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Organization Self-Design of 
Distributed Production Systems 

Tom Ishida, Les Gasser, and Makoto Yokoo 

Abstmct-Organization has emerged as a key concept for struc- 
turing the activities of collections of problem-solvers. Organiza- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tion self-design zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(OSD) has been studied as an adaptive approach 
to long term, strategic work-allocation and load-balancing. In this 
paper, we introduce two new reorganization primitives, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompo- 
sition and decomposition. They change the population of agents 
and the distribution of knowledge in an organization. To create 
these primitives, we formalize organizational knowledge, which 
represents knowledge of potential and necessary interactions 
among agents in an organization. We develop computational OSD 
techniques for agents with architectures based on production 
systems to take advantage of the well-understood body of theory 
and practice. 

We first extend parallelproduction systems, where global control 
exists, into distributed production systems, where problems are 
solved by a society of agents using distributed control. We then 
introduce OSD into distributed production systems to provide 
adaptive work allocation. Simulation results demonstrate the 
effectiveness of our approach in adapting to changing environ- 
mental demands. In addition to introducing advanced techniques 
for flexible OSD, our approach impacts production system design, 
and improves our ability to build production systems that can 
adapt to changing real-time constraints. 

Index Terms-Adaptive problem solving, organization self- 
design, parallel and distributed processing, production system, 
real-time problem solving. 

I. INTRODUCTION 

T has been clear for some time that organization is a I powerful concept for thinking about how to structure the 

interactions of collections of problem solvers. Understanding 

the concept of organization and developing techniques for 

adaptive reorganization are pressing concerns in distributed 

artificial intelligence (DAI) [3]. Several conceptual approaches 

to organization have been introduced, including treating organ- 

ization as 1) a long term, strategic load-balancing technique 

[5], 2) a structural set of control and communication relation- 

ships among agents [28], 3) sets of interaction patterns among 

agents [19], [12], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) sets of commitments and expectations 
among agents, [3], [14], [20], or 5) collections of settled and 

unsettled questions about knowledge and action zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 131. 

The comparative information processing performance of 

rigid organization structures was studied by Malone [28]. 

However, since no single organization is appropriate in all 
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situations, organization self-design (OSD) has been proposed 

to allow an organization of problem solvers to adapt itself 

to dynamically changing situations [5]. In this paper, we 

further explore the process of OSD, and, in doing so, we 

examine some new ideas about the nature and representation of 
organizations which are the foundations of OSD. We address 

OSD by introducing the following new concepts: . Organizational knowledge: To perform either domain 

problem solving or reorganization, agents need organi- 
zational knowledge, which represents both the necessary 

interactions among agents and their organization. How- 

ever, the kind of organizational knowledge required for 

reorganization has not been thoroughly investigated in 

prior research. In this paper, we formalize organizational 

knowledge as a collection of agent-agent relationships 
and agent-organization relationships, which represent 

how agents’ local decisions affect both other agents’ 

decisions and the behavior of the entire organization. 

Reorganization primitives: In previous research, reorga- 

nization mechanisms typically changed agent roles or 

inter-agent task ordering [5 ] ,  [7] [9]. In this paper, how- 

ever, we take the approach of formalizing reorganization 

primitives, which can perform OSD through repeated ap- 

plication. The new reorganization primitives, composition 
and decomposition of agents, dynamically change inter- 

agent relationships, the knowledge agents have about one 

another, the size of the agent population, and the resources 

allocated to each agent. 

Up to now, OSD has been investigated using compar- 

atively complex agents, such as blackboard-based agents. 

However, here we discuss OSD using a problem-solving 

model based on production systems, to take advantage of a 

well-understood body of theory and practice, while retaining 

general applicability. Production systems have the advantage 

of providing a formal characterization of both the knowledge 
needed to solve a problem and the ways in which parts of that 

knowledge interact. In addition, production rules can be used 

as general abstractions of organizational and problem-solving 

processes of many kinds. (For example, Zisman has provided 

a well-known application of production systems to modeling 

asynchronous organizational work and problem-solving [34].) 

Though we use production systems here as a theoretical and 
modeling foundation, our concepts of OSD and organizational 

knowledge can be generalized to apply to other problem- 

solving models and other types of problem solvers. 

In addition to advancing OSD techniques, our approach im- 
pacts production system design. Previous research, attempted 
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to improve the efficiency of production systems by investi- 

gating high-speed matching algorithms, such as RETE [ lo]  

and TREAT [29]. Two kinds of parallel approaches have 

also been studied: parallel matching [l], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[16] to speedup 

matching processes and parallel firing [22], [31], [23], [24] 

to reduce the total number of sequential production cycles. 

However, the motive for all of these studies is to speed up 

production systems several times over, and not necessarily to 

make them more adaptive or reactive, e.g., to follow changing 

environmental demands or resource constraints. Thus, the 

published techniques are not yet fully adequate for real- 
time expert systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[26]. The OSD approach, proposed in 

this paper, can complement other approaches currently being 

developed for real-time expert systems, such as approximate 

processing techniques [27] and adaptive intelligent systems 

[18]. These approaches attempt to meet deadlines by improv- 

ing the decision-making of individual agents. On the other 

hand, the OSD approach, where problems are solved by a 
society of distributed problem-solving agents, aims to achieve 

adaptive real-time performance through the reorganization of 

the society. Various simulation results show the effectiveness 

of our OSD approach for building adaptive real-time systems 

with production system architectures. 

