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 Introduction 

 Stem cells (SCs) offer enormously promising pros-
pects for research and therapy. Today, several cell types 
can be generated in vitro due to the astonishing progress 
that has been made in isolating and handling cells from 
various tissues  [1, 2]  and, even more importantly, due to 
the ability to change cell identity by reprogramming  [3]  
and re-differentiating somatic cells. However, because 
organs and tissues are three-dimensional (3D), important 
aspects influencing organogenesis are missing in conven-
tional two-dimensional (2D) cultures. This problem has 
led to the development of 3D systems that enable the cre-
ation and growth, in vitro, of miniature organs called or-
ganoids, capable of developing organotypically and exert-
ing organ-specific functions.

  Organoids are usually generated from progenitor cells 
(PCs), which are either isolated from embryos or derived 
from pluripotent stem cells (PSCs) ( fig.  1 ). These ap-
proaches are the conceptual evolution of traditional reag-
gregation experiments with embryonic tissues, demon-
strating that aggregates of progenitor cells can differenti-
ate and self-organize into 3D structures typical of early 
organogenesis  [4, 5] . Most current technologies involve 
exogenous tissue patterning using growth factors that 
drive particular cell identities, and extracellular matrix 
(ECM) gel embedding, followed by a reaggregation to 
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 Abstract 

 Recent technical advances in the stem cell field have en-
abled the in vitro generation of complex structures resem-
bling whole organs termed organoids. Most of these ap-
proaches employ three-dimensional (3D) culture systems 
that allow stem cell-derived or tissue progenitor cells to self-
organize into 3D structures. These systems evolved, meth-
odologically and conceptually, from classical reaggregation 
experiments, showing that dissociated cells from embryonic 
organs can reaggregate and re-create the original organ ar-
chitecture. Since organoids can be grown from human stem 
cells and from patient-derived induced pluripotent stem 
cells, they create significant prospects for modelling devel-
opment and diseases, for toxicology and drug discovery 
studies, and in the field of regenerative medicine. Here, we 
outline historical advances in the field and describe some of 
the major recent developments in 3D human organoid for-
mation. Finally, we underline current limitations and high-
light examples of how organoid technology can be applied 
in biomedical research.  © 2015 S. Karger AG, Basel 
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stimulate cell movement and create self-organized 3D 
 tissue.

  Thus, unlike 2D cell cultures, organoid systems enable 
3D cell growth, movement, and differentiation, making 
this technology an effective model for understanding or-
gan development, tissue morphogenesis and the genetic 
or molecular basis of diseases. In the future, they may also 
be employed in drug-testing studies and tissue replace-
ment therapy.

  Below we describe major recent advances in organoid 
technology.

  Gut Organoids 

 The vertebrate digestive tract is composed of multiple 
organs that arise from a common primitive gut tube that 
extends from the mouth to the anus. The gut tube is 
formed by the endodermal layer folding  [6]  that is subdi-
vided into three regions, the foregut, midgut and hindgut 
regions, each of which generates specific organs at prede-
termined times during embryonic development. The 
foregut gives rise to the pharynx, esophagus, stomach, 
liver, pancreas, lungs, and part of the duodenum. The 

  Fig. 1.  Schematic representation of organoid generation from 
PSCs. For each class of organoid, this figure shows the germ layer 
of origin and the main progenitor cell identities or epithelia that 
can be generated from PSCs by using the in vitro differentiation 
protocols. These protocols recapitulate the developmental condi-

tions, in terms of ECM and molecular environment, to which ESCs 
are normally exposed during in vivo organogenesis. More details 
of PSC differentiation strategies, culture conditions and growth 
factors used to derive organ-specific progenitor cells are described 
in the text. 
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midgut generates the remaining part of the duodenum, 
the jejunum, the ileum, and portions of the large intes-
tine. The hindgut develops into the remainder of the large 
intestine, excluding a portion of the anal canal  [7] .

