
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAPRIL 1992 123

Organization Self-Design of
Distributed Production Systems

Tom Ishida, Les Gasser, and Makoto Yokoo

Abstmct-Organization has emerged as a key concept for struc-
turing the activities of collections of problem-solvers. Organiza- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tion self-design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(OSD) has been studied as an adaptive approach
to long term, strategic work-allocation and load-balancing. In this
paper, we introduce two new reorganization primitives, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompo-
sition and decomposition. They change the population of agents
and the distribution of knowledge in an organization. To create
these primitives, we formalize organizational knowledge, which
represents knowledge of potential and necessary interactions
among agents in an organization. We develop computational OSD
techniques for agents with architectures based on production
systems to take advantage of the well-understood body of theory
and practice.

We first extend parallelproduction systems, where global control
exists, into distributed production systems, where problems are
solved by a society of agents using distributed control. We then
introduce OSD into distributed production systems to provide
adaptive work allocation. Simulation results demonstrate the
effectiveness of our approach in adapting to changing environ-
mental demands. In addition to introducing advanced techniques
for flexible OSD, our approach impacts production system design,
and improves our ability to build production systems that can
adapt to changing real-time constraints.

Index Terms-Adaptive problem solving, organization self-
design, parallel and distributed processing, production system,
real-time problem solving.

I. INTRODUCTION

T has been clear for some time that organization is a I powerful concept for thinking about how to structure the

interactions of collections of problem solvers. Understanding

the concept of organization and developing techniques for

adaptive reorganization are pressing concerns in distributed

artificial intelligence (DAI) [3]. Several conceptual approaches

to organization have been introduced, including treating organ-

ization as 1) a long term, strategic load-balancing technique

[5], 2) a structural set of control and communication relation-

ships among agents [28], 3) sets of interaction patterns among

agents [19], [12], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) sets of commitments and expectations
among agents, [3], [14], [20], or 5) collections of settled and

unsettled questions about knowledge and action zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[131.

The comparative information processing performance of

rigid organization structures was studied by Malone [28].

However, since no single organization is appropriate in all

Manuscript received July 1, 1991. This paper is the extended version of the

T. Ishida and M. Yokoo are with N7T Communication Science Laborato-

L. Gasser is with the Department of Computer Science, University of

IEEE Log Number 9106253.

authors’ previous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAAAI conference papers [25] , (151.

ries, Sanpeidani, Inuidani, Seika-cho, Soraku-gun, Kyoto, 619-02, Japan.

Southern California, Los Angeles, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACA 90089.

situations, organization self-design (OSD) has been proposed

to allow an organization of problem solvers to adapt itself

to dynamically changing situations [5]. In this paper, we

further explore the process of OSD, and, in doing so, we

examine some new ideas about the nature and representation of
organizations which are the foundations of OSD. We address

OSD by introducing the following new concepts: . Organizational knowledge: To perform either domain

problem solving or reorganization, agents need organi-
zational knowledge, which represents both the necessary

interactions among agents and their organization. How-

ever, the kind of organizational knowledge required for

reorganization has not been thoroughly investigated in

prior research. In this paper, we formalize organizational

knowledge as a collection of agent-agent relationships
and agent-organization relationships, which represent

how agents’ local decisions affect both other agents’

decisions and the behavior of the entire organization.

Reorganization primitives: In previous research, reorga-

nization mechanisms typically changed agent roles or

inter-agent task ordering [5] , [7] [9]. In this paper, how-

ever, we take the approach of formalizing reorganization

primitives, which can perform OSD through repeated ap-

plication. The new reorganization primitives, composition
and decomposition of agents, dynamically change inter-

agent relationships, the knowledge agents have about one

another, the size of the agent population, and the resources

allocated to each agent.

Up to now, OSD has been investigated using compar-

atively complex agents, such as blackboard-based agents.

However, here we discuss OSD using a problem-solving

model based on production systems, to take advantage of a

well-understood body of theory and practice, while retaining

general applicability. Production systems have the advantage

of providing a formal characterization of both the knowledge
needed to solve a problem and the ways in which parts of that

knowledge interact. In addition, production rules can be used

as general abstractions of organizational and problem-solving

processes of many kinds. (For example, Zisman has provided

a well-known application of production systems to modeling

asynchronous organizational work and problem-solving [34].)

Though we use production systems here as a theoretical and
modeling foundation, our concepts of OSD and organizational

knowledge can be generalized to apply to other problem-

solving models and other types of problem solvers.

In addition to advancing OSD techniques, our approach im-
pacts production system design. Previous research, attempted

10414347/92$03.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1992 IEEE

I24 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 4. NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 , APRIL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlY92

to improve the efficiency of production systems by investi-

gating high-speed matching algorithms, such as RETE [lo]

and TREAT [29]. Two kinds of parallel approaches have

also been studied: parallel matching [l], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[16] to speedup

matching processes and parallel firing [22], [31], [23], [24]

to reduce the total number of sequential production cycles.

However, the motive for all of these studies is to speed up

production systems several times over, and not necessarily to

make them more adaptive or reactive, e.g., to follow changing

environmental demands or resource constraints. Thus, the

published techniques are not yet fully adequate for real-
time expert systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[26]. The OSD approach, proposed in

this paper, can complement other approaches currently being

developed for real-time expert systems, such as approximate

processing techniques [27] and adaptive intelligent systems

[18]. These approaches attempt to meet deadlines by improv-

ing the decision-making of individual agents. On the other

hand, the OSD approach, where problems are solved by a
society of distributed problem-solving agents, aims to achieve

adaptive real-time performance through the reorganization of

the society. Various simulation results show the effectiveness

of our OSD approach for building adaptive real-time systems

with production system architectures.

11. OVERVIEW OF APPROACH

We begin our approach to OSD with a general problem-

solving model based on parallel production systems, in which
global control exists. Next, we extend this into distributed

production systems with distributed control. Finally, we intro-

duce OSD primitives and an OSD architecture into distributed

production systems, and test their performance.

We are interested in OSD for problem-solving organizations,

whose products are solutions to individual problem-solving

requests that are issued from the organization’s environment.

Several types of change in the relationship between a problem

solving organization and its environment can create pressure

for reorganization. These include: 1) demands for change in

the organizational performance level (e.g., shorter or longer

response time requirements or new quality levels), 2) change

in the level of demand for certain solution types (e.g., more

or fewer problem-solving requests per unit time, or changes
in the mix of problem types), and 3) changes in the level of

demand for resources that the organization shares with others

in its environment.