11. OVERVIEW OF APPROACH 

We begin our approach to OSD with a general problem- 

solving model based on parallel production systems, in which 
global control exists. Next, we extend this into distributed 

production systems with distributed control. Finally, we intro- 

duce OSD primitives and an OSD architecture into distributed 

production systems, and test their performance. 

We are interested in OSD for problem-solving organizations, 

whose products are solutions to individual problem-solving 

requests that are issued from the organization’s environment. 

Several types of change in the relationship between a problem 

solving organization and its environment can create pressure 

for reorganization. These include: 1) demands for change in 

the organizational performance level (e.g., shorter or longer 

response time requirements or new quality levels), 2) change 

in the level of demand for certain solution types (e.g., more 

or fewer problem-solving requests per unit time, or changes 
in the mix of problem types), and 3 )  changes in the level of 

demand for resources that the organization shares with others 

in its environment. 

No single organization can adequately handle all problems 

and environmental conditions. For example, suppose there 
are three agents in an organization, each of which fires 

one production rule for solving each problem request, the 

three agents work in a pipelined fashion (because their rules 

are sequentially dependent), and the communication delay 

among agents is equal to one production cycle. Thus, the 

total throughput cycle time for satisfying a single request is 

5. In this case, however, a single agent organization would 

perform better-it would incur no communication overhead, 

and would take only 3 cycles for satisfying a single request. 

On the other hand, if there were ten problem-solving requests, 

the response time of the last request would be 14 cycles in the 

three agent organization, while i t  would be 30 in the single 

agent case. 

In our model, problem-solving requests issued from the 

environment arrive at the organization continuously, and at 

variable rates. To respond, the organization must supply mean- 

ingful results within specified time limits, which are also 

set by the environment and which also may vary. These 

variations are changing conditions to which the organization 

must adapt using organizational knowledge and OSD primi- 

tives. 

Fig. 1 describes the process of OSD. Composition and 

decomposition are repeatedly performed as follows [25]: 
Decomposition divides one agent into two. Decomposi- 

tion is performed when environment demands too much 

from the organization (e.g., high arrival rates of problem- 

solving requests), such that the organization finds i t  dif- 

ficult to meet its response requirements with its available 

resources. More precisely there are two cases. In the first 

case, agents decompose to increase intra-problem paral- 

lelism. This happens when the structure of the problem- 

solving rules being applied contains concurrency, and 
agents cannot meet deadlines because of the complexity 

of the given problem. In the other case, agents decompose 

to increase inter-problem parallelism. Even if there is 

no possible concurrency among rules, decomposition can 

increase the organizational throughput when multiple 

problem requests can be processed in a pipelined fashion. 
Composition combines two agents into one. As with 

decomposition, two cases exist. In the first case, the 

organization is embedded in an open community with 

other organizations, and i t  must save community-wide 

computing resources for cost-effective problem solving. 

In  this case, it is not sufficient just to continuously utilize 

the maximal available parallelism-the collective must 

also adaptively free up computing resources for use by 

others, and it can do this through composition. In the 

other case, agents compose to reduce response times. 

This need arises when communication overhead cannot be 

ignored. Because of the inter-agent communication over- 

head, maximal decomposition does not necessarily yield 

either minimal response time or maximal organizational 

throughput. Composition may actually reduce response 

time, even though parallelism decreases, where coordina- 

tion overhead (i.e., communication and synchronization) 

is high. 

Both composition and decomposition force reorganize ac- 

tions by modifying the distribution of problem-solving and 

organizational knowledge in the organization, and by modify- 

ing the particular association between resources and problem- 

solving knowledge. In general, decomposition increases the 

overall level of resources used, while composition decreases 

resource use. Composition and decomposition can occur con- 

currently in different parts of the organization. The relative 

balance of composition and decomposition activities during 
any period is a result of the interaction between a set of 

reorganization rules that govern reorganization, and the con- 

ditions in the organization and in the environment during that 

period. 
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Decomposition 
agentP 

Initial State 

Problem solving requests arrive at variable rates. 

agentP~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Composition 

Results are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArequired within a predefined time-limit 

Fig. 1. Composition and decomposition 

111. PRODUCTION SYSTEMS 

To establish our terminology, we must give a brief overview 

of production systems. A production system is defined by a 

set of rules or productions called production memory (PM) 

together with an assertion database called working mem- 

ory (WM) that contains a set of working memory elements 

(WME's). Each rule comprises a conjunction of condition 

elements called the left-hand side (LRS) of the rule, and a set 

of actions called the right-hand side (RHS). Positive condition 

elements are satisfied when a matching WME exists, and 
negative condition elements are satisfied when no matching 

WME is found. An instantiation of the rule is a set of 

WME's that satisfy the positive condition elements. The RHS 
specifies assertions to be added to or deleted from the WM.' 

The production system interpreter repeatedly executes the 

following cycle of operations: 

1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMatch: For each rule, determine whether the LHS 
matches the current environment of the WM. 

2) Select: Choose exactly one of the matching instantia- 
tions of the rules according to some predefined criterion. 

This is called a conflict resolution strategy. 
3) Act: Add to or delete from the WM all assertions as 

specified by the RHS of the selected rule. 

A data dependency graph for production systems [22]-[24] 

A production node, which represents a set of instantia- 

tions. Production nodes are shown as circles in figures. 

A working memory node, which represents a set of 

WME's. Working memory nodes are shown as squares 

in figures. 

