

Organomonophosphines in $Pt(\eta^3 - X^1 X^2 X^3)(PR_3)$, (X = N¹, N², N³; S¹, S², S³; or Te¹, Te², Te³) Derivatives: Structural Aspects

Milan Melník^{1,2,*}, Veronika Mikušová³ and Peter Mikuš^{1,4,*}

- ¹ Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
- ² Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
- ³ Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; mikusova@fpharm.uniba.sk
- ⁴ Toxicological and Antidoping Centre, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
- * Correspondence: qmelnik@stuba.sk (M.M.); mikus@fpharm.uniba.sk (P.M.)

Abstract: This paper covers nineteen Pt(II) complexes of the composition Pt(η^3 -X¹X²X³)(PR₃), (X = N¹, N², N³; S¹, S², S³; or Te¹, Te², Te³). These complexes crystallized in three crystal classes: triclinic (eleven examples), monoclinic (six examples), and orthorhombic (two examples). Each tridentate ligand creates two metallocyclic rings with common N², S², or Te² donor ligands of the types N¹C₂N²C₂N³, N¹C₂N²NC₂N³, S¹C₂S²C₂S³, S¹C₃S²C₃S³, and Te¹CNTe²NCTe³. The homotridentate ligand with monodentate PR₃ ligand builds up a distorted square planar geometry about Pt(II) atoms. The degree of distortion ranges from 0.029 to 0.092, and the reason for the distortion is discussed. There is an example that contains two crystallographically independent molecules within the same crystal. This is a classic example of distortion isomerism.

Keywords: structure; $Pt(\eta^3-X^1X^2X^3)$ (PR₃); trans-influence; distortion

 $\begin{array}{l} \textbf{Citation:} \ Melník, M.; \ Mikušová, V.; \\ Mikuš, P. Organomonophosphines in \\ Pt(\eta^3-X^1X^2X^3)(PR_3), (X=N^1,N^2,N^3; \\ S^1, S^2, S^3; \ or \ Te^1, \ Te^2, \ Te^3) \ Derivatives: \\ Structural Aspects. \ Inorganics \ \textbf{2023}, \\ 11, 242. \ https://doi.org/10.3390/ \\ inorganics \ 11060242 \end{array}$

Academic Editors: Sake Wang, Minglei Sun and Nguyen Tuan Hung

Received: 15 May 2023 Revised: 30 May 2023 Accepted: 1 June 2023 Published: 3 June 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

The coordination chemistry of platinum covers a huge number, as shown by a survey covering the crystallographic and structural data of almost two thousand monomeric examples [1–3]. Research activity in this field is always very active, and one of the reasons is the biological activity of platinum complexes [4]. Organophosphines as soft donor ligands are very useful for building a wide variety of platinum complexes. Much attention has been paid to organophosphines ligands in the chemistry of platinum. There have been numerous structural studies published of such complexes that were classified and analyzed [5]. Another review covers structural data of numerous platinum(II) coordination complexes with inner coordination spheres: PtP_4 , PtP_3X (X = H, F, O, N, Cl, S, Br or I), and PtP_2X_2 (X – H, F, O, N, CN or B), in which P-donor ligands are monodentate organomonophosphines [6]. There are also numerous structures of Pt(II) complexes with organodiphosphines [7].

The aim of this paper is to analyze structural data of $Pt(\eta^3 - X^1 X^2 X^3)(PR_3)$ (X = N¹, N², N³; S¹, S², S³; or Te¹, Te², Te³) complexes, where PR₃ represents the ligand coordination via the P atom.

