
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

236

Manuscript received September 5, 2008.
Manuscript revised September 20, 2008.

Organizing the Semantics of Text with
the Concept Relational Tree

Ungku Azmi Ungku Chulan†, Md. Nasir Sulaiman†, Ramlan Mahmod†, Hasan Selamat†, Jamaliah Abdul Hamid††

†Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia

††Faculty of Education, Universiti Putra Malaysia, Malaysia

Summary
In this paper, a new model of representing semantics called
the concept relational tree model is proposed. The model
adapts the architecture of expression tree in providing a
hierarchical organization to semantics. It is motivated by
an approach known as the discourse structure tree that
organizes semantics based on preposition and relies on
rhetorical relations to define the connection between the
prepositions. Comparatively, the concept relational tree
uses concept and relation as its organizational unit instead.
This allows the semantics of text to be defined at a finer
level, which consequently enables a more flexible way of
controlling the structure of semantics.

Key words:
Semantics, Parsing, Relation Extraction

1. Introduction

One of the common task in relation extraction [15] is
finding the related concepts and the corresponding relation
that connects them. Each extraction can be defined
simplistically as R(C1, C2) where R is the relation that
connects the two concepts C1 and C2. In a sentence that
consists of many terms, the objective is to search for the
terms that relate to one another and knowing how they
relate. For instance, there are four extractions for the
sentence below (Figure 1.0).

Figure 1.0 : Relation Extraction

Some extractions like 'of(color,toy)' can be easily
identified. However, a relation like 'catches(toy,
attention)' might be more difficult to extract since the
concepts are further away from each other. This can create

a chain reaction that deters extraction accuracy since an
extraction can be used as the parameter for another
extraction. For example (Figure 1.1), the extraction
'during(catches(toy, attention), recess)' uses the extraction
'catches(toy, attention)' as one of its parameter. In effect, if
a particular extraction is erroneous, other extractions that
use it will be invalid too.

Figure 1.1 : Difficulty in Extraction

In order to assists the effort of finding the related concepts
to be extracted, text is usually structured in a hierarchical
form [8]. Discourse structure tree [1] can be employed to
organize the semantics of text in an incremental manner
[6], where by the hierarchy of meaning is augmented
iteratively with the progressing levels of the tree. This
incremental approach ensures the proper partitioning of
semantics. The relationship between concepts can be
searched between the segmented regions instead of the
whole text. Thus, making the effort of concept
identification easier.

For the sake of illustration, consider the semantics of the
sentence in the example (Figure 1.3), which is organized
hierarchically using the discourse structure tree. Semantics
is decomposed into separate regions and a more focused
analysis can be done. As a result, it is easier to identify the
concepts that are related to one another. To quote an
example, the related concepts 'she' and 'John' can be
extracted by analyzing the node 'she tricked John' without
having to probe the entire text.

The color of the toy catches they boy's attention
during recess

of(color, toy)

has(boy, attention)
catches(toy, attention)

during(catches(toy, attention),recess)

The color of the toy catches they boy's attention
during recess
of(color, toy)

The color of the toy catches they boy's attention

during recess
catches(toy, attention)

catches(toy, attention)

during(catches(toy, attention),recess)

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

237

Figure 1.3 : Using Discourse Structure Tree for Extraction

Despite its undeniable potential, discourse structure tree
does suffer from some innate setbacks from the
perspective of relation extraction. For one, it relies on
rhetorical relations to work. This can prove to be
detrimental to the coverage of the approach. Not all text
uses the markers demanded by rhetorical relations [13].
Due to this, the approach may not be applicable in certain
text, paralyzing the entire endeavor of building the tree.
For instance, the rhetorical relation for the two text spans
below (Figure 1.4) is RESULT. However, since no markers
can be identified, they will not be properly analyzed.

Figure 1.4 : Non-identifiable Rhetorical Relation

Another problem lies in the way the unit of the tree is
defined [12]. The organizational unit for discourse
structure tree does not necessarily have to be concept and
relation. Defining the unit in this manner can sometimes
lack the level of granularity required for relation extraction.
In the example (Figure 1.5), the notion of 'finer'
decomposition is illustrated. Although the connection
between the two units 'she tricked John' and 'to win the
race' is known, it is hard to determine precisely the
connection between the concepts within them. In effect, it
is not known for certain which relation is correct from the
tree. Which concept from 'she tricked John' is connected to
'race'? Is it 'she' or 'John'.