A directed edge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom a production node to a working 
memory node, which represents the fact that a production 

node modifies a working memory node. More specifically, 

the edge labeled "+" ("-") indicates that a WME in a 

working memory node is added (deleted) by firing an 

instantiation in a production node. 

is constructed from the following four primitives: 

'In this paper, we assume that each WME contains unique information. 
Operations adding duplicated WME's are ignored. Several commercial pro- 
duction systems take this approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. 

(P d e A  
(classl ...) 

(make class2 ...)) 

(classl ...) 
- (class2 ...) 

(remove 1)) 

--> 

(P d e B  

--> 

classl 
r--- 

class2 

Fig. 2. Data dependency graph. 

A directed edge from a working memory node to a pro- 
duction node, which represents the fact that a production 

node refers to a working memory node. More precisely, 

the edge labeled "+" ("-") indicates that a WME in a 

working memory node is referenced by positive (nega- 

tive) condition elements when creating an instantiation in 

a production node. 

Interference exists among rule instantiations when the result 

of parallel execution of the rules is different from the results of 

sequential executions applied in any order. Interference must 

be avoided by synchronization. Various methods for detecting 

interference are reported in [23] and [24]. In this paper, we 

utilize compile-time analysis because run-time analysis is too 

expensive in multiagent situations. In compile time analysis, 

interference can be identified when multiple rules destroy other 

rules' preconditions in a cyclic fashion. 

Fig. 2 shows an example of OPS5 rules and their data 

dependency graph. In Fig. 2, if either ruleA or r u l e B  is 

fired first it destroys the other rule's preconditions; therefore, 

interference may occur when firing both rules in parallel. If the 

two rules are distributed to different agents, the agents have 

to synchronize to prevent the rules from being fired in parallel 

and thus maintain consistency. 

IV. DISTRIBUTED PRODUCTION SYSTEMS 

A. Architecture 

Fig. 3 illustrates three types of agent. A production system 
agent, illustrated in Fig. 3(a), consists of a production system 
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Fig. 3. Agent architecture. (a) Production system agent. (b) Distributed production system agent. (c) Self-organizable distributed production system agent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
interpreter and domain knowledge, in which the PM represents 

domain rules and the WM represents domain data. 
Fig. 3(b) represents the architecture of distributed produc- 

tion system agents, each of which contains a part of the 

domain knowledge. Such agents must communicate with other 

agents for data transfer and for synchronization. Thus, each 

agent requires organizational knowledge, which represents 

agent-agent relationships. A distributed production system 

agent comprises the following three components: 

A production system interpreter that continuously repeats 

the production cycle, described in Section IV-C. In a 

parallel production system, multiple rules are simulta- 

neously fired but globally synchronized at the Select 

phase [22]-(241. In a collection of distributed production 

system agents, on the other hand, rules are asynchro- 

nously fired by distributed agents. Since no global control 

exists, interference among the rules is prevented by local 

synchronization between individual agents. 

Domain knowledge is contained in the PM, which repre- 

sents domain rules, and WM, which represents domain 
data. To simplify the following discussion, we assume 

no overlap between PM’s in different agents, and assume 

that the union of all PM’s in the organization is sufficient 

to solve the given problem. Each agent’s WM contains 

only WME’s that match the LHS of that agent’s rules. 

Since the same condition elements can appear in different 

rules, the WM’s in different agents may overlap. The 

union of WM’s in an organization logically represents all 

data necessary to solve the given problem. In practice, 

since agents asynchronously fire rules, WM’s can be 

temporarily inconsistent. 

Organizational knowledge represents relationships among 

agents, and we call these agent-agent relationships. 
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Agents that have such relationships with a particular 

agent are called that agent’s neighbors. Agent-agent 

relationships are initially obtained by analyzing domain 

knowledge at compile time, and are dynamically 

maintained during the process of OSD. Since agents 

asynchronously perform reorganization, organizational 

knowledge can be temporarily inconsistent across 

agents. Taken together, these relationships structure the 

actions of each agent at any moment; they provide 

a decentralized knowledge-based specification of the 

instantaneous organizational form. 

Self-organizable distributed production system agents are 

discussed in Section V. 

B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOrganizational Knowledge: Agent-Agent Relationships 

Agent-agent relationships can be seen as the aggrega- 

tion of two more primitive types of relationships: knowl- 
edge-knowledge relationships, which represent interactions 

within domain knowledge, and knowledge-agent relation- 
ships, which represent how domain knowledge is distributed 

among agents. Knowledge-knowledge relationships consist of 

data dependencies and interferences among domain rules as 

follows: 

Data dependencies: Each agent knows which domain 

rules in the organization have data dependency relation- 

ships with its own rules. We say that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAruleA depends 
on ruleB if ruleA refers to a working memory node 

that is changed by ruleB. We describe this as de- 
pends(ruleA, rule B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) .  The data dependency 

knowledge of agentP is represented as follows: 

DEPENDENCYagentp = 
((ruleA,ruleB) I 

(ruleA E PMayentp  V ruleB E PM,,,,,tp) 
A depends (ruleA,ruleB)} 

Interferences: Each agent knows which rules in the or- 

ganization may interfere with its own rules. We de- 

scribe the interference of ruleA and ruleB as inter- 
fere (ruleAI ruleB ) .  The interference knowledge 

of agentP is represented as follows: 

{ (ruleAI ruleB) I 
INTERFERENCE agentp = 

(ruleA E PMayeTLtp  V (ruleB) E 

Ainterfere(ruleA,ruleB ) }  
Though an individual agent’s execution cycle is sequen- 

tial, potential interference among its own rules is analyzed 

for potential future distribution of those rules. 