2. $Pt(\eta^3 - X^1 X^2 X^3)(PR_3)$ Derivatives

 $Pt(\eta^3-X^1X^2X^3)(PR_3)$ derivatives are divided into three groups, classified and discussed in this paper, namely $Pt(\eta^3-N^1N^2N^3)(PR_3)$, $Pt(\eta^3-S^1S^2S^3)(PR_3)$, and $Pt(\eta^3-Te^1Te^2Te^3)(PR_3)$ derivatives; their X-ray data are gathered in Table 1, Table 2 and Table 3, respectively.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pt (η ³ -N ¹ N ² N ³)(PR ₃)	Crystal cl. Space gr. z	a [Å] b [Å] c [Å]	α [°] β [°] γ [°]	Chromophore (Chelate Rings) τ_4	Pt-L ^b [Å]	L-Pt-L ^b [°]	Ref.
							N^{1}, N^{2} 79.8(4) ^c N^{2}, N^{3} 79.2(3) ^c	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[D+(m ³	tr	11 025	04 77	D+N D	$N^{2} 2.017$ $N^{2} 2.040$	N ¹ ,N ⁰ 160.4	
$ \begin{array}{c} [2]{$		P1	11.925	94.77 103.02	$\Gamma I N_3 \Gamma$ (NI ¹ C-N ² C-N ³)	$N^{-} 2.040$ $N^{3} 2.028$	N^{3} P 104.0	
$ \begin{bmatrix} \mathbf{r}_{11} ^{-1} & \mathbf{t} & 11 13 (2) & 80 10 (1) & \mathbf{PN}_{\mathbf{N}} \mathbf{P} & \mathbf{N}_{1}^{1} 10 = \mathbf{N}_{1}^{1} 10 = \mathbf{N}_{1}^{1} \mathbf{N}_{2}^{2} \mathbf{R}_{2}^{2} \mathbf{R}_{2}^{2$	(PPh_{2})]	2	17 550	111 67	$(10 C_2 10 C_2 10)$	P 2 266	$N^2 P 170.8$	
$ \begin{array}{c} C_{12} H_{22} N_{11}^{(1)} (PPh_{3})_{1}^{(1)} & \begin{array}{c} P_{1}^{(1)} & 11.42C(2) \\ P_{12}^{(2)} & 81.74(2) \\ CH_{2}^{(2)} & 0.089 \end{array} & \begin{array}{c} N^{12} 2.035 \\ N^{12} 2.011 \\ N^{12} N^{12$	$[Pt{n^3}-$	tr	11.135(2)	80.18(2)	PtN₂P	N^{1} 1.996	$N^{1}.N^{2}$ 78.5	[8,9]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{17}H_{28}N_{2}(PPh_{2})$]		11.462(2)	81.74(2)	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	$N^2 2.035$	$N^2 N^3 78.2$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₂ Cl	r 1 2	13.808(2)	88.27(2)	0.089	$N^3 2.032$	N^1 , N^3 156.5	
$ \begin{bmatrix} Pt(rh^{3}-C_{13}H_{3}F_{6}N_{5}), & \frac{tr}{P_{1}} & 9.142 & 103.04 & PtN_{2}P & N^{1} 2.011 & N^{2}, N^{3} 2.035 & N^{1}, P_{1} 10.2 \\ 103.07 & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.015 & N^{1}, P_{1} 10.2 \\ N^{1}N^{2} 79.0 & N^{2}N^{3} 79.5 & N^{2}P 105.1 \\ N^{1}N^{2} 70.0 & N^{1}N^{2} 70.0 & N^{1}N^{2} 70.0 \\ N^{1}C_{2}N^{2}C_{2}N^{3} & N^{3}P_{1} 10.5 & N^{2}P 175.1 \\ N^{1}N^{2} 70.2 & N^{1}N^{2} 79.5 & N^{2}P 175.1 \\ N^{1}N^{2} 70.2 & N^{1}N^{3} 79.2 & N^{1}N^{3} 77.2 & N^{1}N^{3} 79.2 & N^{1}N^{3} 77.2 & N^{1}N^{3} 77.2$	-	2		~ /		P 2.268	N ¹ ,P 97.3	
$ \begin{bmatrix} Pt(\eta^{3} - C_{13}H_{3}F_{6}N_{5}). & \frac{tr}{P1} & 9.142 & 103.04 & PtN_{3}P & N^{1} & 2.011 & N^{2}N^{3} & 78.9 \\ P_{1} & 10.264 & 103.07 & (N^{1}C_{3}N^{2}C_{2}N^{3}) & N^{2} & 2.024 & N^{1}N^{3} & 157.5 \\ N^{2} & 2.024 & N^{1}N^{3} & 157.5 & 10.27 & 10.27 \\ N^{1}N^{2} & 79.9 & 5. & N^{2}P & 192.5 & N^{2}P & 192.5 \\ P_{2} & 16.507 & 99.68 & 0.075 & N^{2} & 2.015 & N^{2}N^{3} & 79.9 \\ N^{1}N^{2} & 79.2 & C & N^{1}N^{2} & 79.2 & C & N^{1}N^{2} & 79.2 & C \\ N^{1}N^{2} & 79.2 & C & N^{1}N^{2} & 79.2 & C & N^{1}N^{2} & 79.2 & C \\ N^{1}N^{2} & 2.015 & N^{2}N^{3} & 79.3 & C & N^{2}N^{3} & 79.9 \\ (at 223 k) & 4 & 33.868(0) & 90.86(0) & P^{tN_{3}P} & N^{1} & 2.015 & N^{2}N^{3} & 79.6 & N^{1}N^{2} & 79.5 & N^{2}N^{2} & 101.6 & N^{2}N^{3} & 78.9 & C \\ P_{1}N^{2} & 2.017 & N^{1}N^{3} & 158.4 & 111 \\ P_{1} & 3.3868(0) & 102.93(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} & 19.96 & N^{1}N^{2} & 99.5 & N^{3}N^{3} & 104.6 & N^{2}N^{3} & 78.9 & C \\ N^{1}N^{2} & 78.9 & C & N^{1}N^{2} & 78.9 &$							N ³ ,P 106.1	
$ \begin{bmatrix} Pt \eta^{3} - C_{13} H_{3} F_{6} N_{5} . \\ \eta^{2} P_{1} \\ (PPh_{3}) \end{bmatrix} \\ \begin{array}{c} p_{1} \\ p_{1} \\ p_{1} \\ p_{1} \\ p_{1} \\ p_{2} \\ p_{16507 \\ (PPh_{3}) \\ p_{2} \\ p_{16507 \\ (PPh_{3}) \\ p_{2} \\ p_{16507 \\ (Ph_{3}) \\ p_{16507 \\ (Ph_{3}) \\ p_{16507 \\ (Ph_{3}) \\ p_{2} \\ p_{2} \\ p_{2} \\ p_{16} \\ p_{1} \\ p_{2} \\ p_{2} \\ p_{1} \\ p_{1} \\ p_{1} \\ p_{1} \\ p_{2} \\ p_{2} \\ p_{2} \\ p_{2} \\ p_{2} \\ p_{1} \\ p_{1} \\ p_{1} \\ p_{1} \\ p_{1} \\ p_{2} \\ p_{1} \\ p$							N ² ,P 172.2	
$ \begin{bmatrix} Pt(\eta^{3}-C_{12}H_{3}F_{6}N_{5}), & \frac{tr}{P_{1}} & 9.142 & 103.04 \\ P_{1} & 10.264 & 103.07 \\ 2 & 16.507 & 99.68 & 0.075 & N^{2} 2.01 & N^{3}A^{3} 78.9 \\ 0.075 & P 2.257 & N^{3}P 99.5 \\ N^{3} 2.015 & N^{1}P 102.7 \\ P 2.257 & N^{3}P 99.5 \\ N^{3} 2.015 & N^{1}P 102.7 \\ N^{1}N^{2} 79.2 & N^{3}P 99.5 \\ N^{2} 2.017 & N^{1}N^{3} 79.3 & N^{3}P 10.5 \\ N^{2} 2.017 & N^{1}N^{3} 79.3 & N^{3}P 10.6 \\ N^{2} 2.25H_{19}N_{5}[(PFh_{3})], & P_{2_{1}/n} & 8.323(0) \\ (at 223 k) & 2 & 14.258(0) & 97.75(0) \\ C_{29}H_{33}N_7[(PFh_{3})], & \frac{tr}{P_{1}} & 11.926(0) & 97.75(0) \\ C_{12}C_{12}C_{12} & 2 & 14.258(0) & 95.73(0) & 0.070 & N^{1} 2.012 & N^{2}N^{3} 78.9 & N^{3}P 104.6 \\ N^{2}P 176.2 & N^{3}P 176.2 & N^{3}P 176.2 \\ C_{29}H_{33}N_7[(PFh_{3})], & \frac{tr}{P_{1}} & 11.926(0) & 97.75(0) \\ CHC_{12}C_{2} & 2 & 14.258(0) & 95.73(0) & 0.070 & N^{1} 2.012 & N^{2}N^{3} 78.9 & N^{1}N^{3} 157.7 \\ C_{29}H_{33}N_7[(PFh_{3})], & P_{1} & 11.005(0) & 75.50(0) & PtN_{3}P & N^{1} 2.012 & N^{2}N^{3} 78.9 & N^{1}N^{3} 2009 & N^{1}N^{3} 157.7 \\ C_{30}H_{33}N_5[(PFh_{3})] & P_{1} & 12.424(0) & 82.31(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.010 & N^{1}N^{3} 157.5 \\ C_{12}H_{4}F_{6}N_7O((PFh_{3})] & P_{1} & 11.530(0) & 87.08(0) & 0.067 & P 2.243 & N^{3}P 102.3 \\ N^{2}P 176. & N^{2}N^{3} 78.5 & N^{2}P 173.1 \\ N^{1}N^{3} 2700 & N^{1}N^{3} 157.5 \\ C_{12}H_{4}F_{6}N_7O((PFh_{3})] & P_{1} & 11.542(0) & 8333(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.010 & N^{1}N^{3} 157.5 \\ C_{18}H_{22}N_7O((PFh_{3})] & P_{1} & 11.542(0) & 8333(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.008 & N^{1}N^{3} 78.5 & N^{2}P 175.7 \\ C_{18}H_{22}N_7O((PFh_{3})] & P_{1} & 11.542(0) & 8333(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.008 & N^{1}N^{3} 97.6 & N^{2}P 175.7 \\ N^{1}N^{3} 2.008 & N^{1}N^{3} 156.9 & N^{2}P 175.7 \\ N^{1}N^{3} 2.008 & N^{1}N^{3} 165.9 & N^{2}P 175.7 \\ C_{18}H_{22}N_7O((PFh_{3})] & P_{1} & 11.542(0) & 80.23(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.008 & N^{1}N^{3} 98.6 & N^{2}P 175.7 \\ C_{18}H_{18}N_7O((PFh_{3})] & P_{1} & 12.567(0) & 114.69(0) & (N^{1}C_{2$							N ¹ ,N ² 79.0 ^c	
$ \begin{bmatrix} Pt(\eta^{3}-C_{13}H_{2}F_{6}N_{5}), & \Pi_{1} & P_{1} \\ P_{1} & 10.264 & 103.07 \\ 103.07 & (N^{1}C_{2}N^{2}C_{2}N^{3}) \\ 2 & 16.507 & 99.68 \\ 103.07 & (N^{1}C_{2}N^{2}C_{2}N^{3}) \\ 2 & 16.507 & 99.68 \\ 0.075 & P_{2.257} & N^{3}P_{10.27} \\ N^{2}P_{175.1} & N^{1}_{N}N^{2}P_{175.1} \\ N^{1}_{N}P_{175.1} & N^{1}_{N}N^{2}P_{175.1} \\ N^{1}_{N}P_{175.1} & N^{1}_{N}N^{3}P_{105.2} \\ N^{2}_{2}P_{175.1} & N^{1}_{N}N^{3}P_{105.2} \\ (at 223 k) & 4 & 33.868(0) \\ (at 223 k) & 2 & 19.257 \\ C_{29}H_{33}N_{7}(PPh_{3})], \\ C_{12}H_{4}C_{12} & T \\ C_{12}H_{4}S_{10} & 2 & 19.257 \\ C_{12}H_{13}N_{7}(PPh_{3})], \\ P_{1} & 11.926(0) & 97.75(0) \\ C_{14}C_{2N} & 2 & 14.258(0) & 95.73(0) \\ (n^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3}2.009 \\ (n^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3}2.009 \\ (n^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3}2.009 \\ N^{1}P_{1022} & N^{2}P_{1022} \\ N^{1}N^{3}157.7 \\ C_{12}H_{4}S_{10} & 2 & 14.258(0) & 95.73(0) \\ (at 223 k) & 2 & 15.305(0) & 87.08(0) \\ (n^{1}C_{2}N^{2}C_{2}N^{3}) & N^{1}2.009 \\ N^{1}P_{2.244} & N^{3}P_{3}78.c \\ N^{1}N^{3}P_{3}78.c \\ N^{1}P_{2.015} & N^{1}N^{3}P_{3}78.c \\ N^{1}N^{3}P_{3}78.c \\ N^{1}N^{2}P_{11} & 1.542(0) \\ (at 223 k) & 2 & 16.515(0) & 87.08(0) \\ (n^{1}C_{2}N^{2}C_{2}N^{3}) & N^{1}2.005 \\ P_{12}A_{3} & N^{3}P_{102.3} \\ N^{2}P_{175.7} \\ N^{1}P_{2.243} & N^{3}P_{102.3} \\ N^{2}P_{175.7} \\ N^{1}N^{2}R_{3}C^{2} \\ (at 223 k) & 2 & 16.515(0) & 89.27(0) \\ (n^{1}C_{2}N^{2}C_{2}N^{3}) & N^{1}2.015 \\ N^{2}N^{2}N^{3}78.c^{c} \\ N^{2}P_{175.7} \\ N^{1}N^{2}R_{3}C^{c} \\ N^{1}P_{17.7} \\ (at 223 k) & 2 & 16.515(0) & 89.27(0) \\ (n^{1}C_{2}N^{2}C_{2}N^{3}) \\ (n^{1}C_{2}N^{2}C_{2}N^{3}) \\ N^{1}2.005 \\ N^{1}P_{2.265} \\ N^{3}P_{105.9} \\ N^{1}P_{2.015} \\ N^{1}N^{3}P_{105.9} \\ N^{1}P_{2.026} \\ N^{1}N^{3}P_{105.9} \\ N^{1}N^{3}P_{105.9} \\ N^{1}P_{2.266} \\ N^{1}N^{3}P_{105.9} \\ N^{1}N^{3}P_{105.9} \\ N^{1}P_{2.266} \\ N^{1}N^{3}P_{102.4} \\ N^{1}N^{3}P_{105.9} \\ N^{1}P_{2.266} \\ N^{1}N^{3}P_{102.4} \\ N^{1}N^{3}$		tr	9 1 4 2	103.04	P+N_P	$N^{1} 2.011$	N ² ,N ³ 78.9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$[Pt\{\eta^3-C_{13}H_5F_6N_5\}.$		10 264	103.04	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	$N^2 2.024$	N ¹ ,N ³ 157.8	[10]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(PPh ₃)]	P1 2	16 507	99.68	$(10 C_2 10 C_2 10)$	$N^3 2.015$	N ¹ ,P 102.7	
