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ORIENTALS AS FREE ALGEBRAS

DIMITRI ARA, YVES LAFONT, AND FRANÇOIS MÉTAYER

Abstract. The aim of this paper is to give an alternative construction of Street’s cosimplicial
object of orientals, based on an idea of Burroni that orientals are free algebras for some alge-
braic structure on strict ω-categories. More precisely, following Burroni, we define the notion of
an expansion on an ω-category and we show that the forgetful functor from strict ω-categories
endowed with an expansion to strict ω-categories is monadic. By iterating this monad starting
from the empty ω-category, we get a cosimplicial object in strict ω-categories. Our main con-
tribution is to show that this cosimplicial object is the cosimplicial objects of orientals. To do
so, we prove, using Steiner’s theory of augmented directed chain complexes, a general result for
comparing polygraphs having same generators and same linearized sources and targets.

Introduction

The n-th oriental On, introduced by Street in [Str87], is a (strict, globular) n-category shaped
on the standard n-simplex. More precisely, On is an n-category freely generated by a polygraph
(or computad) whose generating k-cells correspond to the k-faces of the standard n-simplex. Ori-
entals organize themselves into a cosimplicial object into Catω, the category of (strict, globular)
ω-categories and (strict) ω-functors, that is, into a functor

O : ∆ → Catω,

where ∆ denotes the simplex category. This cosimplicial object induces a functor

N : Catω → ∆̂,

called Street’s nerve, taking each ω-category C to the simplicial set

NC : ∆n 7→ Catω(On, C).

The original motivation of Street was to define a cohomology with coefficients in an ω-category.
The combinatorics involved in [Str87] is notoriously hard. This led Street to extract in [Str91]

(see also [Str94]) the essential properties making it work. This was formalized in his notion of a
parity complex. Using [Str91], the n-th oriental becomes the n-category associated to a simple
structure, the parity complex given by the faces of the standard n-simplex, all the difficulty
being now hidden in the general machinery of parity complexes. In the same paper, he defined
a join construction for parity complexes, leading to an inductive construction of the orientals,
that is, a construction of On+1 from On.

Alternative definitions of the orientals were given by various people. Burroni proposed during
a presentation [Bur00] an inductive definition with explicit formulas but he didn’t compare his
definition to Street’s one. A short summary of this work was published a few years later [Bur05].
A similar approach was taken independently by Buckley and Garner in [BG16] who did compare
their definition to Street’s one. Another definition was given by Steiner using his theory of aug-
mented directed complexes [Ste04] (see [Ste07] for a comparison of the two definitions). Finally,
the first author and Maltsiniotis defined in [AM20] a join construction for strict ω-categories
and showed that the cosimplicial object of orientals is induced by the unique monoid structure
for this join supported by the terminal ω-category.

One of the drawbacks of the inductive definitions of the orientals is that they don’t give for
free a cosimplicial object, except if one can show that the iterated construction is equipped with
the structure of a monad. It is claimed in [Bur00] and [Bur05] that it is indeed the case but
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this is far from obvious from the defining formulas. Burroni gave a beautiful solution to this
difficulty in a draft [Bur07] that was meant to be the extended version of [Bur05]: the iterated
construction is the monad corresponding to some explicit algebraic structure on ω-categories
that he called “ω-initial”.

The purpose of this paper is two-fold. First, we give a formal, complete account of Burroni’s
ideas on orientals — up to now only circulated as short papers, preprints and presented in
talks. Second, we show that Burroni’s definition is equivalent to Street’s one. For this purpose,
we prove a general result for comparing polygraphs with same generators and same linearized
sources and targets using Steiner’s theory of augmented directed complexes.

Let us explain in more details Burroni’s construction. If C is an ω-category, an expansion
on C (called an “ω-initial structure” in [Bur07], and a contraction in [AM15], where the notion
was introduced independently) consists of a 0-cell o of C, called the origin, and a directed
homotopy, that is, an oplax natural transformation, from the constant ω-functor o : C → C

to the identity ω-functor idC : C → C, satisfying some degeneracy conditions. When C is a
category (seen as an ω-category with only trivial cells from dimension 2 on), the possible origins
for an expansion on C are precisely the initial objects of C. In general, the origin of an expansion
should be thought of as an ω-initial object (hence Burroni’s terminology). By abstract nonsense,
the forgetful functor U : Catω,e → Catω, where Catω,e stands for the category of ω-categories
endowed with an expansion, admits a left adjoint and we thus get a monad T : Catω → Catω.
This monad induces a cosimplicial object O : ∆ → Catω defined on objects by On = T n+1(∅),
where ∅ is the empty ω-category. This is the definition of orientals given in [Bur07].

The paper is organized as follows: Section 1 recalls the basic definitions about ω-categories
and polygraphs, and sets related notations. We particularly stress the role of the endofunctor
of cylinders in Catω first introduced in [Mét03]. Section 2 contains the main definition of the
paper, namely the notion of ω-category with expansion, and introduces the associated adjunction
between Catω,e and Catω, leading to an abstract, very compact definition of the orientals. We
then give an explicit description of the resulting monad when applied to an ω-category freely
generated by a polygraph. In particular, we get that our orientals are freely generated by
polygraphs. In Section 3 we give a refined description of the combinatorics of these objects
by means of a convenient notation, the oriental calculus. Section 4 finally establishes that our
orientals coincide with those originally defined by Street. To do so, we prove, using Steiner’s
theory of augmented directed complexes, a general result for comparing polygraphs having same
generators and same linearized sources and targets.

Acknowledgement. We warmly thank Albert Burroni for having shared with us over the
years, during lengthy conversations, his numerous insights and a categorical wisdom not found
in books.

1. Basic notions on higher dimensional categories

This section briefly recalls the basic definitions concerning (strict, globular) ω-categories and
fixes the notations to be used throughout this work.

1.1. Globular sets and higher dimensional categories.

1.1.1. We write Globω for the category of globular sets:

• A globular set C is an infinite sequence of sets C0, C1, C2, . . . together with infinitely
many source maps ∂− and target maps ∂+

C0 C1
∂+

oo
∂−

oo C2
∂+

oo
∂−

oo · · ·
∂+

oo
∂−

oo

satisfying the globular conditions:

∂−∂− = ∂−∂+, ∂+∂− = ∂+∂+.
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• A globular morphism f : C → D is an infinite sequence of maps

f0 : C0 → D0, f1 : C1 → D1, f2 : C2 → D2, . . .

commuting to the above maps, that is, making the diagram

C0

f0
��

C1
∂+

oo
∂−

oo

f1
��

C2
∂+

oo
∂−

oo

f2
��

· · ·
∂+

oo
∂−

oo

D0 D1
∂+

oo
∂−

oo D2
∂+

oo
∂−

oo · · ·
∂+

oo
∂−

oo

commute, in the sense that fn∂
ε = ∂εfn+1 for ε = ± and n ≥ 0. Whenever x belongs

to Cn, we shall simply write f(x) for fn(x).

1.1.2. An element x of Cn is called a cell of dimension n, or simply an n-cell, in C.

• If n > 0, its source x− = ∂−x and its target x+ = ∂+x are (n−1)-cells in C.
• For i ≤ n, its i-source (resp. its i-target) is the i-cell ∂ε

i x = ∂ε· · · ∂εx, where ε stands
for − (resp. for +) and ∂ε is applied n − i times to x. We shall also write xεi for ∂ε

i x.
In particular, we get xεn = x.

If p < n, to make the i-source and i-target of the n-cell x explicit for p ≤ i < n, we write

x : x−n−1 → x+n−1 : · · · : x
−
p → x+p .

We say that two n-cells x and y of C are parallel if, either n = 0, or n > 0 and x and y have
same source and same target.

