
Organizing Software in a Distributed Environment

Butler W. Lampson
Eric E. Schmidt

Computer Science Laboratory
Xerox Palo Alto Research Center

Palo Alto, CA 94304

Abstract

The System ModeUer provides automatic support for
several different kinds of program development cycle in
the Cedar programming system. It handles the daily evolu-
tion of a single module or a small group of modules
modified by a single person, the assembly of numerous
modules into a large system with complex interconnec-
tions, and the formal release of a system. The Modeller
can also efficiently locate a large number of modules in a
big distributed file system, and move them from one
machine to another to meet operational requirements or
improve performance.

1. Introduction

The System Mode/let is a complete software development
system used in the Cedar project of Xerox PARC's
Computer Science Laboratory [2]. The Modeller provides
automatic support for the program development cycle fol-

lowed by programmers using Cedar. It uses information
stored in a system model, which describes a software sys-
tem by specifying:

1) The versions of various modules that make up a par-
ticular software system.

2) The interconnections between modules, such as which
procedures are used and where they are defined.

3) Additional information needed to compile and load
the system.

Permission to copy without fee all or part o f this material is granted

provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-108-3/83/006/0001 $00.75

4) Hints for locating the modules in a distributed file sys-
tem.

Under the direction of the Cedar programmer, the
Modeller performs a variety of operations on the systems
described by the system models:

1) It implements the representation of the system by
source text in a collection of files.

2) It tracks changes made by the programmer. To do
this, it is connected to the Cedar editor and is notified
when files are edited and new versions are created.

3) It automatically builds an executable version of the
system, by recompiling and loading the modules. To
provide fast response, the Modeller behaves like an in-
cremental compiler: only those modules that change
are analyzed and recompiled.

4) It provides complete support for the integration of
packages as part of a release.

Thus the Modeller can manage the files of a system as
they are changing, providing a user interface through
which the programmer edits, compiles, loads and debugs
her changes interactively while she is developing her
software. The models are automatically updated to refer to
the changed components. Manual updates of models by
the programmer are not normally necessary.

Related work is described in [1, 3, 4, 5]. This paper is
derived from part of the second author's Ph.D. thesis [8].

1.1 Background

The Modeller runs in Xerox PARC's computing environ-
ment, in which each programmer has a personal computer,
connected to other computers over an Ethernet. It cur-
rently supports programming in Cedar, though its tech-
niques do not depend on the languages in which modules
are written. Cedar is derived from Mesa [7], and shares
with that language a very general mechanism for intercon-
necting modules; hence it is a good test of the Modeller's
facilities for module interconnection.

Butler
Text Box
Proc.1983 ACM SIGPLAN Symposium on Programming Language Issues in Software Systems, ACM Sigplan Notices 18, 6 (Jun. 1983), pp 1-13

The programmer writes a model in a language called SML,
which is a notation for describing how to compose a set of
related programs from their components. The model
refers to a component module of the program by its
unique name, independently of the location in the file
system where its bits are stored. The development of a
program can be described by a collection of models, one
for each stage in the development; certain models define
releases.

SML has general facilities for abstraction. These are of two
kinds:

A model can be organized hierarchically into parts,
each of which is a set of named sub-parts called a
binding. Like the names of files in a directory, the
names in a binding can be used to select any desired
parts of the binding.

A model can be parameterized, and several different
versions can be constructed by supplying different ar-
guments for the parameters. This is the way that SML
caters for planned variation in a program.

SML is'described in detail in [6].

The distributed computing environment means that files
containing the source text of a module can be stored in
many places. A file is accessed most efficiently if it is on
the programmer's own machine. Remote files must first be
located and then retrieved. The Modeller imposes minimal
requirements on the capabilities of the distributed file sys-
tem. In fact, it requires only that there be a way to
enumerate the versions of a particular file in a remote
directory, and to store or retrieve an entire remote file.
When possible, it caches information about a module,
such as its dependencies on other modules, to avoid
retrieving the entire module and parsing its text. It also
caches the complete path names of objects, to avoid
searches in remote directories.

L2 Organization of the paper

We begin by describing how a model completely and un-
ambiguously specifies a Cedar program (§ 2). The next sec-
tion presents the user interface of the Modeller, and shows
how it is used during daily program development, and for
periodic releases of a complete system (§ 3). The im-
plementation techniques used to obtain good perfor-
mance with systems containing dozens or hundreds of
modules are explained next (§ 4), and then the interactions
between the Modeller and the distributed file system (§ 5).
A final section describes experience and future plans (§ 6).
An appendix gives a complete model for a substantial com-
ponent of the Cedar system.

2. System mod.els

We take the view that the software of a system is com-
pletely described by a single unit of text. An appropriate
analogy is the sort of card deck that was used to run a
program on a bare computer or under an operating system
like FMS that had no file system. Everything is said ex-
plicitly in such a system description: there are no
parameters (e.g., compiler switches or loader options) sup-
plied after the GO button is pressed, and no dependence
on a changing environment. In this kind of system descrip-
tion there is no question about when to recompile someth-
ing, and version control is handled by distributing copies
of the deck with a version number written on the top of
each copy, and a diagonal stripe of marker which makes it
easy to tell whether the deck has been changed.

The monolithic nature of a card deck makes it unsuitable
for a large system. In 1983 a system is specified by text
which is stored in files. This provides modularity in the
physical representation: a file can name other files instead
of literally including their text. in Cedar, these files hold
the text of Cedar modules or system models. This represen-
tation is convenient for users to manipulate; it allows shar-
ing of identical objects, and facilitates separate compila-
tion. Unless care is taken, however, the integrity of the sys-
tem will be lost, since the contents of the named files may
change.

2.1 Objects

To prevent this, we abstract files into named objecls, which
are simply pieces of text. We require that names be unique
and objects be immutable. By this we mean that:

Each object has a unique name, never used for any
other object. The name is stored as part of the object,
so there is no doubt about whether a particular collec-
tion of bits is the object with a given name. A name is
made unique by appending a unique identifier to a
human-sensible string.

The contents of an object never change once the ob-
ject is created. The object may be erased, in which
case the contents are no longer accessible. If the file
system does not guarantee immutability, it can be en-
sured by using a suitable checksum as the unique
identifier of the object.

These rules ensure that a name can be used instead of the
text of an object without any loss of integrity, in the sense
that either the entire text of a system will be correctly as-
sembled, or the lack of some object will be detected.