$ \begin{array}{ccccc} & & & & & & & & & & & & & & & & &$		2	10.007	<i>))</i> .00	0.075	P 2.257	N_{2}^{3} , P 99.5	
$ \begin{bmatrix} Pt n^{3} - m & 6.068(0) \\ 3C_{25}H_{19}N_{8}^{1}(PPh_{3})! & P_{2_{1}/n} & 8.323(0) \\ 3C_{23}C_{1}C_{23}H_{2}^{1}(n) & S_{23}(0) \\ (at 223 k) & P_{2_{1}/n}^{1}(n) & S_{32}(0) \\ (at 223 k) & P_{2_{1}/n}^{1}(n) & S_{32}(0) \\ (at 223 k) & P_{2_{1}/n}^{1}(n) & S_{32}(0) \\ (at 223 k) & P_{1}^{1}(n) \\ C_{29}H_{33}N_{7}^{1}(PPh_{3})! & \frac{tr}{1} & 11.926(0) & 97.75(0) \\ C_{29}H_{33}N_{7}^{1}(PPh_{3})! & P_{1}^{1}(n) \\ (at 223 k) & 2 & 14.258(0) \\ (at 223 k) & 2 & 14.258(0) \\ (at 223 k) & 2 & 14.258(0) \\ (at 223 k) & 2 & 15.305(0) \\ (at 223 k) & 2 & 15.305(0) \\ C_{12}H_{6}F_{6}N_{7}O(PPh_{3})! & P_{1}^{1}(n) \\ (at 223 k) & 2 & 15.305(0) \\ (at 223 k) & 2 & 15.515(0) \\ (at 223 k) & 4 & 15.657(0) \\ (at 223 k) & 8 & 10.313(0) \\ (at 223 k$							N ² ,P 175.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2					1	N^{1}, N^{2} 79.2 °	
$ \begin{array}{c} C_{25}H_{19}(\mathbf{N}_{5}[(P^{1}\mathbf{N}_{3}])_{\mathbf{C}_{12}C_{12}} & \mathbf{P}_{21}/n & \mathbf{8.323(0)} \\ \mathbf{3C}(\mathbf{H}_{2}C_{12} & 4 & \mathbf{33.868(0)} & \mathbf{90.86(0)} & (\mathbf{N}^{1}\mathbf{C}_{2}\mathbf{N}^{2}\mathbf{C}_{2}\mathbf{N}^{3}) & \mathbf{N}^{1} 2.007 & \mathbf{N}^{1}, \mathbf{N}^{9} 6.9 & [11] \\ \mathbf{N}^{1} 2 23 \mathbf{k} & \mathbf{N}^{1} 2.017 & \mathbf{N}^{1}, \mathbf{N}^{2} 78.9 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.9 & \mathbf{c} & \mathbf{N}^{1}, \mathbf{N}^{2} 78.9 & \mathbf{c} \\ \mathbf{C}_{29}H_{33}\mathbf{N}_{3}(\mathbf{P}\mathbf{P}\mathbf{h}_{3})_{\mathbf{P}} & \mathbf{P}_{1} & \mathbf{13.052(0)} & \mathbf{102.93(0)} & \mathbf{N}^{1}\mathbf{C}_{2}\mathbf{N}^{2}\mathbf{C}_{2}\mathbf{N}^{3} & \mathbf{N}^{3} 2.009 & \mathbf{N}^{1}, \mathbf{P}_{9} 9.9 & \mathbf{N}^{1} 2.022 & \mathbf{N}^{2}, \mathbf{N}^{3} 78.9 & \mathbf{c} \\ \mathbf{C}_{29}H_{33}\mathbf{N}_{3}(\mathbf{P}\mathbf{P}\mathbf{h}_{3})_{\mathbf{P}} & 2 & \mathbf{14.258(0)} & \mathbf{95.73(0)} & 0.070 & \mathbf{N}^{3} 2.009 & \mathbf{N}^{1}, \mathbf{P}_{9} 9.9 & \mathbf{N}^{1} \mathbf{N}^{3} 157.7 & \mathbf{N}^{1}, \mathbf{N}^{2} 78.9 & \mathbf{c} \\ \mathbf{C}_{30}H_{35}\mathbf{N}_{5}(\mathbf{PPh}_{3})_{\mathbf{P}} & \mathbf{P}_{1} & \mathbf{12.424(0)} & \mathbf{82.31(0)} & (\mathbf{N}^{1}\mathbf{C}_{2}\mathbf{N}^{2}\mathbf{C}_{2}\mathbf{N}^{3}) & \mathbf{N}^{3} 2.009 & \mathbf{N}^{1}, \mathbf{N}^{9} 79.1 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 79.1 & \mathbf{c} & \mathbf{N}^{1}, \mathbf{N}^{2} 78.0 & \mathbf{c} \\ \mathbf{C}_{30}H_{35}\mathbf{N}_{5}(\mathbf{PPh}_{3})_{\mathbf{P}} & \mathbf{P}_{1} & \mathbf{12.424(0)} & \mathbf{82.31(0)} & (\mathbf{N}^{1}\mathbf{C}_{2}\mathbf{N}^{2}\mathbf{C}_{2}\mathbf{N}^{3}) & \mathbf{N}^{3} 2.002 & \mathbf{N}^{1}, \mathbf{N}^{9} 78.0 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.0 & \mathbf{c} & \mathbf{N}^{1}, \mathbf{N}^{2} 78.0 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.0 & \mathbf{c} & \mathbf{N}^{1}, \mathbf{N}^{2} 78.0 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.0 & \mathbf{c} & \mathbf{N}^{1}, \mathbf{N}^{3} 78.0 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.0 & \mathbf{c} & \mathbf{N}^{1}, \mathbf{N}^{3} 78.4 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.0 & \mathbf{c} & \mathbf{N}^{1}, \mathbf{N}^{3} 78.4 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.4 & \mathbf{c} & \mathbf{N}^{1}, \mathbf{N}^{3} 78.4 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.4 & \mathbf{c} & \mathbf{N}^{1}, \mathbf{N}^{3} 78.4 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.4 & \mathbf{c} & \mathbf{N}^{3}, \mathbf{N}^{3} 105.9 & \mathbf{N}^{2}, \mathbf{N}^{3} 78.4 & \mathbf{c} \\ \mathbf{N}^{1}, \mathbf{N}^{2} 78.4 & \mathbf{c} & \mathbf{N}^{3}, \mathbf{N}^{3} 710.9 & \mathbf{N}^{3}, \mathbf{N}^{3}, \mathbf{N}^{3} 710$	[Pt{η ³ -	m	6.068(0)		PtN ₃ P	$N^{1} 2.015$	N^2 , N^3 79.3 c	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{25}H_{19}N_5$ (PPh ₃)].	$P2_1/n$	8.323(0)	90.86(0)	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	$N^2 2.017$	N^{1}, N^{3} 158.4	[11]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3CH_2Cl_2$	4	33.868(0)	()	0.070	N ³ 1.996	N ¹ ,P 96.9	
$ \begin{bmatrix} Pt[\eta^{3}- & rt & 11.926(0) & 97.75(0) \\ C_{29}H_{33}N_7[(PPh_3]]. & P1 & 13.052(0) & 102.93(0) \\ C_{12}C_{12} & 2 & 14.258(0) & 95.73(0) & 0.070 & PtN_3P & N^1 2.012 & N^2 N^3 78.9 c \\ (at 223 k) & 2 & 14.258(0) & 95.73(0) & 0.070 & P2.244 & N^3 P9.9 & [11] \\ P1 & 11.005(0) & 75.50(0) & PtN_3P & N^1 2.009 & N^1 P9.9 \\ C_{30}H_{33}N_5](PPh_3)] & P1 & 12.424(0) & 82.31(0) & (N^1C_2N^2C_2N^3) & N^2 2.022 & N^1 N^3 157.5 \\ C_{30}H_{33}N_5](PPh_3)] & P1 & 12.424(0) & 82.31(0) & (N^1C_2N^2C_2N^3) & N^2 2.022 & N^1 N^3 157.5 \\ (at 223 k) & 2 & 15.305(0) & 87.08(0) & 0.067 & P 2.243 & N^3 P.102.3 \\ C_{12}H_6F_6N_7O[(PPh_3)] & P1 & 11.542(0) & 83.35(0) & (N^1C_2N^2C_2N^3) & N^3 2.010 & N^1 P.99.4 \\ (at 223 k) & 2 & 16.515(0) & 89.27(0) & 0.077 & P 2.243 & N^3 P.105.9 \\ (at 223 k) & 2 & 16.515(0) & 89.27(0) & 0.077 & P 2.263 & N^1 N^3 156.4 \\ (at 223 k) & 4 & 15.657(0) & 114.69(0) & (N^1C_2N^2C_2N^3) & N^3 2.008 & N^1 P.97.6 \\ C_{18}H_{33}N_7O[(PPh_3)] & P2_1/n & 17.428(0) \\ (at 223 k) & 4 & 15.657(0) & 114.69(0) & (N^1C_2N^2C_2N^3) & N^3 2.008 & N^1 P.97.6 \\ C_{18}H_{33}N_7O[(PPh_3)] & P2_1/n & 17.428(0) \\ (at 223 k) & 4 & 15.657(0) & 101.98(0) & (N^1C_2N^2C_2N^3) & N^3 2.008 & N^1 P.98.4 \\ P 2.256 & N^3 P.102.4 & N^3 156.3 \\ P 2.263 & N^3 P.102.4 & N^3 156.3 \\ P 2.269 & N^3 P.102.4 & P 2.269 & N^3 P.102.4 \\ \end{bmatrix}$	(at 223 k)		()			P 2.253	N^{3} , P 104.6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							N ² ,P 176.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[D+(3					N1 2 012	N^{2} , N^{2} 78.9 °	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		tr	11.926(0)	97.75(0)	PtN ₃ P	$N^{2} 2.012$ $N^{2} 2.026$	N ⁻ ,N ² 78.9 ² NI NI 157 7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH_{2}	P1	13.052(0)	102.93(0)	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	$N^{3} 2.030$	N ¹ P 99 9	[11]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(at 223 k)	2	14.258(0)	95.73(0)	0.070	P 2 244	N ³ P 102 2	
$ \begin{bmatrix} Pt[\eta^{3} - & tr & 11.005(0) & 75.50(0) & PtN_3P \\ C_{30}H_{35}N_5](PPh_3)] & P_1^{-} & 12.424(0) & 82.31(0) \\ 2 & 15.305(0) & 87.08(0) & 0.067 & N^2 2.022 & N^1,N^3 157.5 \\ N^3 2.010 & N^1,P 99.4 & N^1,N^2 78.0^c \\ N^2,P 178.4 & N^1,N^2 78.0^c \\ N^2,P 178.4 & N^1,N^2 78.0^c \\ N^1,N^2 78.0^c & N^2,P 178.4 \\ N^1,N^2 78.0^c & N^1,N^3 156.4 \\ (at 223 k) & 2 & 16.515(0) & 89.27(0) & 0.077 & P 2.263 & N^3,P 102.3 \\ N^2,P 175.7 & N^1,N^2 78.0^c \\ N^1,N^2 78.0^c & N^2,P 175.7 \\ N^1,N^2 78.4^c & N^1,N^2 78.4^c \\ N^1,N^2 78.4^c & N^1,N^2 78.4^c \\ N^1,N^2 78.4^c & N^1,N^2 78.4^c \\ C_{18}H_{23}N_7O)(PPh_3)] & P_{21}/n & 17.428(0) \\ (at 223 k) & 4 & 15.657(0) & 114.69(0) & PtN_3P \\ C_{22}H_{15}N_7O)(PPh_3)] & C_{2/6} & 30.842(0) \\ C_{18}H_{23}N_7O)(PPh_3)] & C_{2/6} & 30.842(0) \\ C_{22}H_{15}N_7O)(PPh_3)] & C_{2/6} & 30.842(0) \\ C_{22}H_{15}N_7O)(PPh_3) & C_{2/6} & 30.842(0) \\ C_{22}H_{15}N_7O)(PPh$	(at 225 K)					1 2.244	N ² P 177 1	
$ \begin{bmatrix} Pt[\eta^{3-} & tr & 11.005(0) & 75.50(0) & PtN_3P & N^1 2.009 & N^2 N^3 78.8 c \\ C_{30}H_{35}N_5](PPh_3)] & P_1 & 12.424(0) & 82.31(0) & (N^1C_2N^2C_2N^3) & N^2 2.022 & N^1 N^3 157.5 \\ (at 223 k) & 2 & 15.305(0) & 87.08(0) & 0.067 & P 2.243 & N^3 P 102.3 \\ & & & & & & & & & & & & & & & & & & $							$N^{1} N^{2} 79 1^{c}$	