On the other hand, knowledge-agent relationships are rep- 

Locations: Each agent, say agentP, knows the loca- 

tion of rules, say ruleA, appearing in its own data 

dependency and interference knowledge. We describe the 
appearance of ruleA in the data dependency and inter- 

ference knowledge of agentP as appears (ruleA, 
agentP) . The location knowledge of agentP is rep- 

resented as 

PMuiJent P )  

resented by the locations of domain rules: 

LOCATIONUye,,tp = 

{ (ruleAI agentQ) I 
appears (ruleAI agentP) A ruleAEPMagentQ} 

Fig. 4 illustrates the organizational knowledge of agentP. 
Large solid circles indicate the boundaries of individual agents. 

Long, narrow ovals that connect agents indicate interaction 

paths among agents; the two rectangles within each oval 

indicate the WME’s communicated between agents via that 

interaction path, and duplicated in both agents. “+”and “- 

”indicate data dependencies as described in Section 111-B. 
In the example in Fig. 4, since ruleA and ruleB interfere 

with each other, agentP has to synchronize with agentQ 
when executing ruleA. Also, ruleA’s WM modification 

has to be transferred to agents. We call agentQ, agentR, 
agents, and agentT neighbors of agentP because they 

have agent-agent relationships with agentP. From this def- 
inition, as illustrated in Fig. 4, agentP’s organizational 

knowledge refers only to its neighbors. 

C. Production Cycle 

We define a production cycle of distributed production 

system agents by extending the conventional Match-Select-Act 

cycle to accommodate inter-agent data transfers and synchro- 

nization. Inter-agent inconsistency caused by distribution is 

handled locally by using temporary synchronization via rule 

deactivation (we assume preservation of message ordering). 

The cycle is: 

Process messages: When receiving a synchronization 

request message (e.g., deactivate ( ruleA) ) from 
some agent, return an acknowledgment message and 

deactivate the corresponding rule ( ruleA) until 

receiving a synchronization release message ( act i- 
vate ( ruleA) ) from the same agent. When receiving 

a WM modification message, update the local WM to 
reflect the change made in another agent’s WM. 

Match: For each rule, determine whether the LHS 

matches the current WM. 

Select: Choose one instantiation of a rule (e.g., ruleB) 
that is not deactivated. 
Request synchronization: Using interference knowledge, 

send synchronization request messages ( deactivate 
( ruleB) ) to the agents requiring synchronization. 

Await acknowledgment from all synchronized agents. 
After complete acknowledgment, handle all WM modi- 

fication messages that have arrived during synchroniza- 

tion. If the selected instantiation is thereby canceled, 

send synchronization release messages and restart the 

production cycle. 
Act: Fire the selected rule instantiation ( ruleB). Using 

the data dependency knowledge of agentP, inform 

dependent agents with WM modification messages. 

Release synchronization: Send synchronization release 

messages ( activate ( ruleB) ) to all synchronized 

agents. 

To avoid deadlock, we prioritize interfering rule pairs at 
compile time. This idea is borrowed from [32]. Let ruleA 
and ruleB interfere with each other, and let ruleB be 

given a higher priority. Then, ruleB can be fired without 
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indicates the same working memory node 
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DEPENDENCY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaged' = ((ruleA, ruleB) (ruleB, ruleA) 
(ruleA, ruleC) (ruleD, ruleA) 
(ruleA, ruleE)) 

INTERFERENCE n g r d  =( (ruleA, ruleB)) 
LOCATION aged' = ((ruleA, agenP) (ruleB, agentQ) 

(rulec, agentR) (ruleD, agents) 
(ruleE. agentT)) 

Fig. 4. Organizational knowledge 

synchronization as long as it is not deactivated. However, 

when firing r u l e A ,  r u l e B  has to be deactivated through 

synchronization. This approach can avoid interference through 

one-directional synchronization, and thus can reduce half of 

the synchronization overhead. Deadlock may still occur when 

agents are prioritized in a cyclic fashion, i.e., r u l e A  requires 

r u l e B  be deactivated, r u l e B  requires r u l e C  be deacti- 

vated, and r u l e C  requires r u l e A  be deactivated. However, 

since interference is analyzed at compile time, we can easily 

prioritize rules such that loops are not created. Thus, this 

approach can avoid deadlocks among distributed production 

system agents. 

V. ORGANIZATION SELF-DESIGN (OSD) 

A. Architecture 

Fig. 3(c) represents the agent architecture for self- 

organizable distributed production system agents. OSD is 

performed in the following way: Upon initiation, only one 

agent, containing all domain and organizational knowledge, 

exists in the organization. We assume organizational knowl- 

edge for the initial agent is prepared by analyzing its 

domain knowledge before execution. Problem-solving requests 

continuously arrive at the agent; older pending requests are 

processed with higher priority. 