1.1.3. Examples. We get x : x−0 → x+0 if x is a 1-cell, and x : x−1 → x+1 : x−0 → x+0 if x is a 2-cell.

x−
0
·

x // · x+

0
x−
0
·

x−
1 **

x+

1

44
✤✤ ✤✤
�� x · x+

0

1.1.4. By restriction to finite sequences C0, . . . , Cn, we get the category Globn of n-globular
sets. In particular, Glob0 is Set, the category of sets, and Glob1 is the category of (directed)
graphs. Note that there is an obvious truncation functor from Globω to Globn, mapping C to
the n-globular set C(n) obtained by removing all cells of dimension > n.

1.1.5. We write Catω for the category of ω-categories:

• An ω-category is a globular set C, together with compositions and units satisfying
the laws of associativity, unit, interchange and functoriality of units.

• An ω-functor is a globular morphism f : C → D preserving compositions and units.

1.1.6. For n > p and for any n-cells x, y such that x+p = y−p in an ω-category C, we get an n-cell
z = y ∗p x, called p-composition of y and x, with the following iterated sources and targets:

zεi = xεi = yεi for i < p, z−p = x−p , z+p = y+p , zεi = yεi ∗p x
ε
i for p < i < n.

We shall omit parentheses by giving priority to the lowest dimensional composition, namely:

z ∗p y ∗q x =

{
(z ∗p y) ∗q x if p ≤ q,

z ∗p(y ∗q x) if p ≥ q.

By associativity, both conventions are indeed compatible in case p = q.

1.1.7. For any p-cell u in an ω-category C, we get a (p+1)-cell 1u : u → u, called p-unit on u.
By iterating this operator i times for i > 0, we get the following p-unit of dimension p+ i on u:

1iu : 1i−1
u → 1i−1

u : · · · : 1u → 1u : u → u.

By the law of functoriality of units, any p-cell u can be identified with the n-cell 1n−p
u for n > p.

In fact, we shall not identify them, but we shall use the following abbreviations for n > p > q,
for any n-cell x and any p-cell u such that u+q = x−q (resp. x+q = u−q ):

x ∗q u = x ∗q 1
n−p
u , u ∗q x = 1n−p

u ∗q x.
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1.1.8. Example. For any 2-cell x and any 1-cell u such that u+0 = x−0 , we get

x ∗0 u = x ∗0 1u : x−1 ∗0 u → x+1 ∗0 u : u−0 → x+0 .

u−
0
·

u // ·
u+

0
=x−

0

x−
1 **

x+

1

44
✤✤ ✤✤
�� x · x+

0

1.1.9. By using n-globular sets instead of globular sets, we get the category Catn of n-categories.
In particular, Cat0 is Set and Cat1 is Cat, the category of small categories.

The truncation functor C 7→ C(n) from globular sets to n-globular sets extends to a truncation
functor from Catω to Catn, which we will denote in the same way. This functor admits a
left adjoint mapping any n-category C to the ω-category obtained by adding an n-unit 1iu of
dimension n + i for i > 0 and for each n-cell u in C. This canonical embedding yields an
equivalence between Catn and the full subcategory of Catω whose objects only have unit cells
beyond dimension n. In other words, any n-category, and in particular any set, can be seen as
an ω-category.

1.1.10. The category Catω is complete and cocomplete. In particular, we get the following two
ω-categories:

• the initial ω-category is the empty set ∅, which has no cell,
• the terminal ω-category is the singleton set 1 = {o}, which has a single 0-cell o, and
a single n-cell 1no for each n > 0.

1.1.11. The category Catω is the limit of the following diagram of categories, where arrows are
truncation functors:

Cat0 Cat1oo Cat2oo · · ·oo

Moreover, the category Catn+1 is enriched over Catn, and likewise, Catω is enriched over itself.
For any ω-category C and for any 0-cells u, v in C, we get indeed another ω-category C(u, v):

• An n-cell in C(u, v) is an (n+1)-cell x in C such that x−0 = u and x+0 = v.
• The p-composition and p-units in C(u, v) are the (p+1)-composition and (p+1)-units
in C.

1.2. Polygraphs. The forgetful functor from Catω to Globω has a left adjoint, yielding a
notion of ω-category freely generated by a globular set. Here, we describe a more general notion
of ω-category freely generated by a polygraph, or computad, introduced independently in [Str87,
Section 4] and [Bur93].

1.2.1. Consider the following commutative diagram of categories, where the horizontal arrows
are forgetful functors, and the vertical ones are truncation functors:

Catn+1
//

��

Globn+1

��
Catn // Globn

We get a functor Un : Catn+1 → Cat+n , where Cat+n is defined by the following pullback square:

Cat+n
//

��

y

Globn+1

��
Catn // Globn

It happens that this functor has a left adjoint Ln : Cat+n → Catn+1. See [Bur93] or [Mét08].

1.2.2. More concretely, an object of Cat+n is a pair (C,Sn+1), where C is an n-category and Sn+1

is a set of (n+1)-generators, together with maps ∂−, ∂+ : Sn+1 → Cn satisfying the globular
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conditions in case n > 0. The functor Ln maps this object to the (n+1)-category

C0 · · ·
∂+

oo
∂−

oo Cn
∂+

oo
∂−

oo S∗
n+1,

∂+

oo
∂−

oo

where S∗
n+1 consists of formal compositions of (n+1)-generators and n-units, quotiented by the

laws of associativity, unit, interchange and functoriality of units.
By construction, the map Sn+1 →֒ S∗

n+1, which can be shown to be an injection, commutes to
the source and target maps, and the above (n+1)-category C ′ = Ln(C,Sn+1) has the following
universal property:

1.2.3. Lemma. Consider some (n+1)-category D and some n-functor f : C → D(n). Then
any map en+1 : Sn+1 → Dn+1 such that ∂εen+1 = fn∂

ε for ε = ± extends to a unique map
fn+1 : S

∗
n+1 → Dn+1 such that f0, . . . , fn+1 form an (n+1)-functor from C ′ to D.

C0

f0

��

· · ·
∂+

oo
∂−

oo Cn
∂+

oo
∂−

oo

fn

��

S∗
n+1

∂+

oo
∂−

oo

fn+1

��

Sn+1

en+1{{✇✇
✇✇
✇✇
✇✇
✇
? _oo

D0 · · ·
∂+

oo
∂−

oo Dn
∂+

oo
∂−

oo Dn+1
∂+

oo
∂−

oo

1.2.4. By induction on n, we define the category Poln of n-polygraphs, together with a functor
Fn : Poln → Catn mapping any n-polygraph S to the free n-category S∗ generated by S:

• The category Pol0 is Cat0, that is Set, and F0 : Set → Set is the identity functor.
• Suppose that the category Poln and the functor Fn : Poln → Catn have been defined.
Then the category Poln+1 is given by the pullback square

Poln+1
//

��

y

Cat+n

��
Poln

Fn

// Catn

and Fn+1 : Poln+1 → Catn+1 is the composition of Ln : Cat+n → Catn+1 by the
top arrow.

In particular, Pol1 is Cat+0 , that is Glob1, and F1(S) = S∗ is the free category generated by S.

1.2.5. Definition (polygraphs). The category Polω of polygraphs is the limit of the following
diagram, where each arrow is the truncation functor given by the previous pullback square:

Pol0 Pol1oo Pol2oo · · ·oo

The functors Fn induce a functor Fω : Polω → Catω mapping S to the free ω-category S∗

generated by S.

1.2.6. More concretely:

• A polygraph S is given by an infinite diagram of the form

S0
_�

��

S1
_�

��
∂−

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥∂+

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

S2
_�

��
∂−

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥∂+

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

· · ·

∂−

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥∂+

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

S∗
0 S∗

1
∂−

oo
∂+

oo S∗
2

∂−
oo

∂+
oo · · ·

∂−
oo

∂+
oo

where Si is a set of i-generators, and the bottom row displays S∗, starting from S∗
0 = S0.