  The Clevers group  [8, 9]  first demonstrated intestinal 
3D organoid formation from mouse LGR5-expressing in-
testinal SCs that grew to form crypt-villus structures and 
all major cell-types of the gut in a laminin-rich Matrigel 
supplemented with EGF, Wnt agonist (R-spondin-1) and 
Noggin (BMP inhibitor). Interestingly, intestinal organ-
oid technology has already been used as a potential plat-
form for personalized medicine approaches, as demon-
strated by the forscolin-induced human organoid swell-
ing assay that enables the analysis of individual drug 
responses in cystic fibrosis  [10] . Using LGR-5-expressing 
SCs again, this time isolated from the colon, Sato et al., 
grew similar human and mouse colon organoids  [11] . 
These adult-derived mouse organoids were also able to 
integrate into superficially damaged mouse colon to re-
constitute a single-layered epithelium with self-renewing, 
functional and histologically normal crypts  [12] .

  Similar principles have recently been applied to gener-
ate intestinal organoids from PSCs of human origin. 
Spence et al. directed both human embryonic stem cell 
(hESC) and human-induced pluripotent stem cell  (hiPSC) 
monolayers to form definitive endoderm using Activin A 
followed by 3D hindgut spheroid formation in the pres-
ence of FGF4 and Wnt3a  [13] . Subsequently, these PSC-
derived spheroids were further cultured in a pro-intesti-
nal culture system as described by Sato et al.  [9]  to form 
organoids consisting of a polarized, columnar epithelium 
that was patterned into villus-like structures and crypt-
like proliferative zones, containing LGR5-expressing SCs, 
functional enterocytes, as well as goblet, Paneth and en-
tero-endocrine cells. Remarkably, these PSC-derived in-
testinal organoids also developed a mesenchymal layer 
and intestinal subepithelial myofibroblasts, as well as 
smooth muscle cells and fibroblasts at later stages. Thus, 
the simultaneous development of intestinal epithelia and 
mesenchyme indicates highly coordinated interaction 
between the different germ layers in organoid morpho-
genesis  [13] .

  By using this culture system as a model for studying 
human intestinal development, the authors further doc-
umented that the combined activity of Wnt3a and FGF4 
is required for hindgut specification, whereas FGF4 
alone is sufficient for promoting hindgut morphogene-
sis. Moreover, this system has been applied to investigat-
ing loss-of-function mutations in NEURG3, which un-
derlies congenital malabsorptive diarrhea, presumably 

due to a lack of intestinal entero-endocrine cells  [14] . 
Indeed, experiments with adenoviral-mediated overex-
pression and shRNA-mediated knockdown of NEURG3 
demonstrated that intestinal entero-endocrine cell de-
velopment is highly dependent on NEURG3 expression 
 [13] .

  More recently, these organoids were transplanted into 
immunocompromised mice to develop mature epitheli-
um and mesenchyme that contained differentiated intes-
tinal cell lineages, functional brush-border enzymes, and 
subepithelial and smooth muscle layers. Transplanted in-
testinal tissues also demonstrated the digestive function, 
as shown by permeability and peptide uptake studies, and 
were able to respond to systemic signals from the host 
mouse following ileocecal resection  [15] .

  Recently, McCracken et al.  [16]  reported the first gen-
eration of 3D human gastric organoids through directed 
in vitro differentiation of hESCs and hiPSCs. The authors 
recapitulated in vivo human stomach development by in-
ducing first the PSCs to form definitive endoderm spher-
oids, which were subsequently stimulated by retinoic acid 
to generate the foregut. To permit 3D growth and further 
differentiation, spheroids were transferred into a retinoic 
acid-supplemented Matrigel culture, leading to the for-
mation of domains with gastric mucous and endocrine 
cells, and LGR5-expressing SCs. Notably, to study the ae-
tiology of Helicobacter pylori-mediated disease, they in-
jected the bacterium directly into the lumen of the organ-
oids, and observed that the virulence factor CagA bound 
and activated the c-Met receptor, inducing epithelial pro-
liferation. This epithelial pathophysiological response 
makes the organoids a promising model for human gas-
tric disease.