For effective reorganization, agents should invoke the reor- 

ganization primitives appropriate for each situation. For this 

purpose, we extend the organizational knowledge (in Sec- 

tion IV-B) to include agent-organization relationships, which 

represent how agents' local decisions affect organizational 

behavior or, in other words, how well the organization is 

meeting its response goals. However, since multiple agents 

asynchronously fire rules and perform reorganization, knowing 

the exact status of the entire organization is difficult. Under 

the policy of obtaining better decisions with maximal locality, 

we first introduce local and organizational statistics, which 

can be easily obtained, and then define reorganization rules 
using those statistics to select an appropriate reorganization 

primitive when necessary. Since the reorganization rules are 

also production rules, OSD and domain problem solving 

are arbitrarily interleaved. In our implementation, however, 

we assume higher priority is given to the reorganization 

rules during the Select phase of the production cycle. This 

mechanism is analogous to the integration of control and 

domain knowledge source activations in systems such as BB1 

[17], or to integrated metalevel reasoning in DVMT [8]. 
Decomposition is triggered when the environmental con- 

ditions (problem-solving demand on the organization and 

required response-time) exceed the organization's ability to 

respond, given its current form and resource level. Excessive 

demand at the organization level is translated into excessive 

local demand in particular regions of the organization, mea- 

sured using the local organizational statistics. At this point, 

particular agents with excessive local demand are divided into 

multiple agents, and additional computational resources are 

assigned to them. Decomposition continues until parallelism 

increases and response improves. Composition is performed 

when under-utilized resources can be released for use by 

other organizations, or to improve local performance by reduc- 

ing coordination overhead. When two agents, taken together, 

contain an oversupply of resources, they are combined into 

one agent via composition. Composition repeats until no 

more composition is possible under the conditions of meeting 
deadlines. Since the aims of composition and decomposition 

are independent, both kinds of reorganization can be performed 
simultaneously in different parts of the organization. In this 

way, both problem-solving and organization self-design are 
treated as decentralized processes. 

B. Organizational Knowledge: Agent-Organization 
Relationships 

Agent-organization relationships consist of local statistics, 

organizational statistics, and reorganization rules: 

Local statistics: We introduce firing ratio to represent the 

level of activity of each agent. Let P be a predefined 

period (normalized by production cycles) for measuring 
statistics, and F be the number of rule firings during P. 
Then the firing ratio R can be represented by FIP.  When 
R = 1.0 (i.e., there are no idle production cycles over the 

measurement interval P), agents are called busy, while 

when R < 1.0, agents can be assigned additional tasks. 

To avoid the need for frequent communication among 

agents, however, we do not assume that agents need to 

know other agents' local statistics. 
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Organizational statistics: We assume each agent can 
know by periodically-broadcast messages whether the 

organization is currently meeting deadlines. Let T 7 e s p o n s e  

be the most recently observed response time (that is, time 

taken to complete the most recent task), and TdP,,dllILe be 

the predefined time limit of the task. When T7psponsL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 
T d e a d l z n e ,  the performance of the organization should 

be improved, while when Trespo.rLsp < T d e a d L t n e ,  the 
organization can release resources. 

Reorganization rules: By using local and organizational 

statistics, the following rules are provided for each agent 

to initiate reorganization. These rules are tested during 

the production cycle. 

R1) Perform decomposition if 

T d e a d l r n e  < T r e s p o n s e  and 
R = 1.0 

R2) Perform composition if 

T d e a d l i n e  > T r e s y o n s e  and 

2R < T d e a d l i n e  / T . r e s p o n s e  

R3) Perform composition if 

R1 initiates busy agents to perform decomposition, when 

the organization cannot meet its deadline. R2 initiates agents 

to perform composition, when the organization can keep its 

deadline. Composition is performed even if agents are fully 

busy, when Tresponse is enough lower than T d P a d l i n e .  

R3 is introduced to take account of communication over- 

head. Suppose problem solving requests initially arrive fre- 

quently, and subsequently decrease. Initially, R1 is repeatedly 

applied, maximizing the parallelism to increase organizational 

throughput. Later, even though the frequency of requests 

decreases, R2 may not be valid because the communication 
overhead may not allow agents to meet deadlines. Thus, R3 is 

necessary to merge lightly loaded agents even when TresporLSP 
exceeds T d e a d l z n e .  This merging lowers coordination cost in 

the overall problem pipeline, and so improves performance. 

R < 0.5. 

C. Reorganization Process 

Reorganization is triggered by the firing of a reorganization 

rule during the normal production cycle. We describe below 

how one agent (e.g., agentP) decomposes itself into two 

agents (e.g., agen tP  and agentQ). During reorganization, 

domain rules, WME’s, dependency, and interference knowl- 

edge are transferred from agen tP  to agent.Q without any 

modification. However, location knowledge is modified due 

to the relocation of domain rules and changes are propagated 

to neighboring agents. 

Create a new agent: agen tp  creates a new agent, 

agentQ, which immediately starts production cycles. 

Select domain rules to be transferred: agen tP  selects 

domain rules to be transferred (e.g., ru l eA to agentQ. 

Currently, we arbitrarily transfer half of the active rules, 

but we are refining a theory of rule selection based 

on maximizing the intra-agent rule dependencies and 
minimizing inter-agent communication. 

Request synchronization: agen tP  sends a synchro- 

nization request message for each rule to be syn- 

chronized (e.g., d e a c t i v a t e  ( ru l eA) )  to agentQ. 
agen tP  also sends synchronization request mes- 

sages to its neighbors, i.e., all the domain rules 

that have data dependency or interference rela- 

tionships with rules to be transferred2 (e.g., de- 

a c t i v a t e (  r u l e B )  is sent if depends ( r u l e A ,  
r u l e B ) ,  depends ( ru l eB , ru l eA)  or i n t e r -  

f ere ( r u l e A ,  ru l eB) ) .  agen tP  waits for complete 

acknowledgment. While waiting for acknowledgment, 

a g e n t p  processes messages as in Step 1 of the 

production cycle described in Section IV-C. 