$ \begin{bmatrix} Pt[\eta^{3-} & tr & 11.005(0) & 75.50(0) & PtN_{3}P & N^{2} 2.022 & N^{1}N^{3} 157.5 \\ C_{30}H_{35}N_{5}](PPh_{3})] & P_{1}^{1} & 12.424(0) & 82.31(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.010 & N^{1}P 99.4 \\ (at 223 k) & 2 & 15.305(0) & 87.08(0) & 0.067 & P 2.243 & N^{3}P 102.3 \\ N^{1}N^{2} 78.0 & N^{1}N^{3} 156.4 \\ C_{12}H_{6}F_{6}N_{7}O](PPh_{3})] & P_{1}^{1} & 11.542(0) & 83.35(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.035 & N^{1}P 97.6 & [12] \\ (at 223 k) & 2 & 16.515(0) & 89.27(0) & 0.077 & P 2.263 & N^{3}P 105.9 \\ C_{18}H_{23}N_{7}O](PPh_{3})] & P_{2}^{1}/n & 17.428(0) & 114.69(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.008 & N^{1}P 98.4 \\ (at 223 k) & 4 & 15.657(0) & 101.98(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.008 & N^{1}P 98.4 \\ C_{22}H_{15}N_{7}O](PPh_{3})] & C_{2}/6 & 30.842(0) & 101.98(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.012 & N^{1}N^{3} 156.3 \\ C_{22}H_{15}N_{7}O](PPh_{3})] & C_{2}/6 & 30.842(0) & 101.98(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) & N^{3} 2.012 & N^{1}P 101.2 \\ (at 223 k) & 8 & 10.313(0) & 0.072 & P 2.269 & N^{3}P 102.4 \end{bmatrix}$		1.				N^{1} 2.009	$N^2 \cdot N^3 \cdot 78.8^{\circ}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[Pt{ŋ ³ -	tr	11.005(0)	75.50(0)	PtN_3P	$N^2 2.022$	$N^{1}.N^{3}$ 157.5	[44]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{30}H_{35}N_5$ (PPh ₃)]	P1	12.424(0)	82.31(0)	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	$N^3 2.010$	N ¹ ,P 99.4	[11]
$ \begin{bmatrix} Pt[\eta^{3-} & tr & 7.952(0) & 76.83(0) \\ P_{12}H_{6}F_{6}N_{7}O](PPh_{3})] & P_{1} & 11.542(0) \\ (at 223 k) & 2 & 16.515(0) \end{bmatrix} \begin{bmatrix} PtN_{3}P \\ N^{1}C_{2}N^{2}C_{2}N^{3} \\ P_{1} & 11.542(0) \\ 2 & 16.515(0) \end{bmatrix} \begin{bmatrix} PtN_{3}P \\ N^{1}C_{2}N^{2}C_{2}N^{3} \\ 0.077 \end{bmatrix} \begin{bmatrix} N^{1}2.015 \\ N^{2}2.031 \\ N^{3}2.035 \\ P_{2.263} \end{bmatrix} \begin{bmatrix} N^{1}.P 97.6 \\ N^{2}.P 175.7 \\ N^{1}.N^{2} 78.4 \\ N^{1}.N^{2} 78.0 \\ N^{2}.2026 \\ N^{1}.N^{3} 156.9 \\ N^{2}.2026 \\ N^{1}.N^{3} 156.9 \\ N^{2}.216 \\ N^{2}.P 173.9 \\ N^{1}.N^{2} 78.0 \\ N^{1}.N^{2} 2.033 \\ N^{1}.N^{3} 156.3 \\ N^{1}.N^{3} 156.3 \\ N^{3}.2012 \\ N^{1}.P 101.2 \\ P.2.269 \\ N^{1}.P 101.2 \\ P.2.269 \\ N^{1}.P 101.4 \\ N^{1}.P 101.2 \\ P.2.269 \\ N^{1}.P 101.4 \\ N^{1}.P 101.2 \\ P.2.269 \\ N^{1}.P 101.2 \\ P.2.269 \\ N^{1}.P 101.2 \\ N^{1}.P 101.2 \\ P.2.26 \\ N^{1}.P 101.2 \\ N^{1}.P 101.2 \\ P.2.26 \\ N^{1}.P 101.2 \\ N^{1}.P 101.2 \\ P.2.26 \\ N^{1}.P 101.2 \\ P.2.26 \\ N^{1}.P 101.2 \\ N^{1}.P 101.2 \\ P.2.26 \\ N^{1}.P 101.2 \\ P.2.26 \\ N^{1}.P 101.2 \\ N^{1}.P 101.2 \\ P.2.26 \\ N^{1}.P 101.2 \\ P.2.26 \\ N^{1}.P 10.2 \\ N^{1}.P 101.2 \\ N^{1}.P 101.2 \\ N^{1}.P 101.2 \\ N^{1}.P 101.2 \\ N^{1}.P 10.2 \\ N^{1}.P 101.2 \\ N^{1}.P 10.2 $	(at 223 k)	2	15.305(0)	87.08(0)	0.067	P 2.243	N ³ ,P 102.3	
$ \begin{bmatrix} Pt[\eta^{3-} & tr & 7.952(0) & 76.83(0) \\ P_{12}H_{6}F_{6}N_{7}O](PPh_{3})] \\ (at 223 k) & 2 & 16.515(0) \\ (at 223 k) & 2 & 16.515(0) \\ P_{1} & 11.542(0) & 83.35(0) \\ 2 & 16.515(0) & 89.27(0) \\ P_{1} & 11.542(0) \\ 89.27(0) \\ P_{2}N^{2}C_{2}N^{3}) \\ P_{2}N^{2}D^{2}D^{2}D^{2}D^{2}D^{2}D^{2}D^{2}D$							N ² ,P 178.4	
$ \begin{bmatrix} Pt[\eta^{3}- & tr & 7.952(0) & 76.83(0) & PtN_{3}P \\ C_{12}H_{6}F_{6}N_{7}O](PPh_{3})] & P_{1} & 11.542(0) & 83.35(0) \\ (at 223 k) & 2 & 16.515(0) & 89.27(0) & 0.077 & PtN_{3}P \\ 2 & 16.515(0) & 89.27(0) & 0.077 & PtN_{3}P \\ 0.077 & PtN_{3}P & N^{3} 2.035 & N^{1}P 97.6 \\ P2.263 & N^{3}P 105.9 \\ N^{2}P 175.7 & N^{1}N^{2} 78.4 \\ N^{3} 2.035 & N^{3}P 105.9 \\ N^{2}P 175.7 & N^{1}N^{2} 78.4 \\ N^{3} 2.036 & N^{3}P 105.9 \\ N^{2}P 175.7 & N^{1}N^{2} 78.4 \\ N^{2} 2.026 & N^{1}N^{3} 156.9 \\ P2.266 & N^{3}P 104.6 \\ N^{2}P 173.9 & N^{1}N^{2} 78.0 \\ N^{2} 2.026 & N^{3}P 104.6 \\ N^{2}P 173.9 & N^{1}N^{2} 78.0 \\ PtN_{3}P & N^{1} 2.006 & N^{2}N^{3} 78.5 \\ P2.256 & N^{3}P 104.6 \\ N^{2}P 173.9 & N^{1}N^{2} 78.0 \\ N^{2} C_{22}H_{15}N_{7}O](PPh_{3})] & C2/6 & 30.842(0) \\ (at 223 k) & 8 & 10.313(0) & 0.072 & N^{1} 2.006 \\ N^{2} 2.033 & N^{1}N^{3} 156.3 \\ N^{3} 2.012 & N^{1}P 101.2 \\ P2.269 & N^{3}P 102.4 \\ \end{bmatrix} $ $ \begin{bmatrix} Pt(\eta^{3}- & m & 24.786(0) \\ (at 223 k) & 8 & 10.313(0) & 0.072 & P^{2}2.033 \\ 0.072 & P^{2}2.033 & N^{1}N^{3} 156.3 \\ N^{3} 2.012 & N^{1}P 101.2 \\ P2.269 & N^{3}P 102.4 \\ \end{bmatrix} $ $ \begin{bmatrix} Pt(\eta^{3}- & m & 24.786(0) \\ (n^{1}C_{2}N^{2}C_{2}N^{3}) \\ 0.072 & P2.269 & N^{3}P 102.4 \\ \end{bmatrix} $ $ \begin{bmatrix} Pt(\eta^{3}- & m & 24.786(0) \\ N^{2} 2.033 & N^{1}N^{3} 156.3 \\ N^{3} 2.012 & N^{1}P 101.2 \\ P2.269 & N^{3}P 102.4 \\ \end{bmatrix} $							N ¹ ,N ² 78.0 ^c	
$ \begin{bmatrix} Pt(\eta^{3} - m & 13.371(0) \\ (at 223 k) & 2 & 16.515(0) \\ (at 223 k) & 4 & 15.657(0) \\ (at 223 k) & $	$[D_{+}]_{m}^{3}$	tr	7 952(0)	76 83(0)	P+N_P	$N^{1} 2.015$	N ² ,N ³ 78.4 ^c	
$\begin{array}{c} [12] (at 223 k) \\ (at 22$	$[\Gamma \iota_{\{1\}}] = C_{10} H_{c} F_{c} N_{c} O(PPb_{c})$		7.932(0) 11 542(0)	83 35(0)	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	$N^2 2.031$	N ¹ ,N ³ 156.4	[12]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(at 223 k)	P1 2	11.542(0) 16 515(0)	89 27(0)	$(10 C_2 10 C_2 10)$ 0 077	$N^3 2.035$	N ¹ ,P 97.6	
$ \begin{bmatrix} Pt\{\eta^{3}- & m & 13.371(0) \\ C_{18}H_{23}N_{7}O\}(PPh_{3})] \\ (at 223 k) & 4 & 15.657(0) \end{bmatrix} \begin{bmatrix} PtN_{3}P \\ N^{1}C_{2}N^{2}C_{2}N^{3} \\ 4 & 15.657(0) \end{bmatrix} \begin{bmatrix} PtN_{3}P \\ N^{1}C_{2}N^{2}C_{2}N^{3} \\ 0.081 \end{bmatrix} \begin{bmatrix} N^{1}2.016 \\ N^{2}2.026 \\ N^{3}2.008 \\ P 2.256 \\ N^{3}.P 104.6 \\ N^{2}.P 173.9 \\ N^{1}.N^{2} 78.0 \\ N^{1}.N^{1} S.00 \\ N^{1}.N^{1} S.0$	(ut 220 K)	2	10.010(0)	0).27(0)	0.077	P 2.263	N_{2}^{3} , P 105.9	
$ \begin{bmatrix} Pt\{\eta^{3-} & m & 13.371(0) \\ C_{18}H_{23}N_{7}O\}(PPh_{3})] & P2_{1}/n & 17.428(0) \\ (at 223 k) & 4 & 15.657(0) \end{bmatrix} 114.69(0) & PtN_{3}P & N^{1} 2.016 & N^{2},N^{3} 78.5 c \\ N^{2} 2.026 & N^{1},N^{3} 156.9 \\ 0.081 & 0.081 & P2.256 & N^{3},P 104.6 \\ N^{2},P 173.9 & N^{1},N^{2} 78.0 c \\ N^{2},2133 & N^{1},N^{3} 156.3 \\ C_{22}H_{15}N_{7}O\}(PPh_{3})] & C2/6 & 30.842(0) \\ (at 223 k) & 8 & 10.313(0) \end{bmatrix} 101.98(0) & PtN_{3}P & N^{1} 2.006 & N^{2},N^{3} 78.3 c \\ N^{2} 2.033 & N^{1},N^{3} 156.3 \\ N^{3} 2.012 & N^{1},P 101.2 \\ P 2.269 & N^{3},P 102.4 \end{bmatrix} $ [12]							N ² ,P 175.7	
$ \begin{bmatrix} Pt\{\eta^{3-} & m & 13.371(0) \\ C_{18}H_{23}N_{7}O\}(PPh_{3})] & P2_{1}/n & 17.428(0) \\ (at 223 k) & 4 & 15.657(0) \end{bmatrix} 114.69(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) \\ (at 223 k) & 4 & 15.657(0) \end{bmatrix} \begin{bmatrix} PtN_{3}P & N^{1} 2.016 & N^{2},N^{3} 78.5 \ C_{22}N^{3} \\ 0.081 & N^{2} 2.026 & N^{1},N^{3} 156.9 \\ P 2.256 & N^{3},P 104.6 \\ N^{2},P 173.9 & N^{1},N^{2} 78.0 \ C_{22}H_{15}N_{7}O\}(PPh_{3})] \\ C_{22}H_{15}N_{7}O}(PPh_{3})] & C_{2}/6 & 30.842(0) \\ (at 223 k) & 8 & 10.313(0) \end{bmatrix} \begin{bmatrix} PtN_{3}P & N^{1} 2.006 & N^{2},N^{3} 78.3 \ C_{22}N^{3} \\ N^{2} 2.033 & N^{1},N^{3} 156.3 \\ N^{3} 2.012 & N^{1},P 101.2 \\ P 2.269 & N^{3},P 102.4 \end{bmatrix} \begin{bmatrix} 12 \end{bmatrix} $						1	N^{1}, N^{2} 78.4 ^c	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[Pt{n ³ -	m	13.371(0)		PtN ₃ P	$N^{+} 2.016$	N^{2} , N^{3} 78.5 °	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{18}H_{23}N_7O$ (PPh ₃)	$P2_1/n$	17.428(0)	114.69(0)	$(N^{1}C_{2}N^{2}C_{2}N^{3})$	$N^2 2.026$	N^{1}, N^{3} 156.9	[12]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(at 223 k)	4	15.657(0)	. ,	0.081	Nº 2.008	N ¹ ,P 98.4	
$ \begin{bmatrix} Pt\{\eta^{3}- m & 24.786(0) & PtN_{3}P & N^{1} 2.006 & N^{2} N^{3} 78.3 \text{ c} \\ C_{22}H_{15}N_{7}O\}(PPh_{3})\end{bmatrix} & C2/6 & 30.842(0) & 101.98(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) \\ (at 223 \text{ k}) & 8 & 10.313(0) & 0.072 & P 2.269 & N^{3} P 102.4 \end{bmatrix} $ $ \begin{bmatrix} N, F 173.9 \\ N^{1}, N^{2} 78.0 \text{ c} \\ N^{2} 2.033 & N^{1}, N^{3} 156.3 \\ N^{3} 2.012 & N^{1}, P 101.2 \\ P 2.269 & N^{3}, P 102.4 \end{bmatrix} $ $ \begin{bmatrix} 12 \\ P 2.269 & N^{3}, P 102.4 \end{bmatrix} $						P 2.256	N°,P 104.0 N ² D 172.0	
$ \begin{bmatrix} Pt\{\eta^{3}- & m & 24.786(0) & PtN_{3}P & N^{1} 2.006 & N^{2},N^{3} 78.3 \text{ c} \\ C_{22}H_{15}N_{7}O\}(PPh_{3}) \end{bmatrix} & C2/6 & 30.842(0) & 101.98(0) & (N^{1}C_{2}N^{2}C_{2}N^{3}) \\ (at 223 \text{ k}) & 8 & 10.313(0) & 0.072 & P 2.269 & N^{3},P 102.4 \end{bmatrix} $ $ \begin{bmatrix} N^{1}, N^{1}, N^{2}, N^{2}, N^{2}, N^{2}, N^{3}, N^{3$							11, 17, 173.9 N1 N12 70 0 C	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						N1 2 004	N ,1N /0.0 °	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[Pt{η ³ -	m	24.786(0)		PtN ₃ P	$N^2 2.000$	N ¹ N ³ 156 2	
(at 223 k) 8 10.313(0) 0.072 $P 2.269 N_3^3$, P 102.4	$C_{22}H_{15}N_7O$ }(PPh ₃)]	C2/6	30.842(0)	101.98(0)	$(N^1C_2N^2C_2N^3)$	$N^{3} 2.033$	N ¹ P 101 2	[12]
	(at 223 k)	8	10.313(0)		0.072	P 2 269	N^{3} P 102 4	
N ² .P 177 8						1 2.207	N ² .P 177.8	