• A morphism f : S → T is given by an infinite sequence of maps

f0 : S0 → T0, f1 : S1 → T1, f2 : S2 → T2, . . .

compatible with sources and targets so that they induce maps

f∗
0 : S∗

0 → T ∗
0 , f

∗
1 : S∗

1 → T ∗
1 , f

∗
2 : S∗

2 → T ∗
2 , . . .
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defining an ω-functor f∗ : S∗ → T ∗. This means that Fω(f) = f∗ is rigid : it preserves
generators.

In case Si = ∅ for i > n, the polygraph S is in fact an n-polygraph, and S∗ is an n-category.
This canonical embedding of Poln into Polω is the left adjoint of the obvious truncation functor.

1.2.7. Examples.

• If S consists of a single 0-generator o, then S∗ is the singleton set 1 = {o}.
• If S consists of two 0-generators o, o′ and a single 1-generator σ : o → o′, then S∗ consists
of the generators and the 0-units 1o : o → o, 1o′ : o

′ → o′.
• If S consists of three 0-generators o, o′, o′′, three 1-generators σ : o → o′, σ′ : o′ → o′′,
σ′′ : o → o′′, and a single 2-generator τ : σ′′ → σ′ ∗0 σ, then S∗ consists of the generators,
the 0-composition σ′ ∗0 σ : o → o′′, the 0-units 1o : o → o, 1o′ : o

′ → o′, 1o′′ : o
′′ → o′′,

the 1-units 1σ : σ → σ, 1σ′ : σ′ → σ′, 1σ′′ : σ′′ → σ′′, 1σ′ ∗0 σ : σ′ ∗0 σ → σ′ ∗0 σ, and
the 0-units 12o : 1o → 1o, 1

2
o′ : 1o′ → 1o′ , 1

2
o′′ : 1o′′ → 1o′′ of dimension 2.

• If S consists of a single 0-generator o and a single 1-generator σ : o → o, then S∗ consists
of the 0-generator, and infinitely many 1-cells, which are of the form

σ0 = 1o : o → o, σi = σ ∗0 · · · ∗0 σ : o → o for i > 0.

• If S consists of a single 0-generator o and a single 2-generator τ : 1o → 1o, then S∗

consists of the 0-generator, the 0-unit 1o : o → o, and infinitely many 2-cells, which are
of the form

τ0 = 12o : 1o → 1o : o → o, τ i = τ ∗0 · · · ∗0 τ = τ ∗1 · · · ∗1 τ : 1o → 1o : o → o for i > 0.

o′

·

σ′

��✽
✽✽

✽✽
✽✽

✽✽
✽

o
·

o
·

σ
// o

′

· ·
o σ′′

//

σ

CC✟✟✟✟✟✟✟✟✟✟
τ

KS

·
o′′

·
o

σ

��
·
o

τ

��

1.2.8. Remarks. The first three examples are (isomorphic to) the first three orientals O0,O1,O2.
The last two ones are (isomorphic to) the additive monoid N, respectively seen as a 1-category
with a single 0-cell and as a 2-category with a single 0-cell and a single 1-cell.

1.3. Cylinders and oplax transformations. Here, we recall the construction of the endofunc-
tor of small cylinders, and the resulting notion of oplax transformation between two ω-functors,
called homotopy in [Mét03] and [LM09].

For that purpose, we first define the set Γn(C) of n-cylinders in an ω-category C, together
with two maps ∂−, ∂+ : Γn(C) → Γn−1(C) in case n > 0. We can then define a structure of
ω-category on the corresponding globular set, which gives the expected endofunctor.

1.3.1. Definition (cylinders).
If x, y are n-cells in C, the notion of n-cylinder α : x y y is given inductively:

• If n = 0, then α : x y y consists of a single 1-cell α0 : x → y in C.
• If n > 0, then α : x y y consists of two 1-cells α−

0 : x−0 → y−0 and α+
0 : x+0 → y+0 in C,

together with an (n−1)-cylinder ♯α : α+
0 ∗0 x y y ∗0 α

−
0 in C(x−0 , y

+
0 ).

In case n > 0, we also get two (n−1)-cylinders ∂−α : ∂−x y ∂−y and ∂+α : ∂+x y ∂+y which
are given inductively:

• If n = 1, then ∂εα : xε0 y yε0 is given by the 1-cell αε
0 : x

ε
0 → yε0.

• If n > 1, then ∂εα : xεn−1 y yεn−1 is given by the 1-cells α−
0 : x−0 → y−0 and α+

0 : x+0 → y+0 ,

together with the (n−2)-cylinder ♯∂εα = ∂ε♯α : α+
0 ∗0 x

ε
n−1 y yεn−1 ∗0 α

−
0 in C(x−0 , y

+
0 ).

If α : x y y is such an n-cylinder, we write α and α for the n-cells x and y respectively.

1.3.2. More concretely, an n-cylinder α : x y y in C is given by a finite sequence of cells

α−
0 , α

+
0 , . . . , α

−
n−1, α

+
n−1, αn in C,
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where the auxiliary cells αε
i have dimension i+1, the principal cell |α| = αn has dimension n+1,

and their sources and targets are given as follows:

αε
i : α

+
i−1 ∗i−1 · · · ∗1 α

+
0 ∗0 x

ε
i → yεi ∗0 α

−
0 ∗1 · · · ∗i−1 α

−
i−1 for i < n,

|α| = αn : α+
n−1 ∗n−1 · · · ∗1 α

+
0 ∗0 x → y ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1.

For any i < n, the i-cylinder ∂ε
i α : xεi y yεi is given by the following sequence of cells:

α−
0 , α

+
0 , . . . , α

−
i−1, α

+
i−1, α

ε
i .

1.3.3. Remark. Beware of a slight discrepancy in our notations:

• If x is a cell, then xεi stands for the i-cell ∂ε
i x.

• If α is a cylinder, then αε
i does not stand for the i-cylinder ∂ε

i α, but for its principal
cell |∂ε

i α|.

1.3.4. Examples.

• If x, y are 0-cells, a 0-cylinder α : x y y is given by the 1-cell |α| = α0 : x → y.
• If x, y are 1-cells, a 1-cylinder α : x y y is given by the 1-cells αε

0 : xε0 → yε0 and the
2-cell |α| = α1 : α

+
0 ∗0 x → y ∗0 α

−
0 .

• If x, y are 2-cells, a 2-cylinder α : x y y is given by the 1-cells αε
0 : xε0 → yε0, the 2-cells

αε
1 : α

+
0 ∗0 x

ε
1 → yε1 ∗0 α

−
0 , and the 3-cell |α| = α2 : α

+
1 ∗1 α

+
0 ∗0 x → y ∗0 α

−
0 ∗1 α

−
1 .

x
·

α0

��
·
y

x−
0

·
x //

α−
0

��

x+

0

·

α+

0

��

α1

w� ✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇

✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇

·
y−
0

y
// ·
y+
0

x−
0

·

α2❴jt

x��

y��

x−
1 %%

x+

1

99

α−
0

��

x+

0

·

α+

0

��

α+

1

mu ��

α−
1

��
·

y−
0

y−
1 %%

y+
1

99 ·
y+
0

1.3.5. If we write Γn(C) for the set of n-cylinders in C, we get the following globular set Γ(C):

Γ0(C) Γ1(C)
∂+

oo
∂−

oo Γ2(C)
∂+

oo
∂−

oo · · ·
∂+

oo
∂−
oo

The globular set Γ(C) supports a structure of ω-category we describe below (see also [LM09,
LMW10]).

