP-RNA strand contacts polymerase near the PB2 C terminus, whereas the second NP-RNA
strand departs from the helical filament to loop around and then contact polymerase via the
PA C-terminal domain (fig. S10). This organization places the second RNA strand on the
putative RNA binding site of the PA-CTD (30). Arg566Glu or Lys574Glu mutations in this
binding site completely abolish transcriptional activity (fig. S7). Structural homology of the
PA-CTD with the N-terminal domain of reovirus RNA polymerase (30, 35) suggests that
this second strand is the 3′ end of the genome, which is directed towards the polymerase
active site on the polymerase large domain; therefore, the first strand is the 5′ end (fig S13).
The partially base-paired RNA termini must be proximal to the polymerase active site to
place a 5′ proximal polyuridine stretch across the active site while remaining bound to the
5′ terminus and facilitate the proposed `stuttering' mechanism of polyadenylation (36) (Fig.
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3A). The placement of the complementary RNA termini on the upper portion of the
polymerase large domain is supported by a previous reconstruction of the polymerase bound
to small RNA (37). These data support a model of RNA synthesis where PA-CTD plays a
role in feeding template RNA into the polymerase active site.

Based on our structural models and incorporating additional structural and biochemical
results from the literature, we can propose a model for viral transcription from influenza
virus RNPs (Fig. 3B, fig. S14, and movie S2). In the pre-initiation state, the RNA termini
are base paired adjacent to the polymerase active site. The PA and PB2 subunits bind and
cleave host mRNA to produce capped primers for transcription initiation. The 3′ end then
disengages from the 5′ end and repositions to the polymerase active site. As transcription
proceeds, the PA-CTD moves single-stranded RNA from the RNP filament into the active
site. As transcription reaches the 5′ end of the template and the RNA noose tightens, the 5′
terminus remains bound to the polymerase, positioning the polyuridine stretch across the
active site. The polymerase stutters across this region to bring about polyadenylation and
transcription termination.

Replication of the influenza virus genome is distinct from transcription in that the RNA
product is not capped or polyadenylated. Viral replication involves the production of an
intermediate cRNP complex composed of complementary RNA, polymerase and NP. The
cRNP then acts as a template for viral genome synthesis. During replication, the RNP is
thought to act only as a template with RNA polymerization carried out by a second
polymerase (38). Examination of negative stain EM micrographs reveals numerous RNP
complexes with a branched arrangement where a smaller nascent RNP appears to bud from a
larger full-length RNP (Fig. 4). Nascent RNPs with very small lengths, half-length, or near
full length are most common near the RNP filament ends as expected for a nascent RNP
replicating on a full-length RNP template (fig. S15). Additionally, in RNP samples
containing labeled polymerase, we observe polymerase residing at the junction of the
smaller RNP with the full-length RNP (fig. S16). The observation of branched RNPs and
their putative identification as replication intermediates is consistent with previous
biochemical and structural investigation of vesicular stomatitis virus RNPs isolated from
infected cells (39). These data support a model of influenza virus replication where a second
polymerase acts on a template RNP leading to the formation of nascent RNP complexes
concurrent with viral replication. It remains unclear how the second polymerase initiates
replication. However, in our model, as replication proceeds, a new 5′ end is synthesized and
is bound by the second replicating polymerase (Fig. 3C, fig. S17, movie S3). After 5′
terminus binding, the first NP protomer is added to the product RNA adjacent to the
replicating polymerase's PB2 `627' domain initiating encapsidation of the viral genome or
cRNA in a 5′ to 3′ direction and forming a nascent RNP on the template RNP giving the
complex its branched appearance (Fig. 3C). This model describes NP encapsidation of the
viral genome being initiated by sequence-specific binding of polymerase to the RNA 5′ end
(40), concurrent with viral replication, which would account for NP encapsidation of viral
RNA and not host RNA during viral infection.

These studies provide new insights into influenza virus transcription, replication, and host
species adaptation and shed light on RNP nuclear translocation and virus assembly. These
findings also suggest that the PB2-NP interaction and the PA-CTD conformational
rearrangement are potential targets for novel therapeutics and demonstrate the utility of
targeting the NP `tail-loop' binding site (12). Our model also provides a framework to
develop new hypotheses to address how viral proteins and host factors interact with RNP for
nuclear export and localization to the plasma membrane for virus assembly.

