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Abstract 

The System ModeUer provides automatic support for 
several different kinds of program development cycle in 
the Cedar programming system. It handles the daily evolu- 
tion of a single module or a small group of modules 
modified by a single person, the assembly of numerous 
modules into a large system with complex interconnec- 
tions, and the formal release of a system. The Modeller 
can also efficiently locate a large number of modules in a 
big distributed file system, and move them from one 
machine to another to meet operational requirements or 
improve performance. 

1. Introduction 

The System Mode/let is a complete software development 
system used in the Cedar project of Xerox PARC's 
Computer Science Laboratory [2]. The Modeller provides 
automatic support for the program development cycle fol- 

lowed by programmers using Cedar. It uses information 
stored in a system model, which describes a software sys- 
tem by specifying: 

1) The versions of various modules that make up a par- 
ticular software system. 

2) The interconnections between modules, such as which 
procedures are used and where they are defined. 

3) Additional information needed to compile and load 
the system. 
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4) Hints for locating the modules in a distributed file sys- 
tem. 

Under the  direction of the Cedar programmer, the 
Modeller performs a variety of operations on the systems 
described by the system models: 

1) It implements the representation of the system by 
source text in a collection of files. 

2) It tracks changes made by the programmer. To do 
this, it is connected to the Cedar editor and is notified 
when files are edited and new versions are created. 

3) It automatically builds an executable version of the 
system, by recompiling and loading the modules. To 
provide fast response, the Modeller behaves like an in- 
cremental compiler: only those modules that change 
are analyzed and recompiled. 

4) It provides complete support for the integration of 
packages as part of a release. 

Thus the Modeller can manage the files of a system as 
they are changing, providing a user interface through 
which the programmer edits, compiles, loads and debugs 
her changes interactively while she is developing her 
software. The models are automatically updated to refer to 
the changed components. Manual updates of models by 
the programmer are not normally necessary. 

Related work is described in [1, 3, 4, 5]. This paper is 
derived from part of the second author's Ph.D. thesis [8]. 

1.1 Background 

The Modeller runs in Xerox PARC's computing environ- 
ment, in which each programmer has a personal computer, 
connected to other computers over an Ethernet. It cur- 
rently supports programming in Cedar, though its tech- 
niques do not depend on the languages in which modules 
are written. Cedar is derived from Mesa [7], and shares 
with that language a very general mechanism for intercon- 
necting modules; hence it is a good test of the Modeller's 
facilities for module interconnection. 
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The programmer writes a model in a language called SML, 
which is a notation for describing how to compose a set of  
related programs from their components. The model 
refers to a component module of  the program by its 
unique name, independently of  the location in the file 
system where its bits are stored. The development of  a 
program can be described by a collection of  models, one 
for each stage in the development; certain models define 
releases. 

SML has general facilities for abstraction. These are of  two 
kinds: 

A model can be organized hierarchically into parts, 
each of  which is a set of  named sub-parts called a 
binding. Like the names of  files in a directory, the 
names in a binding can be used to select any desired 
parts of  the binding. 

A model can be parameterized, and several different 
versions can be constructed by supplying different ar- 
guments for the parameters. This is the way that SML 
caters for planned variation in a program. 

SML is'described in detail in [6]. 

The distributed computing environment means that files 
containing the source text of  a module can be stored in 
many places. A file is accessed most efficiently if it is on 
the programmer's own machine. Remote files must first be 
located and then retrieved. The Modeller imposes minimal 
requirements on the capabilities of  the distributed file sys- 
tem. In fact, it requires only that there be a way to 
enumerate the versions of  a particular file in a remote 
directory, and to store or retrieve an entire remote file. 
When possible, it caches information about a module, 
such as its dependencies on other modules, to avoid 
retrieving the entire module and parsing its text. It also 
caches the complete path names of  objects, to avoid 
searches in remote directories. 

L2 Organization of the paper 

We begin by describing how a model completely and un- 
ambiguously specifies a Cedar program (§ 2). The next sec- 
tion presents the user interface of  the Modeller, and shows 
how it is used during daily program development, and for 
periodic releases of  a complete system (§ 3). The im- 
plementation techniques used to obtain good perfor- 
mance with systems containing dozens or hundreds of  
modules are explained next (§ 4), and then the interactions 
between the Modeller and the distributed file system (§ 5). 
A final section describes experience and future plans (§ 6). 
An appendix gives a complete model for a substantial com- 
ponent of  the Cedar system. 

2. System mod.els 

We take the view that the software of  a system is com- 
pletely described by a single unit of  text. An appropriate 
analogy is the sort of  card deck that was used to run a 
program on a bare computer or under an operating system 
like FMS that had no file system. Everything is said ex- 
plicitly in such a system description: there are no 
parameters (e.g., compiler switches or loader options) sup- 
plied after the GO button is pressed, and no dependence 
on a changing environment. In this kind of  system descrip- 
tion there is no question about when to recompile someth- 
ing, and version control is handled by distributing copies 
of the deck with a version number written on the top of  
each copy, and a diagonal stripe of  marker which makes it 
easy to tell whether the deck has been changed. 

The monolithic nature of  a card deck makes it unsuitable 
for a large system. In 1983 a system is specified by text 
which is stored in files. This provides modularity in the 
physical representation: a file can name other files instead 
of literally including their text. in Cedar, these files hold 
the text of Cedar modules or system models. This represen- 
tation is convenient for users to manipulate; it allows shar- 
ing of  identical objects, and facilitates separate compila- 
tion. Unless care is taken, however, the integrity of  the sys- 
tem will be lost, since the contents of  the named files may 
change. 

2.1 Objects 

To prevent this, we abstract files into named objecls, which 
are simply pieces of  text. We require that names be unique 
and objects be immutable. By this we mean that: 

Each object has a unique name, never used for any 
other object. The name is stored as part of  the object, 
so there is no doubt about whether a particular collec- 
tion of  bits is the object with a given name. A name is 
made unique by appending a unique identifier to a 
human-sensible string. 

The contents of  an object never change once the ob- 
ject is created. The object may be erased, in which 
case the contents are no longer accessible. If the file 
system does not guarantee immutability, it can be en- 
sured by using a suitable checksum as the unique 
identifier of  the object. 

These rules ensure that a name can be used instead of  the 
text of  an object without any loss of  integrity, in the sense 
that either the entire text of  a system will be correctly as- 
sembled, or the lack of some object will be detected. 