No single organization can adequately handle all problems

and environmental conditions. For example, suppose there
are three agents in an organization, each of which fires

one production rule for solving each problem request, the

three agents work in a pipelined fashion (because their rules

are sequentially dependent), and the communication delay

among agents is equal to one production cycle. Thus, the

total throughput cycle time for satisfying a single request is

5. In this case, however, a single agent organization would

perform better-it would incur no communication overhead,

and would take only 3 cycles for satisfying a single request.

On the other hand, if there were ten problem-solving requests,

the response time of the last request would be 14 cycles in the

three agent organization, while i t would be 30 in the single

agent case.

In our model, problem-solving requests issued from the

environment arrive at the organization continuously, and at

variable rates. To respond, the organization must supply mean-

ingful results within specified time limits, which are also

set by the environment and which also may vary. These

variations are changing conditions to which the organization

must adapt using organizational knowledge and OSD primi-

tives.

Fig. 1 describes the process of OSD. Composition and

decomposition are repeatedly performed as follows [25]:
Decomposition divides one agent into two. Decomposi-

tion is performed when environment demands too much

from the organization (e.g., high arrival rates of problem-

solving requests), such that the organization finds i t dif-

ficult to meet its response requirements with its available

resources. More precisely there are two cases. In the first

case, agents decompose to increase intra-problem paral-

lelism. This happens when the structure of the problem-

solving rules being applied contains concurrency, and
agents cannot meet deadlines because of the complexity

of the given problem. In the other case, agents decompose

to increase inter-problem parallelism. Even if there is

no possible concurrency among rules, decomposition can

increase the organizational throughput when multiple

problem requests can be processed in a pipelined fashion.
Composition combines two agents into one. As with

decomposition, two cases exist. In the first case, the

organization is embedded in an open community with

other organizations, and i t must save community-wide

computing resources for cost-effective problem solving.

In this case, it is not sufficient just to continuously utilize

the maximal available parallelism-the collective must

also adaptively free up computing resources for use by

others, and it can do this through composition. In the

other case, agents compose to reduce response times.

This need arises when communication overhead cannot be

ignored. Because of the inter-agent communication over-

head, maximal decomposition does not necessarily yield

either minimal response time or maximal organizational

throughput. Composition may actually reduce response

time, even though parallelism decreases, where coordina-

tion overhead (i.e., communication and synchronization)

is high.

Both composition and decomposition force reorganize ac-

tions by modifying the distribution of problem-solving and

organizational knowledge in the organization, and by modify-

ing the particular association between resources and problem-

solving knowledge. In general, decomposition increases the

overall level of resources used, while composition decreases

resource use. Composition and decomposition can occur con-

currently in different parts of the organization. The relative

balance of composition and decomposition activities during
any period is a result of the interaction between a set of

reorganization rules that govern reorganization, and the con-

ditions in the organization and in the environment during that

period.

ISHIDA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a/ . : ORGANIZATION SELF-DESIGN OF DISTRIBUTED PRODUCTION SYSTEMS I25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD

Decomposition
agentP

Initial State

Problem solving requests arrive at variable rates.

agentP~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

Composition

Results are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequired within a predefined time-limit

Fig. 1. Composition and decomposition

111. PRODUCTION SYSTEMS

To establish our terminology, we must give a brief overview

of production systems. A production system is defined by a

set of rules or productions called production memory (PM)

together with an assertion database called working mem-

ory (WM) that contains a set of working memory elements

(WME's). Each rule comprises a conjunction of condition

elements called the left-hand side (LRS) of the rule, and a set

of actions called the right-hand side (RHS). Positive condition

elements are satisfied when a matching WME exists, and
negative condition elements are satisfied when no matching

WME is found. An instantiation of the rule is a set of

WME's that satisfy the positive condition elements. The RHS
specifies assertions to be added to or deleted from the WM.'

The production system interpreter repeatedly executes the

following cycle of operations:

1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMatch: For each rule, determine whether the LHS
matches the current environment of the WM.

2) Select: Choose exactly one of the matching instantia-
tions of the rules according to some predefined criterion.

This is called a conflict resolution strategy.
3) Act: Add to or delete from the WM all assertions as

specified by the RHS of the selected rule.

A data dependency graph for production systems [22]-[24]

A production node, which represents a set of instantia-

tions. Production nodes are shown as circles in figures.

A working memory node, which represents a set of

WME's. Working memory nodes are shown as squares

in figures.

A directed edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom a production node to a working
memory node, which represents the fact that a production

node modifies a working memory node. More specifically,

the edge labeled "+" ("-") indicates that a WME in a

working memory node is added (deleted) by firing an

instantiation in a production node.

is constructed from the following four primitives:

'In this paper, we assume that each WME contains unique information.
Operations adding duplicated WME's are ignored. Several commercial pro-
duction systems take this approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4].

(P d e A
(classl ...)

(make class2 ...))

(classl ...)
- (class2 ...)

(remove 1))

-->

(P d e B

-->

classl
r---

class2

Fig. 2. Data dependency graph.

A directed edge from a working memory node to a pro-
duction node, which represents the fact that a production

node refers to a working memory node. More precisely,

the edge labeled "+" ("-") indicates that a WME in a

working memory node is referenced by positive (nega-

tive) condition elements when creating an instantiation in

a production node.

Interference exists among rule instantiations when the result

of parallel execution of the rules is different from the results of

sequential executions applied in any order. Interference must

be avoided by synchronization. Various methods for detecting

interference are reported in [23] and [24]. In this paper, we

utilize compile-time analysis because run-time analysis is too

expensive in multiagent situations. In compile time analysis,

interference can be identified when multiple rules destroy other

rules' preconditions in a cyclic fashion.

Fig. 2 shows an example of OPS5 rules and their data

dependency graph. In Fig. 2, if either ruleA or r u l e B is

fired first it destroys the other rule's preconditions; therefore,

interference may occur when firing both rules in parallel. If the

two rules are distributed to different agents, the agents have

to synchronize to prevent the rules from being fired in parallel

and thus maintain consistency.