Figure 1.5 : Granularity of Discourse Structure Tree

2. Related Work

In order to assists the effort of finding the related concepts
to be extracted, text is usually structured in a hierarchical
form [8]. Many kind of structures have been used for this
purpose. This includes parse tree, dependency tree and
discourse structure tree. Dependency tree is being used
widely in text processing application. It is usually
employed to depict the relationship between words by
organizing them into head and dependents (Figure 2.0). By
relying mostly on syntax instead of semantics, the
dependency tree is easier to construct as compared to the
discourse structure tree. The tree however, does not
decompose semantics into separate regions. Instead, it
provides a word by word organization that may not
necessarily ease the concept identification process.

Dependency tree loosely defines the nodes of the tree as
well as the head-dependent relation that connects the
nodes together. As such, connected words can imply too
many possible relationships, including determiner-noun,
subject-verb, verb-object and so on. Finally the
dependency tree is non incremental as perceived by the
construct of semantics. The higher level meaning of the
tree does not build upon lower level ones. In the
illustration, the determiner 'an' lies at the same level of the
functor 'of'. Rationally, this should not be the case since
'of' defines the connection between the two concepts
'example' and 'virtue' while the determiner 'an' is merely an
article that corresponds to a concept in isolation.

Amy confesses
that

she tricked
John

to win the race

ENABLEMENT

ATTRIBUTION

Amy confesses that she tricked John to win the race

Semantically
separated

region

Amy made funny expressions to the little
girl, she laughed at them.

[Amy made funny expressions to the little girl]
[she laughed at them].

Amy
confesses that

she tricked
John

to win the
race

ENABLEMENT

ATTRIBUTION

Amy confesses that she tricked John to win the race

[she tricked John] [to win the race]

 R(she, John)

 R(she, race)? R(John, race)?

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

238

Figure 2.0 : Dependency Tree

3. Concept Relational Tree

To solve the issue of granularity and coverage suffered by
discourse structure tree, the concept relational tree is
proposed. The concept relational tree is inspired from the
expression tree [5], a binary tree used to evaluate a
mathematical expression in deciding the proper sequence
of operations. For instance, the expression below can be
evaluated in two ways.

 2+3*6 = 5 * 6 = 30
 2+3*6 = 2 + 18 = 20

As we all know, the latter is the correct one. Multiplication
should always precede addition. As such, to find the
correct manner of evaluation, the mathematical expression
is represented in the form of an expression tree. The
expression tree is then traversed to find the value of the
expression. In the illustration (Figure 3.0), '3 * 6' is
traversed first to result to '18'. Then, '2' is added to '18' for
the final result which is '20'.

Figure 3.0 : Expression Tree Evaluation

An expression tree is made of two basic units, operand and
operator (Figure 3.1). Conceptually, the operand is the unit
of information for the expression while the operator
signifies the connection between these units of information.
In the illustration, '2', '3' and '6' are numerical information
within the expression. Thus, they arethe operands. On the

other hand, '*' does not carry any information. Instead, it
connects '3' and '6'. This makes '*' an operator.

Figure 3.1 : Operand and Operator

For this research, the representation of semantics is
assumed to be analogous to the problem of evaluating a
mathematical expression. This compels the adoption of the
expression tree's architecture. It is assumed that the
components of text can be organized into two classes like
operands and operators that are called concepts and
relations [3] respectively. Concepts function in a similar
way as operands in storing information while relations
work as the elements that connect these concepts.
Rationalizing in this manner, it is possible to materialize
the illustration below (Figure 3.2) that works as a catalyst
in suggesting how the expression tree may be utilized in
representing semantics.

patien
N

is
V

exam
N

an
D

of
P

virtue
P

2 + 3 * 6

3

*

6

2

+

operatoroperand

3

*

6

2

+

18 2

+ 20
 3 *

6
 2 +
18

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

239

Figure 3.2 : Expression Tree to Concept Relational Tree

3.1 Organizational Unit

To represent text using the concept relational tree, the
components of text must first be represented in term of
concept and relation (Figure 3.3). This is done by
modeling a sentence using the concept relational model [4].
With this model, all the words in the sentence are
classified into concepts and relations. Nouns are
categorized as concepts [11] while certain functors like
prepositions [2] as well as verbs [7] are deemed as
relations.

Each organizational unit contains attribute that extends the
meaning of the unit [14]. An adjective is an examples of
an attribute since it extends the meaning of a concept. For
instance, in the phrase 'cute cat', the adjective 'cute' further
narrates the feature of the concept 'cat'. Now, when an
attribute resides within a concept, it is called concept
attribute. On the other hand, when it is contained within a
relation, it is defined as relation attribute. The adverb
'slowly' in 'Amy writes slowly' is an example of a relation
attribute for the relation 'writes'.