  Liver Organoids 

 The liver has endodermal origins, arising from an out-
growth of the foregut ventral wall that develops into a 
liver bud structure  [17] . Hepatic endoderm cells, known 
as hepatoblasts, delaminate from this bud, invade the sur-
rounding mesenchyme and give rise to both hepatocytes 
and bile duct cells, while the mesenchyme provides fibro-
blasts, hepatic stellate cells and sinusoidal endothelial 
cells  [18] . The generation of the liver bud is accompanied 
by the development of the hepatic vasculature, which 
forms through a combination of angiogenesis and vascu-
logenesis, and eventually becomes the major fetal hema-
topoietic organ. Thus, liver development depends on the 
delicate orchestration of signals between endodermal ep-
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ithelial, mesenchymal, and endothelial progenitors prior 
to blood perfusion.

  Early developmental studies demonstrated that disso-
ciated cells from the chick embryonic liver can reaggre-
gate and organize into secretory units typical of the liver 
and consistent with the formation of functional bile ducts. 
Within the parenchyma of reconstituted tissues, hemato-
poietic islands that produced various types of blood cells 
were also present  [19] . Recent advances have shown that 
a mouse PC population that appears near bile ducts fol-
lowing liver damage can be expanded clonally as organ-
oids in 3D cultures over several months. These clonal or-
ganoids can also be induced to differentiate in vitro, and 
to generate functional hepatocytes upon transplantation 
into Fah –/–  mice (a model for tyrosinemia type I liver dis-
ease)  [20] , improving animal survival. Likewise, human 
bile duct cells can be expanded in vitro as bipotent pro-
genitor cells into 3D organoids, and converted into func-
tional hepatocyte cells either in vitro or upon transplanta-
tion. Notably, these organoids can be expanded from α-1-
antitrypsin deficiency and Alagille syndrome patients 
and mimic the in vivo pathology, creating significant op-
portunities for disease modelling and personalized medi-
cine studies  [21] .

  Starting with PSCs, Takebe and colleagues have recent-
ly generated tissues reminiscent of human liver buds  [22] . 
In order to recapitulate early organogenesis, the authors 
cultivated hiPSC-derived endodermal cells with human 
umbilical vein endothelial cells and human mesenchymal 
stem cells in Matrigel to generate 3D liver buds with gene 
expression patterns very similar to those of primary fetal 
livers. It is noteworthy that soon after transplantation into 
a cranial window mouse model, the liver buds connected 
to the host vasculature, matured into adult-like liver tis-
sues, and performed liver-specific functions such as se-
rum albumin production and human-specific drug me-
tabolism. Finally, transplanting human liver buds im-
proved mouse survival after drug-induced liver failure.

  While several unanswered questions remain, such as 
whether a direct or indirect mechanism underlies the ob-
served therapeutic effect, this liver-bud transplantation 
seems to be a readily translatable approach for eventually 
treating liver insufficiency.

  Kidney Organoids 

 The metanephric kidney has mesodermal origins and 
develops at the most posterior part of the trunk  [23–25] . 
Its organogenesis begins with the specification of the kid-

ney-precursor tissue intermediate mesoderm (IM), which 
progressively extends in a rostral-caudal direction, and 
gives rise to both the nephric duct (ND) epithelium and 
the metanephric mesenchyme (MM)  [26] . The ureteric 
bud (UB) evaginates from the ND as an epithelial out-
growth that invades and interacts with the nearby MM to 
develop the branched collecting duct system. At the same 
time, mature nephrons and other MM derivatives devel-
op through progressive MM condensation, epithelializa-
tion and differentiation regulated by UB branching and 
signalling  [26] .

  As previously shown for the other organs, evidence 
that kidney tissue may be capable of self-organization 
comes from early reaggregation experiments. Pioneering 
studies by Auerbach and Grobstein demonstrated that 
by reaggregating cell suspensions from MM and embry-
onic dorsal spinal cord, a potent tubule-inductor, it was 
possible to generate tissues containing rudimental neph-
ron-like tubular structures  [4] . Significant progress in 
the field has been made through the development of a 
method that allows a simple suspension of embryonic 
kidney cells to self-organize in vitro into ‘tissue’ contain-
ing immature nephrons and UBs, without the use of any 
exogenous tissue  [27] . However, the brief survival time 
of organ cultures in vitro, and most importantly the in-
sufficiency of these systems to support the development 
of vascularised glomeruli (the filtering unit of the kid-
ney), did not allow for further maturation into a state 
resembling adult kidneys. By building on this method, an 
optimized reaggregation system has allowed renal or-
ganoids to mature in vivo, using suspensions of embry-
onic kidney cells  [28] . When transplanted under the re-
nal capsule of athymic rats, these tissues became vascu-
larized, grew further and performed kidney-specific 
functions, including blood filtration and tubular reab-
sorption of macromolecules, and the production of 
erythropoietin. By integrating electron microscopy anal-
ysis and macromolecular tracing experiments, the au-
thors further documented that organoids could recapitu-
late, in vivo, the complex 3D filtering structure of glo-
merular slits and accomplish selective glomerular 
filtration  [29] . Moreover, this technology was applied to 
generate 3D chimeric organoids from human amniotic 
fluid stem cells and mouse embryonic kidney cells that 
engrafted in vivo and grew to form vascularized glom-
eruli and tubular structures  [30] .