What happens when a new version V 2 of an object is

created? In this view, such a version is a new object. Any
model M 1 which refers to the old object V 1 continues to

do so. However, it is possible to create a new model M 2

which is identical to M 1 except that every reference to V 1

is replaced by a reference to I,'2; this operation is called

Notice and is discussed further in § 3. In this way, the no-
tion that objects are immutable is reconciled with the fact

of evolution.

With these conventions, a model can incorporate the text
of an object by using the name of the object. This is done
in SML by writing an object name preceded by @. The
meaning of an SML expression containing an @-expression
is defined to be the meaning of an expression in which the
@ expression is replaced by its contents. For example, if
the object inner.model contains

"lit"

which is an SMI. expression, the binding
[x" STRING ~ @inner.sin,

y: STRING ~ "lit"]
has identical values for x and y.

With these conventions, a system model is a stable, un-
ambiguous representation for a system. It is easily trans-
ferred among programmers and file systems. It has a
readable text representation that can be edited by a user at
any time. Finally, it is usable by other program utilities
such as cross-reference programs, debuggers, and op-
timizers that analyze inter-module relationships.

2.2 Derived objects

The Modeller's most important function is to rebuild a sys-
tem from its source components, given the system model
as input. The model refers to each component by its
unique name. To rebuild the system, the Modeller goes to
the file system and tries to find the file which represents
each object. This may involve a search in several direc-
tories on several machines, as described in § 5. Because
each file contains the unique name of the object it
represents, the Modeller will never make a mistake and
retrieve the wrong version, although it may be unable to
retrieve a file. Once it has obtained all the files, the
Modeller does any necessary recompilations, loads the
resulting binary files, and runs the program.

A model normally refers to source objects rather than the
binary objects produced by the compiler. The Modeller
takes the view that a binary object is just an accelerator,
since it can be recreated by the compiler using the right
source object and parameters. Of course, wholesale recom-
pilation is time-consuming, so various caches are used to
avoid unnecessary recompilation.

It is not essential that the text of a system component be
source text; all that is needed is a way to turn it into a
value the Modeller can understand. For a Cedar source
module, this is done by parsing the DIRECTORY, IMPORTS
and EXPORTS statements at the start of the module (see
§ 2.4). But it can also be done for a Cedar binary module,

which is the output of the compiler and has all its
interface parameters bound; binary modules have enough
information (originally for the benefit of the loade0 to
allow an SML function or INTERFACE value to be derived.
This is sometimes convenient When dealing with a system
in which some elements come from an outside organiza-

tion in binary form only.

2.3 Unique names

The Modeller uses the creation date of a source object as
its unique identifier. Thus an object name might have the
f o r m BTre&ceda~(July 22, 1982 2:23:56); in this representation
the unique identifier follows the ! character. Of course
such an identifier is not absolutely guaranteed to be
unique, but we have found it satisfactory in practice.

For a derived object such as a binary module, the
Modeller uses a 48-bit version stamp which is constructed
by hashing the name of the source object, the compiler
version and switches, and the version stamps of any
interfaces which are parameters of the compilation. In this
way derived objects constructed at different times will
have the same names, as long as they are made in exactly
the same way. This property can make a considerable
difference in the time required to rebuild a system when
some binary modules must be rebuilt, especially if there
are other modules which depend on the ones being
rebuilt.

It is also possible to use an ambiguous name for an object,
of the form BTre~cedar!H. This means to consider all the
objects whose names begin BTree.cedar, and take the one
with the most recent create date. Since such-a name does
not denote a unique object, a model containing such a
reference does not denote a unique program. Nonetheless,
it is often convenient to use this convention.

24Examp&

A Cedar program consists of a set of modules. There are
two kinds of module: implementation (PROGRAM)
modules, and interface (DEFINrl'IONS) modules. An inter-
face module contains constants (numbers, types, inline
procedures, etc.) and declarations for values to be supplied
by an implementation (usually procedures, but also types

and other values). A module M 1 that calls a procedure in

another module M 2 must IMPORT an instance inst of an in-

terface I that declares this procedure. Inst must be
EXPORTed by the PROGRAM module M 2. For example, a

procedure Insert declared in a module BTreelmpl would
also be declared in an interface BTree, and BTreelmpl
would EXPORT an instance of BTree. A PROGRAM calls
Insert by IMPORTing this instance of BTree and referring to
the Insert component of the instance. We call the importer

of BTree the client module, and say that BTreelmpl (the ex-
porter) implements BTree. Of course BTreelmpl may itself
IMPORT and use interfaces that are defined elsewhere.

Example I shows a very simple system called BTree, which
defines one interface BTree and one instance BTreelnst of
BTree.

BTree.model!(Jan 14, 1983, 14:44:11)

LET @[Indigo]<Cedar>Cedarlnteoraces.model!(July 25,1982,14:03:03) IN
LET lnstances~@[lndigo]<Cedar>Cedarlnstances.mode~(July 25. 1982,14:10:12) 1N

BTree: INTERFACE BTree ~ @[lvy]<SchmidDBTree.ceda~(Sept 9,1982,13:52:55)
[Asci,l,

BTreelnst: BTree ~ @[lvy]<Schmidt> BTreelmpLcedar~(Jan 14.1983.14:44:09)
*1] [Instances. Rope, Instances. I0, Instances.Space]]]

Cedadnterfaces.model!(July 25, 1982, 14:03:03)
[

ASCii: INTERFACE ~ @[Indigo]<Cedar>ASCiLceda~(July 10, 1982.12:25:00)l'l,
Rope: INTERFACE ~ @[Indigo]<Cedar>Rope.cedar~Ouly 10.1982, 17:00:00)'1],
I0: INTERFACE ~ @[Indigo]<Cedar>lO.ceda~(July 12,1982.11:00:00)'1],
Space: INTERFACE ~ @[lndigo]<Cedar>Space.ceda~(June 10,1982, 8:35:00)*[]]

C e d a r l n s t a n c e s . m o d e l ! (J u l y 25, 1982, 14:10:12)
[Ascii, Rope, I0, Space]~

LET @Cedarlnterfaces.model!(July 25,1982.14:03:03) IN [
@[Indigo]<Cedar>Asclilmplceda~(July 10,1982,12:30:00)[] [],
@[lndigo]<Cedar>Ropelrapl.ceda~(July 10, 1982, 17:10:24)'1]'1],
@[Indigo]<Cedar>lOlmplcedar~(July 20, 1982,13:03:03)'1]'1"],
@[Indigo]<Cedar>SpacelrapLceda~(June 11.1982,15:00:00)'1]'1]]

Example 1: An example of a model

BTree.model refers to two modules, BTreecedad(Sept 9, 1982,
13:52:55) and BTreelrnpLceda~(Jan 14, 1983, 14:44:09). Each is
named by a user-sensible name (e.g., BTre~eedar), part of
which identifies the source language as Cedar, and a crea-
tion time (e.g. !(Sept 9, 1982, 13:52:55)) to ensure uniqueness.
The @ indicates that a unique object name follows. Each
object also has a file location hint ([lvy]<Schmidt>); its use
is discussed in § 5.1.