Figure 3.3 : Organizational Unit
For the sake of better illustration (Figure 3.4), consider the

sentence below which is made of two concepts and a
relation. The two concepts are 'Amy' and 'cake', while the
single relation is 'eats'. Now, the term 'cute' is an adjective
that explains the concept 'Amy'. Consequently, 'cute' is the
concept attribute of 'Amy'. The relation 'eats' connects
'Amy' and 'cake' and is further explained by the adverb
'happily'. Therefore, 'happily' is the relation attribute of
'eats'.

Figure 3.4 : Sentence Organization

It is possible to define the set of terms in a sentence into
concept, relation and attribute using the following
mapping (Table 5.1). Certain part of speech tags that are
not included in the mapping such as determiner is
considered trivial for relation extraction and therefore
omitted [9].

Table 5.1: Part-of-Speech Mapping to Concept Relational Model

Tag Description CR-Tag

NN | NNP |
NNPS | NNS

noun C

VB | VBD |
VBG | VBN |
VBP | VBZ

verb R

JJ | JJR | JJS

adjective AC

RB | RBR |
RBS

adverb AR

PRP | PRP$

pronoun C

CC

conjunction coordinating R

IN preposition or conjunction
subordinating

R

CD numeral cardinal AC

POS genitive marker R

TO "to" as preposition or
infinitive marker

R

Cute Amy eats the sweet cake happily.

Amy

cute

eats

happily

cake

sweet

concept

concept attribute

relation

relation attribute

Amy

likes

cake coffe
e

and

3

*

6

2

+

operand concept

operator relation

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

240

Tag Description CR-Tag

WDT | WP |
WP$ | WRB

WH-(determiner | pronoun |
adverb), possessive

R

RP particle R

3.2 Tree Structure

Once text is decomposed into a set of organizational units,
it can be constructed into the concept relational tree.
Structurally, the concept relational tree is a binary tree with
concept and relation as its nodes. The tree (Figure 3.5) has
the following properties:

Figure 3.5 : Concept Relational Tree

1. Node is made of either concept or relation.
This emulates the expression tree where a node
can either be an operand or an operator.

2. Internal nodes are all relations.
Internal nodes can be seen as the branches of the
tree. In the expression tree, all non-terminal
nodes are operators. With the same reasoning, the
non-terminal nodes in the concept relational tree
shall all be relations.

3. External nodes are all concepts. They are the
leaves of the tree.
By following the rationale of theexpression tree,
terminal nodes in the concept relational tree are
all concepts. A profound consistency is made in
the analogy of a tree where branches connect the
leaves.

4. A tree is made of a node, a combination of nodes

or a combination of this trees.
The basic definition of a tree (Figure 3.6) starts
from the simplest form which is a concept (T =C).
Recursively, two trees and a relation are also a
tree by itself (T = T R T).

Figure 3.6 : Tree

5. A relation 'describes' the connection between the
two trees under it.
If T = T1 R T2, then R describes the connection
between T1 and T2. For a concrete example,
consider the phrase 'Amy looks at Susan with a
smile' (Figure 3.7). Here, the entire tree can be
decomposed into two trees. 'Amy looks at Susan'
can imply the first tree T1 while the concept
“smile” may represent another tree T2. In light of
this, the connection between the two trees is
defined by the relation R = 'with'. Therefore,
'with' the connection between T1 and T2. This
coincides with the semantics of text where T1
narrates that 'Amy looks at Susan' while T2 states
the manner in which the act is done. That is, with
a 'smile'.

Figure 3.7 : Trees in Concept Relational Tree

R

C C

R

C C

R

R C Concept Relation

T = C | T R T

Amy

looks at

Susan

with

smile

Amy

looks at

Susan

with

smile
T2T1

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

241

3.3 Sentence Nesting

Like the expression tree, the concept relational tree is
written using the parenthesis. Each enclosed pair of
parenthesis denotes a particular tree. In the illustration
(Figure 3.8), since the parenthesis is enclosed for '(Amy
sings opera)', it constitutes a tree. When another
parenthesis is enclosed in '((Amy sings opera) on stage)',
another tree is built. This new tree uses '(Amy sings
opera)' as one of its children.

Figure 3.8 : Tree Notation

The entire process of incorporating parenthesis to a
sentence is called sentence nesting SӨ. Sentence nesting
(Figure 3.9) stops only when all the components in the
sentence are nested. Nesting can also be represented via
tree merging where each tree T = C | T R T. Whenever two
trees are nested, they are considered to merge. Merging
two trees TN-1 RN-1 TN within a nesting results to a single
tree T(N-1,N). Sentence nesting is complete only when a
single tree TӨ exists. TӨ is defined as the tree where all the
components are properly nested.