Tansfer rules: agen tP  transfers rules ( r u l e A )  to 

agentQ, updates its own location knowledge, and prop- 
agates the change to its neighbors. 

Transfer WME’s: agen tP  copies WME’s that match the 

LHS of the transferred rules ( r u l e A )  to agentQ.3 A 
bookkeeping process follows in both agents to eliminate 

duplicated or unneeded WME’s. 
Transfer dependency and interference knowledge: 
agen tP  copies its dependency and interference 
knowledge to agentQ. Both agents do bookkeeping 

to eliminate duplicated or unneeded organizational 

kn~wledge .~  

Release synchronization: agen tp  sends synchro- 

nization release messages ( a c t i v a t e  ( r u l e A )  to 
agentQ, and a c t i v a t e  ( r u l e B )  to all synchronized 

neighbors). This ends reorganization. 

An agent, e.g., agentP, can compose with another agent 

by a similar process. First, agen tP  sends composition request 
messages to its neighbors. If some agent, say agentQ, ac- 

knowledges, agen tp  transfers all domain and organizational 

knowledge to agen tQ and destroys itself. The transfer method 
is the same as that for decomposition. 

During the reorganization process, deadlock never occurs, 

because reorganization does not block other agents’ domain 

problem solving and reorganization. Furthermore, though 

neighboring agents are required to deactivate domain rules 

that depend on or interfere with the transferred rules, they 

can concurrently perform other activities including firing and 

transferring rules that are not deactivated. This localization 

helps agents to modify the organization incrementally. 

VI. EXPERIMENTAL EVALUATION 

To evaluate the effectiveness of our approach, we imple- 

mented a simulation environment and executed the Waltz 
labelingprogram: 36 rules solve the problem that appears in 

[33] with 80 rule firings. Our experiments begin with one agent 

’This is to assure that WM modification and synchronisation request 
messages related to domain rules to be transferred are not sent to a g e n t P  
during the reorganization process. 

More precisely, to avoid reproducing once-fired instantiations, not only 
WME’s but also conflict sets are transferred to a g e n t Q .  Before transferring 
the conflict sets, however, a g e n t P  has to maintain its WM by handling the 
WM modification messages that have arrived before the synchronization is 
completed. 

4Unneeded data dependency and interference knowledge are tuples that 
include none of the agents’ rules. Unneeded location knowledge consists of 
tuples that include none of the rules that appear in the agents’ data dependency 
and interference knowledge. 
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that contains all problem-solving knowledge. Its organizational 

knowledge is trivial in that references are to itself, since it has 

no neighboring agents. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Simulation Excluding Overheads 

Figs. 5 and 6 show the simulation results. In these figures, 

communication and reorganization overheads are ignored. The 
line chart indicates response times normalized by production 

cycles. The step chart represents the number of agents in the 

organization. The time limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( T d e a d l z n e )  is set at 20 production 

cycles, while the statistics measuring period (P )  is set at 10 

production cycles. In Fig. 5, problem solving requests arrive 

at constant intervals, while in Fig. 6, the frequency of requests 

is changed periodically. From these figures, we can conclude 
the following: 

1) Adaptiveness of the organization: In Fig. 5, around 

time 100, the response time far exceeds the time limit. 

Thus, the organization starts decomposition. Around 

time 200, the number of agents has increased to 26, 
the response time drops below the time limit, and 

the organization starts composition. After fluctuating 

slightly, the organization finally reaches a stable state 

with the number of agents settling at 6. Since composi- 

tion and decomposition have been repeatedly performed, 

the firing ratios of the resulting agents are almost equal. 

In Fig. 6, we can see the number of agents at the busiest 

peak decreases over time. Both charts show that the 

society of agents has gradually adapted to the situation 

through repeated reorganization. 

2) Real-time problem solving: The average number of 

agents in Fig. 6 is approximately 9. We compared 

response times of our organizational approach which 

flexibly selects the number of agents, to those of 
the conventional parallel approach using 9 permanent 

agents. Differences in results from these two approaches 

demonstrate that while the conventional approach uses 

the same average number of agents, it cannot respond 

to meet deadlines when problem demand increases. 

Thus, the organizational approach is more effective 

for adaptive real-time problem solving. However, the 

effect of reorganization does lag behind the change 

in environmental demand. For improved capability to 

meet response requirements, the time limits must be set 

shorter than the actual deadlines and increases in agent 

activity should be detected as early as possible. 
3) Efficient resource utilization: As shown in Fig. 6, the 

conventional parallel approach requires 17 permanent 

processors to meet deadlines. Thus, the organization- 

centered approach, which requires around 9 processors 

on average, is more economical. 