1.3.6. Definition (ω-category of small cylinders).
The ω-category of small cylinders in C is Γ(C) endowed with the following operations:

• If n > p, if x, y, z, t are n-cells such that x+p = z−p and y+p = t−p , and if α : x y y, β : z y t

are n-cylinders such that ∂+
p α = ∂−

p β, the p-composition γ = β ∗p α : z ∗p x y t ∗p y is
the n-cylinder given by the following cells:

γεi = αε
i = βε

i for i < p, γ−p = α−
p , γ+p = β+

p ,

γεp+1 = (tεp+1∗0 α
−
0 ∗1 · · · ∗p−1 α

−
p−1∗p α

ε
p+1) ∗p+1(β

ε
p+1∗p β

+
p−1∗p−1 · · · ∗1 β

+
0 ∗0 x

ε
p+1) if p+ 1 < n,

γεi = (t+p+1∗0 α
−
0 ∗1 · · · ∗p−1 α

−
p−1∗p α

ε
i ) ∗p+1(β

ε
i ∗p β

+
p−1∗p−1 · · · ∗1 β

+
0 ∗0 x

−
p+1) for p+ 1 < i < n,

|γ| = γn = (t+p+1 ∗0 α
−
0 ∗1 · · · ∗p−1 α

−
p−1 ∗p αn) ∗p+1(βn ∗p β

+
p−1 ∗p−1 · · · ∗1 β

+
0 ∗0 x

−
p+1).

• If α : x y y is a p-cylinder, the p-unit 1α : 1x y 1y is given by the following cells:

α−
0 , α

+
0 , . . . , α

−
p−1, α

+
p−1, αp, αp, 1αp .

We refer to [Mét03, Appendix A] for a proof that the axioms of (strict) ω-categories hold.
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1.3.7. Examples.

• If x, y, z, t are 1-cells such that x+0 = z−0 and y+0 = t−0 , and if α : x y y, β : z y t are
1-cylinders such that α+

0 = β−
0 , the 0-composition γ = β ∗0 α : z ∗0 x y t ∗0 y is given by

the 1-cells γ−0 = α−
0 and γ+0 = β+

0 , and the 2-cell |γ| = γ1 = (t ∗0 α1) ∗1(β1 ∗0 x).
• If x, y, z, t are 2-cells such that x+0 = z−0 and y+0 = t−0 , and if α : x y y, β : z y t are
2-cylinders such that α+

0 = β−
0 , the 0-composition γ = β ∗0 α : z ∗0 x y t ∗0 y is given by

the 1-cells γ−0 = α−
0 and γ+0 = β+

0 , the 2-cells γε1 = (tε1 ∗0 α
ε
1) ∗1(β

ε
1 ∗0 x

ε
1), and the 3-cell

|γ| = γ2 = (t+1 ∗0 α2) ∗1(β2 ∗0 x
−
1 ).

• If x, y, z, t are 2-cells such that x+1 = z−1 and y+1 = t−1 , and if α : x y y, β : z y t are 2-
cylinders such that αε

0 = βε
0 and α+

1 = β−
1 , the 1-composition γ = β ∗1 α : z ∗1 x y t ∗1 y

is given by the 1-cells γε0 = αε
0 = βε

0, the 2-cells γ−1 = α−
1 and γ+1 = β+

1 , and the 3-cell
|γ| = γ2 = (t ∗0 α

−
0 ∗1 α2) ∗2(β2 ∗1 β

+
0 ∗0 x).

·
x //

α−
0

��

·
z //

��

α1

|� ✁✁
✁✁
✁✁
✁

✁✁
✁✁
✁✁
✁

·

β+

0

��

β1

|� ✁✁
✁✁
✁✁
✁

✁✁
✁✁
✁✁
✁

·
y

// ·
t

// ·

·

α2❴jt

x��

y��

β2❴jt

z��

t��

x−
1 %%

x+

1

99

α−
0

��

·
%%
99

��

α+

1

qy

α−
1

�

·

β+

0

��

β+

1

qy

β−
1

�
·

%%
99 ·

t−
1 %%

t+
1

99 ·

·

α2❴jt β2❴jt

x��
z��

y��
t��

  //>>

α−
0
=β−

0

��

·

α+

0
=β+

0

��

β+

1

nv

α−
1

	� {�
·

  //>> ·

• If α : x y y is a 0-cylinder, the 0-unit 1α : 1x y 1y is given by the cells α0, α0, 1α0
.

• If α : x y y is a 1-cylinder, the 1-unit 1α : 1x y 1y is given by the cells α−
0 , α

+
0 , α1, α1, 1α1

.

x
·

1x //

α0

��

x
·

α0

��

1α0

v~ ✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉

✉✉
✉✉
✉✉
✉✉
✉✉
✉✉
✉

·
y 1y

// ·
y

x−
0
·

1α1
❴jt

1x��

1y��

x %%

x
99

α−
0

��

x+

0
·

α+

0

��

α1

mu ��

α1

��
·

y−
0

y %%

y
99 ·
y+
0

1.3.8. Since this construction is clearly functorial, we get an endofunctor Γ : Catω → Catω,
and by the above formulas, the maps α 7→ α and α 7→ α define ω-functors πC , πC : Γ(C) → C.
Hence, we also get two natural transformations π, π : Γ → idCatω .

1.3.9. Any n-cell x yields a trivial n-cylinder τ(x) : x y x given by the following cells:

1
x−
0

, 1
x+

0

, . . . , 1
x−
n−1

, 1
x+

n−1

, 1xn .

It is in fact a unit for another composition of cylinders, which is called concatenation in [LM09].

1.3.10. Examples.

• If x is a 0-cell, the 0-cylinder τ(x) : x y x is given by the cell 1x.
• If x is a 1-cell, the 1-cylinder τ(x) : x y x is given by the cells 1

x−
0

, 1
x+

0

, 1x.

• If x is a 2-cell, the 2-cylinder τ(x) : x y x is given by the cells 1
x−
0

, 1
x+

0

, 1
x−
1

, 1
x+

1

, 1x.

x
·

1x

��
·
x

x−
0
·

x //

1
x
−
0

��

x+

0
·

1
x
+
0

��

1x

w� ✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇

✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇

·
x−
0

x
// ·
x+

0

x−
0
·

1x❴jt

x��

x��

x−
1 %%

x+

1

99

1
x
−
0

��

x+

0
·

1
x
+
0

��

1
x
+
1

mu ��

1
x
−
1

��
·

x−
0

x−
1 %%

x+

1

99 ·
x+

0
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1.3.11. Definition (oplax transformations).
If f, g : C → D are two ω-functors, an oplax transformation θ from f to g is an ω-functor
θ : C → Γ(D) making the following diagram commutative:

D

C

f
<<③③③③③③③③③

g
""❉

❉❉
❉❉

❉❉
❉❉
θ // Γ(D)

πD

OO

πD

��
D

1.3.12. More concretely, if θ is an oplax transformation from f to g, then we get an n-cylinder
θ(x) : f(x) y g(x) in D for each n-cell x in C. Its principal cell θx = |θ(x)| is an (n+1)-cell in D,
with the following source and target:

θx : θx+

n−1

∗n−1 · · · ∗1 θx+

0

∗0 f(x) → g(x) ∗0 θx−
0

∗1 · · · ∗n−1 θx−
n−1

.

By ω-functoriality of θ and by construction of the ω-category Γ(D), the following two equalities
hold for n > p, for any n-cells x, y such that x+p = y−p , and for any cell u:

θy ∗p x =
(
g(y+p+1) ∗0 θx−

0

∗1 · · · ∗p−1 θx−
p−1

∗p θx

)
∗p+1

(
θy ∗p θy+p−1

∗p−1 · · · ∗1 θy+
0

∗0 f(x
−
p+1)

)
,

θ1u = 1θu .

Conversely, if for each n-cell x in C, θx is an (n+1)-cell in D with the above source and target,
and if the above two axioms hold, then we get a unique oplax transformation θ from f to g,
which is defined as follows for each n-cell x in C:

θ(x)εi = θxε
i
for i < n, |θ(x)| = θ(x)n = θx.