Figure 3.9 : Sentence Nesting

3.4 Semantic Modification

The research relies on the idea of defining semantics on
the basis of nesting. This impels the notion of semantic
modification to surface. It attempts to describe the
construction of meaning from the aspect of hierarchical
connectivity. Modification is not a new concept in
linguistics. Adjective has always been the modifier of
nouns. The same goes with an adverb that modifies a verb.
These modifications however, only occur at the lexical
level. Therefore, it is quite compelling to take the principle
further, where meaning is formed by how a word connects
to another word. This can be shown from a simple
illustration (Figure 3.10) where the concept 'ball' is
connected to the concept 'box' in three different ways.

Figure 3.10 : Semantic Modification

As such, when the concept 'ball' and 'box' are mentioned in
isolation, they simply exist. However, when a certain
relation is introduced between these two concepts, a new
meaning emerges. This is the basic principle of semantic

Amy sings opera on stage

Amy opera

sings

(Amy sings opera)

Amy opera

sings stage

on

((Amy sings opera)
on stage)

stage

on

 S = C1 R1 ... RN-1 CN
 SӨ = (C1 R1 ... RN-1 CN)

 S = T1 R1 ... TN-1 RN-1 TN
 S = T1 R1 ... (TN-1 RN-1 TN) → S = T1 R1 ...
T(N-1,N)
 SӨ = TӨ

the ball on the box the ball under the box

the ball beside the box

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

242

modification where the component of meaning is modified
by what and how it is attached to. In the context of the
concept relational tree, a component of meaning is the tree
itself.

The idea related to semantic modification can also be seen
in the prepositional phrase attachment problem [10].
Attachment, which can either be adjectival attachment or
adverbial attachment, is basically a dilemma of
modification from the paradigm of the this research. To
illustrate the point, consider the following example (Figure
3.11) where the simple sentence 'the kid eats the cake' is
modified in two ways. Adjectival attachment transpires
when modification occurs at the concept 'cake' while
adverbial attachment is reflected by a modification that
occurs at the relation 'eats'. Modification at 'cake' by 'with
cream' implies that the cake contains the cream. On the
contrary, the modification at 'eats' by 'with spoon' shows
that the eating action is done using the spoon as an
instrument.

Figure 3.11 : Semantic Modification and the Prepositional Phrase
Attachment Problem

For this research, semantic modification is assumed to be
hierarchical where higher level trees build upon the
semantics of lower level ones. As such, semantics becomes
more complex as it goes up the tree. To see this, observe
the given example (Figure 3.12). The simplest tree is
'(Amy eats soup)' which simply means that Amy consumes
the soup. However, when it is attached to 'with Susan', the
meaning is modified to include the person with whom
Amy eats the soup. Finally, as the tree is further attached
with 'on Monday', the meaning no longer tells us who eats
soup with whom, but also when it transpires.

Figure 3.12 : Impact of Tree Levels on Semantics

It would favorable to consider another illustration to see
how a particular tree can evolve to reflect the change in
semantics (Figure 3.13). What would happen if the
sentence is changed into 'Amy eats soup with Susan who
loves food, on Monday'? To answer this question, it must
first be ascertained which part of the tree would be
modified by this new construct. As such, how does 'Amy
eats soup with Susan who loves food, on Monday' extends
the structure implied by 'Amy eats soup with Susan food
on Monday'. Obviously, the new construct merely modifies
the concept 'Susan' in the earlier one. The new meaning
can be reflected by attaching 'who loves food' to 'Susan'.

kids cake

eats spoon

with

kids

eats

cake cream

with

the kid eats the cake with cream

the kid eats the cake with a spoon

Adjectival
Attachement

Modification at

the concept

Adverbial
Attachement

Modification at

the relation

the kid eats the cake

kid cake

eats

Amy

eats

soup

with

Susan

on

Monday

Amy

eats

soup

Amy

eats

soup

with

Susan

(((Amy eats soup) with Susan) on Monday)
Amy eats soup with Susan on Monday

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

243

Figure 3.13 : Effect of Semantics on Tree Structure

Semantic modification of a tree T is therefore defined as
the change of meaning for T through the relation R and
and another tree T+ . In other words, the semantics of T is
modified when another tree T+ attaches itself to T through
the relation R. The new tree resulting from this is T' = (T R
T+). Since modification is confined by the semantics of R
and T+, it is greatly determined by the location where the

 attachment occurs. The impact of attachment has been
shown in the previous examples.