What happens when a new version V 2 of  an object is 

created? In this view, such a version is a new object. Any 
model M 1 which refers to the old object V 1 continues to 

do so. However, it is possible to create a new model M 2 



which is identical to M 1 except that every reference to V 1 

is replaced by a reference to I,'2; this operation is called 

Notice and is discussed further in § 3. In this way, the no- 
tion that objects are immutable is reconciled with the fact 

of evolution. 

With these conventions, a model can incorporate the text 
of an object by using the name of the object. This is done 
in SML by writing an object name preceded by @. The 
meaning of an SML expression containing an @-expression 
is defined to be the meaning of an expression in which the 
@ expression is replaced by its contents. For example, if 
the object inner.model contains 

"lit" 

which is an SMI. expression, the binding 
[x" STRING ~ @inner.sin, 

y: STRING ~ "lit"] 
has identical values for x and y. 

With these conventions, a system model is a stable, un- 
ambiguous representation for a system. It is easily trans- 
ferred among programmers and file systems. It has a 
readable text representation that can be edited by a user at 
any time. Finally, it is usable by other program utilities 
such as cross-reference programs, debuggers, and op- 
timizers that analyze inter-module relationships. 

2.2 Derived objects 

The Modeller's most important function is to rebuild a sys- 
tem from its source components, given the system model 
as input. The model refers to each component by its 
unique name. To rebuild the system, the Modeller goes to 
the file system and tries to find the file which represents 
each object. This may involve a search in several direc- 
tories on several machines, as described in § 5. Because 
each file contains the unique name of the object it 
represents, the Modeller will never make a mistake and 
retrieve the wrong version, although it may be unable to 
retrieve a file. Once it has obtained all the files, the 
Modeller does any necessary recompilations, loads the 
resulting binary files, and runs the program. 

A model normally refers to source objects rather than the 
binary objects produced by the compiler. The Modeller 
takes the view that a binary object is just an accelerator, 
since it can be recreated by the compiler using the right 
source object and parameters. Of course, wholesale recom- 
pilation is time-consuming, so various caches are used to 
avoid unnecessary recompilation. 

It is not essential that the text of a system component be 
source text; all that is needed is a way to turn it into a 
value the Modeller can understand. For a Cedar source 
module, this is done by parsing the DIRECTORY, IMPORTS 
and EXPORTS statements at the start of the module (see 
§ 2.4). But it can also be done for a Cedar binary module, 

which is the output of the compiler and has all its 
interface parameters bound; binary modules have enough 
information (originally for the benefit of the loade0 to 
allow an SML function or INTERFACE value to be derived. 
This is sometimes convenient When dealing with a system 
in which some elements come from an outside organiza- 

tion in binary form only. 

2.3 Unique names 

The Modeller uses the creation date of  a source object as 
its unique identifier. Thus an object name might have the 
f o r m  BTre&ceda~(July 22, 1982 2:23:56); in this representation 
the unique identifier follows the ! character. Of  course 
such an identifier is not absolutely guaranteed to be 
unique, but we have found it satisfactory in practice. 

For a derived object such as a binary module, the 
Modeller uses a 48-bit version stamp which is constructed 
by hashing the name of the source object, the compiler 
version and switches, and the version stamps of any 
interfaces which are parameters of  the compilation. In this 
way derived objects constructed at different times will 
have the same names, as long as they are made in exactly 
the same way. This property can make a considerable 
difference in the time required to rebuild a system when 
some binary modules must be rebuilt, especially if there 
are other modules which depend on the ones being 
rebuilt. 

It is also possible to use an ambiguous name for an object, 
of the form BTre~cedar!H. This means to consider all the 
objects whose names begin BTree.cedar, and take the one 
with the most recent create date. Since such-a name does 
not denote a unique object, a model containing such a 
reference does not denote a unique program. Nonetheless, 
it is often convenient to use this convention. 

24Examp& 

A Cedar program consists of a set of modules. There are 
two kinds of module: implementation (PROGRAM) 
modules, and interface (DEFINrl'IONS) modules. An inter- 
face module contains constants (numbers, types, inline 
procedures, etc.) and declarations for values to be supplied 
by an implementation (usually procedures, but also types 

and other values). A module M 1 that calls a procedure in 

another module M 2 must IMPORT an instance inst of an in- 

terface I that declares this procedure. Inst must be 
EXPORTed by the PROGRAM module M 2. For example, a 

procedure Insert declared in a module BTreelmpl would 
also be declared in an interface BTree, and BTreelmpl 
would EXPORT an instance of BTree. A PROGRAM calls 
Insert by IMPORTing this instance of BTree and referring to 
the Insert component of the instance. We call the importer 



of BTree the client module, and say that BTreelmpl (the ex- 
porter) implements BTree. Of course BTreelmpl may itself 
IMPORT and use interfaces that are defined elsewhere. 

Example I shows a very simple system called BTree, which 
defines one interface BTree and one instance BTreelnst of 
BTree. 

BTree.model!(Jan 14, 1983, 14:44:11) 

LET @[Indigo]<Cedar>Cedarlnteoraces.model!(July 25,1982,14:03:03) IN 
LET lnstances~@[lndigo]<Cedar>Cedarlnstances.mode~(July 25. 1982,14:10:12) 1N 

BTree: INTERFACE BTree ~ @[lvy]<SchmidDBTree.ceda~(Sept 9,1982,13:52:55) 
[Asci,l, 

BTreelnst: BTree ~ @[lvy]<Schmidt> BTreelmpLcedar~(Jan 14.1983.14:44:09) 
*1] [Instances. Rope, Instances. I0, Instances.Space] ] ] 

Cedadnterfaces.model!(July 25, 1982, 14:03:03) 
[ 

ASCii: INTERFACE ~ @[Indigo]<Cedar>ASCiLceda~(July 10, 1982.12:25:00)l'l, 
Rope: INTERFACE ~ @[Indigo]<Cedar>Rope.cedar~Ouly 10.1982, 17:00:00)'1], 
I0: INTERFACE ~ @[Indigo]<Cedar>lO.ceda~(July 12,1982.11:00:00)'1], 
Space: INTERFACE ~ @[lndigo]<Cedar>Space.ceda~(June 10,1982, 8:35:00)*[] ] 

C e d a r l n s t a n c e s . m o d e l ! ( J u l y  25, 1982, 14:10:12) 
[Ascii, Rope, I0, Space]~ 

LET @Cedarlnterfaces.model!(July 25,1982.14:03:03) IN [ 
@[Indigo]<Cedar>Asclilmplceda~(July 10,1982,12:30:00)[] [], 
@[lndigo]<Cedar>Ropelrapl.ceda~(July 10, 1982, 17:10:24)'1]'1], 
@[Indigo]<Cedar>lOlmplcedar~(July 20, 1982,13:03:03)'1]'1"], 
@[Indigo]<Cedar>SpacelrapLceda~(June 11.1982,15:00:00)'1]'1] ] 

Example 1: An example of  a model 

BTree.model refers to two modules, BTreecedad(Sept 9, 1982, 
13:52:55) and BTreelrnpLceda~(Jan 14, 1983, 14:44:09). Each is 
named by a user-sensible name (e.g., BTre~eedar), part of 
which identifies the source language as Cedar, and a crea- 
tion time (e.g. !(Sept 9, 1982, 13:52:55)) to ensure uniqueness. 
The @ indicates that a unique object name follows. Each 
object also has a file location hint ([lvy]<Schmidt>); its use 
is discussed in § 5.1. 