BTree.model refers to two other models,
Cedarlnterfacexmodel!(July 25, 1982, 14:03:03) and
Cedarlnstances~mode~(July 25, 1982, 14:10:12). Each of these is
a binding which gives names to four interface or instance
modules that are part of the Cedar system. A clause such
as

LET Cedarlnterfaces.raodellN...

makes the names bound in Cedarlnterfaces (Ascii, Rope, I0,
Space) denote the associated values (Ascii.cedar(July 10, 1982,
12:25:00) U, etc.) in the expression following the IN.

Models denote dependency by parameterization. There are
two kinds of dependency: on interfaces, and on im-
plementations, or instances of the interfaces.
Correspondingly, each source module is viewed as a func-
tion which takes interface arguments and returns another
function which takes instance arguments. Applying the
first function to its interface arguments is done by the

compiler; applying the resulting second function to its in-

stance arguments is done by the loader as it links up defini-
tions with uses.

In the example above, the BTree interface depends on the
Ascii interface from Cedarlnterfaces. Since it is an interface,
it doesn't depend on any implementations. BTreelmpl
depends on a set of interfaces which the model doesn't
specify in detail: the * in front of the first parameter list
for BTreelrnpl means that its arguments are defaulted by
name matching from the environment. In particular, it
probably has interface parameters BTree, Rope, I0, and
Space; all these names are defined in the environment,
BTree explicitly and the others from Cedarlnterfaces
through the LET clause. BTreelmpl also depends on Rope,
I0, and Space instances from Cedarlnstances, as indicated in
the second argument list.

The interface parameters are used by the compiler for
type-checking, and so that details about the types can be
used to improve the quality of the object code, The in-
stance parameters are used by the loader; they specify how
procedures exported by one module should be linked to
other modules which import them.

3. User interface

The Modeller provides an interactive interface for ordi-
nary incremental program development. When used inter-
actively, the role of the Modeller is similar to that of an in-
cremental compiler: it tries to do as little work as it can as
quickly as possible in order to produce a runnable system.
To do this, it keeps track incrementally of as much in-

formation as possible about the objects in the active
models.

3.1 Patterns of software development

For example, consider the following scenario. Assume a

model already exists, say BTree.model, and the user wants

to change one module to fix a bug. Earlier, she has started

the Modeller with BTree.model as the current model. She

uses the Cedar editor to make a change to
BTreeimpl.ceda~(Jan 14, 1983, 14:44:09). When the user
finishes editing the module and creates a new version
BTreelmpLceda~(April 1, 1983, 9:22:12), the editor notifies the
Modeller by calling its Notice procedure, indicating that
BTreelmpl.ceda~(April 1, 1983, 9:22:12) has been produced
from BTreelmpl.ceda~(Jan 14, 1983, 14:44:09). If the latter is
referenced by the current model, the Modeller notices the
new version and updates BTree.model!(Jan 14, 1983, 14:44:11)
to produce BTree.mode~(April 1, 1983, 9:22:20), which refers
to the new version. The user may edit and change more
files. When she wants to make a runnable version of her
system, she issues another command to the Modeller,
which then compiles everything in correct order and (if
there are no errors) produces a binary file.

A more complex scenario involves the parallel develop-
ment of the same system by two programmers. Suppose
both start with a system described by the model M 0, and

end up with different models M 1 and M 2. They may wish

to make a new version M 3 which merges their changes.

The Modeller can provide help for this common case as
follows: I f one programmer has added, deleted or
changed some object not changed by the other, the
Modeller will add, delete, or change that object in a
merged model. If both programmers have changed the
same object in different ways, the Modeller cannot know
which version to prefer and will either explore the
changed objects recursively, or ask the user for help.

More precisely, we have
M 3 = Merge[Base~Mo, Newl~M v New2~M2]

and Merge traces out the three models depth-first. At each
level, for a component named p:

If Add to result
Basa p= MrP = Mrp Base.p
Basap= M1/rp~ M2/rP M2/rp
Base.p= M1/rP, no M2/rp leave p out

no Bas~por M~p M2/rP
Bas~p~ MrP~ Mrp. all models Merge[Base.p:, MrP, Mrp]
I~SE error, or ask what to do.

Of course, there is no guarantee that. the resulting thing
makes any sense, but it does seem to correspond to current
practice.

At all points, the Modeller maintains a model that
describes the current program. When the user decides to
save her program, she does so with an accurate description
of it in her model. Since the models are simply text files,
the user always has the option of editing the model as she
sees fit, so the Modeller does not have to deal with
obscure special cases of editing that may arise.

3.2 Daily evolution

In a session which is part of the daily evolution of a
program, the user begins by creating an instance of the
Modeller, which provides a window on the Cedar user's
screen, as shown in Figure 1. This section gives an over-
view of its use, suggested by the contents of the figure.

The Modeller window is divided into four regions, which
are, from top to bottom:

1) A set of buttons to control it.

2) A region containing fields where names may be

typed.

3) A feedback area for compiler progress messages.

4) A feedback area for Modeller messages.

To help explain Modeller operation, let us take a simple
example and follow the user's actions.

Step 1. Assume that the Modeller instance has just been
created. The user decides to make changes to the modules
in Exampl~Model. She enters the name of the model in the
field following the ModelName: prompt, and pushes the
StartModel button. From this point on the Modeller is
bound to ExamplaModel, StopModel must be pushed
before using this instance of the Modeller on another
model. StartModel initializes data structures in this in-
stance of the Modeller, SIopModel frees the data.

Step 2. The user makes changes to objects on her personal
machine. The Cedar editor calls the Modeller's Notice
procedure to report that a new version of an object exists;
the user could do this by hand, but normally new versions
correspond one-to-one with editing sessions on modules. If
the object being edited is in the model, the Modeller

StartModel Begin Continue StoreBack Unload StopModel
MakeModelBinary Bind NewModeller
Compile Load Start

ModelName: Example,Model

Compiling: ExampleImplA.Mesa no errors.
Compiling: ExamplelmplB,Mesa ,,,

StartZV[odel Example.Model
Parsing Example,Model
Analyzing Parameters
.