IV. DISTRIBUTED PRODUCTION SYSTEMS

A. Architecture

Fig. 3 illustrates three types of agent. A production system
agent, illustrated in Fig. 3(a), consists of a production system

I26 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 2, APRIL 1992 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Domain Knowledge -T

Productlon
System

Interpreter

Production
System

Interpreter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t

Production
System

Interpreter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$

Fig. 3. Agent architecture. (a) Production system agent. (b) Distributed production system agent. (c) Self-organizable distributed production system agent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
interpreter and domain knowledge, in which the PM represents

domain rules and the WM represents domain data.
Fig. 3(b) represents the architecture of distributed produc-

tion system agents, each of which contains a part of the

domain knowledge. Such agents must communicate with other

agents for data transfer and for synchronization. Thus, each

agent requires organizational knowledge, which represents

agent-agent relationships. A distributed production system

agent comprises the following three components:

A production system interpreter that continuously repeats

the production cycle, described in Section IV-C. In a

parallel production system, multiple rules are simulta-

neously fired but globally synchronized at the Select

phase [22]-(241. In a collection of distributed production

system agents, on the other hand, rules are asynchro-

nously fired by distributed agents. Since no global control

exists, interference among the rules is prevented by local

synchronization between individual agents.

Domain knowledge is contained in the PM, which repre-

sents domain rules, and WM, which represents domain
data. To simplify the following discussion, we assume

no overlap between PM’s in different agents, and assume

that the union of all PM’s in the organization is sufficient

to solve the given problem. Each agent’s WM contains

only WME’s that match the LHS of that agent’s rules.

Since the same condition elements can appear in different

rules, the WM’s in different agents may overlap. The

union of WM’s in an organization logically represents all

data necessary to solve the given problem. In practice,

since agents asynchronously fire rules, WM’s can be

temporarily inconsistent.

Organizational knowledge represents relationships among

agents, and we call these agent-agent relationships.

ISHIDA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ORGANIZATION SELF-DESIGN OF DISTRIBUTED PRODUCTION SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA127

Agents that have such relationships with a particular

agent are called that agent’s neighbors. Agent-agent

relationships are initially obtained by analyzing domain

knowledge at compile time, and are dynamically

maintained during the process of OSD. Since agents

asynchronously perform reorganization, organizational

knowledge can be temporarily inconsistent across

agents. Taken together, these relationships structure the

actions of each agent at any moment; they provide

a decentralized knowledge-based specification of the

instantaneous organizational form.

Self-organizable distributed production system agents are

discussed in Section V.

B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOrganizational Knowledge: Agent-Agent Relationships

Agent-agent relationships can be seen as the aggrega-

tion of two more primitive types of relationships: knowl-
edge-knowledge relationships, which represent interactions

within domain knowledge, and knowledge-agent relation-
ships, which represent how domain knowledge is distributed

among agents. Knowledge-knowledge relationships consist of

data dependencies and interferences among domain rules as

follows:

Data dependencies: Each agent knows which domain

rules in the organization have data dependency relation-

ships with its own rules. We say that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAruleA depends
on ruleB if ruleA refers to a working memory node

that is changed by ruleB. We describe this as de-
pends(ruleA, rule B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) . The data dependency

knowledge of agentP is represented as follows:

DEPENDENCYagentp =
((ruleA,ruleB) I

(ruleA E PMayentp V ruleB E PM,,,,,tp)
A depends (ruleA,ruleB)}

Interferences: Each agent knows which rules in the or-

ganization may interfere with its own rules. We de-

scribe the interference of ruleA and ruleB as inter-
fere (ruleAI ruleB) . The interference knowledge

of agentP is represented as follows:

{ (ruleAI ruleB) I
INTERFERENCE agentp =

(ruleA E PMayeTLtp V (ruleB) E

Ainterfere(ruleA,ruleB) }
Though an individual agent’s execution cycle is sequen-

tial, potential interference among its own rules is analyzed

for potential future distribution of those rules.

On the other hand, knowledge-agent relationships are rep-

Locations: Each agent, say agentP, knows the loca-

tion of rules, say ruleA, appearing in its own data

dependency and interference knowledge. We describe the
appearance of ruleA in the data dependency and inter-

ference knowledge of agentP as appears (ruleA,
agentP) . The location knowledge of agentP is rep-

resented as

PMuiJent P)

resented by the locations of domain rules:

LOCATIONUye,,tp =

{ (ruleAI agentQ) I
appears (ruleAI agentP) A ruleAEPMagentQ}

Fig. 4 illustrates the organizational knowledge of agentP.
Large solid circles indicate the boundaries of individual agents.

Long, narrow ovals that connect agents indicate interaction

paths among agents; the two rectangles within each oval

indicate the WME’s communicated between agents via that

interaction path, and duplicated in both agents. “+”and “-

”indicate data dependencies as described in Section 111-B.
In the example in Fig. 4, since ruleA and ruleB interfere

with each other, agentP has to synchronize with agentQ
when executing ruleA. Also, ruleA’s WM modification

has to be transferred to agents. We call agentQ, agentR,
agents, and agentT neighbors of agentP because they

have agent-agent relationships with agentP. From this def-
inition, as illustrated in Fig. 4, agentP’s organizational

knowledge refers only to its neighbors.

C. Production Cycle

We define a production cycle of distributed production

system agents by extending the conventional Match-Select-Act

cycle to accommodate inter-agent data transfers and synchro-

nization. Inter-agent inconsistency caused by distribution is

handled locally by using temporary synchronization via rule

deactivation (we assume preservation of message ordering).

The cycle is:

Process messages: When receiving a synchronization

request message (e.g., deactivate (ruleA)) from
some agent, return an acknowledgment message and

deactivate the corresponding rule (ruleA) until

receiving a synchronization release message (act i-
vate (ruleA)) from the same agent. When receiving

a WM modification message, update the local WM to
reflect the change made in another agent’s WM.

Match: For each rule, determine whether the LHS

matches the current WM.

Select: Choose one instantiation of a rule (e.g., ruleB)
that is not deactivated.
Request synchronization: Using interference knowledge,

send synchronization request messages (deactivate
(ruleB)) to the agents requiring synchronization.

Await acknowledgment from all synchronized agents.
After complete acknowledgment, handle all WM modi-

fication messages that have arrived during synchroniza-

tion. If the selected instantiation is thereby canceled,

send synchronization release messages and restart the

production cycle.
Act: Fire the selected rule instantiation (ruleB). Using

the data dependency knowledge of agentP, inform

dependent agents with WM modification messages.

Release synchronization: Send synchronization release

messages (activate (ruleB)) to all synchronized

agents.