Figure 3.14 : Semantic Modification

3.5 Relational Precedence

Semantic modification determines meaning by the manner
of which connections are made between concepts. It is
denoted by sentence nesting, a process emulated from the
expression tree. Now, the building of the expression tree is
dictated by the precedence of operators within the
expression. Thus, it is only rational to consider the same
principle in building the concept relational tree. For
concept relational tree, the relational precedence o(R) is
defined as the affinity of a tree to merge with another
'adjacent' tree in the process of semantic modification. It
can also be defined via sentence nesting where relational
precedence determines the order of which nesting is done.

The example below (Figure 3.15) demonstrates relational
precedence. Initially, the sentence in the illustration
contains three trees of single concept which are 'Amy',
'cake' and 'spoon'. The shape of the tree is determined by
where 'cake' would merge at. If the relational precedence
of 'eats' is higher than 'with', then 'cake' would merge with
'Amy'. On the other hand, if the relational precedence of
'with' is higher than 'eats', 'cake' would merge with spoon
instead of 'Amy'. The correct shape is the first tree T1 since
'Amy' is using the 'spoon' to eat the 'cake'. The alternative
tree T2 suggests that 'Amy' is eating the 'cake' and the
'spoon'. This means that the relational precedence of 'eats'
should be higher than 'with' for the valid tree T1 to be
constructed instead of T2.

Amy

eats

soup

with

on

Monday

Susan

who loves

food

Amy

eats

soup

with

Susan

on

Monda
y

Amy eats soup with Susan on Monday

Amy eats soup with Susan who loves food,
 on Monday

T T

R R

+ = = T'

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

244

Figure 3.15 : Impact of Relational Precedence on Tree Structure

In an arbitrary sentence S, the merging or nesting of a
particular tree Ti depends on the relational precedence of
the relations adjacent to it (Figure 3.16). To note, the
merging of TN -1 is determined by the relative precedence
of RN-2 and RN-1. If the relational precedence of RN-2 is
higher than RN-1, then TN -1 will merge with the tree TN - 2 to
its left. On the other hand if the relational precedence of
RN-1 is higher than RN-2, TN - 1 will merge with the tree to
right, which is TN.

Figure 3.16 : Relational Precedence

From the context of rhetorical structure theory, relational

precedence can be seen as the factor that determines
whether a particular elementary discourse unit is a nucleus
or satellite. Relational precedence with higher priority is
considered to be the nucleus while the other one with
lower precedence is the satellite. The difference here
however is the absence of an exact rhetorical relation to
define the nature of association between the nucleus and
the satellite. Concept relational tree also differs from
discourse structure tree in term of decomposition. The
elementary discourse unit in discourse structure tree can be
defined indefinitely while the organizational unit of
concept relational tree are always decomposed into
concepts and relations.

To be able to estimate the relative value of relational
precedence, these issues regarding relations must be
addressed.

3. Precedence Class

In a mathematical expression, it is known that
multiplication and division belongs to the same class
of precedence while addition and subtraction are
grouped together (Figure 3.17). Analogically, words
are usually classified based on their part-of-speech. It
is only rational to begin the effort of classifying the
precedence of a particular relation using its
part-of-speech. Here, it is assumed that the precedence
class can be determined from the relation class.

Figure 3.17 : Precedence Class of Mathematical Operators

4. Precedence Order

Having a set of precedence classes, their order must
be defined. The order decides which class would be
given priority when compared to another class. In the
case of the expression tree, the precedence class for
multiplication '*' should be higher than addition '+'.
This gives priority to multiplication '*' when nesting is
employed. For concept relational tree however, how
should the order of the precedence class be
determined? It is assumed that the order depends on
the relative way, a relation modifies concepts as
compared to another.

To resolve the issue of precedence class, the general
function of each relation is investigated. This is initially

Amy eats the cake with spoon

Amy eats cake spoonwith

cake spoon

with

Amy cake

eats

Amy

eats

cake spoon

with

Amy cake

eats spoo
n

with

o(eats) >
o(with)

o(with) >
o(eats)

T T

S = T1 R1... TN-2 RN-2 TN-1 RN-1 TN

o(RN-2) > o(RN-1)
S = T1 R1... (TN-2 RN-2 TN-1) RN-1 TN

o(RN-2) < o(RN-1)

S = T1 R1... TN-2 RN-2 (TN-1 RN-1 TN)

+
* /

+

* /

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

245

done by observing a set of simple cases where the
structure of the concept relational tree as well as the
relational precedence of each relation within the tree is
known beforehand. In the example (Figure 3.18), the
relational precedence of the relation 'of' is higher than
'amused'. Because of that, 'cat' merges with 'color' and not
'Sally'. The relation 'of' connects 'color' and 'cat' in an
attributive way. In other words, 'color' is the attribute of
'cat'. However, the relation 'amused' connects the sub-tree
'color of cat' to 'Sally' in a causative sense. This means that
relatively speaking, the attribute relation should have
higher relational precedence when compared to causative
relation or o(of) > o(amused).