B. Simulation Including Overheads 

Figs. 7 and 8 describe the results obtained from the same 

situation conditions as given in Fig. 5,  but they include 

communication and reorganization overheads. But what are 

reasonable assumptions for communication and computation 

speeds? In the iPSC/2, a typical message-passing multicom- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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puter, the communication overhead of sending a 2 kilobyte 

message across the diameter of a 128 node machine is 840 

ps, and the transfer rate for a 64 kilobyte message is 2.6 

megabyteh [2]. For computation, a state-of-the-art production 

system takes from several to several tens of milliseconds for 

one production cycle on an HP90001370, a Motorola 68030 

based workstation [30]. Since one production cycle creates 

several messages, each of which contains a few WME’s, the 

communication overhead in a good message-passing machine 

can be estimated as at most one production cycle. However, we 

also have taken into account communication overhead to cover 

cases in which wider-area and somewhat slower networks such 

as Ethernet or public telecommunication networks are used for 
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distributed problem solving. Let 0, be the average network 

latency represented in terms of production cycles. Then, agents 

can utilize other agents' results no sooner than 0, cycles later. 

We simulated situations in which 0, was equivalent to 1, 3, 

or 5 production cycles to assess the effect of communication 

overheads. 

Reorganization overheads cannot be ignored even in mes- 

sage passing machines, depending on how many rules, WME's, 

and conflict sets are to be tran~ferred.~ Let 0, be the re- 

organization overhead in terms of production cycles. 0, of 

our example program costs at most 10 production cycles, 

during which we can transfer all rules of the Waltz labeling 

program and WME's for 10 pending problem-solving requests. 

However, we have simulated cases where 0, is equivalent to 

10,30, or 50 production cycles to observe the general influence 
of reorganization overheads on OSD for distributed production 

systems. The major results obtained from these simulations 

are as follows: 

Influences of communication overhead: Fig. 7 considers 

communication overhead but does not include reorgani- 

zation overhead. When 0, = 1, the organization can 

meet its deadline, but when 0, = 3 or more, the or- 

ganization fails to satisfy the real-time constraint. This is 

because communication overhead delays problem solving, 

and this also destablizes the organization. The organi- 

When the RETE match algorithm [lo] is employed, building the RETE 
networks in newly generated agents requires additional costs. However, we can 
ignore this by assuming the TREAT match algorithm [29], in which networks 
are built dynamically in each production cycle. 
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zation fluctuates in two cases. Agents may decompose 

themselves rapidly so that Tresponse becomes much less 

than T d e a d l r n e .  This triggers R2 and causes agents to 

start composition. The other case occurs even when 

Tresponse exceeds zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT d e a d l z n e ,  i.e., the firing ratio of agents 
significantly decreases because of the communication 

overheads. In this case, R3 is satisfied. The chances of 

the latter case increase with the communication overhead. 

Influences of reorganization overhead: Fig. 8 considers 

reorganization overhead but does not include commu- 

nication overhead. Unlike the communication overhead, 

reorganization overhead is temporary and thus should not 

affect the stability of the organization. When 0, = 10, 

the organization soon reaches a stable state. However, 

when reorganization overhead becomes larger, such as 

0, = 30 or more, the organization oscillates and never 

seems to become stable. The reason is as follows. Since 

reorganizing agents cannot fire rules during the decom- 

position process, their firing ratios temporarily decrease. 

Firing ratios of neighboring agents also decrease because 

no new WME is transferred from the reorganizing agents. 

As a result, R3 is fired in the neighboring agents to start 

composition, and thus the organization oscillates. 

In summary, communication overhead is not a problem 

in current message passing machines. Furthermore, ongoing 

research on message passing machines has been reduced by 

the communication overhead by an order of magnitude [6]. 

However, in the future, communication overhead can be a 

problem when using wider networks to perform distributed 
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problem solving (cf., [21]). Reorganization overhead is also 

not a problem in this example, but it might cause oscillation 

if it is too large. Further research is required,6 but one way to 

avoid oscillation due to reorganization would be to decrease 

the sensitivity of OSD by enlarging the period of measuring 

statistics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P). 

VII. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADISCUSSION 

A. Generalizing the OSD Approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I) Generalizing the Environmental Change: This paper has 

presented a particular abstract model for one type of organiza- 

tional self-design, in which a collection of agents adapts itself 
to changes in a particular set of environmental conditions. We 

can generalize elements of this model, to serve as the basis 

for other types of organizational adaptation to other kinds of 

environmental change, such as new quality requirements as 

follows. 

To adapt to new quality requirements, the problem-solving 

organization must decide which quality level it should achieve, 

and then revise its behavior to achieve that new level. To do 

this, it needs a quality level decision making procedure that it 

can use to reason about the appropriate solution quality level, 
and quality-manipulation mechanisms for changing the quality 

level of its solutions. Such mechanisms may include revising 

its search space by refining the specification of the goal state 
(e.g., by constraining it further), or applying a more detailed 

set of operators. If we assume that more complete searching, 

possibly of a larger search space, leads to better quality 

solutions, then our OSD mechanisms can be invoked to create 
greater decompositions as the required quality levels increase. 

For a given response-time demand, greater decomposition will 

lead to higher solution quality, and vice-versa. Our initial 

research results of this approach have appeared in [15]. 
2) Generalizing the Reorganization Primitives: In our cur- 

rent OSD approach, performance may improve because extra 

resources have been supplied. However, extra resources need 

not only come from the environment in the form of new 

agents-they can also come from underused capacity of 

existing agents, and from recovering resources wasted in 
poorly organized communication and interaction structures. 

Similarly, underutilized resources need not only be returned 
to the environment-they can be returned to the organization 

itself in the form of improved organization structure. To do 

this, our decomposition primitive can be generalized so as to 

include additional decision making knowledge about whether 

to decompose1 by creating a new agent (like hiring a new 

employee), or to decompose2 by transferring knowledge to 
an existing agent (reallocation of skill). Our composition 
primitive can be generalized to include additional knowledge 

about whether to compose1 by destroying an entire agent 

‘Hogg and Huberman [21] have studied similar problems in the abstract. 