Noticed n e w version of Example lmplA,Mesa
.

Noticed new version of' ExamplelmplB.Mesa
.

Begin Example.Model
Try for compilation:

ExamplelmplA.Mesa: Confirm Compilation ? Yes
Compilation completed, no errors.

ExamplelmplB.Mesa: Confirm Compilation ? Yes

Figure I Modeller Window

updates its internal representation of the model to reflect
the new version. If the changes involve adding or deleting
parameters to modules, the Modeller uses standard default-
ing rules to modify the argument list for the object in the

model.

Step 3. Once she has made the intended edits, the user
pushes Begin, which

a) recompiles modules as necessary,

b) loads their object files into memory, and

c) forks a process that starts the user's program running.

Modules need to be recompiled if the corresponding
source files have been changed, or if any modules they
depend on have been compiled. Should (a) or (b) en-

counter errors, the Modeller does not proceed to (c).

Step 4. After testing her program, the user may want to
make changes simple enough that the old module may be
replaced by the new module without re-loading and re-
starting the system. If so, after editing modules, the user
pushes Continue, which tries to replace modules in the
already-loaded system. If this succeeds, she can go on test-
ing her program and the new code will be used. If the
module is not replaceable, she must push Begin, which un-

• loads all the old modules in this model and loads the new
modules.

Step 5. After completing her changes, the user can push
StoreBack to store copies of her files on remote file ser-
vers, an d then push Unload to unload the modules
previously loaded and StopModel to free Modeller data
structures.
These steps are illustrated in Figure 2.

The modeller allows a Cedar program to be rebuilt and res-
tarted from scratch. It also is able to replace a module in
an already loaded system. This is considerably faster for
small program Changes, and means that the current state
of the program is not lost. Module replacement in Cedar is
possible if certain conditions are met: the global data must
not change, all previously-defined procedures must still be
defined, certain architectural limitations must be observed,
and the module being replaced cannot be executing when
replacement occurs.

In addition to its interactive interface with the user, the
Modeller also provides a procedural interface to its data
structures, which contain complete information about the
structure of the program: what modules exist, how they
are interconnected, and what they are named. The main
client of this interface is the Cedar debugger. When the
debugger examines a stopped system (e.g. at a breakpoint),
it can follow the procedure call stack and find the global
variables for the module in which the procedure is
declared. The Modeller can provide the debugger with

module-level information about the model in which this
module appears, and provide file location and version in-
formation (i.e. an interface to a sophisticated load map).
This is particularly useful when the debugger wants to in-
spect the symbol table for a module, and the symbol table
is stored in another file that is not on the local disk.

"-"-~Sta~Model I

User Edits Files

~Notice Operation .--J

÷ ÷
U,~r Tests Program

User Edits Files

IStof Aodel J

Figure 2 User Sequence

3. 3 Releases

A release is a software system composed of a collection of
modules which have been tested for conformance to some
kind of specification, and filed so that any one of them can
be retrieved simply and reliably as long as the release
remains active. The Release procedure in the Modeller
takes a model, performs various checks on its components,
builds the system it describes, and moves the system and all
the components to designated directories. In more detail,
Release[M]:

1) Checks that M and each component of M is legal: syn-
tactically correct, type-correct, and causes no compiler
errors .

2) Ensures that all objects needed by any component of
M are components of M, and that only one version of
each object exists (unless multiple versions are ex-
plicitly specified).

3) Builds the system described by M.

4) Copies all the files representing objects in M to a
place where they cannot be erroneously destroyed or
modified.

A release is complete if and only if every source file
needed to compile every object file is among the files
being released. A release is consistent if and only if only
one version of each package is being released, and other
packages depend only on that version. The release process
is controlled by a person acting as a Release Master, who
runs the Modeller to verify that a proposed release is con-
sistent and complete, and takes corrective action if it is
not. Errors in models, such as references to non-existent
files or references to the wrong versions of files, are

detected by the Release procedure of the Modeller. When
errors are detected, the Release Master notifies the guilty
implementor and has her fix the model.

Releases can be frequent, since performing each release im-
poses a low cost on the Release Master and on Cedar
programmers. The Release Master does not need to know
any details about the packages being released, which is im-
portant when the software of the system becomes too large
to be understood by any one programmer. The im-
plementor of each package can continue to make changes
until the release occurs, secure in the knowledge that the
package will be verifed before the release completes (of
course, the release process provides no protection against
bugs which do not cause errors at compile time). Many
programmers make such changes at the last minute before
the release. The release process supports a high degree of
parallel activity by programmers engaged in software
development.

We have extensive experience with Cedar releases [8]. The
Cedar software under release control consists of ap-
proximately 5000 files and 465,000 lines of Cedar code.
Existing packages are described by DFfiles that contain a
subset of the information in system models. In what fol-
lows, we describe the release process when, in the future,
it will be run using system models instead of DF files.

3.3.1 The Top model

The Release Master maintains a model with one com-
ponent for each component of the release. This list (called
the Top model) defines, for every model named in the list,
a file server and directory where it can be foond. While a
release is being developed, this model refers to objects on
their working directories, e.g., the top model might be

T o p ~ [

BTree ~ ~[lndi$o]<lnt>BTree.ModePlt --ReleaseAs [Indiso]<Cedar>--,

Runtlrae ~ ~[Indigo]<InORunt ime.ModehH --ReleaseAs [Indiso]<Cedar>--

1

The Top model is used during the development phase as a
description of models that will be in the release; it gives
the locations of these objects while they are being
developed. The Top model provides the list of models that
will be released. Models not mentioned in the Top model
will not be released.

3.3.2 Release mechanics-client

Every model M being released must have a LET statement
at the beginning that makes the components in the Top
model accessible in M. Thereafter, M must use the names
from Top to refer to other models. Thus, M must begin

LET @[Indigo]<lnt> Top.Model~.H IN [

RTTypes: INTERFACE ~ Runtlme,

1

Clients of a release component (e.g., RTTypes) are not al-
lowed to refer to its model by @-reference, since there is
no way to tell whether that model is part of the release.
Aside from the initial reference to Top, a release com-
ponent may have @-references only to sub-components of
that component.

3.3.3 Release mechanics- implementor

A model M being released must also have a comment that
gives its object name in the Top model (e.g. BTree), and
the working directory that has a copy of the model, e.g.