To avoid deadlock, we prioritize interfering rule pairs at
compile time. This idea is borrowed from [32]. Let ruleA
and ruleB interfere with each other, and let ruleB be

given a higher priority. Then, ruleB can be fired without

128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, APRIL 1992 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

indicates the same working memory node
duplicatively zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstored in different agents. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

DEPENDENCY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaged' = ((ruleA, ruleB) (ruleB, ruleA)
(ruleA, ruleC) (ruleD, ruleA)
(ruleA, ruleE))

INTERFERENCE n g r d =((ruleA, ruleB))
LOCATION aged' = ((ruleA, agenP) (ruleB, agentQ)

(rulec, agentR) (ruleD, agents)
(ruleE. agentT))

Fig. 4. Organizational knowledge

synchronization as long as it is not deactivated. However,

when firing r u l e A , r u l e B has to be deactivated through

synchronization. This approach can avoid interference through

one-directional synchronization, and thus can reduce half of

the synchronization overhead. Deadlock may still occur when

agents are prioritized in a cyclic fashion, i.e., r u l e A requires

r u l e B be deactivated, r u l e B requires r u l e C be deacti-

vated, and r u l e C requires r u l e A be deactivated. However,

since interference is analyzed at compile time, we can easily

prioritize rules such that loops are not created. Thus, this

approach can avoid deadlocks among distributed production

system agents.

V. ORGANIZATION SELF-DESIGN (OSD)

A. Architecture

Fig. 3(c) represents the agent architecture for self-

organizable distributed production system agents. OSD is

performed in the following way: Upon initiation, only one

agent, containing all domain and organizational knowledge,

exists in the organization. We assume organizational knowl-

edge for the initial agent is prepared by analyzing its

domain knowledge before execution. Problem-solving requests

continuously arrive at the agent; older pending requests are

processed with higher priority.

For effective reorganization, agents should invoke the reor-

ganization primitives appropriate for each situation. For this

purpose, we extend the organizational knowledge (in Sec-

tion IV-B) to include agent-organization relationships, which

represent how agents' local decisions affect organizational

behavior or, in other words, how well the organization is

meeting its response goals. However, since multiple agents

asynchronously fire rules and perform reorganization, knowing

the exact status of the entire organization is difficult. Under

the policy of obtaining better decisions with maximal locality,

we first introduce local and organizational statistics, which

can be easily obtained, and then define reorganization rules
using those statistics to select an appropriate reorganization

primitive when necessary. Since the reorganization rules are

also production rules, OSD and domain problem solving

are arbitrarily interleaved. In our implementation, however,

we assume higher priority is given to the reorganization

rules during the Select phase of the production cycle. This

mechanism is analogous to the integration of control and

domain knowledge source activations in systems such as BB1

[17], or to integrated metalevel reasoning in DVMT [8].
Decomposition is triggered when the environmental con-

ditions (problem-solving demand on the organization and

required response-time) exceed the organization's ability to

respond, given its current form and resource level. Excessive

demand at the organization level is translated into excessive

local demand in particular regions of the organization, mea-

sured using the local organizational statistics. At this point,

particular agents with excessive local demand are divided into

multiple agents, and additional computational resources are

assigned to them. Decomposition continues until parallelism

increases and response improves. Composition is performed

when under-utilized resources can be released for use by

other organizations, or to improve local performance by reduc-

ing coordination overhead. When two agents, taken together,

contain an oversupply of resources, they are combined into

one agent via composition. Composition repeats until no

more composition is possible under the conditions of meeting
deadlines. Since the aims of composition and decomposition

are independent, both kinds of reorganization can be performed
simultaneously in different parts of the organization. In this

way, both problem-solving and organization self-design are
treated as decentralized processes.

B. Organizational Knowledge: Agent-Organization
Relationships

Agent-organization relationships consist of local statistics,

organizational statistics, and reorganization rules:

Local statistics: We introduce firing ratio to represent the

level of activity of each agent. Let P be a predefined

period (normalized by production cycles) for measuring
statistics, and F be the number of rule firings during P.
Then the firing ratio R can be represented by FIP. When
R = 1.0 (i.e., there are no idle production cycles over the

measurement interval P), agents are called busy, while

when R < 1.0, agents can be assigned additional tasks.

To avoid the need for frequent communication among

agents, however, we do not assume that agents need to

know other agents' local statistics.

ISHIDA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ORGANIZATION SELF-DESIGN OF DISTRIBUTED PRODUmION SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA129

Organizational statistics: We assume each agent can
know by periodically-broadcast messages whether the

organization is currently meeting deadlines. Let T 7 e s p o n s e

be the most recently observed response time (that is, time

taken to complete the most recent task), and TdP,,dllILe be

the predefined time limit of the task. When T7psponsL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>
T d e a d l z n e , the performance of the organization should

be improved, while when Trespo.rLsp < T d e a d L t n e , the
organization can release resources.

Reorganization rules: By using local and organizational

statistics, the following rules are provided for each agent

to initiate reorganization. These rules are tested during

the production cycle.

R1) Perform decomposition if

T d e a d l r n e < T r e s p o n s e and
R = 1.0

R2) Perform composition if

T d e a d l i n e > T r e s y o n s e and

2R < T d e a d l i n e / T . r e s p o n s e

R3) Perform composition if

R1 initiates busy agents to perform decomposition, when

the organization cannot meet its deadline. R2 initiates agents

to perform composition, when the organization can keep its

deadline. Composition is performed even if agents are fully

busy, when Tresponse is enough lower than T d P a d l i n e .

R3 is introduced to take account of communication over-

head. Suppose problem solving requests initially arrive fre-

quently, and subsequently decrease. Initially, R1 is repeatedly

applied, maximizing the parallelism to increase organizational

throughput. Later, even though the frequency of requests

decreases, R2 may not be valid because the communication
overhead may not allow agents to meet deadlines. Thus, R3 is

necessary to merge lightly loaded agents even when TresporLSP
exceeds T d e a d l z n e . This merging lowers coordination cost in

the overall problem pipeline, and so improves performance.

R < 0.5.

C. Reorganization Process

Reorganization is triggered by the firing of a reorganization

rule during the normal production cycle. We describe below

how one agent (e.g., agentP) decomposes itself into two

agents (e.g., agen tP and agentQ). During reorganization,

domain rules, WME’s, dependency, and interference knowl-

edge are transferred from agen tP to agent.Q without any

modification. However, location knowledge is modified due

to the relocation of domain rules and changes are propagated

to neighboring agents.