  The above studies may suggest that if kidney PCs or 
mature cell types can be derived from PSCs and exposed 
to defined conditions, they can subsequently spatially 
self-organize in order to generate 3D renal tissues.
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  Xia et al. have recently described an efficient and rapid 
protocol for the directed differentiation of hESCs and 
hiPSCs into UB progenitor-like cells in four days  [31] . In 
the first 2 days, PSC clusters cultured on Matrigel were 
exposed to BMP4 and FGF2 signaling to induce mesoder-
mal commitment, whereas on the following 2 days, cells 
were induced to acquire a late IM/UB-like phenotype in 
the presence of BMP2, retinoic acid and Activin A. To al-
low further maturation, differentiated cells were co-cul-
tured with mouse embryonic kidney cells to form 3D chi-
meric organoids in which they showed integration into 
developing chimeric UB structures. Accordingly, given 
the absence of MM marker expression, these cells did not 
show any integration into the MM compartment  [31] .

  Taguchi et al. derived MM cells  [25]  from both mouse 
ESCs (mESCs) and hiPSCs by first defining both the IM 
specification and MM and UB developmental origin, and 
then mimicking them in vitro. Initially, they discovered 
through lineage analysis that brachyury (T)-positive pos-
terior mesoderm gives origin to the MM, whereas T-neg-
ative anterior mesoderm gives rise to the UB. Then, they 
optimized a differentiation protocol to induce MM pro-
genitors from hPSCs. EBs were initially induced with Ac-
tivin A, followed by exposure to BMP4 and the Wnt sig-
nalling agonist CHIR99021, leading to posterior meso-
derm differentiation. Finally, the application of retinoic 
acid, followed by FGF9, stimulated the cells to assume a 
MM identity. When co-cultured with embryonic spinal 
cord, MM progenitors in the induced EBs showed the 
ability to further differentiate and develop proximal and 
distal tubules and glomerular-like structures containing 
cells positive for podocyte and foot process markers. 
When the induced mouse EBs were co-transplanted with 
spinal cords under the kidney capsule, they developed 
vascularized glomeruli containing red blood cells, dem-
onstrating connection to the host circulation.

  Almost simultaneously with these studies, Takasato et 
al. developed a differentiation protocol for the stepwise 
synchronous induction of both UB and MM starting with 
hESCs grown in 2D and exposed to chemically defined 
conditions that recapitulated those of normal kidney or-
ganogenesis  [32] . First, hESCs were differentiated into 
the primitive streak, the progenitor population for both 
mesoderm and endoderm, by using either Activin A/
BMP4 stimulation or, alternatively, CHIR99021. As IM 
normally arises from the posterior primitive streak, they 
induced IM differentiation through FGF9 exposure. Sub-
sequently, IM cells were exposed to FGF9/BMP7/retinoic 
acid treatment or were deprived of any growth factors, 
giving rise to UB and MM progenitors in both of the strat-

egies applied. Re-aggregation after dissociation of the ini-
tial monolayer cultures upon UB and MM commitment 
allowed the formation of small, self-organized kidney or-
ganoids. Finally, when renal progenitors were reaggre-
gated with dissociated mouse embryonic kidneys, they 
generated chimeric organoids in which renal progenitors 
integrated into all developing renal structures, including 
the ureteric epithelium, renal vesicles, nephron progeni-
tor mesenchyme, and renal stroma.