Table 1. Structural data for Pt (η^3 -N¹N²N³)(PR₃) derivatives ^a.

Pt ($m^3 - N^1 N^2 N^3$)(PR-)	Crystal cl. Space gr.	a [Å] b [Å]	α [°] β [°]	Chromophore (Chelate Rings)	Pt-L ^b	L-Pt-L ^b	Ref.
() 10 10 10 /(1 K3)	Z	c [Å]	γ [°]	$ au_4$		[]	
$[Pt{\eta^3}-C_{17}H_{21}N_7}(PPh_3)] \\ (at 223 k)$	tr_ P1 4	15.098(0) 16.025(0) 17.125(0)	114.45(0) 94.20(0) 112.02(0)	$\begin{array}{c} PtN_{3}P\\ (N^{1}C_{2}N^{2}C_{2}N^{3})\\ 0.078\end{array}$	N ¹ 2.022 N ² 2.021 N ³ 2.010 P 2.263	N ¹ ,N ² 78.5 ^c N ² ,N ³ 78.7 ^c N ¹ ,N ³ 157.0 N ¹ ,P 101.0 N ³ ,P 101.9 N ² ,P 174.8	[12]
[Pt{η ³ - C ₁₁ H ₃ F ₆ N ₇ }(PPh ₃)] (at 223 k)	m P2 ₁ /n 4	17.477(0) 7.859(0) 22.016(0)	112.64(0)	$\begin{array}{c} PtN_{3}P\\ (N^{1}C_{2}N^{2}C_{2}N^{3})\\ 0.076\end{array}$	N ¹ 2.027 N ² 2.037 N ³ 2.012 P 2.275	N ¹ ,N ² 78.3 ° N ² ,N ³ 78.5 ° N ¹ ,N ³ 156.8 N ¹ ,P 105.9 N ³ ,P 97.7 N ² ,P 175.7 N ¹ ,N ² 79.6 °	[12]
[Pt{η ³ - C ₁₅ H ₁₁ N ₃ }(PPh ₃)]. 2SO ₃ CF ₃ ^e (at 173 k)	tr P1 4	9.054(7) 19.936(14) 22.196(16)	111.04(1) 99.18(1) 99.74(1)	$\begin{array}{c} PtN_{3}P\\ (N^{1}C_{2}N^{2}C_{2}N^{3})\\ 0.070\\ PtN_{3}P\\ (N^{1}C_{2}N^{2}C_{2}N^{3})\\ 0.082 \end{array}$	$\begin{array}{c} N^1 \ 2.043 \\ N^2 \ 1.978 \\ N^3 \ 2.052 \\ P \ 2.276 \\ N^1 \ 2.057 \\ N^2 \ 1.975 \\ N^3 \ 2.040 \\ P \ 2.288 \end{array}$	N ² ,N ³ 80.0 ° N ¹ ,N ³ 159.2 N ¹ ,P 101.8 N ² ,P 175.4 N ¹ ,N ² 79.9 ° N ¹ ,N ³ 79.3 ° N ¹ ,N ³ 158.5 N ¹ ,P 103.2 N ³ ,P 98.1	[13]
$[Pt\{\eta^3-C_{11}H_3F_6N_7\}.\\ \{P(CH_3)Ph_2\}]\\ (at 223 \ k)$	tr P1 2	7.892(0) 10.614(0) 16.050(0)	90.75(0) 97.77(0) 108.22(0)	$\begin{array}{c} PtN_{3}P\\ (N^{1}C_{2}N^{2}C_{2}N^{3})\\ 0.068\end{array}$	N ¹ 2.005 N ² 2.032 N ³ 2.006 P 2.256	N ² ,P 172.0 N ¹ ,N ² 78.6 ^c N ² ,N ³ 79.2 ^c N ¹ ,N ³ 157.7 N ¹ ,P 100.0 N ³ ,P 102.2 N ² ,P 177.9	[14]
$\begin{array}{c} [Pt\{\eta^{3}\text{-}\\ C_{15}H_{11}N_{3}\}\{P(\eta^{1}\text{-}\\ C_{14}H_{19}O_{5})Ph_{2}\}].\\ 2SO_{3}CF_{3}.2Me_{2}CO\\ (at\ 223\ k)\end{array}$	m C2/c 4	31.541(4) 17.658(4) 24.072(4)	121.50(0)	$\begin{array}{c} PtN_{3}P\\ (N^{1}C_{2}N^{2}C_{2}N^{3})\\ 0.068\end{array}$	N ¹ 1.918(16) N ² 2.000(1) N ³ 2.097(10) P 2.287(3)	N ¹ ,N ² 79.8(5) ^c N ² ,N ³ 79.5(3) ^c N ¹ ,N ³ 158.7(5) N ¹ ,P 97.9(3) N ³ ,P 103.0(3) N ² ,P 176.6(3)	[15]
$[Pt{\eta^{3}}-C_{12}H_{10}N_{4}](PPh_{3})] \\ (at 100 k)$	or P2 ₁ 2 ₁ 2 ₁ 6	10.417(0) 13.328(0) 18.299(0)		$\begin{array}{c} PtN_{3}P\\ (N^{1}C_{2}N^{2}NC_{2}N^{3})\\ 0.034 \end{array}$	N ¹ 1.984 N ² 2.025 N ³ 1.964 P 2.255	N ¹ ,N ² 81.7 ^c N ² ,N ³ 89.6 ^d N ¹ ,N ³ 170.6 N ¹ ,P 93.0 N ³ ,P 96.3 N ² ,P 177.2	[16]