Create a new agent: agen tp creates a new agent,

agentQ, which immediately starts production cycles.

Select domain rules to be transferred: agen tP selects

domain rules to be transferred (e.g., ru l eA to agentQ.

Currently, we arbitrarily transfer half of the active rules,

but we are refining a theory of rule selection based

on maximizing the intra-agent rule dependencies and
minimizing inter-agent communication.

Request synchronization: agen tP sends a synchro-

nization request message for each rule to be syn-

chronized (e.g., d e a c t i v a t e (ru l eA)) to agentQ.
agen tP also sends synchronization request mes-

sages to its neighbors, i.e., all the domain rules

that have data dependency or interference rela-

tionships with rules to be transferred2 (e.g., de-

a c t i v a t e (r u l e B) is sent if depends (r u l e A ,
r u l e B) , depends (ru l eB , ru l eA) or i n t e r -

f ere (r u l e A , ru l eB)) . agen tP waits for complete

acknowledgment. While waiting for acknowledgment,

a g e n t p processes messages as in Step 1 of the

production cycle described in Section IV-C.

Tansfer rules: agen tP transfers rules (r u l e A) to

agentQ, updates its own location knowledge, and prop-
agates the change to its neighbors.

Transfer WME’s: agen tP copies WME’s that match the

LHS of the transferred rules (r u l e A) to agentQ.3 A
bookkeeping process follows in both agents to eliminate

duplicated or unneeded WME’s.
Transfer dependency and interference knowledge:
agen tP copies its dependency and interference
knowledge to agentQ. Both agents do bookkeeping

to eliminate duplicated or unneeded organizational

kn~wledge .~

Release synchronization: agen tp sends synchro-

nization release messages (a c t i v a t e (r u l e A) to
agentQ, and a c t i v a t e (r u l e B) to all synchronized

neighbors). This ends reorganization.

An agent, e.g., agentP, can compose with another agent

by a similar process. First, agen tP sends composition request
messages to its neighbors. If some agent, say agentQ, ac-

knowledges, agen tp transfers all domain and organizational

knowledge to agen tQ and destroys itself. The transfer method
is the same as that for decomposition.

During the reorganization process, deadlock never occurs,

because reorganization does not block other agents’ domain

problem solving and reorganization. Furthermore, though

neighboring agents are required to deactivate domain rules

that depend on or interfere with the transferred rules, they

can concurrently perform other activities including firing and

transferring rules that are not deactivated. This localization

helps agents to modify the organization incrementally.

VI. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of our approach, we imple-

mented a simulation environment and executed the Waltz
labelingprogram: 36 rules solve the problem that appears in

[33] with 80 rule firings. Our experiments begin with one agent

’This is to assure that WM modification and synchronisation request
messages related to domain rules to be transferred are not sent to a g e n t P
during the reorganization process.

More precisely, to avoid reproducing once-fired instantiations, not only
WME’s but also conflict sets are transferred to a g e n t Q . Before transferring
the conflict sets, however, a g e n t P has to maintain its WM by handling the
WM modification messages that have arrived before the synchronization is
completed.

4Unneeded data dependency and interference knowledge are tuples that
include none of the agents’ rules. Unneeded location knowledge consists of
tuples that include none of the rules that appear in the agents’ data dependency
and interference knowledge.

130 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 4, NO. 2, APRIL 1992

that contains all problem-solving knowledge. Its organizational

knowledge is trivial in that references are to itself, since it has

no neighboring agents. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Simulation Excluding Overheads

Figs. 5 and 6 show the simulation results. In these figures,

communication and reorganization overheads are ignored. The
line chart indicates response times normalized by production

cycles. The step chart represents the number of agents in the

organization. The time limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T d e a d l z n e) is set at 20 production

cycles, while the statistics measuring period (P) is set at 10

production cycles. In Fig. 5, problem solving requests arrive

at constant intervals, while in Fig. 6, the frequency of requests

is changed periodically. From these figures, we can conclude
the following:

1) Adaptiveness of the organization: In Fig. 5, around

time 100, the response time far exceeds the time limit.

Thus, the organization starts decomposition. Around

time 200, the number of agents has increased to 26,
the response time drops below the time limit, and

the organization starts composition. After fluctuating

slightly, the organization finally reaches a stable state

with the number of agents settling at 6. Since composi-

tion and decomposition have been repeatedly performed,

the firing ratios of the resulting agents are almost equal.

In Fig. 6, we can see the number of agents at the busiest

peak decreases over time. Both charts show that the

society of agents has gradually adapted to the situation

through repeated reorganization.

2) Real-time problem solving: The average number of

agents in Fig. 6 is approximately 9. We compared

response times of our organizational approach which

flexibly selects the number of agents, to those of
the conventional parallel approach using 9 permanent

agents. Differences in results from these two approaches

demonstrate that while the conventional approach uses

the same average number of agents, it cannot respond

to meet deadlines when problem demand increases.

Thus, the organizational approach is more effective

for adaptive real-time problem solving. However, the

effect of reorganization does lag behind the change

in environmental demand. For improved capability to

meet response requirements, the time limits must be set

shorter than the actual deadlines and increases in agent

activity should be detected as early as possible.
3) Efficient resource utilization: As shown in Fig. 6, the

conventional parallel approach requires 17 permanent

processors to meet deadlines. Thus, the organization-

centered approach, which requires around 9 processors

on average, is more economical.

B. Simulation Including Overheads

Figs. 7 and 8 describe the results obtained from the same

situation conditions as given in Fig. 5, but they include

communication and reorganization overheads. But what are

reasonable assumptions for communication and computation

speeds? In the iPSC/2, a typical message-passing multicom- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

120 I I

II: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

c

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C z

25 4 I
20 3

, 15
0

0 ~ r t + i ~ l i t l r t l t l t l t r t t t t t t

0 100 200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA300 400 500 600
Time

-* No of agents

+- Response time

t Problem solving requests

Fig. 5. Simulation results (constant intervals)

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
N * w a ~ N - 2

Time

- No 01 agents

Response time (Organizational
approach)

-
- Response time (Parallel approach)

i Problem solving request

Fig. 6. Simulation results (changed intervals).
I

puter, the communication overhead of sending a 2 kilobyte

message across the diameter of a 128 node machine is 840

ps, and the transfer rate for a 64 kilobyte message is 2.6

megabyteh [2]. For computation, a state-of-the-art production

system takes from several to several tens of milliseconds for

one production cycle on an HP90001370, a Motorola 68030

based workstation [30]. Since one production cycle creates

several messages, each of which contains a few WME’s, the

communication overhead in a good message-passing machine

can be estimated as at most one production cycle. However, we

also have taken into account communication overhead to cover

cases in which wider-area and somewhat slower networks such

as Ethernet or public telecommunication networks are used for

131 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAISHIDA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: ORGANIZATION SELF-DESIGN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF DISTRIBUTED PRODUCTION SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
140 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0)

E
120-

0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv)

Q m
5 100-

2 80-

60 -

40 -

- Response time (Oc=O)

- Response time (Oc=l) - Response time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Oc=3)

-0- Response time (Oc=5)

t Problem solving requests

Fig. 7. Simulation results (communication overheads)

distributed problem solving. Let 0, be the average network

latency represented in terms of production cycles. Then, agents

can utilize other agents' results no sooner than 0, cycles later.