  Remarkable future advances in kidney tissue engineer-
ing might be made possible by the recombination of the 
UB progenitor cells from the Belmonte group with the 
MM progenitors from the Nishinakamura group, to test 
whether starting with high-purity renal PC populations 
derived from different types of PSCs can drive organo-
genesis in vitro.

  Brain Organoids 

 The nervous system derives from the neural ectoderm 
 [33] , which forms the neural plate, a flat lamina of ecto-
dermal cells located dorsally in the embryo that progres-
sively forms a cylindrical epithelial structure known as 
the neural tube. Along the ventral-dorsal and rostral-cau-
dal axes, a rigorous spatio-temporal gradient of morpho-
gens allows the epithelial tube to subdivide into four ma-
jor regions: the prosencephalon (forebrain), mesenceph-
alon (midbrain), and rhombencephalon (hindbrain), and 
the spinal cord. Secondary vesicles emerging from the 
prosencephalon give rise to the telencephalon (cerebral 
hemispheres) and diencephalon (thalamus and hypothal-
amus).

  The neurons and glia of the CNS are generated from 
multipotent neural stem cells (NSCs) that reside rostro-
caudally in the neural tube  [34] . Through a series of ini-
tially symmetrical, and then asymmetrical divisions, 
NSCs give rise to self-renewing progenitors and more dif-
ferentiated cell types, including neurons and intermedi-
ate progenitors. These more differentiated cells then mi-
grate outward from the native NSCs’ domains to develop 
multi-layered structures such as the medulla, the optic 
tectum, and the cerebral cortex.

  Pioneering reaggregation studies using cells dissoci-
ated from the brains of E6–9 chick embryos demonstrat-
ed that this organ retains an intrinsic self-organizing ca-
pacity  [35] . When taken at earlier stages of brain develop-
ment, chick neural progenitors self-organized to form 
neuro-epithelial cell clusters organized radially around a 
lumen that resembled the neural tube. These classic ex-
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periments suggested that if neuro-epithelium can be de-
rived from PSCs, spontaneous self-organization into 3D 
structures is likely to occur.

  Directed in vitro differentiation of PSCs toward a cor-
tical neuron fate revealed that these cells display a ‘de-
fault’ propensity for neural differentiation when main-
tained under minimal culture conditions. First, Wata-
nabe et al. achieved the differentiation of floating mESC 
aggregates into telencephalic precursors using a serum-
free culture, known as SFEB (serum-free, floating culture 
of embryoid body-like aggregates), in combination with 
5-day exposure to Wnt and Nodal antagonists  [36] . Then 
by optimizing this SFEB culture system, the same group 
derived human telencephalic precursors that self-orga-
nized into rosetted structures reminiscent of early cortical 
development  [37] . The key configuration in these experi-
ments was the rapid aggregation of hESCs to constitute a 
SFEB culture in medium containing ECM components, 
which yielded polarized neuro-epithelia with apical-basal 
polarity that further subdivided into the characteristic 
ventricular and subventricular PC zones. These PCs gen-
erated different cortical neuron classes in the appropriate 
temporal order, resembling that observed in the E11.5 
mouse cortex. In addition, these neurons showed clear 
signs of maturation, including fast-wave Ca 2+  oscillations 
 [37] . This method has been further improved in a more 
recent study  [38]  describing a multilayered structure in-
cluding neuronal and progenitor zones in the proper api-
cal-basal order as seen in the human foetal cortex in the 
early second trimester.

  Other brain regions can also be generated by mimick-
ing endogenous patterning with growth factors. Previ-
ously, a variety of media conditions were used to produce 
different CNS regions from mESCs including subpallial 
patterning  [39]  and adeno-hypophysis  [40] , which may 
also soon be replicated using hPSC sources. Thus, stimu-
lating the neuro-ectoderm through an EB stage and then 
applying specific growth factors could generate organ-
oids for various individual brain regions.