Table 1. Cont.

^a Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is e.s.d., and the second is the maximum deviation from the mean; ^b the chemical identity of a coordinate atom or ligand is specified in these columns; ^c five-membered metallocyclic ring; ^d six-membered metallocyclic ring; ^e there are two crystallographically independent molecules.

2.1. $Pt(\eta^3 - N^1 N^2 N^3)(PR_3)$ Type

There were fifteen complexes of such types which crystallized in three crystal classes: triclinic (nine examples), monoclinic (four examples), and orthorhombic (two examples) (see Table 1). In [Pt(η^3 -C₁₂H₁₀N₄)(PPh₃)] (at 100 K) (see Figure 1) [16], the tridentate ligand creates two dissimilar rings. Five- and six-membered complexes of the N¹C₂N²NC₂N³ type had values of respective angles of 81.7° (N¹-Pt-N²) and 89.6° (N²-Pt-N³). The values of the remaining L-Pt-L bind angles opened in the order 93.0° (N¹-Pt-P) < 96.3° (N³-Pt-P) <

 $170.6^{\circ} (N^{1}-Pt-N^{3}) < 177.2^{\circ} (N^{2}-Pt-P)$. The Pt-L bond distance elongated in the order 1.964 Å (Pt-N³, trans to N¹) < 1.984 Å (Pt-N¹) < 2.025 Å (Pt-N², trans to P) < 2.255 Å (Pt-P).

Figure 1. Structure of $[Pt(\eta^3-C_{12}H_{10}N_4)(PPh_3)]$ [16].

Table 2. 3	Structural	data for	Pt(n ³ ·	$-S^{1}S^{2}S^{3}$	(PPh ₃)	derivatives	a .
14010 2.	onucluiui	autu 101	1 (1)	000,	(1 1 1 1 3)	activatives	•

Pt(η ³ -S ¹ S ² S ³)(PPh ₃)	Crystal cl. Space gr. z	a [Å] b [Å] c [Å]	α [°] β [°] γ [°]	Chromophore (Chelate Rings) τ_4	Pt-L ^b [Å]	L-Pt-L ^b [°]	Ref.
$[Pt\{\eta^{3}-S(C_{6}H_{4})S(C_{6}H_{4})S\}.$ (PPh ₃)]	m P2 ₁ /n 4	8.990(1) 11.393(3) 25.587(3)	9093(1)	$\begin{array}{c} PtS_{3}P\\ (S^{1}C_{2}S^{2}C_{2}S^{3})\\ 0.051\end{array}$	S ¹ 2.312(1) S ² 2.287(1) S ³ 2.312(1) P 2.261(1)	S ¹ ,S ² 87.69(4) S ² ,S ³ 87.08(4) S ¹ ,S ³ 163.92(3) S ¹ ,P 94.40(1) S ³ ,P 90.76(4) S ² ,P 177.85(4)	[17]
$[Pt\{\eta^3-\\MeS(CH_2)_3S(CH_2)_3.\\SMe\}(PPh_3)]BF_4$	tr P1 2	13.266(3) 11.315(2) 13.970(2)	106.04(2) 84.95(2) 86.56(2)	PtS ₃ P ($S^1C_3S^2C_3S^3$) 0.035	S ¹ 2.330(2) S ² 2.339(2) S ³ 2.338(2) P 2.332(2)	S ¹ ,S ² 87.1(2) ^c S ² ,S ³ 89.5(2) ^c S ¹ ,S ³ 176.3(2) S ¹ ,P 91.1(2) S ³ ,P 92.3(2) S ² ,P 171.0(2)	[18]

^a Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is e.s.d., and the second is the maximum deviation from the mean; ^b the chemical identity of coordinate atom or ligand is specified in these columns; ^c six-membered metallocyclic ring.

In the remaining fourteen Pt(η^3 -N¹N²N³) (Pt) complexes (see Table 1), a distorted square planar geometry around each Pt(II) atom was built up by η^3 -N¹N²N³ with monodentate Pt ligands. Each tridentate donor ligand formed a pair of five-membered metallocyclic rings of the N¹C₂N²C₂N³ type, with total mean values of the respective angles of 78.8° (N¹-Pt-N²) and 79.9° (N²-Pt-N³). The remaining L-Pt-L bond angles opened in the order (total mean values) 100.5° (N¹-Pt-P) < 102.9° (N³-Pt-P) < 157.2° (N³-Pt-N³) < 176.0° (N²-Pt-P). The Pt-L bond distance elongated in the order (total mean values) 2.013 Å (Pt-N³, trans to N¹) < 2.017 Å (Pt-N¹) < 2.018 Å (Pt-N², trans to P) < 2.265 Å (Pt-P).

2.2. $Pt(\eta^3 - S^1 S^2 S^3)(PR_3)$ Type

Monoclinic [Pt{ η^3 -S(C₆H₄)S(C₆H₄)S}(PPh₃)](PPh₃)] [17] and triclinic [Pt{ η^3 -MeS(CH₂)₃S(CH₂)₃SMe}(PPh₃)].BF₄ [18] are the only examples of such a type (Table 2). The structure of the cation is shown in Figure 2 [18]. The tridentate ligand formed a pair of six-membered metallocyclic rings with a common S² atom of the monoclinic S¹C₂S²C₂S³ and triclinic S¹C₃S²C₃S³ type. The values of the respective angles were 87.69(4)° (S¹-Pt-S²) and 87.08(4)° (S²-Pt-S³) in monoclinic and in triclinic were 87.1(2)° (S¹-Pt-S²) and 89.5(2)° (S²-Pt-S³).

Figure 2. Structure of [Pt{η³-MeS(CH₂)₃S(CH₂)₃SMe}(PPh₃)]⁺ [18].