In other words, θ can be reconstructed from the θx. See [AM20, Section B.2] for more details.

1.3.13. Example. For any ω-category C, the ω-functor τ : C → Γ(C) mapping any cell x in C

to the trivial cylinder τ(x) : x y x defines an oplax transformation from idC to itself, which is
given by the following (n+1)-cell for each n-cell x in C:

τx = 1x : x → x.

Hence, we get a natural transformation τ : idCatω → Γ, which is a common section of π and π.

2. Orientals from the expansion monad

This section addresses the main goal of this work, namely a construction of the cosimplicial
object of orientals O : ∆ → Catω, which is obtained by iterating a monad T : Catω → Catω.
In particular, we get the following definition of orientals:

O0 = T (∅),O1 = T 2(∅),O2 = T 3(∅), . . .

This monad comes from the forgetful functor from the category of ω-categories with expansion
to the category of ω-categories. This notion of expansion is central in this paper:

• It was first introduced under the name of ω-initial structure by Burroni in the unpub-
lished paper [Bur07].

• It was then introduced independently under the name of contraction by the first author
and Maltsiniotis in [AM15], in their study of homotopical properties of orientals.
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2.1. Cones.

2.1.1. Definition (ω-category of small cones).
If o is a 0-cell in an ω-category C, which amounts to an ω-functor o : 1 → C where 1 is the
terminal ω-category, the ω-category Λ(C, o) of small cones of origin o in C is given by the
following pullback square:

Λ(C, o) //

��

y
Γ(C)

πC

��
1

o
// C

2.1.2. Remark. As the bottom arrow is a monomorphism, so is the top one, and in fact, Λ(C, o)
is a full subcategory of Γ(C).

2.1.3. More concretely, an n-cell in Λ(C, o) amounts to an n-cylinder α : 1no y x in C, which is
written α : o y x and called n-cone of origin o. The n-cell α = x is called the basis of the cone α.

The formulas of paragraph 1.3.2 for sources of (auxiliary and principal) cells of cylinders are
simpler in the case of cones. Indeed, an n-cone α : o y x is given by a finite sequence of cells

α−
0 , α

+
0 , . . . , α

−
n−1, α

+
n−1, αn

with the following sources and targets:

αε
0 : o → xε0, αε

i : α
+
i−1 → xεi∗0 α

−
0 ∗1 · · · ∗i−1 α

−
i−1 for 0 < i < n,

|α| = α0 : o → x if n = 0, |α| = αn : α+
n−1 → x ∗0 α

−
0 ∗1 · · · ∗n−1 α

−
n−1 if n > 0.

Note that the formulas for targets are unchanged, except that y is replaced by x.

2.1.4. Examples.

• If x is a 0-cell, a 0-cone α : o y x is given by the 1-cell |α| = α0 : o → x.
• If x is a 1-cell, a 1-cone α : o y x is given by the 1-cells αε

0 : o → xε0 and the 2-cell
|α| = α1 : α

+
0 → x ∗0 α

−
0 .

• If x is a 2-cell, a 2-cone α : o y x is given by the 1-cells αε
0 : o → xε0, the 2-cells

αε
1 : α

+
0 → xε1 ∗0 α

−
0 , and the 3-cell |α| = α2 : α

+
1 → x ∗0 α

−
0 ∗1 α

−
1 .

o
·

α0

��
·
x

o
·

α−
0

��✑✑
✑✑
✑✑
✑✑
✑✑
✑

α+

0

��✲
✲✲
✲✲
✲✲
✲✲
✲✲

α1

w� ✇✇✇✇✇
✇

·
x−
0

x
// ·
x+

0

o
·

α−
0

��✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏

α+

0

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳

x
��

α+

1

mu

α−
1

�	

α2❴jt

·
x−
0

x−
1 ''

x+

1

77 ·
x+

0

2.1.5. The formulas of definition 1.3.6 for p-composition are simpler in the case of cones. Indeed,
if n > p, if x, y are n-cells such that x+p = y−p , and if α : o y x, β : o y y are n-cones such that

∂+
p α = ∂−

p β, the p-composition γ = β ∗p α : o y y ∗p x is the n-cone given by the following cells:

γεi = αε
i = βε

i for i < p, γ−p = α−
p , γ+p = β+

p ,

γεp+1 = yεp+1 ∗0 α
−
0 ∗1 · · · ∗p−1 α

−
p−1 ∗p α

ε
i ∗p+1 β

ε
p+1 if p+ 1 < n,

γεi = y+p+1 ∗0 α
−
0 ∗1 · · · ∗p−1 α

−
p−1 ∗p α

ε
i ∗p+1 β

ε
i for p+ 1 < i < n,

|γ| = γn = y+p+1 ∗0 α
−
0 ∗1 · · · ∗p−1 α

−
p−1 ∗p αn ∗p+1 βn.

On the other hand, the formulas for p-units are unchanged.
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2.1.6. Examples.

• If x, y are 1-cells such that x+0 = y−0 , and if α : o y x, β : o y y are 1-cones such that
α+
0 = β−

0 , the 0-composition γ = β ∗0 α : o y y ∗0 x is given by the 1-cells γ−0 = α−
0 and

γ+0 = β+
0 , and the 2-cell γ1 = y ∗0 α1 ∗1 β1.

• If x, y are 2-cells such that x+0 = y−0 , and if α : o y x, β : o y y are 2-cones such that
α+
0 = β−

0 , the 0-composition γ = β ∗0 α : o y y ∗0 x is given by the 1-cells γ−0 = α−
0 and

γ+0 = β+
0 , the 2-cells γε1 = yε1 ∗0 α

ε
1 ∗1 β

ε
1, and the 3-cell γ2 = y+1 ∗0 α2 ∗1 β2.

• If x, y are 2-cells such that x+1 = y−1 , and if α : o y x, β : o y y are 2-cones such that
αε
0 = βε

0 and α+
1 = β−

1 , the 1-composition γ = β ∗1 α : o y y ∗1 x is given by the 1-cells
γε0 = αε

0 = βε
0, the 2-cells γ−1 = α−

1 and γ+1 = β+
1 , and the 3-cell γ2 = y ∗0 α

−
0 ∗1 α2 ∗2 β2.

o
·

α−
0

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎

��

β+

0

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

α1

x� ②②②
②

②②②
② β1

{� ⑧⑧
⑧⑧⑧
⑧

·
x

// ·
y

// ·

o
·

��

α−
0

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁

β+

0

��❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂

x�� y��

α+

1

jr

α−
1

z�

α2❴jt β2❴jt β+

1

lt

β−
1

��
·

%%
99 ·

y−
1 %%

y+
1

99 ·

o
·

α−
0
=β−

0

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎

α+

0
=β+

0

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

x��
y��

β+

1

ks

α−
1

�	 u}

β2❴jtα2❴jt

· ''//77 ·

• If α : o y x is a 0-cone, the 0-unit 1α : o y 1x is given by the cells α0, α0, 1α0
.

• If α : o y x is a 1-cone, the 1-unit 1α : o y 1x is given by the cells α−
0 , α

+
0 , α1, α1, 1α1

.

o
·

α0

��✏✏
✏✏
✏✏
✏✏
✏✏
✏

α0

��✳
✳✳
✳✳
✳✳
✳✳
✳✳

1α0

w� ✇✇✇✇✇
✇

·
x 1x

// ·
x

o
·

α−
0

��✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏

α+

0

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳

1x��

α1

mu

α1

�	

1α1❴jt

·
x−
0

x
''

x

77 ·
x+

0

2.1.7. Remark. The only trivial n-cylinder defining an n-cone of origin o is τ(1no ) : 1
n
o y 1no ,

but there is a weaker notion, which is used to define the notion of expansion:

2.1.8. Definition (degenerate cones).
An n-cone α : o y x is called degenerate if its principal cell |α| = αn is a unit, as well as its
negative auxiliary cells α−

0 , . . . , α
−
n−1.