Figure 3.18 : Case Study in Relational Precedence

Continuing inductively with other cases, three classes of
precedence as well as their order are proposed. Classes are
arranged from the highest to the lowest where for each
relation R, the connection type and the relation type
determine its precedence. There are three types of
connection.

1. C – R – C
The simplest type of connection is when the
relation R connects two concepts. This is similar
to the subject-verb-object template. Examples
include 'name of singer', 'dress with pattern' and
'fish in bowl'.

2. R – R – C

The connection type R – R – C occurs when the
relation R connects another relation with a
concept. This can normally be seen in situation
where a particular relation R is used to narrate the
means of an action. For instance, in the text 'Amy
solves problem through rationalization', the
relation 'solves' is connected to 'rationalization' by
the relation 'through'. It basically conveys that the
action 'solves' is done by the means of
'rationalization'.

3. R – R – R
The most complex connection type is R – R – R

where R is utilized to provide the connection
between relations. A common example of this
would be in the case of temporal relations like
'Amy loved to read novels before Susan
dominated the library'. The relation 'before'
connects two notions 'Amy loved to read novels'
and 'Susan dominated the library'

Each connection type has a set of relation types that
narrate the actual function of the relation. Combination of
connection and relation types are as given below:

 Table 3.2 : Connection Type and Relation Type

 description example

C – R – C

attribution Property of an
entity

color of car
cake with cream
cake that contains
cream
Amy who likes
cat

conjunction Entities that occur
together in an
event

cake and coffee

causation Entities that affect
one another
through certain
interaction

Amy likes cat
Amy closes the
door

R – R – C

means Entity employed
for a certain use

Amy eats soup
with a spoon

intention Entity employed
to reach a
particular goal

Amy eats soup
with a fork to
annoy John

R – R – R

temporal Events related by
the notion of time

Amy plays game
when Susan reads
the book

While connection type describes the pattern of connection,
relation type defines the semantic of the connection. To
illustrate the idea, consider how the relation 'and' is used in
the example sentences (Figure 3.19). In the first sentence,
the relation 'and' is used to connect the two concepts
'books' and 'pens'. Since it is used to connect two concepts,
it is of connection type 'C – R – C'. For the second
sentence however, the relation 'and' is not used to connect
two concepts. Instead, it is employed to connect two
relations 'buys' and 'reads', implying the connection type 'R
– R – R'. As such, although the relation 'and' in both
sentences belongs to the same relation type 'conjunction',

color cat

of Sally

 amused

The color of the cat amused Sally

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

246

they differ in term of their connection type.

Figure 3.19 : Similar Relation Type (and) with Different Connection Type

The combination of connection type and relation type is
used to compute the precedence. Connection type is
compared first prior to the relation type. For instance, in
the illustration below , both relations 'and' are relation
types within the category of conjunction. In the first case,
'and' has a higher precedence than 'likes' where
conjunction precedes action. For the second case however,
the opposite is true where action is given higher priority
than conjunction. This transpires due to the fact that
comparison occurs at the connection type level instead of
the relation type level. Observe that The action 'likes'
which lies at the connection type level 'C – R – C' precedes
the conjunction 'and' that resides at the connection type
level 'R – R – R'. Since order is already resolved at the
connection type level, the relation type level is not
employed for comparison.

Amy likes cat and hamster
(Amy likes (cat and hamster))

o(and) > o(likes)
and : C – R – C : conjunction
likes : C – R – R : action

Amy likes cat but Susan likes hamster
((Amy likes cat) but (Susan likes hamster))
o(likes) > o(and)
likes : C – R – C : action
but : R – R – R : conjunction

The relation type is defined by studying the various kinds
of semantic roles and grouping them together. Relational
type is more general as compared to semantic role. Instead
of emphasizing on the actual semantics of a particular
relation, relation type focuses on the way relations differ
from one another in term of their possible precedence.
Thus, it makes no difference if the function of two
relations are not the same semantically. As long as they
share the same precedence, they are considered to be of the
same type.

For both the sentences in the illustration (Figure 3.20),
their relations belong in the same precedence class of
attribution. This is true despite the fact that they play
different semantic roles. Note that the relation 'on' implies
a locative relationship while the relation 'that scratches'
denotes an action when defined by semantic roles. Despite
their difference from the perception of semantic roles, they
are considered to share the same relation type since both
relations 'on' and 'are' describes further what the 'cat' is.
The relation 'on' defines the cat as an entity that lies on the
sofa while the relation 'that scratches' narrates the
character of the cat, as the perpetrator that scratched the
sofa.