BTree.model refers to two other models, 
Cedarlnterfacexmodel!(July 25, 1982, 14:03:03) and 
Cedarlnstances~mode~(July 25, 1982, 14:10:12). Each of these is 
a binding which gives names to four interface or instance 
modules that are part of the Cedar system. A clause such 
as  

LET Cedarlnterfaces.raodellN... 

makes the names bound in Cedarlnterfaces (Ascii, Rope, I0, 
Space) denote the associated values (Ascii.cedar(July 10, 1982, 
12:25:00) U, etc.) in the expression following the IN. 

Models denote dependency by parameterization. There are 
two kinds of dependency: on interfaces, and on im- 
plementations, or instances of the interfaces. 
Correspondingly, each source module is viewed as a func- 
tion which takes interface arguments and returns another 
function which takes instance arguments. Applying the 
first function to its interface arguments is done by the 

compiler; applying the resulting second function to its in- 

stance arguments is done by the loader as it links up defini- 
tions with uses. 

In the example above, the BTree interface depends on the 
Ascii interface from Cedarlnterfaces. Since it is an interface, 
it doesn't depend on any implementations. BTreelmpl 
depends on a set of interfaces which the model doesn't 
specify in detail: the * in front of  the first parameter list 
for BTreelrnpl means that its arguments are defaulted by 
name matching from the environment. In particular, it 
probably has interface parameters BTree, Rope, I0, and 
Space; all these names are defined in the environment, 
BTree explicitly and the others from Cedarlnterfaces 
through the LET clause. BTreelmpl also depends on Rope, 
I0, and Space instances from Cedarlnstances, as indicated in 
the second argument list. 

The interface parameters are used by the compiler for 
type-checking, and so that details about the types can be 
used to improve the quality of  the object code, The in- 
stance parameters are used by the loader; they specify how 
procedures exported by one module should be linked to 
other modules which import them. 

3. User interface 

The Modeller provides an interactive interface for ordi- 
nary incremental program development. When used inter- 
actively, the role of the Modeller is similar to that of an in- 
cremental compiler: it tries to do as little work as it can as 
quickly as possible in order to produce a runnable system. 
To do this, it keeps track incrementally of as much in- 

formation as possible about the objects in the active 
models. 

3.1 Patterns of software development 

For example, consider the following scenario. Assume a 

model already exists, say BTree.model, and the user wants 

to change one module to fix a bug. Earlier, she has started 

the Modeller with BTree.model as the current model. She 

uses the Cedar editor to make a change to 
BTreeimpl.ceda~(Jan 14, 1983, 14:44:09). When the user 
finishes editing the module and creates a new version 
BTreelmpLceda~(April 1, 1983, 9:22:12), the editor notifies the 
Modeller by calling its Notice procedure, indicating that 
BTreelmpl.ceda~(April 1, 1983, 9:22:12) has been produced 
from BTreelmpl.ceda~(Jan 14, 1983, 14:44:09). If the latter is 
referenced by the current model, the Modeller notices the 
new version and updates BTree.model!(Jan 14, 1983, 14:44:11) 
to produce BTree.mode~(April 1, 1983, 9:22:20), which refers 
to the new version. The user may edit and change more 
files. When she wants to make a runnable version of her 
system, she issues another command to the Modeller, 
which then compiles everything in correct order and (if 
there are no errors) produces a binary file. 



A more complex scenario involves the parallel develop- 
ment of the same system by two programmers. Suppose 
both start with a system described by the model M 0, and 

end up with different models M 1 and M 2. They may wish 

to make a new version M 3 which merges their changes. 

The Modeller can provide help for this common case as 
follows: I f  one programmer has added, deleted or 
changed some object not changed by the other, the 
Modeller will add, delete, or change that object in a 
merged model. If both programmers have changed the 
same object in different ways, the Modeller cannot know 
which version to prefer and will either explore the 
changed objects recursively, or ask the user for help. 

More precisely, we have 
M 3 = Merge[Base~Mo, Newl~M v New2~M2] 

and Merge traces out the three models depth-first. At each 
level, for a component named p: 

If Add to result 
Basa p= MrP = Mrp Base.p 
Basap= M1/rp~ M2/rP M2/rp 
Base.p= M1/rP, no M2/rp leave p out 

no Bas~por M~p M2/rP 
Bas~p~ MrP~ Mrp. all models Merge[Base.p:, MrP, Mrp ] 
I~SE error, or ask what to do. 

Of course, there is no guarantee that. the resulting thing 
makes any sense, but it does seem to correspond to current 
practice. 

At all points, the Modeller maintains a model that 
describes the current program. When the user decides to 
save her program, she does so with an accurate description 
of it in her model. Since the models are simply text files, 
the user always has the option of editing the model as she 
sees fit, so the Modeller does not have to deal with 
obscure special cases of  editing that may arise. 

3.2 Daily evolution 

In a session which is part of the daily evolution of a 
program, the user begins by creating an instance of the 
Modeller, which provides a window on the Cedar user's 
screen, as shown in Figure 1. This section gives an over- 
view of its use, suggested by the contents of  the figure. 

The Modeller window is divided into four regions, which 
are, from top to bottom: 

1) A set of buttons to control it. 

2) A region containing fields where names may be 

typed. 

3) A feedback area for compiler progress messages. 

4) A feedback area for Modeller messages. 

To help explain Modeller operation, let us take a simple 
example and follow the user's actions. 

Step 1. Assume that the Modeller instance has just been 
created. The user decides to make changes to the modules 
in Exampl~Model. She enters the name of the model in the 
field following the ModelName: prompt, and pushes the 
StartModel button. From this point on the Modeller is 
bound to ExamplaModel, StopModel must be pushed 
before using this instance of the Modeller on another 
model. StartModel initializes data structures in this in- 
stance of the Modeller, SIopModel frees the data. 