-- RelcaseName BTree

-- WorkingModelOn [Indigo]<Int>BTree.Model
These comments are redundant; they allow a check that
Top and the component (and hence the Release Master
and the implementor) agree about what is being released.

g must also declare the release position of each file, by ap-
pending it as a comment after the filename in the model,
e.g.

@[lvy]<Work>XImpl.Mesa!l | -- ReleaseAs [Indigo]<Cedar>XPack>-- []

A global ReleaseAs comment can define the default
release position of files in the model (which may differ
from the release position of the model itself. Thus if the
model contains a comment

-- DefaultReleaseAs [lndigo]<Cedar>BTrees>--

then the user may omit the
-- ReleaseAs [Indi$o]<Cedar>BTrees>-°

clauses.

4. Implementation

The Modeller must be able to analyze large collections of
modules quickly, and must provide interfaces to the com-
piler, loader, debugger, and other programs. This section
describes first the basic algorithms used, and then the
caches which greatly improve performance in the normal
case of incremental changes to a large system. It ends with
a description of the algorithms used for releases.

4.1 Evaluation

In order to build a program, the Modeller must evaluate
the model for the program. The model is an expression

written in SML, which is a strongly typed, applicative lan-
guage. Evaluating an SML expression is done in three
steps:

1) The standard fl-reduction evaluation algorithm of the
typed lambda calculus converts the expression into
one in which all the applications are of primitive ob-
jects, namely Cedar modules. Each such application
corresponds to compilation or loading of a module.
fl-reduction works by simply substituting each argu-
ment for all occurrences of the corresponding
parameter. SM1. operations such as selecting a named

component of a binding are executed as part of this
process. Thus in the example,

LET Instances~@Cedarlnstancexmodel IN InstancexRope

evaluates to
@[Indigo]<Cedar>RopelmpLceda~Ouly 10, 1982, 17:10:24)[...] [...]

where the arguments of Ropelmpl are filled in accord-
ing to the defaulting rules.

2) Each application of a .cedar object is evaluated by the
compiler, using the interface arguments computed by
(1). The result is a .binary object. Of course, each inter-
face argument must itself be evaluated first; i.e., the
interfaces on which a module depends must be com-
piled before the module itself can be compiled.

3) Finally, each application of a .binary object computed
in (2) is evaluated by the loader, using the instance ar-
guments computed by (l). Cedar permits mutual
recursion between procedures in different modules, so
it is not always possible to fully evaluate the instance
arguments. Instead, for each instance of an interface a
record is allocated, with space for all the components
of the interface. A pointer to the record is passed as
an argument, rather than the record itself. Later,
when the .binary object application which defines the
interface has been evaluated by loading the object,
the record is filled in with the results, namely the
procedures and other values defined by that module.

Once everything has been loaded, the result is a runnable
version of the program.

We now proceed to examine (1) in more detail. This step
is done when the user pushes the StartModelling button,
or on the affected subtree whenever the current model is
modified by a Notice operation. For StartModelling, the
Modeller reads the model from its source file, parses the
source text and builds an internal parse tree. For Notice,
the parse tree already exists, and is simply modified by
substituting the new version for each occurrence of the old
one. The leaves of this parse tree are the Cedar modules
referenced with @ from the model. If another model is
referenced, it does not become a leaf; instead, its parse
tree is computed and becomes a sub-tree of the containing

model.

After the parse tree is built, it is evaluated to produce a
value tree. The evaluation applies functions (by substitut-
ing arguments for parameters in the function body), looks
up names in bindings, does type checking, and supplies
defaulted arguments. The first two operations have already
been discussed. Typechecking requires knowing the type
of every value. For a value which is a Cedar module, the
Modeller obtains its type by examining the first few lines
of the module, where the interfaces and instances
imported by the module are declared (in DIRECq'ORY and
IMPORTS clauses), together with the instances exported (in
an EXPORTS clause).

For example, a module M which uses interfaces .4 and B,
imports an instance of ,4, and exports an instance of B,
begins

DIRECTORY A, B:

M: PROGRAM

IMPORTS ,4;

EXPORTS B:

and has the type
[INTERFACE .4, INTERFACE Bl-*iIAl~iBll

I.e., it is a function taking two interface arguments and
returning (after it is compiled) another function that takes
an instance of .4 and returns an instance of B. The
Modeller checks that the arguments supplied in the model
have these types, and defaults them if appropriate. SML
typechecking is discussed in detail in [6].

After the entire model has been evaluated, the Modeller
has determined the type of each module, and has checked
that every module gets arguments of the types it wants.
Any syntactic or type errors discovered are reported to the
user. If there are none, then wherever a value is defined in
one module and used in another, the two modules agree
on its type. Note that nothing has yet been compiled or
loaded.

After step (1) the value of the model is a tree with one ap-
plication for each compilation or loading operation that
must be done. The compilation dependencies among the
modules are expressed by the arguments: if module .4 is
an argument to module B, then .4 must be compiled first,

and if .4 changes, B must be recompiled. Because of the
level of indirection in the implementation of loading, it is
not necessary to reload a module when other modules

change.

To get from this tree to a fully compiled program, each
application of a source module must be evaluated by the
compiler, as described in (2). During this evaluation, the
compiler may find errors within the module. This step is
done when the user pushes the Compile or Begin button.

After step (2), the value of the model is a tree in which
each application of a source object has been replaced by
the binary object that the compiler produced. To get from

this tree to a runnable program, each binary object must
be loaded, and each instance record filled in with the
procedures exported from the modules that implement it.
The details of how this is done are very dependent on the
machine architecture and the runtime data structures of
the language.

4.2 Accelerators

It is impractical to repeat the entire procedure just
described whenever any change is made to a system;
among other things, this would imply recompiling e~,ery
module. Since the entire system is applicative, however,
and the value of an object never changes, the results of
any computation can be saved in a cache, and reused in-
stead of repeating the computation. In particular, the
results of the type analysis of objects and the results of
compilations can be saved. To this end, the Modeller
keeps two tables that record the results of computations
that are expensive to repeat. These tables serve as ac-
celerators for the Modeller and are stored as files on the lo-
cal disk.

Object Type Table: A list of objects that are referenced by
models and have been analyzed for their types. For ex-
ample, a Cedar source module is listed along with the im-
plied procedure type used by the Modeller to compile and
load it. The unique name of an object is the key in this
table, and its type is the value.