We simulated situations in which 0, was equivalent to 1, 3,

or 5 production cycles to assess the effect of communication

overheads.

Reorganization overheads cannot be ignored even in mes-

sage passing machines, depending on how many rules, WME's,

and conflict sets are to be tran~ferred.~ Let 0, be the re-

organization overhead in terms of production cycles. 0, of

our example program costs at most 10 production cycles,

during which we can transfer all rules of the Waltz labeling

program and WME's for 10 pending problem-solving requests.

However, we have simulated cases where 0, is equivalent to

10,30, or 50 production cycles to observe the general influence
of reorganization overheads on OSD for distributed production

systems. The major results obtained from these simulations

are as follows:

Influences of communication overhead: Fig. 7 considers

communication overhead but does not include reorgani-

zation overhead. When 0, = 1, the organization can

meet its deadline, but when 0, = 3 or more, the or-

ganization fails to satisfy the real-time constraint. This is

because communication overhead delays problem solving,

and this also destablizes the organization. The organi-

When the RETE match algorithm [lo] is employed, building the RETE
networks in newly generated agents requires additional costs. However, we can
ignore this by assuming the TREAT match algorithm [29], in which networks
are built dynamically in each production cycle.

350 j P I
Q)

.E 300
I-

2 250

200

150

100

50

Q)

Q m

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ' , ' . " " ' ' I I I I . ., , , ,
0 0 0 0 0 0 0 0 0 0 0

C U m d l n (D P c a Q) O
~ 0 0 0 0 0 0 0 0 0

Time

- Response time (Or=10)

Response time (Or=30)

-o- Response time (Or=50)

Fig. 8. Simulation results (reorganization overheads).

zation fluctuates in two cases. Agents may decompose

themselves rapidly so that Tresponse becomes much less

than T d e a d l r n e . This triggers R2 and causes agents to

start composition. The other case occurs even when

Tresponse exceeds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT d e a d l z n e , i.e., the firing ratio of agents
significantly decreases because of the communication

overheads. In this case, R3 is satisfied. The chances of

the latter case increase with the communication overhead.

Influences of reorganization overhead: Fig. 8 considers

reorganization overhead but does not include commu-

nication overhead. Unlike the communication overhead,

reorganization overhead is temporary and thus should not

affect the stability of the organization. When 0, = 10,

the organization soon reaches a stable state. However,

when reorganization overhead becomes larger, such as

0, = 30 or more, the organization oscillates and never

seems to become stable. The reason is as follows. Since

reorganizing agents cannot fire rules during the decom-

position process, their firing ratios temporarily decrease.

Firing ratios of neighboring agents also decrease because

no new WME is transferred from the reorganizing agents.

As a result, R3 is fired in the neighboring agents to start

composition, and thus the organization oscillates.

In summary, communication overhead is not a problem

in current message passing machines. Furthermore, ongoing

research on message passing machines has been reduced by

the communication overhead by an order of magnitude [6].

However, in the future, communication overhead can be a

problem when using wider networks to perform distributed

132 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, NO. 2, APRIL 1992

problem solving (cf., [21]). Reorganization overhead is also

not a problem in this example, but it might cause oscillation

if it is too large. Further research is required,6 but one way to

avoid oscillation due to reorganization would be to decrease

the sensitivity of OSD by enlarging the period of measuring

statistics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P).

VII. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADISCUSSION

A. Generalizing the OSD Approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I) Generalizing the Environmental Change: This paper has

presented a particular abstract model for one type of organiza-

tional self-design, in which a collection of agents adapts itself
to changes in a particular set of environmental conditions. We

can generalize elements of this model, to serve as the basis

for other types of organizational adaptation to other kinds of

environmental change, such as new quality requirements as

follows.

To adapt to new quality requirements, the problem-solving

organization must decide which quality level it should achieve,

and then revise its behavior to achieve that new level. To do

this, it needs a quality level decision making procedure that it

can use to reason about the appropriate solution quality level,
and quality-manipulation mechanisms for changing the quality

level of its solutions. Such mechanisms may include revising

its search space by refining the specification of the goal state
(e.g., by constraining it further), or applying a more detailed

set of operators. If we assume that more complete searching,

possibly of a larger search space, leads to better quality

solutions, then our OSD mechanisms can be invoked to create
greater decompositions as the required quality levels increase.

For a given response-time demand, greater decomposition will

lead to higher solution quality, and vice-versa. Our initial

research results of this approach have appeared in [15].
2) Generalizing the Reorganization Primitives: In our cur-

rent OSD approach, performance may improve because extra

resources have been supplied. However, extra resources need

not only come from the environment in the form of new

agents-they can also come from underused capacity of

existing agents, and from recovering resources wasted in
poorly organized communication and interaction structures.

Similarly, underutilized resources need not only be returned
to the environment-they can be returned to the organization

itself in the form of improved organization structure. To do

this, our decomposition primitive can be generalized so as to

include additional decision making knowledge about whether

to decompose1 by creating a new agent (like hiring a new

employee), or to decompose2 by transferring knowledge to
an existing agent (reallocation of skill). Our composition
primitive can be generalized to include additional knowledge

about whether to compose1 by destroying an entire agent

‘Hogg and Huberman [21] have studied similar problems in the abstract.

They verify the possibility of chaotic behavior in systems with long com-
munication delays, and suggest an approach to controlling chaos based on
rewarding agents with good decision making performance. However, their
scheme takes both the boundary and the decision capability of an agent to be
fixed, whereas in our formulation, an agent is a flexlble entity, and it is less
clear where to assign credit or blame for poor performance over the longer
term.