Step 2. The user makes changes to objects on her personal 
machine. The Cedar editor calls the Modeller's Notice 
procedure to report that a new version of an object exists; 
the user could do this by hand, but normally new versions 
correspond one-to-one with editing sessions on modules. If 
the object being edited is in the model, the Modeller 

StartModel Begin Continue StoreBack Unload StopModel 
MakeModelBinary Bind NewModeller 
Compile Load Start 

ModelName: Example,Model 

Compiling: ExampleImplA.Mesa ...... no errors. 
Compiling: ExamplelmplB,Mesa ,,, 

StartZV[odel Example.Model 
Parsing Example,Model 
Analyzing Parameters 
. . . . . . . . . . . . . . . . . . . . . .  

Noticed n e w  version of Example lmplA,Mesa 
. . . . . . . . . . . . . . . . . . . . . .  

Noticed new version of' ExamplelmplB.Mesa 
. . . . . . . . . . . . . . . . . . . . . .  

Begin Example.Model 
Try for compilation: 

ExamplelmplA.Mesa: Confirm Compilation ? Yes 
Compilation completed, no errors. 

ExamplelmplB.Mesa: Confirm Compilation ? Yes 

Figure I Modeller Window 



updates its internal representation of the model to reflect 
the new version. If the changes involve adding or deleting 
parameters to modules, the Modeller uses standard default- 
ing rules to modify the argument list for the object in the 

model. 

Step 3. Once she has made the intended edits, the user 
pushes Begin, which 

a) recompiles modules as necessary, 

b) loads their object files into memory, and 

c) forks a process that starts the user's program running. 

Modules need to be recompiled if the corresponding 
source files have been changed, or if any modules they 
depend on have been compiled. Should (a) or (b) en- 

counter errors, the Modeller does not proceed to (c). 

Step 4. After testing her program, the user may want to 
make changes simple enough that the old module may be 
replaced by the new module without re-loading and re- 
starting the system. If so, after editing modules, the user 
pushes Continue, which tries to replace modules in the 
already-loaded system. If this succeeds, she can go on test- 
ing her program and the new code will be used. If the 
module is not replaceable, she must push Begin, which un- 

• loads all the old modules in this model and loads the new 
modules. 

Step 5. After completing her changes, the user can push 
StoreBack to store copies of her files on remote file ser- 
vers, an d then push Unload to unload the modules 
previously loaded and StopModel to free Modeller data 
structures. 
These steps are illustrated in Figure 2. 

The modeller allows a Cedar program to be rebuilt and res- 
tarted from scratch. It also is able to replace a module in 
an already loaded system. This is considerably faster for 
small program Changes, and means that the current state 
of the program is not lost. Module replacement in Cedar is 
possible if certain conditions are met: the global data must 
not change, all previously-defined procedures must still be 
defined, certain architectural limitations must be observed, 
and the module being replaced cannot be executing when 
replacement occurs. 

In addition to its interactive interface with the user, the 
Modeller also provides a procedural interface to its data 
structures, which contain complete information about the 
structure of the program: what modules exist, how they 
are interconnected, and what they are named. The main 
client of this interface is the Cedar debugger. When the 
debugger examines a stopped system (e.g. at a breakpoint), 
it can follow the procedure call stack and find the global 
variables for the module in which the procedure is 
declared. The Modeller can provide the debugger with 

module-level information about the model in which this 
module appears, and provide file location and version in- 
formation (i.e. an interface to a sophisticated load map). 
This is particularly useful when the debugger wants to in- 
spect the symbol table for a module, and the symbol table 
is stored in another file that is not on the local disk. 

"-"-~Sta~Model I 

User Edits Files 

~Notice Operation .--J 

÷ ÷ 
U,~r Tests Program 

User Edits Files 

IStof Aodel J 

Figure 2 User Sequence 

3. 3 Releases 

A release is a software system composed of a collection of 
modules which have been tested for conformance to some 
kind of specification, and filed so that any one of them can 
be retrieved simply and reliably as long as the release 
remains active. The Release procedure in the Modeller 
takes a model, performs various checks on its components, 
builds the system it describes, and moves the system and all 
the components to designated directories. In more detail, 
Release[M]: 

1) Checks that M and each component of M is legal: syn- 
tactically correct, type-correct, and causes no compiler 
errors .  

2) Ensures that all objects needed by any component of 
M are components of M, and that only one version of 
each object exists (unless multiple versions are ex- 
plicitly specified). 

3) Builds the system described by M. 

4) Copies all the files representing objects in M to a 
place where they cannot be erroneously destroyed or 
modified. 



A release is complete if and only if every source file 
needed to compile every object file is among the files 
being released. A release is consistent if and only if only 
one version of each package is being released, and other 
packages depend only on that version. The release process 
is controlled by a person acting as a Release Master, who 
runs the Modeller to verify that a proposed release is con- 
sistent and complete, and takes corrective action if it is 
not. Errors in models, such as references to non-existent 
files or references to the wrong versions of files, are 

detected by the Release procedure of the Modeller. When 
errors are detected, the Release Master notifies the guilty 
implementor and has her fix the model. 

Releases can be frequent, since performing each release im- 
poses a low cost on the Release Master and on Cedar 
programmers. The Release Master does not need to know 
any details about the packages being released, which is im- 
portant when the software of the system becomes too large 
to be understood by any one programmer. The im- 
plementor of each package can continue to make changes 
until the release occurs, secure in the knowledge that the 
package will be verifed before the release completes (of 
course, the release process provides no protection against 
bugs which do not cause errors at compile time). Many 
programmers make such changes at the last minute before 
the release. The release process supports a high degree of 
parallel activity by programmers engaged in software 
development. 

We have extensive experience with Cedar releases [8]. The 
Cedar software under release control consists of ap- 
proximately 5000 files and 465,000 lines of Cedar code. 
Existing packages are described by DFfiles that contain a 
subset of the information in system models. In what fol- 
lows, we describe the release process when, in the future, 
it will be run using system models instead of DF files. 

3.3.1 The Top model 

The Release Master maintains a model with one com- 
ponent for each component of the release. This list (called 
the Top model) defines, for every model named in the list, 
a file server and directory where it can be foond. While a 
release is being developed, this model refers to objects on 
their working directories, e.g., the top model might be 

T o p  ~ [ 

BTree ~ ~[lndi$o]<lnt>BTree.ModePlt --ReleaseAs [Indiso]<Cedar>--, 

Runtlrae ~ ~[Indigo]<InORunt ime.ModehH --ReleaseAs [Indiso]<Cedar>-- 

1 

The Top model is used during the development phase as a 
description of models that will be in the release; it gives 
the locations of these objects while they are being 
developed. The Top model provides the list of models that 
will be released. Models not mentioned in the Top model 
will not be released. 