Projection Table: A list of entries that describe the results
of running a compiler (or other program) that takes a
source object and any needed parameters (such as
interfaces) and produces an binary object. Before invoking
a compiler to produce a binary file, the Modeller consults

this table to see if such a file is already available. The key
in this table is all the information that affects the result:
the name of the source object, the names of all the
parameter objects, the compiler switches, and the compiler
version. The value of a table entry is the name of the bi-
nary object that results. This name is constructed from the
user-sensible name of the source object, plus the version
stamp, a 48-bit hash code of all the other information. An
entry is added to the projection table whenever the com-
piler is run successfully.

In summary, the object type table speeds the analysis of
files, and the projection table speeds the translation of ob-
jects into derived objects. These tables are illustrated in
Example 2.

It is possible for these tables to fill up with obsolete in-
formation. Since they are just caches and can always be
reconstructed from the sources, or from information in the
.modelBinary objects (see § 4.3), they can be purged by any
convenient method, including deleting them completely.
As information is needed again, it will be recomputed and
reentered in the tables.

The projection table is augmented by a different kind of
cache provided by the file system. Whenever the result of
a needed compilation is not found in.the projection table,
the Modeller constructsthe 48-bit version stamp that the
resulting binary object will have (by hashing the source
name and parameters), and searches for this object in the
file system, as described in §5. If it is found, the
compilation need not be redone; the result is put into the
projection table so that the file system need not be
searched again. This search of the file system is suppressed
for source files that have just been edited, since it would
never succeed in this case.

Object type table

Source object

BTree.ceda~(Sept 9.1982.13:52:55)
BTreelmpl.ceda#.(Jan 14.1983,14:44:09)

r?pe

[INTERFACE ASCitI'--'.[INTERFACE BTree]
[Rope: INTERFACE Rope, lO: INTERFACE 10, Space:. INTERFACE Space,
BTree: INTERFACE BTree]-'-*

[R~elnst: Rope, lOInst: I0, Spacelnst:Space]-'*[eTreelnst: BTree]]
Ill

Projectioa table

Source object Parameter values Result object

BTre~ceda~(Sept 9. 1982, 13:52:55) [AsciLbinary~23ACl~EFFA] BTree.binary!43956A3C32FO
BTreeimpl.cedar~(Jan 14, 1983,14:44:09) [Rope.binary~AC9023E76FA6, lO.binary!23843396A24f, BTreelmpLbinary!2045FFD283C

Space.binary!8348823FI.761,BTree.binary!43956A 3C32F0]

Example 2: Object type and projection tables

9

4.3 Compiled models

The modeller keeps its caches on each machine. It is also
desirable to include this kind of precomputed information
with a stored model, since a model is often moved from
one machine to another, and some models are shared
among many users, who refer to them in their own models
by using the @-notation. An example is the model
Cedarlnterfacexmodel, which returns a large number of
commonly-used interfaces that a Cedar program might
need. Furthermore, even with the caches it is still quite ex-
pensive to do all the typechecking for a sizable model.

For these reasons, the Modeiler has the ability to create
and read back compiled models. A compiled model con-
tains

a tree which represents a parsed and typechecked ver-
sion of the model;

object type and projection tables with entries for all
the objects in the model;

a version map (see § 5) with entries for all the objects
in the model.

When the user pushes the MakeModeIBinary button in
Figure 1, the Modeller makes this binary object for the cur-
rent model, much asa compiler makes a binary file from a
source file. In a .modelBinary object any parameters of the
model which are not instances may be given specific argu-
ment values. This is much like the binary objects produced
by the compiler, in which the interface parameters are
fixed. The .modelBinary object acts merely as an ac-
celerator, since it is always possible to work from the
sources of the model and the objects it references, to
derive the same result as is encoded in the .modelBinary.

4.4 Releases

The Release operation described in § 3.3 is implemented in
three phases'.

Phase one: Check

The Check phase of Release checks the Top model and all
its sub-models for problems that might prevent a
successful release. Each model is parsed and all files listed
in the model are checked. Check ensures that the versions
listed in the models exist and that their parameterization is
correct. The directory containing each source file is
checked to make sure it contains a valid object file. This
guards against compilation errors in the source files.
Common blunders are caught, such as a reference to-a
model that is not in the Top model. The Release Master
contacts implementors and asks them to fix any errors
caught in this phase.

Phase two: Move

The Move phase moves the files of the release onto the
release directory and makes new versions of the models
that refer to files on the release directory instead of the
working directory. For each model listed in the release
position list, Move:

1) reads in the model from the working directory,

2) moves each file explicitly mentioned in the model to
its release position,

3) writes a new version of the source file for the model
in the release directory.

This release version of the model is like the working ver-
sion except that

a) all working directory paths are replaced by paths on
the release directory,

b) a comment is added recording the working directory
that contained the working version of the model, and

c) the LE'r statement referring to the Top model is
changed to refer to the one on the release directory.

Phase three: Build

The Build phase takes the new model computed during the
Move phase and uses it to traverse all the objects in the
release. For each model:

1) All models on incoming edges must have been ex-

amined.

2) For every source file in the model, its object file
(known to exist from the Check phase) is moved from
the working directory to the release directory.

3) A .modelBinary file is made for the version of the
model on the release directory.

4) If a special comment in the model is given, a run-
nable object file is produced for the model.

After this is done for every model, a version map of the en-
tire release is stored on the release directory.

At the conclusion of phases Check, Move and Build, Release
has established that:

1) ~Check: All reachable source objects exist, and derived
objects for all but the Top object exist. This means the
files input to the release are statically correct.

2.) Move: All objects are on the release directory. All
references to files in these models are by explicit
create time (for source files) or version stamps (for ob-
ject files).

3) Build: The system has been built and is ready for ex-
ecution. All desired accelerators are made
(.modelBinary files and a version map for the entire
release).

10

5. Files

A model refers to objects by their unique names. Given
the conventions for objects and their names described in
§ 2, this is unambiguous. In order to build a system from a
model, however, the Modeller must obtain the representa-
tions of the objects. Since objects are represented by files,
the Modeller must be able to deal with files. There are two

aspects to this:

1) Locating the file which represents an object, starting

from the object's name.

2) Deciding where in the file system a file should reside,
and when it is no longer needed and can be deleted.

5.1 Locating files

It would be nice if an object name could simply be used as
a file system name. Unfortunately, file systems do not
provide the properties of uniqueness and immutability
that object names and Objects must have. Furthermore,
most file systems, including ours, require a file name to
include information about the machine that physically
stores the file. Hence a mapping is required from object
names to the full path names that unambiguously locate

files in the file system.