  Recently, researchers established a method that allows 
for the development of different brain regions in the 
same organoid  [41] . This approach began with EBs, but 
no growth factors were added to drive particular brain 
region identities. The method was influenced by the in-
testinal organoid protocol, that is, by embedding the EBs 
in 3D ECM. The ECM promotes the outgrowth of large 
buds of neuro-epithelium, which then expand and de-
velop into various brain regions, including the forebrain, 
hindbrain, dorsal cortex, prefrontal cortex, hippocam-
pus, the choroid plexus occipital lobe, and the retina, 

leading to the term ‘mini-brains’. To model the severe 
early onset brain condition microcephaly, the authors 
used iPSCs from a patient with a truncating mutation in 
 CDK5RAP2 – a gene crucial for PC-state maintenance 
during development. These hiPSC-derived 3D organ-
oids displayed rare neuro-epithelial PC zones and large 
domains of differentiated and mature neurons, suggest-
ing that premature differentiation causes the in vivo 
 establishment of the diseased phenotype, a conclusion 
that was further supported through overexpression and 
knockdown effects of CDK5RAP2 on organoid develop-
ment.

  Altogether these results provide access to a broad 
range of human CNS structures for functional studies and 
to clarify developmental pathways of the brain. Further-
more, brain organoids from patient-derived or genetical-
ly modified-hiPSCs could be a powerful tool for CNS dis-
ease modelling.

  Retinal Organoids 

 The retina is the light-receptive region of the eye and 
derives from the neural ectoderm. Retinal primordia arise 
from the diencephalon and evaginate laterally, forming 
pseudostratified neuro-epithelia, termed optic vesicles 
(OVs)  [42] . The distal portion of each OV becomes the 
sensory neural retina (NR; sensorial tissue), whereas the 
proximal portion gives origin to a monolayered tissue, the 
melanin-producing retinal pigment epithelium (RPE; 
supporting tissue of the NR)  [43] . The OVs then undergo 
invagination at their distal portion  [44]  to form the optic 
cup (OC), with the NR and RPE as its inner and outer 
walls, respectively  [42] . The NR contains PCs that differ-
entiate into ganglion cells, photoreceptors (rods and 
cones) and supportive cell types, all spatially arranged 
into distinct layers forming the characteristic laminated 
retina  [42] .

  The vertebrate retina has always been considered one 
of the most powerful reaggregation models in tissue en-
gineering studies for investigating the basis of neural lay-
er development  [45] . A plethora of experiments in chick 
embryos has documented that retina have a remarkable 
capacity to reconstitute different types of spheres with 
 almost complete arrangement of retinal layers  [46, 47] , 
and, as in other organoid approaches, this laid the ground-
work for the development of PSC-derived retinal organ-
oids.

  The first study performed with PSCs to generate reti-
nal organoids was by Eiraku et al.  [48] , documenting that 
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the retinal epithelium can be generated efficiently by us-
ing 3D floating EB-like aggregates from mESCs cultured 
in low serum media and ECM components. Under these 
conditions, aggregates spontaneously formed hemispher-
ical hollow vesicles – similar to the OVs – of which the 
proximal portion differentiated into pigment epithelium, 
whereas the distal portion progressively folded inward to 
form a shape reminiscent of the embryonic OC. These 
OC-organoids displayed proper markers of NR and RPE, 
and retinal stratification with proper apical-basal polari-
ty, and underwent morphological tissue shape changes 
that mimic the stepwise evagination and invagination of 
the OC in vivo.

  Astonishingly, when human organoids were formed, 
the size of the OC was larger than in the mouse cultures, 
reflecting species differences and indicating that tissue 
scaling is an intrinsic property of mouse versus human 
eye field cells  [49] . Moreover, the hESC-derived retinal 
organoids had a thicker NR that spontaneously curved in 
an apically convex manner not observed in mESC cul-
tures, and showed apical nuclear positioning. Human-de-
rived retinal tissues required more time to develop; neural 
epithelium was multilayered and composed of many dif-
ferentiated rods and cones, while cone differentiation was 
not observed in mESC cultures. This difference is consis-
tent with the diverse visual skills of the two species due to 
their habits: in in vivo mouse retinas, there are few cones 
because mice are essentially nocturnal animals, whereas 
in human retinas they are numerous because they are cru-
cial for colour vision during the daytime  [50] .