3.3.2 Release mechanics-client 

Every model M being released must have a LET statement 
at the beginning that makes the components in the Top 
model accessible in M. Thereafter, M must use the names 
from Top to refer to other models. Thus, M must begin 

LET @[Indigo]<lnt> Top.Model~.H IN [ 

RTTypes: INTERFACE ~ Runtlme, 

1 

Clients of a release component (e.g., RTTypes) are not al- 
lowed to refer to its model by @-reference, since there is 
no way to tell whether that model is part of the release. 
Aside from the initial reference to Top, a release com- 
ponent may have @-references only to sub-components of 
that component. 

3.3.3 Release mechanics- implementor 

A model M being released must also have a comment that 
gives its object name in the Top model (e.g. BTree), and 
the working directory that has a copy of the model, e.g. 

-- RelcaseName BTree 

-- WorkingModelOn [Indigo]<Int>BTree.Model 
These comments are redundant; they allow a check that 
Top and the component (and hence the Release Master 
and the implementor) agree about what is being released. 

g must also declare the release position of each file, by ap- 
pending it as a comment after the filename in the model, 
e.g. 

@[lvy]<Work>XImpl.Mesa!l |  -- ReleaseAs [Indigo]<Cedar>XPack>-- [ ] 

A global ReleaseAs comment can define the default 
release position of files in the model (which may differ 
from the release position of the model itself. Thus if the 
model contains a comment 

-- DefaultReleaseAs [lndigo]<Cedar>BTrees>-- 

then the user may omit the 
-- ReleaseAs [Indi$o]<Cedar>BTrees>-° 

clauses. 

4. Implementation 

The Modeller must be able to analyze large collections of 
modules quickly, and must provide interfaces to the com- 
piler, loader, debugger, and other programs. This section 
describes first the basic algorithms used, and then the 
caches which greatly improve performance in the normal 
case of incremental changes to a large system. It ends with 
a description of the algorithms used for releases. 

4.1 Evaluation 

In order to build a program, the Modeller must evaluate 
the model for the program. The model is an expression 



written in SML, which is a strongly typed, applicative lan- 
guage. Evaluating an SML expression is done in three 
steps: 

1) The standard fl-reduction evaluation algorithm of the 
typed lambda calculus converts the expression into 
one in which all the applications are of primitive ob- 
jects, namely Cedar modules. Each such application 
corresponds to compilation or loading of a module. 
fl-reduction works by simply substituting each argu- 
ment for all occurrences of  the corresponding 
parameter. SM1. operations such as selecting a named 

component of  a binding are executed as part of this 
process. Thus in the example, 

LET Instances~@Cedarlnstancexmodel IN InstancexRope 

evaluates to 
@[Indigo]<Cedar>RopelmpLceda~Ouly 10, 1982, 17:10:24)[...] [...] 

where the arguments of Ropelmpl are filled in accord- 
ing to the defaulting rules. 

2) Each application of a .cedar object is evaluated by the 
compiler, using the interface arguments computed by 
(1). The result is a .binary object. Of course, each inter- 
face argument must itself be evaluated first; i.e., the 
interfaces on which a module depends must be com- 
piled before the module itself can be compiled. 

3) Finally, each application of a .binary object computed 
in (2) is evaluated by the loader, using the instance ar- 
guments computed by (l). Cedar permits mutual 
recursion between procedures in different modules, so 
it is not always possible to fully evaluate the instance 
arguments. Instead, for each instance of an interface a 
record is allocated, with space for all the components 
of the interface. A pointer to the record is passed as 
an argument, rather than the record itself. Later, 
when the .binary object application which defines the 
interface has been evaluated by loading the object, 
the record is filled in with the results, namely the 
procedures and other values defined by that module. 

Once everything has been loaded, the result is a runnable 
version of the program. 

We now proceed to examine (1) in more detail. This step 
is done when the user pushes the StartModelling button, 
or on the affected subtree whenever the current model is 
modified by a Notice operation. For StartModelling, the 
Modeller reads the model from its source file, parses the 
source text and builds an internal parse tree. For Notice, 
the parse tree already exists, and is simply modified by 
substituting the new version for each occurrence of the old 
one. The leaves of  this parse tree are the Cedar modules 
referenced with @ from the model. If another model is 
referenced, it does not become a leaf; instead, its parse 
tree is computed and becomes a sub-tree of the containing 

model. 

After the parse tree is built, it is evaluated to produce a 
value tree. The evaluation applies functions (by substitut- 
ing arguments for parameters in the function body), looks 
up names in bindings, does type checking, and supplies 
defaulted arguments. The first two operations have already 
been discussed. Typechecking requires knowing the type 
of every value. For a value which is a Cedar module, the 
Modeller obtains its type by examining the first few lines 
of the module, where the interfaces and instances 
imported by the module are declared (in DIRECq'ORY and 
IMPORTS clauses), together with the instances exported (in 
an EXPORTS clause). 

For example, a module M which uses interfaces .4 and B, 
imports an instance of ,4, and exports an instance of B, 
begins 

DIRECTORY A, B: 

M: PROGRAM 

IMPORTS ,4; 

EXPORTS B: 

and has the type 
[INTERFACE .4, INTERFACE Bl-*iIAl~iBll 

I.e., it is a function taking two interface arguments and 
returning (after it is compiled) another function that takes 
an instance of .4 and returns an instance of B. The 
Modeller checks that the arguments supplied in the model 
have these types, and defaults them if appropriate. SML 
typechecking is discussed in detail in [6]. 

After the entire model has been evaluated, the Modeller 
has determined the type of each module, and has checked 
that every module gets arguments of the types it wants. 
Any syntactic or type errors discovered are reported to the 
user. If  there are none, then wherever a value is defined in 
one module and used in another, the two modules agree 
on its type. Note that nothing has yet been compiled or 
loaded. 

After step (1) the value of the model is a tree with one ap- 
plication for each compilation or loading operation that 
must be done. The compilation dependencies among the 
modules are expressed by the arguments: if module .4 is 
an argument to module B, then .4 must be compiled first, 

and if .4 changes, B must be recompiled. Because of the 
level of indirection in the implementation of loading, it is 
not necessary to reload a module when other modules 

change. 

To get from this tree to a fully compiled program, each 
application of a source module must be evaluated by the 
compiler, as described in (2). During this evaluation, the 
compiler may find errors within the module. This step is 
done when the user pushes the Compile or Begin button. 