To locate a file, the Modeller uses a location hint in the
model. The object reference @[Ivy]<Schmidt>BTreelmpl.ce-
da~(Jan 14, 1983, 14:44:09) contains such a hint,
[lvy]<Schmidt>. To find the file, the Modeller looks on the
file server Ivy in the directory Schmidt for a file named
BTreelmpl.cedar. There may be one or more versions of this
file; they are enumerated, looking for one with a creation
date of Jan 14, 1983, 14.'44:09. If such a file is found, it must
be the representation of this object. Otherwise this method
of finding the representation has failed.

The distributed ~nvironment introduces two types of
delays in access to objects represented by files:

1) If the file is on a remote machine, it has to be found.

2) Once found, it has to be retrieved.

Version map

I I I I I I I

Obiect name, File location

Since retrieval time is determined by the speed of file
transfer across the network and the load on the file server,
the Modeller tries to avoid retrieving files when the in-
formation it wants about a file can be computed once and
stored in a database. For example, the type of an object,
which is the information needed to compute its compila-
tion dependencies, is small compared to the object itself.
The object type table stores the types of all objects of cur-
rent interest; a source object in the table does not have to
be examined, or even retrieved, unless it actually needs to

b e recompiled.

In cases where the file must be retrieved, determining
which machine and directory has a copy of the version
desired can be very time-consuming. Even when a file
location hint is present and correct, it may still be neces-
sary to examine several versions of the file to find the one
with the right creation date. The Modeller minimizes these
problems by keeping another cache, which maps an object
name into the full path name in the distributed file system
of a file which represents the object. This cache is a table
called the Version Map, illustrated in Example 3. Note
that both source objects, whose unique identifiers are
creation dates, and binary objects, whose unique
identifiers are version stamps, appear in the version map.
The full path name includes the version number of the file
(the number after the !). This version number makes the
file name unique in the file system, so that a single
reference is sufficient to obtain the file.

Thus the Modeller's strategy for minimizing the cost of
referencing objects has three parts:

1) Consult the object type table or the projection table,
in the hope that the information needed about the ob-
ject is recorded there. If it is, the object need not be
referenced at all.

2) Next, consult the version map. I f the object is there, a
single reference to the file system is usually sufficient
to obtain it.

3) If there is no entry for the object in the version map,
or if there is an entry but the file it mentions doesn't

BT~re~cedar~(Sept 9, 1982.13:52:55)
BTreelmpl.ceda~.(Jan 14,1983,14:44:09)
BTree.binaryN3956A3C32FO
BTreelmpl.binary!2045FFD283C
Ascii.binary~23ACDgO4EFFA

[Ivy]<SchmidDBTree.cedar4
[I vy]<Schmidt)BTreelmpl.cedar!9
[I vy]<Schmidt>BTree.binary!2
[Ivy]<Schmidt~BTreelmpl.binary!5
[Indigo]<Cedar)Ascii.binary23

I l l II II

Example 3: Version map

11

exist, or doesn't actually represent the object, then use
the file location hint to identify a directory, and
enumerate all the versions of the file to find one
which does represent the object. I f this search is suc-
cessful, make a new entry in the version map so that
the search need not be repeated.

Like the other caches, a version map is maintained on
each machine and in each .modelBinary object. A
.modelBinary version map has an entry for each object men-
tioned in the model. A machine version map has an entry
for each object which has been referenced recently on that
machine. In addition, commonly-referenced objects of the

Cedar system are added to the machine version map as

part of each Cedar release.

Since the version maps are hints, a version map entry for
an object does not guarantee that the file is actually
present on the file server, Therefore each successful probe
to the version map delays the discovery of a missing file.
For example, the fact that a source file does not exist may
not be discovered until the compilation phase, when the
Modeller tries to compile it. This means that the Modeller
must be robust in the face of such errors. The release
process, however, guarantees that the files are present as
long as the release remains active.

5.2 Movingfiles

The Modeller was originally implemented before the
Cedar facilities which provide network-wide naming for
files. Consequently, it includes procedures for transferring
files automatically between a remote machine and the lo-
cal machine on which compilations are done and programs
are loaded. In addition, the Modeller records (in the local
machine's file type table) whether a file has been edited
and not saved on a remote file server. A StoreBack button
stores all such changed files on the proper remote servers.
Thus the Modeller can provide a substitute for uniform ac-
cess to files throughout a network, at least for files which

represent objects in a model.

6. Status and plans

The system described above is not yet integrated into

Cedar; we expect to complete it over the next year.
Although some users are using the Modeller to compile
their systems, most use manual techniques. The existing
Modeller has been used by five or six programmers over
the last year; two have used it heavily. The debugger inter-
face, .modelBinary files, and Release are not yet imple-

mented.

Databases are naturally suited to storing modules and
dependency relationships between modules, as well as ob-
ject types, projections, and version maps. When this

research was started there was no database system in

Cedar that could handle the amount of data involved. We
envision many programs that process data about modules
in systems, such as sophisticated browsers and cross-
reference tools like Interlisp's MasterScope [9] o r PIE's
Browser [4]. Query facilities of the database system could
easily be used to answer questions about programs that re-
quire specialized analysis programs if no database is used,
such as "Who depends on module X?,"

Acknowledgements

System modelling began with ideas developed jointly with
Charles Simonyi, and worked out in detail by Rich
Johnsson and John Wick in the Mesa Binder. They
evolved further in a working group which included Bob
Ayers, Phil Karlton, Tom Malloy, Ed Satterthwaite and
John Wick, and in later discussions with Andrew Birrell
and Jim Homing. Release was originally Roy Levin's idea.
Ed Satterthwaite is the implementor of the SML evaluator.

References

[1] Cdstofor, E., et aL. Source control + tools = stable systems. Proc
4th Computer Software and Applications Cot~, Oct. 1980, 527-532.

[2] Deutsch, L.P., and Taft, E.A. (eds.), Requirements for an
Experimental Programming Environment. CSL-80-10, Xerox PARe,
1980.

[3] Feldman, S.I. Make- A program for maintaining computer
programs. Software- Practice and Experience, 9, 4, April 1979.

[4] Goldstein, I.P., and Bobrow, D.G. A layered approach to software
design. CSL-80-5, Xerox PARC, 1980_ /

[5] Habermann, A.N., et al., The Second Compendium of Gandalf
Documentation. Computer Science Dept., CM U, May 1982.