2.1.9. Remark. If α : o y x is a degenerate n-cone, then x−0 = o, as α−
0 is an identity.

2.1.10. Lemma. Let x be an n-cell such that x−0 = o. There is a unique degenerate cone
α : o y x of base x. This cone is determined by the following cells:

α−
i = 1x−

i
for 0 ≤ i ≤ n− 1,

α+
i =

{
x−i+1 for 0 ≤ i ≤ n− 2,

x for i = n− 1,

αn = 1x.

Proof. By induction on n.

• For n = 0, there is a unique degenerate cone α : o y x determined by x = o and α0 = 1o.
• Suppose that the statement holds up to dimension n and let us show that the it holds
in dimension n+ 1. Thus, let x be an (n+1)-cell such that x−0 = o. For the uniqueness
part, suppose that α : o y x is a degenerate (n+1)-cone and consider the n-cone
β = ∂−α : o y x−n . By 1.3.2, β−

i = α−
i for 0 ≤ i ≤ n − 1 and βn = α−

n , so that all
negative auxiliary cells of β are identities, as well as its principal cell βn. By induction
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hypothesis, β is the unique degenerate n-cone of base x−n , and we know by 1.3.2 that
αε
i = βε

i for 0 ≤ i ≤ n− 1 and ε = ±. Now by 2.1.3 the principal cell of α is

αn+1 : α
+
n → x ∗0 α

−
0 ∗1 · · · ∗n α

−
n

and because α is degenerate, the right-hand side of the previous formula is just x, whereas
αn+1 is an identity so that α+

n = x and αn+1 = 1x. This proves uniqueness. Finally, the
above formulas for αε

i , 0 ≤ i ≤ n, and αn+1 satisfy the relations of 2.1.3 and define a
degenerate (n+1)-cone. �

2.1.11. Examples. For n = 0, 1, 2, we get the following degenerate cones:

o
·

1o

��
·
o

o
·

1o

��✑✑
✑✑
✑✑
✑✑
✑✑
✑

x

��✲
✲✲
✲✲
✲✲
✲✲
✲✲

1x
w� ✇✇✇✇✇
✇

·
o= x−

0

x
// ·
x+

0

o
·

1o

��✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏

x−
1

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳

x
��

x

mu

1
x
−
1

�	

1x❴jt

·
o= x−

0

x−
1 ''

x+

1

77 ·
x+

0

2.1.12. We write Catω,∗ for the category of pointed ω-categories:

• An object is a pair (C, o) where C is an ω-category, and o is a 0-cell in C, called origin.
• A morphism f : (C, o) → (D, o) is an ω-functor f : C → D preserving the origin.

2.1.13. For any such morphism, we get two ω-functors f : C → D and Γ(f) : Γ(C) → Γ(D),
which induce an ω-functor Λ(f) : Λ(C, o) → Λ(D, o) by the pullback square of definition 2.1.1.
Hence, we get a functor Λ : Catω,∗ → Catω.

The natural transformation π : Γ → idCatω induces a natural transformation π : Λ → Π,
where Π : Catω,∗ → Catω stands for the forgetful functor. This means that, for any pointed
ω-category (C, o), we get an ω-functor π(C,o) : Λ(C, o) → C, which maps any cone to its basis.
In practice, we shall simply write πC for this ω-functor.

2.1.14. The ω-category of small cones can be used to describe particular oplax transformations.
Indeed, by the pullback square of definition 2.1.1, if C,D are ω-categories and o is a 0-cell in D,
an oplax transformation from the constant ω-functor o : C → D to another ω-functor f : C → D

amounts to an ω-functor θ : C → Λ(D, o) making the following triangle commutative:

C
θ //

f ##●
●●

●●
●●

●●
● Λ(D, o)

πD

��
D

In particular, an oplax transformation from the constant ω-functor o : C → C to the identity
ω-functor idC : C → C amounts to a section θ : C → Λ(C, o) of πC : Λ(C, o) → C.

2.1.15. By the formulas of paragraph 1.3.12, such an oplax transformation amounts to the data
of an (n+1)-cell θx for each n-cell x in C, with the following source and target:

θx : o → x for n = 0, θx : θx+

n−1

→ x ∗0 θx−
0

∗1 · · · ∗n−1 θx−
n−1

for n > 0,

such that the following two axioms hold for n > p, for any n-cells x, y such that x+p = y−p , and
for any cell u:

θy ∗p x = y+p+1 ∗0 θx−
0

∗1 · · · ∗p−1 θx−
p−1

∗p θx ∗p+1 θy, θ1u = 1θu .
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2.2. Expansion monad.

2.2.1. Definition (expansions).
If C is an ω-category, an expansion on C consists of:

• a 0-cell o in C, called origin,
• a section ξ : C → Λ(C, o) of the ω-functor πC : Λ(C, o) → C, called expanding homotopy,

such that the cone ξ(x) is degenerate whenever x is of the form o or |ξ(u)| for some u.

2.2.2. By paragraph 2.1.14, ξ is an oplax transformation from the constant ω-functor o : C → C

to the identity ω-functor 1C : C → C. More concretely, it amounts by paragraph 2.1.15 to the
data of an (n+1)-cell ξx for each n-cell x in C, with the following source and target:

ξx : o → x for n = 0, ξx : ξx+

n−1

→ x ∗0 ξx−
0

∗1 · · · ∗n−1 ξx−
n−1

for n > 0,

such that the following four axioms hold for n > p, for any n-cells x, y such that x+p = y−p , and
for any cell u:

ξy ∗p x = y+p+1 ∗0 ξx−
0

∗1 · · · ∗p−1 ξx−
p−1

∗p ξx ∗p+1 ξy, ξ1u = 1ξu , ξξu = 1ξu , ξo = 1o.

We will sometimes call the first two axioms the functoriality conditions and the last two axioms
the degeneracy conditions.

2.2.3. We write Catω,e for the category of ω-categories with expansion:

• An object is a triple (C, o, ξ), where C is an ω-category, and o, ξ define an expansion
on C.

• A morphism f : (C, o, ξ) → (D, o, ξ) is an ω-functor f : C → D preserving the structure,
which means that f(o) = o and the following square commutes:

C
ξ //

f

��

Λ(C, o)

Λ(f)
��

D
ξ

// Λ(D, o)

2.2.4. Proposition. The obvious forgetful functor U : Catω,e → Catω admits a left adjoint.

Proof. This follows from the fact that our structures are “equational” in the sense of the theory
of sketches. See for instance [AR94] for an introduction to this theory. See also Remark 2.4.4
for a more concrete proof of the existence of this left adjoint.

Following the usual definition of ω-categories, Catω is indeed sketchable by a limit sketch Σ:

• Objects are the following symbols:

Cn for n ≥ 0, Cn ×Cp Cn and Cn ×Cp Cn ×Cp Cn for n > p ≥ 0,

(Cn ×Cp Cn)×Cq (Cn ×Cp Cn) for n > p > q ≥ 0.

• Generators (for morphisms) are given by sources and targets, compositions and units.
• Relations are given by laws of associativity, unit, interchange and functoriality of units.
• Distinguished cones are suggested by the notation of objects.

Similarly, the equational definition of paragraph 2.2.2, produces a limit sketch Σe whose mod-
els are ω-categories with expansion. More precisely, Σe is obtained by adding to Σ the object 1
as well as suitable generators, relations and distinguished cones.

Now, the canonical inclusion of Σ into Σe defines a morphism of sketches ι : Σ →֒ Σe, and the
induced functor Mod(ι) : Mod(Σe) → Mod(Σ) is U : Catω,e → Catω. By [Lai79, Lemma p. 6],
this implies that U admits a left adjoint. �

2.2.5. We write F : Catω → Catω,e for this left adjoint, T = UF : Catω → Catω for the
induced expansion monad, µ : T 2 → T for its multiplication, and η : idCatω → T for its unit.