The remaining L-Pt-L bond angles opened in the order 91.1(2)° (S¹-Pt-P) < 92.3(2)° (S³-Pt-P) < 171.0(2)° (S²-Pt-P) < 176.3(2)° (S¹-Pt-S³). The Pt-L bond distance elongated in the order 2.330(2) Å (Pt-S¹, trans to S³) < 2.332(2) Å (Pt-P, trans to S²) < 2.338(2) Å (Pt-S³) < 2.339(2) Å (Pt-S²). The monodentate PPh₃ ligand completed a distorted squared planar geometry around the Pt(II) atom.

$Pt(\eta^3-S^1S^2S^3)(PPh_3)$	Crystal cl. Space gr. z	a [Å] b [Å] c [Å]	α [°] β [°] γ [°]	Chromophore (Chelate Rings) τ_4	Pt-L ^b [Å]	L-Pt-L ^b [°]	Ref.
$[Pt\{\eta^3-\\ C_{10}H_8N_2Te_3\}(PPh_3)]$	m C2/c 4	39.040(7) 13.261(4) 11.943(1)	93.85(1)	PtTe ₃ P (Te ¹ CNTe ² NCTe ³) 0.044	Te ¹ 2.5940(7) Te ² 2.5752(2) Te ³ 2.570(2) P 2.282(2)	$\begin{array}{c} {\rm Te}^1, {\rm Te}^2 \; 92.83(2) \; ^{\rm c} \\ {\rm Te}^2, {\rm Te}^3 \; 92.56(2) \; ^{\rm c} \\ {\rm Te}^1, {\rm Te}^3 \; 172.74(2) \\ {\rm Te}^1, {\rm P} \; 86.10(5) \\ {\rm Te}^3, {\rm P} \; 89.29(6) \\ {\rm Te}^2, {\rm P} \; 171.40(2) \end{array}$	[19]
$[Pt\{\eta^{3}-\\ C_{12}H_{12}N_{2}Te_{3}\}(PPh_{3})].\\ C_{6}H_{6}$	tr P1 2	12.300(12) 15.251(8) 10.029(7)	107.38(3) 99.51(6) 83.25(4)	PtTe ₃ P (Te ¹ CNTe ² NCTe ³) 0.029	Te ¹ 2.588(3) Te ² 2.569(2) Te ³ 2.612(3) P 2.283(3)	$\begin{array}{l} {\rm Te}^1, {\rm Te}^2 \; 91.59(6) \; {}^{\rm c} \\ {\rm Te}^2, {\rm Te}^3 \; 91.40(7) \; {}^{\rm c} \\ {\rm Te}^1, {\rm Te}^3 \; 173.99(11) \\ {\rm Te}^1, {\rm P} \; 90.40(10) \\ {\rm Te}^3, {\rm P} \; 86.99(10) \\ {\rm Te}^2, {\rm P} \; 17.56(9) \end{array}$	[19]

Table 3. Structural data for $Pt(\eta^3-Te^1Te^2Te^3)(PPh_3)$ derivatives ^a.

^a Where more than one chemically equivalent distance or angle is present, the mean value is tabulated. The first number in parentheses is e.s.d., and the second is the maximum deviation from the mean; ^b the chemical identity of coordinate atom or ligand is specified in these columns; ^c five-membered metallocyclic ring.

2.3. $Pt(\eta^3 - Te^1 Te^2 Te^3)(PR_3)$ Type

There were two complexes of such a type; monoclinic $[Pt{\eta^3-C_{10}H_8N_2Te_3}(PPt_3)]$ and triclinic $[Pt{\eta^3-C_{12}H_{12}N_2Te_3}(PPh_3)]C_6H_6$ [19] (see Table 3). The structure of the former is shown in Figure 3. Each tridentate ligand formed a pair of five-membered metallocyclic rings of the Te¹CNTe²NCTe³ type with the values of the respective angles of 92.8° (Te¹-Pt-Te²) and 92.5° (Te²-Pt-Te³) in monoclinic; in triclinic they were 91.6° and 91.4°. The remaining L-Pt-L bond angles opened in the order 81.1° (Te¹-Pt-P) < 89.3° (Te³-Pt-P) < 171.4° (Te²-Pt-P) < 171.172.27° (Te¹-Pt-Te³) in monoclinic, and in triclinic the order of 87.0° (Te³-Pt-P) < 90.4° (Te¹-Pt-P) < 174.0° (Te¹-Pt-Te³) < 175.5° (Te²-Pt-P).

Figure 3. Structure of [Pt{η³-C₁₂H₁₂N₂Te₃}(PPh₃)] [19].

The Pt-L bond distance elongated in the order 2.282(2) Å (Pt-P, trans to Te²) < 2.5720(2) Å (Pt-Te³, trans to Te¹) < 2.5752(2) Å (Pt-Te²) < 2.5940(7) Å (Pt-Te¹) (in monoclinic); in triclinic, the order was 2.283(3) Å (Pt-P, trans to Te²) < 2.569(2) Å (Pt-Te²) < 2.588(3) Å (Pt-Te¹, trans to Te³) < 2.612(3) Å (Pt-Te³). The monodentate PPh₃ completed a distorted square-planar geometry around the Pt(II) atoms.

3. Conclusions

This paper includes nineteen monomeric Pt(II) complexes with the composition of (Pt $(\eta^3-X^1X^2X^3)(R_3)$, (X = N, S or Te)). These complexes crystallized in three classes: triclinic (eleven examples), monoclinic (six examples), and orthorhombic (two examples). Based on tridentate ligands, these complexes could be divided into three sub-groups. In each sub-group, the Pt-L bond distance (mean values) with sums of Pt-L(x4) bond distances were:

 $Pt(\eta^{3}-N^{1} N^{2} N^{3})(PR_{3});$

PtN₃P: 2.017 Å (Pt-N¹, trans to N³); 2.018 Å (Pt-N², trans to P); 2.013 Å (Pt-N³); 2.265 Å (Pt-P); Σ 8.313 Å (see Table 1);

 $Pt(\eta^{3}-S^{1} S^{2} S^{3})(PR_{3});$

PtS₃P: 2.330 Å (Pt-S¹, trans to S³); 2.339 Å (Pt-S², trans to P); 2.338 Å (Pt-S³); 2.332 Å (Pt-P); Σ 9.339 Å (see Table 2);

 $Pt(\eta^{3}-Te^{1} Te^{2} Te^{3})(PR_{3});$

PtTe₃P: 2.591 Å (Pt-Te¹, trans to Te³); 2.572 Å (Pt-Te², trans to P); 2.592 Å (Pt-Te³); 2.283 Å (Pt-P); Σ 10.038 Å (see Table 3).

The total mean values of Pt-L(x4) bond distances grew with the value of the covalent radius of coordinated atoms in the sequence 8.313 Å (0.73 Å, N) (PtN₃P) < 9.339 (1.02 Å, S) (PtS₃P) < 10.038 Å (1.36 Å, Te) (PtTe³P).

Each tridentate ligand formed two metallocyclic rings with common N^2 , S^2 , or Te^2 of the following types, with the mean value of L-Pt-L bond angles:

5 + 5, rings N¹C₂N²C₂N³ 78.8° (N¹-Pt-N²) and 78.9° (N²-Pt-N³);

5 + 5, rings $S^1C_2S^2C_2S^3$ 87.69(4)° (S¹-Pt-S²) and 87.08(4)° (S²-Pt-S³)

5 + 5, rings Te¹CNTe²NCTe³ 92.1° (Te¹-Pt-Te²) and 92.0° (Te²-Pt-Te³);

5 + 6, rings $N^1C_2N^2NC_2N^3$ 81.7° (N¹-Pt-N²) and 89.6° (N²-Pt-N³);

6 + 6, rings S¹C₃S²C₃S³ 87.1° (S¹-Pt-S²) and 89.5° (S²-Pt-S³).

In transition metal complexes, the oxidation state plays a leading role in the geometry formed, and platinum is no exception. In four coordinates, Pt(II) prefers a square-planar geometry. The utility of a simple metric to assess the molecule shape and degree of distortion as well as exemplify best the τ_4 parameter for a perfect square-planar geometry is provided by the equation introduced by [20].

$$\tau_4 = \frac{360 - (\alpha + \beta)}{360}$$
 for square planar, and
$$\tau_4 = \frac{360 - (\alpha + \beta)}{141}$$
 for tetrahedral.

The values of τ_4 ranged from 0.00 for the perfect square-planar geometry to 1.00 for a perfect tetrahedral geometry, since 360 - 2(109.5) = 141.

There is a cooperative effect between the size of the metallocyclic rings and donor atoms and the distortion of square-planar geometry around the Pt(II) atom. The distortion diminishes when the size of the metallocyclic rings grows, and the covalent radius increases as 0.75 Å (N) < 1.02 Å (S) < 1.31 Å (Te) of donor atoms, as can be seen:

5 + 5, rings 0.068 (τ_4) 78.8° (N¹C₂N²C₂N³) < 0.053 (τ_4) 81.4° (S¹C₂S²C₂S³) < 0.036 (τ_4) 92.0° (Te¹CNTe²NCTe³);

5 + 5, rings 0.068 (τ_4) 78.8° (N¹C₂N²C₂N³);

5 + 6, rings 0.034 (τ_4) 81.7° and 84.6° (N¹C₂N²C₂N³);

5 + 5, rings 0.053 (τ_4) 87.4° S¹C₂S²C₂S³;

6 + 6, rings 0.035 (τ_4) 87.1° and 89.54.6° S¹C₃S²C₃S³.

Monoclinic [Pt{ η^3 -C₁₅H₁₁N₃}(PPh₃)].SO₃CF₃ (at 173 k) [13] contains two crystallographically independent molecules within the same crystal (Table 1). These two molecules are different from each other by the degree of distortion, with values of τ_4 0.070 and 0.082. They are a classic example of a distortion isomerism [21].