After step (2), the value of the model is a tree in which 
each application of a source object has been replaced by 
the binary object that the compiler produced. To get from 



this tree to a runnable program, each binary object must 
be loaded, and each instance record filled in with the 
procedures exported from the modules that implement it. 
The details of how this is done are very dependent on the 
machine architecture and the runtime data structures of 
the language. 

4.2 Accelerators 

It is impractical to repeat the entire procedure just 
described whenever any change is made to a system; 
among other things, this would imply recompiling e~,ery 
module. Since the entire system is applicative, however, 
and the value of an object never changes, the results of 
any computation can be saved in a cache, and reused in- 
stead of repeating the computation. In particular, the 
results of the type analysis of objects and the results of 
compilations can be saved. To this end, the Modeller 
keeps two tables that record the results of computations 
that are expensive to repeat. These tables serve as ac- 
celerators for the Modeller and are stored as files on the lo- 
cal disk. 

Object Type Table: A list of objects that are referenced by 
models and have been analyzed for their types. For ex- 
ample, a Cedar source module is listed along with the im- 
plied procedure type used by the Modeller to compile and 
load it. The unique name of an object is the key in this 
table, and its type is the value. 

Projection Table: A list of entries that describe the results 
of running a compiler (or other program) that takes a 
source object and any needed parameters (such as 
interfaces) and produces an binary object. Before invoking 
a compiler to produce a binary file, the Modeller consults 

this table to see if such a file is already available. The key 
in this table is all the information that affects the result: 
the name of the source object, the names of all the 
parameter objects, the compiler switches, and the compiler 
version. The value of a table entry is the name of the bi- 
nary object that results. This name is constructed from the 
user-sensible name of the source object, plus the version 
stamp, a 48-bit hash code of all the other information. An 
entry is added to the projection table whenever the com- 
piler is run successfully. 

In summary, the object type table speeds the analysis of 
files, and the projection table speeds the translation of ob- 
jects into derived objects. These tables are illustrated in 
Example 2. 

It is possible for these tables to fill up with obsolete in- 
formation. Since they are just caches and can always be 
reconstructed from the sources, or from information in the 
.modelBinary objects (see § 4.3), they can be purged by any 
convenient method, including deleting them completely. 
As information is needed again, it will be recomputed and 
reentered in the tables. 

The projection table is augmented by a different kind of 
cache provided by the file system. Whenever the result of 
a needed compilation is not found in.the projection table, 
the Modeller constructsthe 48-bit version stamp that the 
resulting binary object will have (by hashing the source 
name and parameters), and searches for this object in the 
file system, as described in §5. If it is found, the 
compilation need not be redone; the result is put into the 
projection table so that the file system need not be 
searched again. This search of the file system is suppressed 
for source files that have just been edited, since it would 
never succeed in this case. 

Object type table 

Source object 

BTree.ceda~(Sept 9.1982.13:52:55) 
BTreelmpl.ceda#.(Jan 14.1983,14:44:09) 

r?pe 

[INTERFACE ASCitI'--'.[INTERFACE BTree] 
[Rope: INTERFACE Rope, lO: INTERFACE 10, Space:. INTERFACE Space, 
BTree: INTERFACE BTree]-'-* 

[ R~elnst: Rope, lOInst: I0, Spacelnst:Space]-'*[eTreelnst: BTree]] 
Ill 

Projectioa table 

Source object Parameter values Result object 

BTre~ceda~(Sept 9. 1982, 13:52:55) [AsciLbinary~23ACl~EFFA] BTree.binary!43956A3C32FO 
BTreeimpl.cedar~(Jan 14, 1983,14:44:09) [Rope.binary~AC9023E76FA6, lO.binary!23843396A24f, BTreelmpLbinary!2045FFD283C 

Space.binary!8348823FI.761,BTree.binary!43956A 3C32F0] 

Example 2: Object type and projection tables 

9 



4.3 Compiled models 

The modeller keeps its caches on each machine. It is also 
desirable to include this kind of precomputed information 
with a stored model, since a model is often moved from 
one machine to another, and some models are shared 
among many users, who refer to them in their own models 
by using the @-notation. An example is the model 
Cedarlnterfacexmodel, which returns a large number of  
commonly-used interfaces that a Cedar program might 
need. Furthermore, even with the caches it is still quite ex- 
pensive to do all the typechecking for a sizable model. 

For these reasons, the Modeiler has the ability to create 
and read back compiled models. A compiled model con- 
tains 

a tree which represents a parsed and typechecked ver- 
sion of the model; 

object type and projection tables with entries for all 
the objects in the model; 

a version map (see § 5) with entries for all the objects 
in the model. 

When the user pushes the MakeModeIBinary button in 
Figure 1, the Modeller makes this binary object for the cur- 
rent model, much asa compiler makes a binary file from a 
source file. In a .modelBinary object any parameters of the 
model which are not instances may be given specific argu- 
ment values. This is much like the binary objects produced 
by the compiler, in which the interface parameters are 
fixed. The .modelBinary object acts merely as an ac- 
celerator, since it is always possible to work from the 
sources of the model and the objects it references, to 
derive the same result as is encoded in the .modelBinary. 

4.4 Releases 

The Release operation described in § 3.3 is implemented in 
three phases'. 

Phase one: Check 

The Check phase of Release checks the Top model and all 
its sub-models for problems that might prevent a 
successful release. Each model is parsed and all files listed 
in the model are checked. Check ensures that the versions 
listed in the models exist and that their parameterization is 
correct. The directory containing each source file is 
checked to make sure it contains a valid object file. This 
guards against compilation errors in the source files. 
Common blunders are caught, such as a reference to-a 
model that is not in the Top model. The Release Master 
contacts implementors and asks them to fix any errors 
caught in this phase. 

Phase two: Move 

The Move phase moves the files of the release onto the 
release directory and makes new versions of the models 
that refer to files on the release directory instead of the 
working directory. For each model listed in the release 
position list, Move: 

1) reads in the model from the working directory, 

2) moves each file explicitly mentioned in the model to 
its release position, 

3) writes a new version of the source file for the model 
in the release directory. 

This release version of the model is like the working ver- 
sion except that 

a) all working directory paths are replaced by paths on 
the release directory, 

b) a comment is added recording the working directory 
that contained the working version of the model, and 

c) the LE'r statement referring to the Top model is 
changed to refer to the one on the release directory. 

Phase three: Build 

The Build phase takes the new model computed during the 
Move phase and uses it to traverse all the objects in the 
release. For each model: 

1) All models on incoming edges must have been ex- 

amined. 

2) For every source file in the model, its object file 
(known to exist from the Check phase) is moved from 
the working directory to the release directory. 

3) A .modelBinary file is made for the version of the 
model on the release directory. 