It happens that the algebras of this monad are precisely the ω-categories with expansion:

2.2.6. Proposition. The forgetful functor U : Catω,e → Catω is monadic.
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Proof. We use again the sketches Σ,Σe and the morphism ι : Σ →֒ Σe introduced in the proof
of Proposition 2.2.4. This morphism has the following properties:

• The base of any distinguished cone of Σe factors though ι.
• Every object of Σe not reached by Σ (namely only 1) is the tip of a distinguished cone.

It thus fulfills the hypothesis of [Lai79, Corollary 1] and it follows that U is monadic. �

2.3. Cosimplicial object of orientals.

2.3.1. We write ∆ for the simplex category :

• Its objects are the ordered sets ∆n = {0 < 1 < · · · < n} for n ≥ 0.
• Its morphisms are the order-preserving maps.

The morphisms of ∆ are generated by

δni : ∆n−1 → ∆n, for n > 0 and 0 ≤ i ≤ n, σn
i : ∆n+1 → ∆n, for n ≥ 0 and 0 ≤ i ≤ n,

where δni is the unique order-preserving injection such that the preimage of {i} is empty, and
σn
i is the unique order-preserving surjection such that the preimage of {i} has two elements.

2.3.2. Similarly, we write ∆+ for the augmented simplex category :

• Its objects are those of ∆, plus an additional one: ∆−1 = ∅.
• Its morphisms are again the order-preserving maps.

By definition, ∆ is a full subcategory of ∆+. Moreover, the morphisms of ∆+ are generated by
the generating morphisms of ∆, plus an additional one: δ00 : ∆−1 → ∆0.

2.3.3. Recall that ∆+ is the universal monoidal category endowed with a monoid object. More
precisely, the disjoint union ∆m ∐ ∆n = ∆m+1+n defines a strict monoidal structure on ∆+,
with unit ∅ = ∆−1, and ∆0 is endowed with a unique structure of monoid for this monoidal
structure:

σ0
0 : ∆0 ∐∆0 = ∆1 → ∆0, δ00 : ∅ = ∆−1 → ∆0.

The universal property of ∆+ can then be expressed as follows (see for instance [ML98, Chap-
ter VII, Section 5]):

2.3.4. Lemma. For any monoid object M in a strict monoidal category C, there exists a unique
strict monoidal functor Φ : ∆+ → C sending the monoid ∆0 to the monoid M .

2.3.5. In particular, a monad on a category C amounts to a monoid object in the strict monoidal
category End(C) of endofunctors on C. Hence, for any such monad T , we get a canonical functor
cT : ∆+ → End(C), which is given as follows on objects and on generators:

cT (∆n) = T n+1, cT (δ
n
i ) = T n−iηT i : T n → T n+1, cT (σ

n
i ) = T n−iµT i : T n+2 → T n+1.

2.3.6. Definition (orientals).
The augmented cosimplicial object of orientals O+ : ∆+ → Catω is the composition

∆+
c
T−→ End(Catω)

ev
∅

−−→ Catω

where cT is given in the previous paragraph and ev∅ is the evaluation functor at ∅.
By restricting O+ to ∆, we get the cosimplicial object of orientals O : ∆ → Catω, and for

n ≥ 0, the n-th oriental is On = O(∆n).

2.3.7. Explicitly, we have:

On = T n+1(∅), O(δni ) = T n−iηT i(∅) : On−1 → On, O(σn
i ) = T n−iµT i(∅) : On+1 → On.

In the remainder of the paper, we will describe explicitly this “abstract” cosimplicial object
of orientals and show that it corresponds to the classical one defined by Street in [Str87].
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2.4. Free expansion on a polygraph. We know from Proposition 2.2.4 that the forgetful
functor U : Catω,e → Catω admits a left adjoint F : Catω → Catω,e taking an ω-category C

to the free expansion FC = (TC, o, ξ) on C. We now present a concrete description of FC in
the particular case where the ω-category C is freely generated by a polygraph.

2.4.1. Let S be a polygraph and C = S∗ the free ω-category generated by S. We shall define an
ω-category C⊳, freely generated by a polygraph, together with

• an inclusion morphism η : C → C⊳,
• a distinguished 0-cell o of C⊳,
• a morphism ξ : C⊳ → Λ(C⊳, o),

in such a way that, eventually, (C⊳, o, ξ) becomes an ω-category with expansion, and in fact
coincides with FC.

We now define C⊳, η and ξ by simultaneous induction on the dimension. In each dimension n,
C⊳ will be defined by freely adjoining a set Rn of new n-generators to those of C, together with
source and target maps from Rn to C⊳

n−1. The morphism η will be induced by the natural
inclusion of generators Sn → Sn ∐ Rn. Throughout the construction, we abuse notations by
identifying any n-cell x ∈ Cn with ηx ∈ C⊳

n .

• For n = 0, R0 is a singleton and η : C0 → C⊳
0 is the natural inclusion S0 → S0∐R0. The

unique element of R0 is denoted by o and eventually becomes the distinguished 0-cell
of C⊳.

• For n = 1, to each a ∈ S0 corresponds a generator ra ∈ R1 such that ra : o → a. Now to
any generator a : u → v in S1 correspond source and target cells u and v in C0 ⊂ C⊳

0 .
Therefore the 1-cells in C⊳

1 are defined as freely generated by S1 ∐R1, and η : C1 → C⊳
1

is induced by the natural inclusion S1 → S1 ∐R1.
Moreover the 0-cells of Λ(C⊳, o) are now defined as the 0-cones of origin o in C⊳, that is,

the 1-cells u of C⊳ with u−0 = o. Finally ξ : C⊳
0 → Λ(C⊳, o)0 is defined by

– ξ(a) = ra for each a ∈ S0,
– ξ(o) = 1o.

In particular, the first degeneracy condition holds.
• Let n ≥ 1 and suppose we have defined C⊳ together with a morphism η : C → C⊳, up to
dimension n, as well as an expanding homotopy ξ : C⊳ → Λ(C⊳, o) up to dimension n−1.
So we get the following diagram:

Cn−1

η

��

Cnoooo

η

��
C⊳
n−1

ξ

��

C⊳
noooo

Λ(C⊳, o)n−1

|−|

99ssssssssss

In addition, we suppose that C⊳
n is freely generated by the set Sn ∐ Rn where

Rn = {ξa | a ∈ Sn−1}.

We must now extend C⊳ together with η : C → C⊳ up to dimension n + 1, and the
expanding homotopy ξ up to dimension n. The (n+1)-generators of C⊳ are twofold:

– each a : u → v in Sn+1 becomes an (n+1)-generator of C⊳ with source and target
u and v in Cn ⊂ C⊳

n ;
– to each a : u → v in Sn corresponds a new generator ra in Rn+1. By induction

hypothesis, x = ξ(u) and y = ξ(v) are two parallel (n−1)-cones of origin o in C⊳

such that πx = u and πy = v. Therefore, by 2.1.3, we may define the source and
target of ra by

r−a = ξa+n−1

= ξv,

r+a = a ∗0 ξa−
0

∗1 · · · ∗n−2 ξa−n−2

∗n−1 ξa−n−1

= a ∗0 ξu−
0

∗1 · · · ∗n−2 ξu−
n−2

∗n−1 ξu.
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Thus C⊳
n+1 is defined as the set of freely generated (n+1)-cells over Sn+1 ∐ Rn+1, and

the natural inclusion Sn+1 → Sn+1 ∐ Rn+1 induces η : Cn+1 → C⊳
n+1. Now, having

defined C⊳ up to dimension n + 1, the n-cones in Λ(C⊳, o) are determined and the
remaining task is to define ξ : C⊳

n → Λ(C⊳, o)n. By Lemma 1.2.3, it is sufficient to
define ξ on the generators of C⊳

n , that is, on the elements of Sn ∐ Rn, provided the
commutation conditions for source and target are satisfied. There are two cases to
consider:

– if a : u → v is in Sn, we have defined ra ∈ Rn+1 in such a way that ra is the
principal cell of an n-cone z : x → y where x = ξ(u), y = ξ(v) and πz = a.
Therefore ∂εz = ξ(∂εa) for ε = ± so that we may define ξ(a) = z;

– if a ∈ Rn, by induction hypothesis, a is of the form rb = ξb for some b ∈ Sn−1.
Therefore a−0 = o and by 2.1.10, we may define ξ(a) as the unique degenerate cone
of base a. If n = 1, ξ(∂−a) = ξ(o) = 1o = ∂−ξ(a) and ξ(∂+a) = ξ(b) = ∂+ξ(a),
which entails compatibility with source and target. If n ≥ 2, then

∂−a = r−b = ξ
b+n−2

,

∂+a = r+b = b ∗0 ξb−
0

∗1 · · · ∗n−2 ξb−n−2

.