Moeller et al. Page 4

Science. Author manuscript; available in PMC 2013 December 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Supplementary Material
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Fig. 1. Cryo-EM reconstruction of the influenza virus ribonucleoprotein complex
(A) Composite model of cryo-EM reconstructions of the three regions of the RNP. (B)
Cartoon representation of the RNP organization. The large domain of polymerase is shown
in orange with the arm domain in red. Nucleoproteins are shown in green and RNA in blue.
(C) Reconstruction of the central filament region using helical symmetry. (D) Single
protomers from the NP crystal structure (9) were fitted into the EM density. The
arrangement of the NP (light-blue for descending strand and dark blue for ascending strand)
within the filament creates a periodic box type arrangement formed from four NPs with a
region of low density or dimple in the center of the box. This box-like feature is also easily
identifiable in our reconstructions of the loop and polymerase end regions. Arrows indicate
RNA polarity. Scale bar represents 10 nm.
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Fig. 2. The influenza virus RNA polymerase and its interactions at the RNP terminus
(A) The RNP-bound polymerase large domain (orange) caps the central RNP filament
region. A single NP from the second strand that has emerged from the central filament
follows the 3′ RNA strand as it loops behind polymerase to contact the PA CTD (red). (B)
Cryo-EM reconstruction of the free polymerase (left) shows it consists of a large domain
(orange) and an arm containing the PA CTD (red) (30). The arm domain conformation in the
RNP is accommodated by a rotation about a pivot near the base of the arm (right). (C) 2-D
averages and raw images of negatively stained RNPs labeled with 5 nm Nanogold (upper
and middle panels respectively) localize the PB2 C terminus to the bottom of the large
domain near the NP contact site. The lower panels show 2-D projections of 21 Å RNP-
bound polymerase with an additional circle (indicated with an arrow) below the polymerase-
large domain corresponding to the size of the 5 nm Nanogold for comparison with labeled 2-
D class averages. (D) The composite image of the RNP polymerase end has been labeled to
indicate putative subunit locations based on the PA CTD docking, Nanogold labeling of the
PB2 C-terminus and structural homology with reovirus polymerase. The location of the 5
nm Nanogold labeling the PB2 C-terminus is shown as a circle labeled Au. Because the
reconstruction is centered on the polymerase and the RNP is flexible, additional density
corresponding to distal regions of poorly aligned RNP filaments is visible beneath the well-
ordered components.

Moeller et al. Page 9

Science. Author manuscript; available in PMC 2013 December 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 3. Models for influenza virus RNA synthesis
(A) In the resting RNP, polymerase is bound to both 5′ and 3′ termini, as would be expected
in virions. The polymerase large domain and arm domain are colored orange and red
respectively. The nucleoprotein is in green and the genomic RNA is in light blue for 3′ end
and dark blue for the 5′ end. The active site (*) and RNA polarity were identified using
structural homology with the reovirus λ3 polymerase (fig S13). (B) Viral transcription of
mRNA is carried out by the resident polymerase acting. In this process, template RNA is
pulled up from beneath polymerase, passed through the active site where it is transcribed
into capped mRNA (black) and then re-encapsidated into a NP-RNA complex, which coils
up to form an RNP-like structure. (C) Replication of viral RNA is carried out by a second
polymerase leading to nascent RNP formation. The second replicating polymerase binds a
newly synthesized 5′ end and initiates encapsidation of the viral genome by NP in a 5′ to 3′
manner leading to nascent RNP formation.

Moeller et al. Page 10

Science. Author manuscript; available in PMC 2013 December 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 4. Formation of nascent RNP during replication. (Upper panel)
Electron micrographs of the negatively stained RNP sample at high dilution reveal branched
RNPs predicted to be replication intermediates. (Lower panel) Interpretation of the
branched RNPs in the upper panel showing how replication of the viral RNA in trans by a
second polymerase (red) could result in nascent RNP complexes (dark green) branching
from the template RNP (light green). As the nascent RNP moves away from and then back
towards the template RNP polymerase, that is, 3′ to 5′ along the genomic template, it would
elongate the complementary RNA and extends its length. Scale bar corresponds to 100 nm.
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