  More recently, Assawachananont et al.  [51]  optimized 
the above protocol  [48]  by adding a retinoic acid receptor 
antagonist and increasing the knockout serum percent-
age to produce higher quantities of NR tissue for trans-
plantation. Mouse ESC- or iPSC-derived 3D retinal sheets 
differentiated into various retinal cell types and mature 
photoreceptors that formed the outer nuclear layer of the 
retina (the light-detecting portion of the eye), in the sub-
retinal space of severely degenerating mouse host retina, 
potentially suggesting a new retinal tissue transplantation 
therapy for advanced retinal degenerative diseases.

  Taking a different approach, Zhu et al. induced the 
formation of polarized neuro-epithelial cysts by embed-
ding small clusters of hESCs into a Matrigel supporting 
3D epithelial cyst formation in the presence of the neural 
induction medium N2B27  [52] . In the absence of growth 
factors, these cysts acquired an eye-like identity that was 
capable of generating the NR when plated onto transwell 
filters, whereas in response to Activin A they differenti-
ated into RPE.

  Therefore, 3D PSC-derived retinal tissues recapitulate 
the main aspects of retinal development, providing an op-
portunity to generate tissues for medical applications as 
well as a valuable tool for clarifying cell behaviours and 
mechanisms during retinal morphogenesis.

  Conclusions 

 Three-dimensional culture methodologies, including 
the supply of ECMs together with reaggregation tech-
niques and the identification of inductive factors that can 
direct hPSCs along a specific lineage are highly efficient 
means for recapitulating early development in vitro in or-
der to generate organoids. The organoid technologies de-
scribed here can undeniably be a valuable tool for inves-
tigating organ development and tissue morphogenesis 
 [13, 41, 49] , for modelling diseases  [13, 16, 41] , testing the 
efficacy and toxicity of drug compounds  [10] , and hope-
fully one day creating tissues for autologous transplanta-
tion  [15, 20, 22, 51] . Moreover, apart from the approach-
es analyzed in this review, the development of ‘cancer 
 organoids’  [53]  creates significant prospects for personal-
izing and optimizing current treatments. In the future, 
researchers may also develop more human organoids for 
the thyroid, lungs, pancreas, heart  [54–58]  and the sen-
sory epithelia of the inner ear  [59] , using technologies 
that have already been applied successfully in mice.

  Although it is obvious that organoid technologies have 
enormous potential, there are still important limitations 
that must be overcome. In particular, the organoids tech-
nologies so far developed have yet to be methodically 
characterized in terms of how faithfully they can reca-
pitulate in vivo development. For example, while retinal 
organoids display typical laminar organization, outer 
segments fail to form, and the photoreceptors do not ful-
ly mature to become light-sensitive  [48, 49] . Likewise, ce-
rebral organoids recapitulate fairly early events in brain 
development, but the typical layered structure of the ma-
ture cortical plate fails to fully form  [41] .

  The issue of maturation is a common problem for or-
ganoid technologies, and may significantly affect future 
research and therapeutic potential. Although liver or-
ganoids performed liver-specific functions in vivo, such 
as protein production and human-specific drug metab-
olism, human hepatocytes were not fully differentiated, 
as evidenced by lower albumin secretion and lower ex-
pression of hepatocyte-specific CYP450 enzymes than 
previously reported for primary human hepatocytes 
 [60] .
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  Transplanted human intestinal organoids, on the oth-
er hand, have displayed mature intestine characteristics 
such as peptide uptake, but therapeutic application would 
require additional functions, such as the ability to per-
form the peristaltic movements essential for food bolus 
transition along the digestive tract  [15] . Similarly, al-
though human kidney organoids possess immature neph-
ron-  [25]  and UB-like  [31]  structures, proper tissue pat-
terning through successive generations of UB branching 
is still needed, and the nascent nephrons must link to a 
single draining collecting system.

  Most importantly, the avascular environment in vitro 
is still a significant hurdle for organoids to mature to a 
state resembling that of adult organs. In this regard, fu-
ture research will focus on developing bioreactors that 
can provide better nutrient exchange  [41]  or co-cultures 
with endothelial cells  [22] . The most promising solution 
is still to transplant these tissues, as has been done with 
liver buds  [22]  and kidney organoids  [25, 28] , which stim-
ulates invasion from host vasculature.

  In the future, organoid technologies will undoubtedly 
provide a methodological window, allowing us to under-
stand human development and disease in depth, and will 
make it possible to personalize treatment.
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