They verify the possibility of chaotic behavior in systems with long com- 
munication delays, and suggest an approach to controlling chaos based on 
rewarding agents with good decision making performance. However, their 
scheme takes both the boundary and the decision capability of an agent to be 
fixed, whereas in our formulation, an agent is a flexlble entity, and it is less 
clear where to assign credit or blame for poor performance over the longer 
term. 

(like firing an employee), or to compose2 by accepting partial 

knowledge from that agent (reallocation of skill). 

Transfers of large collections of knowledge, even among 

preexisting agents, could be expensive. One remedy would 

be to trade space for time, by giving each preexisting agent 

the entire collection of rules, and using location knowledge 

(Section IV-B) as the basis for deciding which rules within 

any agent were usable at any time. This approach would be 

a dynamic extension of the static approach to organization 

based on capability constraints used in [8]. In this way, reallo- 

cation of rules during composition2 or decomposition2 would 

be accomplished by using the already-existing mechanism 
of simply updating organizational knowledge. Transfers of 

local data (WME’s) are unavoidable in any reorganization 
scheme. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Characterizing the OSD Approach 

Conceptual foundations for organization may be character- 

ized as a spectrum with two poles [14]. Purely individualist 
approaches (generally the standard in DAI) build an organ- 

ization with individual, pre-existing agents with relatively 

fixed internal structures and one locus of action. These agents 

interact with each other under some set of internal or external 

constraints, and it is the constraints that provide organization. 

In purely social-interactionist approaches, neither the structure 

of the individual agents nor the nature of the organization is 
necessarily fixed. Instead, agents and organization are both 

treated as flexible constructions, carved out of a fabric of dis- 

tributed interactions. Relationships between problem-solving 

knowledge, resources, and the loci of action are variable. 

Agents might thus be distributed and concurrent entities, and 

their boundaries and contents might change. Organization 

consists of emergent patterns of interaction, and is relative 

to the observer’s viewpoint. 

Approaches to implementing organization have generally 

included two sorts. Structure-based organizations use fixed 
interaction structures or capability restrictions to configure 

actions (e.g., by establishing roles among identical problem 
solvers by using capability constraints, as in [SI). Structure- 

based organizations are changed by changing the structural 

properties of the organization, such as the number or types 

of agents, their interaction structures (e.g., inter-agent con- 

nections) or by modifying agent capability constraints. In 
knowledge-based organizations, the particular distribution and 

use of knowledge configures actions (e.g., flexible networks of 

default knowledge proposed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 131). Modifying the knowl- 

edge that agents have-e.g., about the beliefs, goals, or 

capabilities of another agent-or changing the distribution 

of knowledge in the group, causes changes in the possi- 
ble patterns of action, and thus changes in the organiza- 

tion. 

AS a foundation for our model of organizational adaptation, 

we have taken a hybrid approach to conceptualizing and 

implementing organization. From the structure-based perspec- 

tive, our reorganization primitives manipulate the contents 

of the agent population, including the number of agents 

and the resources they use, but depend upon the fixed and 
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pre-calculated dependency relationships expressed in problem- 

solving knowledge. From the knowledge-based perspective, 

our reorganization primitives modify the distribution of both 

problem-solving knowledge and organizational knowledge. 

Our conceptual approach is individualist, in the sense that 

at any moment there is a fixed collection of agents each of 

which has a stable internal architecture. But our approach is 

also social-interactionist. In most distributed problem-solving 

and multiagent systems, .the boundaries of agents are treated as 

fixed. Our scheme for OSD involves creating and destroying 
agents, as well as transferring organizational and problem- 

solving knowledge among agents. 

In effect, our overall problem-solving system can be seen 

as a large and flexible fabric of knowledge, resources, and 

action, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAout of which agents actively and flexibly construct 
and reconstruct themselves by adding and subtracting re- 

sources and by changing agent-knowledge boundaries. In 

our OSD approach, it is the overall collection of problem- 

solving knowledge that is fixed-not the definition of agents. 

Agents, resources, and distributions are flexible and open to 

adaptation as the circumstances of the organization change. 

This represents a new approach to the nature of both agents 
and organization-an approach that conforms more closely to 

the social view of agents and organization articulated in [14]. 

It appears to offer the promise of increased organizational 

flexibility. 

VIII. CONCLUSION 

Techniques for building problem-solving systems that can 

adapt to changing environmental conditions are of great in- 

terest. We have presented an approach that relies on the 

reorganization of a collection of problem-solvers to track 

changes in response requirements, problem solving requests, 

and resource requirements. The approach exploits an adaptive 

tradeoff of resources and organization form to satisfy for 

time and performance constraints. Agents are created and 

destroyed, and domain knowledge is continually reallocated. 

To extend the possible architectures for OSD, composition and 

decomposition have been introduced as new reorganization 

primitives. Organizational knowledge has been formalized 

to represent interactions among agents and their organiza- 

tion. Overall, these developments provide a rich ground for 

future development of the concepts and implementation of 

organization in DAI systems. Future research involves the 

implementation and evaluation of more generalized versions 

of our approach, implementation on actual message passing 

multiprocessor systems, and the investigation of techniques 

for incrementally acquiring organizational knowledge in more 
dynamic contexts. 
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