(like firing an employee), or to compose2 by accepting partial

knowledge from that agent (reallocation of skill).

Transfers of large collections of knowledge, even among

preexisting agents, could be expensive. One remedy would

be to trade space for time, by giving each preexisting agent

the entire collection of rules, and using location knowledge

(Section IV-B) as the basis for deciding which rules within

any agent were usable at any time. This approach would be

a dynamic extension of the static approach to organization

based on capability constraints used in [8]. In this way, reallo-

cation of rules during composition2 or decomposition2 would

be accomplished by using the already-existing mechanism
of simply updating organizational knowledge. Transfers of

local data (WME’s) are unavoidable in any reorganization
scheme. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Characterizing the OSD Approach

Conceptual foundations for organization may be character-

ized as a spectrum with two poles [14]. Purely individualist
approaches (generally the standard in DAI) build an organ-

ization with individual, pre-existing agents with relatively

fixed internal structures and one locus of action. These agents

interact with each other under some set of internal or external

constraints, and it is the constraints that provide organization.

In purely social-interactionist approaches, neither the structure

of the individual agents nor the nature of the organization is
necessarily fixed. Instead, agents and organization are both

treated as flexible constructions, carved out of a fabric of dis-

tributed interactions. Relationships between problem-solving

knowledge, resources, and the loci of action are variable.

Agents might thus be distributed and concurrent entities, and

their boundaries and contents might change. Organization

consists of emergent patterns of interaction, and is relative

to the observer’s viewpoint.

Approaches to implementing organization have generally

included two sorts. Structure-based organizations use fixed
interaction structures or capability restrictions to configure

actions (e.g., by establishing roles among identical problem
solvers by using capability constraints, as in [SI). Structure-

based organizations are changed by changing the structural

properties of the organization, such as the number or types

of agents, their interaction structures (e.g., inter-agent con-

nections) or by modifying agent capability constraints. In
knowledge-based organizations, the particular distribution and

use of knowledge configures actions (e.g., flexible networks of

default knowledge proposed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[131). Modifying the knowl-

edge that agents have-e.g., about the beliefs, goals, or

capabilities of another agent-or changing the distribution

of knowledge in the group, causes changes in the possi-
ble patterns of action, and thus changes in the organiza-

tion.

AS a foundation for our model of organizational adaptation,

we have taken a hybrid approach to conceptualizing and

implementing organization. From the structure-based perspec-

tive, our reorganization primitives manipulate the contents

of the agent population, including the number of agents

and the resources they use, but depend upon the fixed and

ISHIDA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ORGANlZATlON SELF-DESIGN OF DISTRIBUTE11 PRODUCI‘ION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASYSTEMS 133

pre-calculated dependency relationships expressed in problem-

solving knowledge. From the knowledge-based perspective,

our reorganization primitives modify the distribution of both

problem-solving knowledge and organizational knowledge.

Our conceptual approach is individualist, in the sense that

at any moment there is a fixed collection of agents each of

which has a stable internal architecture. But our approach is

also social-interactionist. In most distributed problem-solving

and multiagent systems, .the boundaries of agents are treated as

fixed. Our scheme for OSD involves creating and destroying
agents, as well as transferring organizational and problem-

solving knowledge among agents.

In effect, our overall problem-solving system can be seen

as a large and flexible fabric of knowledge, resources, and

action, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAout of which agents actively and flexibly construct
and reconstruct themselves by adding and subtracting re-

sources and by changing agent-knowledge boundaries. In

our OSD approach, it is the overall collection of problem-

solving knowledge that is fixed-not the definition of agents.

Agents, resources, and distributions are flexible and open to

adaptation as the circumstances of the organization change.

This represents a new approach to the nature of both agents
and organization-an approach that conforms more closely to

the social view of agents and organization articulated in [14].

It appears to offer the promise of increased organizational

flexibility.

VIII. CONCLUSION

Techniques for building problem-solving systems that can

adapt to changing environmental conditions are of great in-

terest. We have presented an approach that relies on the

reorganization of a collection of problem-solvers to track

changes in response requirements, problem solving requests,

and resource requirements. The approach exploits an adaptive

tradeoff of resources and organization form to satisfy for

time and performance constraints. Agents are created and

destroyed, and domain knowledge is continually reallocated.

To extend the possible architectures for OSD, composition and

decomposition have been introduced as new reorganization

primitives. Organizational knowledge has been formalized

to represent interactions among agents and their organiza-

tion. Overall, these developments provide a rich ground for

future development of the concepts and implementation of

organization in DAI systems. Future research involves the

implementation and evaluation of more generalized versions

of our approach, implementation on actual message passing

multiprocessor systems, and the investigation of techniques

for incrementally acquiring organizational knowledge in more
dynamic contexts.

ACKNOWLEDGMENT

The authors wish to thank K. Murakami and R. Nakano

for supporting our joint research. We also appreciate several

helpful discussions with K. Kuwabara and A. Bond, and the
comments of N. Rouquette on an earlier draft.