Author Contributions: Conceptualization, M.M. and P.M.; methodology M.M. and P.M.; writing original draft preparation, M.M. and P.M.; data curation, M.M.; writing—review and editing, V.M.; supervision, M.M. and P.M.; funding acquisition, P.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the project VEGA 1/0514/22.

Data Availability Statement: Data supporting the reported results can be found from author M.M.

Acknowledgments: This work was supported by the Faculty of Pharmacy, Comenius University, Bratislava.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

m	monoclinic
C ₂₅ H ₁₉ N ₅	(2,6-bis(3-(4-methyl)-1H-pyrazol-5yl)pyridinate)
PPh ₃	triphenylphosphine
$C_{29}H_{33}N_7$	(2,6-bis(3-(adamantam-1-yl)-1H-1,2,4-triazol-5-yl) pyridinate)
$C_{31}H_{35}N_5$	(2,6-bis(3-(adamantam-1-yl)-1H-pyrazol-5-yl) pyridinate)
$C_{12}H_6F_6N_7O$	(4-methoxy-2,6-bis(3-(trifluoromethyl)-1H-1,2,4-triazol-5-yl))pyridinate)
$C_{13}H_{5}F_{6}N_{5}$	{2,6-bis[3-(trifluoromethyl)-1H-pyrazol-5-yl]pyridinato}
C ₁₈ H ₂₃ N ₇ O	(2,6-bis(3-t-butyl-1H-1,2,4-triazol-5-yl)-4-methoxypyridinate)
C ₂₂ H ₁₅ N ₇ O	(4-methoxy-2,6-bis(3-phenyl-1H-1,2,4-triazol-5-yl)pyridinate)
C ₁₇ H ₂₁ N ₇	(2,6-bis(3-t-butyl-1H-1,2,4-triazol-5-yl))pyridinate)
C ₁₇ H ₂₂ N ₈	(2-(3-(adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-6-(1H-tetrazol-5-yl)pyridinato)
$C_{11}H_{3}F_{6}N_{7}$	(2,6-bis(3-(trifluoromethyl)-1H-1,2,4-triazol-5-yl)pyridinate)
$C_{15}H_{11}N_3$	(2,2'.6'2"-terpyridine)
$C_{31}H_{30}F_6N_4O_8S_2$	4'-[4-(4-morpholinobutyloxy)phenyl]-2,2':6',2"-terpyridine
P(CH ₃)Ph ₂	methyldiphenylphosphine
$P(\eta^1 - C_{14}H_{19} - O_5)(Ph)_2$	(benzo-5-crown[5])diphenylphosphine)
$C_{12}H_{10}N_4$	(2-(2-amino)phenyl diazenyl)anilinate)
$C_{10}H_8N_2Te_3$	(1,1'-tellanyl)bis(5-pyridine-2-tellurolate)
$C_{12}H_{10}N_2Te_3$	$(1,1'$ -tellanyl)bis(3-methyl-1 λ 5-pyridine-2-tellurolate)

References

- 1. Holloway, C.E.; Melnik, M. Structural aspects of platinum coordination compounds: PART I. Monomeric PT0, PT1 and PTIIA4derivatives. *Rev. Inorg. Chem.* 2002, 22, 163–284. [CrossRef]
- Holloway, C.E.; Melnik, M. Structural Aspect of Platinum Coordination Compounds: Part II. Monomeric Pt(II) Compounds with PtA3Band PtA2B2 Composition. *Rev. Inorg. Chem.* 2003, 23, 125–162. [CrossRef]
- Holloway, C.E.; Melnik, M. Structural aspects of platinum coordination compounds: PART III. Monomeric square-planar (PtA2XYand PtABXY) and trigonal bipyramidal PtII Coordination Compounds. *Rev. Inorg. Chem.* 2004, 24, 135–299. [CrossRef]
- Chen, J.; Zhang, Z.; Ma, J.; Nezamzadeh-Ejhieh, A.; Lu, C.; Pan, Y.; Liu, J.; Bai, Z. Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs. *Dalton Trans.* 2023, 52, 6226–6238. [CrossRef] [PubMed]
- Melník, M.; Mikuš, P. Organomonophosphines in PtP2Cl2 derivatives:structural aspects. *Rev. Inorg. Chem.* 2015, 35, 179–190. [CrossRef]
- 6. Melník, M.; Mikuš, P. Organomonophosphines in Pt(II) coordination complexes. Part 1. Monomeric square-planar: PtP₄, PtP₃X and PtP₂I₂. *Phosphorus Sulfur Silicon Relat. Elem.* **2015**, *190*, 1764–1780. [CrossRef]
- Melník, M.; Mikuš, P. Organodiphosphines in cis-Pt(g2-P2L)(SR)2 derivatives—Structural aspects. *Phosphorous Sulfur Silicon Relat*. *Elem.* 2019, 194, 857–860. [CrossRef]
- Chai, K.; Kuang, W.; Lan, Z.; Zhang, L.; Jiang, Y.; Han, T.; Niu, J.; Wang, J. Synthesis, characterization, DNA binding, topoisomerase I inhibition and antiproliferation activities of three new functionalized terpyridine platinum(II) complexes. *J. Inorg. Biochem.* 2019, 192, 17–24. [CrossRef]

- 9. Cebrián, C.; Mauro, M.; Kourkoulos, D.; Mercandelli, P.; Hertel, D.; Meerholz, K.; Strassert, C.A.; De Cola, L. Luminescent neutral platinum complexes bearing an asymmetric N^NN ligand for high-performance solution-processed OLEDs. *Adv. Mat.* 2013, 25, 437–442. [CrossRef]
- Delcanale, P.; Galstyan, A.; Daniliuc, C.G.; Grecco, H.E.; Abbruzzetti, S.; Faust, A.; Viappiani, C.; Strassert, C.A. Oxygen-Insensitive Aggregates of Pt(II) Complexes as Phosphorescent Labels of Proteins with Luminescence Lifetime-Based Readouts. ACS Appl. Mater. Interfaces 2018, 10, 24361–24369. [CrossRef]
- 11. Galstyan, A.; Naziruddin, A.R.; Cebrián, C.; Ioedache, A.; Daniliuc, C.G.; de Cola, L.; Strassert, C.A. Correlating the structural and photophysical features of pincer luminophores and monodentate ancillary ligands in PtII phosphors. *J. Inorg. Chem.* **2015**, *36*, 5822–5831. [CrossRef]
- 12. Sanning, J.; Ewen, P.R.; Stegemann, L.; Schmidt, J.; Daniliuc, C.G.; Koch, T.; Doltsinis, N.L.; Wegner, D.; Strassert, C.A. Scanning-Tunneling-Spectroscopy-Directed Design of Tailored Deep-Blue Emitters. *Angew. Chem.-Int. Edit.* 2015, 54, 786–791. [CrossRef]
- Pappenfus, T.M.; Burney, J.R.; McGee, K.A.; Lee, G.G.W.; Jarvis, L.R.; Ekerholm, D.P.; Farah, M.; Smith, L.I.; Hinkle, L.M.; Mann, K.R. Alternative syntheses and reactivity of platinum(II) terpyridyl acetonitrile complexes. *Inorg. Chim. Acta* 2010, 363, 3214–3221. [CrossRef]
- 14. Stegemann, L.; Sanning, J.; Daniliuc, C.G.; Strassert, C.A. Influence of the monodentate ancillary ligand on the photophysical properties of Pt(II) complexes bearing a symmetric dianionic tridentate luminophore. *Z. Naturforsch. B J. Chem. Sci.* **2016**, 71, 1087–1093. [CrossRef]
- Yam, V.W.-W.; Tang, R.P.-L.; Wong, K.M.-C.; Lu, X.-X.; Cheung, K.-K.; Zhu, N. Synthesis, electronic absorption, emission, and ion-binding studies of platinum(III) C empty set N empty set C and terpyridyl complexes containing crown ether pendants. *Chem. Eur. J.* 2002, *8*, 4066–4076. [CrossRef]
- 16. Mandal, P.; Lin, C.-H.; Barandao, P.; Mal, D.; Felix, V.; Pratihar, J.L. Synthesis, characterization, structure and catalytic activity of (NNN) tridentate azo-imine nickel(II), palladium(II) and platinum(II) complexes. *Polyhedron* **2016**, *36*, 171–177. [CrossRef]
- Sellmann, D.; Häußinger, D.; Heinemann, F.W. Transition Metal Complexes with Sulfur Ligands, 138 Synthesis, Structures, and Reactions of Sulfur-Rich Nickel and PlatinumComplexes with [MS3] and [MNS2] Cores. *Eur. J. Inorg. Chem.* 1999, 1999, 1715–1725. [CrossRef]
- Loeb, S.J.; Mansfield, J.R. Platinum(II) complexes of the tridentate thioether ligands RS(CH2)3S(CH2)3SR (R = Et, iPr, Ph). Structures of [PtCl(iPrS(CH2)3S(CH2) 3SiPr)][BF4], [Ptl(PhS(CH2)3S(CH 2)2SPh)][BF4], and [Pt(PPh3)(iPrS (CH2)3. *Canad. J. Chem.* 1996, 74, 1377–1390. [CrossRef]
- Chauhan, R.S.; Kedarnath, G.; Wadawale, A.; Munoz-Castro, A.; Arratia-Perrez, R.; Jain, V.K.; Kaim, W. Tellurium(0) as a Ligand: Synthesis and Characterization of 2-Pyridyltellurolates of Platinum(II) and Structures of [Pt{2-Te-3-(R)C₅H₃N}₂Te(PR'₃)] (R = H or Me). *Inorg. Chem.* 2010, 49, 4179–4185. [CrossRef]
- 20. Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index. τ4. *Dalton Trans.* **2007**, *9*, 955–964. [CrossRef]
- Melník, M.; Holloway, C.E. Stereochemistry of platinum coordination compounds. *Coord. Chem. Rev.* 2006, 250, 2261–2270. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.