[6] Lampson, B.W. and Schmidt. E.E. Practical use ofa polymorphic
applicative language. Proc. IOth Symp.Principles of Programming
Languages, Austin, Texas, Jan. 1983.

[7] Mitchell, J.G. et. aL Mesa Language Manual. O31.-79-3, Xerox
PARC, May 1981.

[8] Schmidt, E., Controlling Large Software Development in a
Distributed Environment. PhD Thesis, I:.I:.CS Dept., Univ. of Calif.
Berkeley, Dec. 82 and cs1.-82-7, Xerox PAR(2, l)ec. 1982.

[9] Teitelman, W. and Masinter, 1.. The Inteflisp programming environ-
ment. Computer 14, 4, April 1981, 25-34.

Appendix: A real example

This model describes the BringOver program, which is a
substantial component in the Cedar system. We present
the model with its environment aggregated into separate
models, and with defaults for all the parameters.

There are seven implementation modules within this
model (CWFImpl, ComParselmpl, Subrlmpl, STPSubrlmpl,

DFSubrlmpl, DFParserlmpl, BringOverlmpl). All the rest are
interfaces.

12

First we define the two environment models. One is a big

binding for the system interfaces on which BringOver and
many other parts of Cedar depend. The other is a declara-

tion for the instances of these interfaces. This declaration

is rather repetitive, but it is needed to provide the proper

names for defaulting the instance arguments of the

BringOver models. It might be possible to avoid this

declaration by passing the entire interface binding, and a

corresponding binding for the instances, as two big argu-

ments to the client modules. Cedar currently does not per-

mit this, however, and we do not show it here.

System.model
[Ascil~ @Ascii.cedar*[I;

CIFS ~ @CIFS.cedar*f;

ConvertUnsafe ~ @ConvertUnsafe.cedar*f;

Date ~ @Date.cedar*ft',

DCSFileTypes ~ @DCSFileTypes.cedar*fl;

Directory ~ @Directory.cedar*~;

Environment ~ @Environment.cedar*f;

Exec ~ @Exec.cedar*fl;

File ~ @File.cedar*f;

FileStream ~ @FlleStream.cedar*f;

Heap ~ @Heap.cedar*f;

lnline ~ @lnline.cedar*[I;

KernelFile ~ @KernelFile.cedar*f;

LongString ~ @LangString.cedar*f;

NameAndPasswordOps ~ @NamedndPasswordOps.cedar*[l;

Process ~ @Process.cedar*O;

Rope ~ @Rope.cedar*f;

Ropelnline ~ @Ropelnline.cedar*f;

Runtime ~ @ Runtime.cedar*~:

Segments.~ @Segments.cedar*f;

Space ~ @Space.cedar*O;

Storage ~ @Storage.cedar*O;

STP ~ @STP.cedar*O;

s r e O p s ~ @STeOps.cedar*O;

Stream ~ @Stream.cedar*f;

String ~ @String.cedar*f;

• System ~ @System.cedar*f;

Systemlnternal ~ @Systemlnternal.cedar*~;

Time ~ @Time.cedar*O;

Transaction ~ @Transaction.cedar*f;

TTY ~ @TTY.cedar*O;

UserTerminal ~ @ UserTermlnal.cedar*[]]

SystemlnstancesDecl.model

LET @System.model IN

[CIFSImpI: CIF. S,

ConvertUnsafelmpl: ConvertUnsafe,

-- 23 declarations are omitted for brevity--

TTYlmpl: TTY,

UserTerminallmpl: UserTermlnal]

We also need instances for the system interfaces. We can
get them from the following model; its type is

@ S y s t e m l n s t a n c e s D e c L m o d e l ,

SystemInstanees.modei

LET]nterfaces~@System.model IN

[CIFSImpI: CIFS ~ CIFSlmpLcedar*~,

ConvertUnsafelmpl: ConvertUnsafe ~ ConvertUnsafelmpLcedar*f,

Datelmpl: Date ~ DatelmpLcedar*~,

-" 23 bindings are omitted for brevity--

7TYlmpl: TTY ~ 7TYlmpLcedar*~,

UserTerminallmpl: UserTerminal ~ UserTerminallmpLcedar* O]

The models above are part of the working environment of

a Cedar programmer; they are constructed once, as part of

building the Cedar system.

Now we can write the riaodel for BringOver. It picks up

System.model and SystemlnstancesDecLmodel, and then gives

a single binding of BringOverProc to a function which takes

the instances as an argument, and returns two interfaces

and an instance of each. The body of the function has

one l.ET" to make all the system interface and instance

names directly accessible for defaulting;

a second I.bTl" to bind all the internal interfaces and in-

stances of BringOver,

a binding to construct the two interfaces and two in-

stances which are the result o f applying BringOverProc.

BringOver.model

LET [Interfaces- @System.model,

lnstancesDecl~@SystemlnstaacesDecLmodel IN

[BringOverProc ~ ~ [Instances: InstancesDecl]=~

[BringOver. INTERFACE, BringOverimpl: BrlngOver,

BringOverCall: INTERFACE, BringOverCalllmid: BringOverCalt] IN

--Make the system interface and instance names accessible

LET Interfaces + Instances IN

LET [-- These are the internal interfaces and instances

CWF ~ @CWF.cedar*[];;

CWFImpl ;.. @CWFlmpl..cedar*f; ;

ComParse ~ @ComParse.cedar*O;

ComParselmpl ~ @ComParselmpLcedar*O;

Subr ~ @Subr.cedar*f,

Subrlmpl ~ @Subrlmpl.cedar*~;

STPSubr ~ @STPSubr.cedar*f;

STPSubrlmpl ~ @STPSubrlmpl.cedar*~;

DFSubr ~ @DFSubr.cedar*fl;

DFUser ~ @DFUser.cedar*f,

DFSubrlmplA ~ @DFSubrlmpl.cedar*~;

DFSubrlmplB ~ @DFParserlmpl.cedar*f,

DFSubrlmpl ~ DFSubrlmpl+ DFSubrimpIB]

IN [-- These are the exported interfaces and instances

BringOver~ @BringOver.cedar*f;

BringOverCall ~ @BringOverCall.cedar*~;

[BringOverlmpl: BringOver, BringOverCalllmpl: BringOverCall] ~

@BringOverlmpl.cedar*[I]]

Using BringOverProc, we can compute the exported inter-

faces and instances of BringOver:.
[BringOver, BringOverlmpl, BringOverCall, BringOverCalllmp~] ~

BringOverPrac[@Systemlnstaaces, model]

13