4) If a special comment in the model is given, a run- 
nable object file is produced for the model. 

After this is done for every model, a version map of the en- 
tire release is stored on the release directory. 

At the conclusion of phases Check, Move and Build, Release 
has established that: 

1) ~Check: All reachable source objects exist, and derived 
objects for all but the Top object exist. This means the 
files input to the release are statically correct. 

2.) Move: All objects are on the release directory. All 
references to files in these models are by explicit 
create time (for source files) or version stamps (for ob- 
ject files). 

3) Build: The system has been built and is ready for ex- 
ecution. All desired accelerators are made 
(.modelBinary files and a version map for the entire 
release). 
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5. Files 

A model refers to objects by their unique names. Given 
the conventions for objects and their names described in 
§ 2, this is unambiguous. In order to build a system from a 
model, however, the Modeller must obtain the representa- 
tions of  the objects. Since objects are represented by files, 
the Modeller must be able to deal with files. There are two 

aspects to this: 

1) Locating the file which represents an object, starting 

from the object's name. 

2) Deciding where in the file system a file should reside, 
and when it is no longer needed and can be deleted. 

5.1 Locating files 

It would be nice if an object name could simply be used as 
a file system name. Unfortunately, file systems do not 
provide the properties of  uniqueness and immutability 
that object names and Objects must have. Furthermore, 
most file systems, including ours, require a file name to 
include information about the machine that physically 
stores the file. Hence a mapping is required from object 
names to the full path names that unambiguously locate 

files in the file system. 

To locate a file, the Modeller uses a location hint in the 
model. The object reference @[Ivy]<Schmidt>BTreelmpl.ce- 
da~(Jan 14, 1983, 14:44:09) contains such a hint, 
[lvy]<Schmidt>. To find the file, the Modeller looks on the 
file server Ivy in the directory Schmidt for a file named 
BTreelmpl.cedar. There may be one or more versions of  this 
file; they are enumerated, looking for one with a creation 
date of Jan 14, 1983, 14.'44:09. If  such a file is found, it must 
be the representation of this object. Otherwise this method 
of  finding the representation has failed. 

The distributed ~nvironment introduces two types of  
delays in access to objects represented by files: 

1) If  the file is on a remote machine, it has to be found. 

2) Once found, it has to be retrieved. 

Version map 

I I I I  I I I  

Obiect name, File location 

Since retrieval time is determined by the speed of  file 
transfer across the network and the load on the file server, 
the Modeller tries to avoid retrieving files when the in- 
formation it wants about a file can be computed once and 
stored in a database. For example, the type of  an object, 
which is the information needed to compute its compila- 
tion dependencies, is small compared to the object itself. 
The object type table stores the types of  all objects of  cur- 
rent interest; a source object in the table does not have to 
be examined, or even retrieved, unless it actually needs to 

b e  recompiled. 

In cases where the file must be retrieved, determining 
which machine and directory has a copy of  the version 
desired can be very time-consuming. Even when a file 
location hint is present and correct, it may still be neces- 
sary to examine several versions of  the file to find the one 
with the right creation date. The Modeller minimizes these 
problems by keeping another cache, which maps an object 
name into the full path name in the distributed file system 
of a file which represents the object. This cache is a table 
called the Version Map, illustrated in Example 3. Note 
that both source objects, whose unique identifiers are 
creation dates, and binary objects, whose unique 
identifiers are version stamps, appear in the version map. 
The full path name includes the version number of  the file 
(the number after the !). This version number makes the 
file name unique in the file system, so that a single 
reference is sufficient to obtain the file. 

Thus the Modeller's strategy for minimizing the cost of  
referencing objects has three parts: 

1) Consult the object type table or the projection table, 
in the hope that the information needed about the ob- 
ject is recorded there. If  it is, the object need not be 
referenced at all. 

2) Next, consult the version map. I f  the object is there, a 
single reference to the file system is usually sufficient 
to obtain it. 

3) If  there is no entry for the object in the version map, 
or if there is an entry but the file it mentions doesn't 

BT~re~cedar~(Sept 9, 1982.13:52:55) 
BTreelmpl.ceda~.(Jan 14,1983,14:44:09) 
BTree.binaryN3956A3C32FO 
BTreelmpl.binary!2045FFD283C 
Ascii.binary~23ACDgO4EFFA 

[Ivy]<SchmidDBTree.cedar4 
[I vy]<Schmidt)BTreelmpl.cedar!9 
[I vy]<Schmidt>BTree.binary!2 
[Ivy]<Schmidt~BTreelmpl.binary!5 
[Indigo]<Cedar)Ascii.binary23 

I l l  II II 

Example 3: Version map 
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exist, or doesn't actually represent the object, then use 
the file location hint to identify a directory, and 
enumerate all the versions of  the file to find one 
which does represent the object. I f  this search is suc- 
cessful, make a new entry in the version map so that 
the search need not be repeated. 

Like the other caches, a version map is maintained on 
each machine and in each .modelBinary object. A 
.modelBinary version map has an entry for each object men- 
tioned in the model. A machine version map has an entry 
for each object which has been referenced recently on that 
machine. In addition, commonly-referenced objects of  the 

Cedar system are added to the machine version map as 

part of  each Cedar release. 

Since the version maps are hints, a version map entry for 
an object does not guarantee that the file is actually 
present on the file server, Therefore each successful probe 
to the version map delays the discovery of  a missing file. 
For example, the fact that a source file does not exist may 
not be discovered until the compilation phase, when the 
Modeller tries to compile it. This means that the Modeller 
must be robust in the face of  such errors. The release 
process, however, guarantees that the files are present as 
long as the release remains active. 

5.2 Movingfiles 

The Modeller was originally implemented before the 
Cedar facilities which provide network-wide naming for 
files. Consequently, it includes procedures for transferring 
files automatically between a remote machine and the lo- 
cal machine on which compilations are done and programs 
are loaded. In addition, the Modeller records (in the local 
machine's file type table) whether a file has been edited 
and not saved on a remote file server. A StoreBack button 
stores all such changed files on the proper remote servers. 
Thus the Modeller can provide a substitute for uniform ac- 
cess to files throughout a network, at least for files which 

represent objects in a model. 

6. Status and plans 

The system described above is not yet integrated into 

Cedar; we expect to complete it over the next year. 
Although some users are using the Modeller to compile 
their systems, most use manual techniques. The existing 
Modeller has been used by five or six programmers over 
the last year; two have used it heavily. The debugger inter- 
face, .modelBinary files, and Release are not yet imple- 

mented. 