Figure 3.20 : Different Semantic Roles with Similar Relation Type

It must be reminded however that the phrase 'cat that
scratches sofa' does not share the same relation type as 'cat
scratches sofa'. The former is an attribution while the latter
is a form of action or causality. To understand the
reasoning, consider the implication of both phrases.
Semantically, it can be said that 'cat that scratches sofa' is
describing the habit of the cat. On the other hand, 'cat
scratches sofa' is pointing out an instance of a particular
action performed by the cat, which may not be a habit or
attribute of the cat at all.

Performing sentence nesting is a rather difficult process.
To assist the task of nesting, the iterative approach is
proposed. Generally speaking, the iterative approach
works by identifying the simplest components that can be
built. Then, it extends and merges these components
iteratively until a single complex component is formed.

Amy

buys

books pens

and

 Amy buys books and pens.
 (Amy buys (books and pens))

R

C C

and

she them

reads

Amy books

buys

 Amy buys books and she reads them.
 ((Amy buys books) and (she reads them))

R

R R

The cat on the sofa is looking at Susan
The cat that scratches the sofa is looking at Susan

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

247

The approach consists the following steps:

1. Enumerate atomic tree.
Atomic tree is a tree that consists of a single
concept. Initially, a sentence is represented as a
set of isolated atomic trees. The atomic trees in
the example (Figure 3.21) are 'Mother', 'Amy',
'she', 'people' and 'respect' where all of the are
concepts.

Figure 3.21 : Atomic Tress of Sentence

2. Build basic trees.
Basic tree is defined as the tree that consists
purely of two concepts and a relation or T = C R
C. In the iterative approach, the basic tree is
identified first before anything else. To do so, it is
crucial to identify the simplest form of semantic
modification present within the sentence.
Examples of basic trees can be seen in the
illustration (Figure 3.22). They are depicted by
'Mother adores Amy' and 'she treats people'. This
is so, since each tree is made entirely by two
concepts and a relation.

Figure 3.22 : Basic Trees of Sentence

3. Extend trees

Once the basic tree is found, all the possible
ways of extending the tree is considered. A basic
tree can be extended by merging it with an
adjacent tree. Consider the example (Figure 3.23)
to understand the idea. Here, the basic tree '(she

treats people)' has two alternatives in term of
extension. It can either merge with the other basic
tree '(Mother adores Amy)' or the atomic tree
'respect'. The correct extension would be to the
right, where 'she treats people' merges with
'respect'. By doing it this way, the process of
extending each basic tree is simplified to two
alternatives. That is, either by merging to the left
or right.

Figure 3.23 : Building the Concept Relational Tree

4. Repeat step 3 until no more tree exists in
isolation.
The goal of building the tree is completed only
when a single tree exists. This can be achieved by
repeatedly extending each trees. The outcome
of the sentence used in the previous step consists
of two trees (Figure 3.23). Since '(Mother adores
Amy)' exists in isolation from '((she treats
people) with respect)', the process is incomplete.

 Mother adores Amy because
 she treats people with respect.

Mother Amy

adores

she people

treats

Mother adores Amy because she treats people with
respect.

Mothe
r

Amy

adores because

she people

treats respectwith

Mother adores

people

Amy because she treats

respect with

Step 1 : Enumerate Atomic Tree

Step 2 : Build Basic Tree

Step 3 : Extend Tree

she people

treats respect

with

Mother Amy

adores because

 Mother adores Amy because
 she treats people with respect.

Mother Amy she people respect

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

248

To complete the process, ways of extending the
tree is again inspected. In this case however, there
are no other alternative for merger except
between the two trees. The final outcome of the
merger can be seen in the illustration (Figure
3.24).

Figure 3.24 : Completing the Building Process

The iterative approach can be used to build the concept
relational tree manually. However, automating the process
may pose a series of daunting challenges. The biggest
problem is measuring the the relational precedence of
relations within a sentence. The reason for this is the
nature of language that exhibits diversity. For instance, in a
mathematical expression, the operators involved are
practically atomic. It can either be +, -, .. and so on. The
relations in language however, can be composite, such as
'likes', 'may like', 'might undeniably like' and so on. This
form of flexible combination can definitely complicate
computation.