REFERENCES

A. Acharya and M. Tambe, “Production systems on message passing
computers: Simulation results and analysis,” in Proc. Int. Con$ Parallel
Processing, 1989, pp. 246-254.
L. Bomans and D. Roose, “Benchmarking the iPSCI2 Hypercube
Multiprocessor,” Concurrency: Practice and Exper., vol. 1, pp. 3-18,
1989.
A. Bond and L. Gasser, Readings in Distributed Artificial Intelligence.
San Mateo, CA: Morgan Kaufman, 1988.
B. D. Clayton, ART Programming Tutorial, Inference Corp., 1987.
D. D. Corkill. “A framework for organizational self-design in distributed
problem solving networks,” Ph.D. dissertation, COINS-TR-82-33, Univ.
of Massachusetts, 1982.
W. J. DaIly, “Directions in concurrent computing,” in Proc. Inc. Conf
Comput. Design, 1986, pp. 102-106.
R. Davis and R.G. Smith, “Negotiation as a metaphor for distributed
problem solving,” Artif: Intell., vol. 20, pp. 63-109, 1983.
E. H. Durfee, V. R. Lesser, and D. D. Corkill, “Coherent cooperation
among communicating problem solvers,” IEEE Trans. Comput., vol.
C-36, pp. 1275-1291, 1987.
E. H. Durfee and V. R. Lesser, “Using partial global plans to coordinated
distributed problem solvers,” in Proc. IJCAI-87, 1987, pp. 875-883.
C. L. Forgy, “RETE: A fast algorithm for the many pattern zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ many object
pattern match problem,” Artif: Intell., vol. 19, pp. 17-37, 1982.
M. Fox, “An organizational view of distributed systems,” IEEE Trans.
Sysr., Man, Cybern., vol. SMC-11, Jan. 1981.
L. Gasser, “The integration of computing and routine work,” ACM
Trans. Ofice Inform. Syst., vol. 4, no. 3, pp. 205-225, July 1986.
L. Gasser, N. Rouquette, R. Hill, and J . Lieb, “Representing and using
organizational knowledge in DAI systems,” in Distributed Artificial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn-
telligence, Vol. 11, L. Gasser and M. N. Huhns, Eds. London, England:
Pitman, 1989, pp. 55-78.
L. Gasser, “Social conceptions of knowledge and action,” Art$ Intell.,
pp. 107-138, Jan. 1991.
L. Gasser and T. Ishida, “A dynamic organizational architecture for
adaptive problem solving,” in Proc. M I - 9 1 , 1991, pp. 185-190.
A. Gupta, C. L. Forgy, D. Kalp, A. Newell, and M. Tambe, “Parallel
OP55 on the Encore Multimax,” in Proc. Itit. Conf Parallel Processing,
1988, pp. 271-280.
B. Hayes-Roth, “A blackboard architecture for control,” Art$ Intell.,

B. Hayes-Roth, R. Washington, R. Hewett, M. Hewett, and A. Seiver,
“Intelligent monitoring and control,” in Proc. IJCAI-89, 1989, pp.
243-249.
C. Hewitt, “Viewing control structures as patterns of passing messages,”
Artif: Intell., vol. 8, no. 3, pp. 323-364, 1977.
C. Hewitt, “Open systems semantics for distributed artificial intelli-
gence” Artif: Intell., pp. 79-106, Jan. 1991.
T. Hogg and B.A. Huberman, “Controlling chaos in distributed sys-
tems,” Tech. Rep. SSL-90-52, Dynamics of Computation Group, Xerox
Palo Alto Research Center, Palo Alto, CA, 1990.
T. lshida and S.J. Stolfo, “Toward parallel execution of rules in
production system programs,” in Proc. Int. Conf: Parallel Processing,
1985, pp. 568-575.
T. Ishida, “Methods and effectiveness of parallel rule firing,” in Proc.
IEEE Conf: Art$ Intell. Appl., 1990, pp. 116-122.
-, “Parallel rule firing in production systems,’’ IEEE Trans. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKnowl-
edge Data Eng., vol. 3, no. 1, pp. 11-17, 1991.
T. Ishida, M. Yokoo, and L. Gasser, “An organizational approach to
adaptive production systems,” in Proc. AAA/-90, 1990, pp. 52-58.
T. J . Laffey, P.A. Cox, J . L. Schmidt, S. M. Kao, and J. Y. Read, “Real-
time knowledge-based systems,” A1 Mag., vol. 9, no. 1, pp. 27-45,
1988.
V. R. Lesser, J. Pavlin, and E. H. Durfee, “Approximate processing in
real time problem solving,” AI Mag., vol. 9, no. 1, pp. 49-61, 1988.
T. W. Malone, “Modeling coordination in organizations and markets,”
Management Sci., vol. 33. no. 10, pp. 1317-1332, 1987.
D. P. Miranker, “TREAT: A better match algorithm for AI production
dystems,” in Proc. AAAI-87, 1987, pp. 42-47.
D. P. Miranker, B. J. Lofaso, G. Farmer, A. Chandra, and D. Brant, “On
a TREAT based production system compiler,” in Proc. 10th Int. Conj
Expert Syst., Avignon, France, 1990.
D.I. Moldovan, “A model for parallel processing of production sys-
tems,” in Proc. IEEE Int. Conf: Syst., Man, Cybern., 1986, pp. 568-573.
J . G. Schmolze and S. Goel, “A parallel asynchronous distributed
production system,” in Proc. M I - 9 0 , 1990, pp. 65-71.
P. H. Winston, Art$cial Intelligence. Reading, MA: Addison-Wesley,
1977.

vol. 26. pp. 251-321, 1985.

134 IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, NO. 2, APRIL 1992

[34] M D Zisman, “Using production systems for modeling asynchronous
concurrent processes,” in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPattern-Directed Inference SystemJ, D. Water-
man, Ed. New York: Academic, 1978 and 1986, respectively.

Makntn Ynknn received the B E. and M.Eng. de-
grees from Tokyo University, Tokyo, Japan, in 1984

He is currently with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“IT Communication Sci-
ence Laboratories, Kyoto, Japan. He was a visiting
research scientist at the Department of Electrical
Engineering and Computer Science, the University
of Michigan from 1990 to 1991. Since 1987 he has
been working in the area of distributed artificial
intelligence. His current interests include distributed
artificial intelligence and constraint satisfaction.

Mr Yokoo is a member of the Information Processing Society of Japan,

Tom Ishida received the B E , M Eng., and D.Eng.
degrees from Kyoto University, Kyoto, Japan, in
1976, 1978, and 1989, respectively

He is currently with NTT Communication Sci-
ence Laboratories, From 1983 to
1984, he was a visiting research scientist at the
Department of Computer Science, Columbia Uni-
versity Since 1983 he has been working in the
area of production systems and their applications.
His current research interests include parallel and
distributed artificial intelligence

Dr. Ishida is a member of the Information Processing Society of Japan, the

the Japanese Society for Artificial Intelligence,

Japanese Society for Artificial Intelligence, and AAAI

Les Gasser received the B.A. degree in English
from the University of Massachusetts in 1976, and
the M.S. and Ph.D. degrees in Information and
Computer Science from the University of California,
Irvine, in 1979 and 1984, respectively.

He is currently on the faculty of the Depart-
ment of Computer Science at the University of
Southern California, Los Angeles. His main re-
search interest is artificial intelligence at the social
level-theoretical foundations and practical strate-
gies for Distributed Artificial Intelligence (DAI). He

has published two books-and over 30 technical articles, and has ‘consulted
internationally on DAI research and system development projects.

Dr. Gasser is a member of the USC Robotics Institute and is a member
of AAAI, the Association for Computing Machinery, SIGART, SIGCAS, and
the IEEE Computer Society.