Databases are naturally suited to storing modules and 
dependency relationships between modules, as well as ob- 
ject types, projections, and version maps. When this 

research was started there was no database system in 

Cedar that could handle the amount of  data involved. We 
envision many programs that process data about modules 
in systems, such as sophisticated browsers and cross- 
reference tools like Interlisp's MasterScope [9] o r  PIE's 
Browser [4]. Query facilities of  the database system could 
easily be used to answer questions about programs that re- 
quire specialized analysis programs if no database is used, 
such as "Who depends on module X?," 
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Appendix: A real example 

This model describes the BringOver program, which is a 
substantial component in the Cedar system. We present 
the model with its environment aggregated into separate 
models, and with defaults for all the parameters. 

There are seven implementation modules within this 
model (CWFImpl, ComParselmpl, Subrlmpl, STPSubrlmpl, 

DFSubrlmpl, DFParserlmpl, BringOverlmpl). All the rest are 
interfaces. 
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First we define the two environment models. One is a big 

binding for the system interfaces on which BringOver and 
many other parts of  Cedar depend. The other is a declara- 

tion for the instances of  these interfaces. This declaration 

is rather repetitive, but it is needed to provide the proper 

names for defaulting the instance arguments of  the 

BringOver models. It might be possible to avoid this 

declaration by passing the entire interface binding, and a 

corresponding binding for the instances, as two big argu- 

ments to the client modules. Cedar currently does not per- 

mit this, however, and we do not show it here. 

System.model 
[ Ascil~ @Ascii.cedar*[I; 

CIFS ~ @CIFS.cedar*f; 

ConvertUnsafe ~ @ConvertUnsafe.cedar*f; 

Date ~ @Date.cedar*ft', 

DCSFileTypes ~ @DCSFileTypes.cedar*fl; 

Directory ~ @Directory.cedar*~; 

Environment ~ @Environment.cedar*f; 

Exec ~ @Exec.cedar*fl; 

File ~ @File.cedar*f; 

FileStream ~ @FlleStream.cedar*f; 

Heap ~ @Heap.cedar*f; 

lnline ~ @lnline.cedar*[I; 

KernelFile ~ @KernelFile.cedar*f; 

LongString ~ @LangString.cedar*f; 

NameAndPasswordOps ~ @NamedndPasswordOps.cedar*[l; 

Process ~ @Process.cedar*O; 

Rope ~ @Rope.cedar*f; 

Ropelnline ~ @Ropelnline.cedar*f; 

Runtime ~ @ Runtime.cedar*~: 

Segments.~ @Segments.cedar*f; 

Space ~ @Space.cedar*O; 

Storage ~ @Storage.cedar*O; 

STP ~ @STP.cedar*O; 

s r e O p s  ~ @STeOps.cedar*O; 

Stream ~ @Stream.cedar*f; 

String ~ @String.cedar*f; 

• System ~ @System.cedar*f; 

Systemlnternal ~ @Systemlnternal.cedar*~; 

Time ~ @Time.cedar*O; 

Transaction ~ @Transaction.cedar*f; 

TTY ~ @TTY.cedar*O; 

UserTerminal ~ @ UserTermlnal.cedar*[] ] 

SystemlnstancesDecl.model 

LET @System.model IN 

[ CIFSImpI: CIF. S, 

ConvertUnsafelmpl: ConvertUnsafe, 

-- 23 declarations are omitted for brevity-- 

TTYlmpl: TTY, 

UserTerminallmpl: UserTermlnal] 

We also need instances for the system interfaces. We can 
get them from the following model; its type is 

@ S y s t e m l n s t a n c e s D e c L m o d e l ,  

SystemInstanees.modei 

LET ]nterfaces~@System.model IN 

[CIFSImpI: CIFS ~ CIFSlmpLcedar*~, 

ConvertUnsafelmpl: ConvertUnsafe ~ ConvertUnsafelmpLcedar*f, 

Datelmpl: Date ~ DatelmpLcedar*~, 

-" 23 bindings are omitted for brevity-- 

7TYlmpl: TTY ~ 7TYlmpLcedar*~, 

UserTerminallmpl: UserTerminal ~ UserTerminallmpLcedar* O ] 

The models above are part of the working environment of  

a Cedar programmer; they are constructed once, as part of  

building the Cedar system. 

Now we can write the riaodel for BringOver. It picks up 

System.model and SystemlnstancesDecLmodel, and then gives 

a single binding of  BringOverProc to a function which takes 

the instances as an argument, and returns two interfaces 

and an instance of  each. The body of  the function has 

one l.ET" to make all the system interface and instance 

names directly accessible for defaulting; 

a second I.bTl" to bind all the internal interfaces and in- 

stances of  BringOver, 

a binding to construct the two interfaces and two in- 

stances which are the result o f  applying BringOverProc. 

BringOver.model 

LET [Interfaces- @System.model, 

lnstancesDecl~@SystemlnstaacesDecLmodel IN 

[BringOverProc ~ ~ [Instances: InstancesDecl]=~ 

[ BringOver. INTERFACE, BringOverimpl: BrlngOver, 

BringOverCall: INTERFACE, BringOverCalllmid: BringOverCalt] IN 

--Make the system interface and instance names accessible 

LET Interfaces + Instances IN 

LET [ -- These are the internal interfaces and  instances 

CWF ~ @CWF.cedar*[];; 

CWFImpl ;.. @CWFlmpl..cedar*f; ; 

ComParse ~ @ComParse.cedar*O; 

ComParselmpl ~ @ComParselmpLcedar*O; 

Subr ~ @Subr.cedar*f, 

Subrlmpl ~ @Subrlmpl.cedar*~; 

STPSubr ~ @STPSubr.cedar*f; 

STPSubrlmpl ~ @STPSubrlmpl.cedar*~; 

DFSubr ~ @DFSubr.cedar*fl; 

DFUser ~ @DFUser.cedar*f, 

DFSubrlmplA ~ @DFSubrlmpl.cedar*~; 

DFSubrlmplB ~ @DFParserlmpl.cedar*f, 

DFSubrlmpl ~ DFSubrlmpl+ DFSubrimpIB ] 

IN [ -- These are the exported interfaces and  instances 

BringOver~ @BringOver.cedar*f; 

BringOverCall ~ @BringOverCall.cedar*~; 

[BringOverlmpl: BringOver, BringOverCalllmpl: BringOverCall] ~ 

@BringOverlmpl.cedar*[I ] ] 

Using BringOverProc, we can compute the exported inter- 

faces and instances of BringOver:. 
[BringOver, BringOverlmpl, BringOverCall, BringOverCalllmp~] ~ 

BringOverPrac[@Systemlnstaaces, model] 
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