4. Conclusion

The concept relational tree offers a new way of organizing
the semantics of text in a hierarchical form. Its architecture
emulates the expression tree where the semantics for the
higher level part of the tree is built incrementally from the
lower level one through the notion of semantic
modification. Concept relation does not define relations
specifically as discourse structure tree. This allows better
coverage of text despite lacking expressiveness when it
comes to defining the relation. However, concept
relational tree decomposes text into a set of specific

organizational unit known as concepts and relations as
opposed to discourse structure tree that denotes elementary
discourse unit more loosely. Using concepts and relations
promotes a more structured form of organization for the
concept relational tree that enables a more consistent
representation of semantics.

References

[1] Baldridge, J., Asher, N. and Hunter, J. 2007.

Annotation for and Robust Parsing of Discourse
Structure on Unrestricted Texts. Zeitschrift fur
Sprachwissenschaft 26: 213-239.

[2] Berland, M. and Charniak, E. 1999. Finding Parts in

Very Large Corpora. In Proceedings of the the 37th
Annual Meeting of the Association for
Computational Linguistics (ACL-99).

[3] Cañas, A. J., Carff, R., Hill, G., Carvalho, M.,

Arguedas, M., Eskridge, T. C., Lott and J., Carvajal,
R. 2005. Concept Maps: Integrating Knowledge and
Information Visualization, in Knowledge and
Information Visualization: Searching for Synergies,
S.-O. Tergan, and T. Keller, Editors. 2005.
Heidelberg / New York: Springer Lecture Notes in
Computer Science.

[4] Chulan, U. A. I. U. 2007. Connector Based

Extraction with Concept Relational Parsing for
Extracting Semantic Relation from Text. PhD Thesis
(Unpublished). Universiti Putra Malaysia, Malaysia,
2007.

[5] Cohen, R. F. and Tamassia, R. 1995. Dynamic

Expression Trees. Algorithmica, 13:245--265, 1995.

[6] Cristea, D., Postolache, O. and Pistol, I. 2005.

Summarization through Discourse Structure.
Computational Linguistics and Intelligent Text
Processing, 6th International Conference CICLing
2005, LNCS, vol. 3406, ed. by Alexander Gelbukh,
pp. 632-644. Springer, Berlin.

[7] Girju, R. and Moldovan, D. I. 2002. Text Mining

for Causal Relations. In FLAIRS 2002.

[8] Harabagiu, S., Bejan, C., Morarescu, P. 2005.

Shallow Semantics for Relation Extraction. In
Proceedings of International Joint Conferences on
Artificial Intelligence 2005 (IJCAI-2005)

[9] Hearst, M. A. 1992. Automatic acquisition of

hyponyms from large text corpora. In Proceedings of

Mother adores Amy because she treats people with
respect.

Mother Amy

adores

because

she people

treats respect

with

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.9, September 2008

249

the Fourteenth International Conference on
Computational Linguistics, pages 539-545, Nantes,
France, July 1992.

[10] Pantel, P. and Lin, D. 2000. An Unsupervised

Approach to Prepositional Phrase Attachment using
Contextually Similar Words. In K. VijayShanker and
Chang-Ning Huang, editors, Proceedings of the 38th
Meeting of the Association for Computational
Linguistics, pages 101-108, Hong Kong, October
2000.

[11] Reinberger, M. L., Spyns, P. and Pretorious, A. J.

2004. Automatic Initiation of An Ontology. In
Proceedings of ODBase, 2004.

[12] Soricut, R. and Marcu, D. 2003. Sentence Level

Discourse Parsing using Syntactic and Lexical
Information. Proceedings of the 2003 Human
Language Technology Conference of the North
American Chapter of the Association for
Computational Linguistics.

[13] Sporleder, C. and Lascarides, A. 2006. Using

Automatically Labelled Examples to Classify
Rhetorical Relations: An Assessment. Natural
Language Engineering 1 (1). Cambridge University
Press

[14] Tomuro, N., Kanzaki, K. and Isahara, H. 2007.

Self-organizing Conceptual Map and Taxonomy of
Adjectives. In Proceedings of the 18th Midwest
Artificial Intelligence and Cognitive Science
Conference (MAICS 2007).

[15] MUC-7. (1998). Proceedings of the 7th Message

Understanding Conference (MUC-7). Morgan
Kaufmann, San Mateo, CA.Kambhatla N. (2004).

Ungku Azmi Ungku Chulan
received his B.Sc. and M.Sc. degrees,
from Universiti Putra Malaysia. in
2001 and 2003, respectively. He
received his Ph.D from Universiti
Putra Malaysia in 2007. After
working as a research officer, he is
now a freelance consultant
specializing in technologies related
to text engineering. His research

interest includes text mining, ontology, relation extraction
and semantic parsing.