By induction, applying ξ to the above equations, and using the degeneracy condi-
tions up to dimension n gives

ξ(∂−a) = ∂−ξ(a),

ξ(∂+a) = ξ(b) ∗0 ξ(ξb−
0

) ∗1 · · · ∗n−2 ξ(ξb−n−2

),

and it remains to show that ∂+ξ(a) = ξ(∂+a). First, both cones have the same
base ∂+a, and by induction, for ε = ±,

∂εξ(∂+a) = ξ(∂ε∂+a) = ξ(∂ε∂−a) = ∂εξ(∂−a) = ∂ε∂−ξ(a) = ∂ε∂+ξ(a),

so that both cones have same source and target. Finally, the principal cell of
∂+ξ(a) is just a by Lemma 2.1.10, whereas the principal cell of ξ(∂+a) is the one
of ξ(b) ∗0 ξ(ξb−

0

) ∗1 · · · ∗n−2 ξ(ξb−n−2

) by the above formula. As all terms |ξ(ξb−i
)| are

identities, one gets |ξ(∂+a)| = |ξ(b)| = a and we are done.
By construction, Rn+1 consists in generators of the form ξa where a ∈ Sn, and for
all a ∈ Sn+1 ∐ Rn+1, πξa = a. Now, for each u ∈ C⊳

n−1, ξξu = 1ξu : this holds by
construction for generators and extends to any (n−1)-cell by the functoriality conditions
of 2.2.2. Therefore ξ satisfies the expanding homotopy conditions up to dimension n,
which completes the induction step.

2.4.2. To sum up, given C a free ω-category on a polygraph S, we have defined an ω-category C⊳,
endowed with a distinguished 0-cell o : 1 → C⊳ and an expanding homotopy ξ : C⊳ → Λ(C⊳, o).
By construction, C⊳ is itself free on a polygraph whose set of n-generators is Sn ∐Rn, where

R0 = {o} and Rn = {ra | a ∈ Sn−1} for n ≥ 1.

The sources and the targets of the generators in Sn are inherited by those of S and, if a is
in Sn−1, for n ≥ 1, the source and the target of ra are

r−a = ξ
a+n−1

and r+a = a ∗0 ξa−
0

∗1 · · · ∗n−1 ξa−n−1

and the expanding homotopy is defined by

ξa = ra, ξo = 1o and ξra = 1ra .

We will denote this polygraph by S⊳, so that C⊳ = S⊳∗.

2.4.3. Proposition. For any polygraph S, the left adjoint F : Catω → Catω,e to the functor
U : Catω,e → Catω takes C = S∗ to (C⊳, o, ξ), and therefore the expansion monad T takes
C = S∗ to C⊳ = S⊳∗.
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Proof. Let (D, o, ξ) be an ω-category with expansion, and f : S∗ → D a morphism in Catω. We
have to show that there is a unique morphism

f∗ : (C⊳, o, ξ) → (D, o, ξ)

in Catω,e such that the following diagram commutes:

S∗

η

��

f

!!❇
❇❇

❇❇
❇❇

❇

C⊳

f∗
// D

Note that, by abuse of notation, we identify here f∗ with Uf∗, as Uf∗ entirely determines f∗,
as soon as it commutes with the origins and the expanding homotopies. The construction is by
induction on the dimension.

• In dimension n = 0, S⊳
0 = S0 ∐ {o}, and we define f∗a = fa if a ∈ S0 and f∗a = o if

a = o. This is clearly the only possible choice.
• In dimension n = 1, S⊳

1 = S1 ∐ R1. If a ∈ S1, we set f∗a = fa, the commutation
with source and target being straightforward. If a ∈ R1, a = rb = ξb for some b ∈ S0,
and we define f∗a = ξfb, which again ensures commutation with source and target, and
defines f∗ up to dimension 1, in the unique possible way. Moreover, for each u ∈ C⊳

0 ,
ξ(f∗u) = f∗(ξu). In fact, either u = o, in which case ξf∗o = ξo = 1o = f∗(1o) = f∗(ξo),
or u ∈ S0, in which case ξf∗u = f∗(ru) = f∗(ξu) by definition.

• Let n ≥ 1 and suppose that, up to dimension n, we have defined a morphism f∗ : C⊳ → D

such that f∗ ◦ η = f and f∗ commutes to the expanding homotopies up to dimen-
sion n−1. We extend f∗ to dimension n + 1 by defining first f∗a when a ∈ S⊳

n+1. As
S⊳
n+1 = Sn+1 ∐ Rn+1, there are two cases to consider:
– if a ∈ Sn+1, we take f∗a = fa, and the commutation with source and target is

straightforward. The condition f∗ ◦ η = f implies that this choice is unique;
– if a ∈ Rn+1, a is of the form rb with b ∈ Sn. By induction hypothesis, we already

have an n-cell f∗b ∈ Dn. Now D is endowed with an expanding homotopy ξ so that
we get an n-cone x = ξ(f∗b), whose principal cell u = |x| is an (n+1)-cell of D.
Thus, we may define f∗a = u. The construction of rb given in 2.4.1 ensures the
commutation with source and target. Moreover, because f∗ must commute to the
expanding homotopies, the above choice for f∗rb is unique.

By Lemma 1.2.3, the above values determine a unique extension of the morphism f∗ in
dimension n+1. It remains to check that the morphism f∗ so defined actually commutes
to expanding homotopies up to dimension n, that is, ξ(f∗u) = f∗ξ(u) for all u ∈ C⊳

n .
By functoriality, it suffices to check this commutation on generators. Thus, if a ∈ Sn,
ξa = ra ∈ Rn+1 and f∗ξa = ξf∗a by definition. If a ∈ Rn, a = rb = ξb for some b ∈ Sn−1,
and the degeneracy conditions together with the induction hypothesis yield

ξf∗a = ξf∗ξb = ξξf∗b = 1ξf∗b = 1f∗ξb = f∗1ξb = f∗ξξb = f∗ξa. �

2.4.4. Remark. Proposition 2.2.4, whose proof is based on an abstract argument using the
theory of sketches, states that the forgetful functor U : Catω,e → Catω admits a left adjoint.
Proposition 2.4.3 gives an alternate proof. Indeed, it shows that this forgetful functor admits a
left adjoint relative to the subcategory of ω-categories freely generated by a polygraph. As this
subcategory contains a small dense subcategory (for instance, the category of globular pasting
schemes indexing operations of ω-categories), this implies that the forgetful functor admits a
left adjoint (provided that we know that the category Catω,e is cocomplete).

2.4.5. Corollary. For each n ≥ 0, the n-th oriental On is a free ω-category on a polygraph.

Proof. By induction on n. As O0 is the terminal ω-category, it is freely generated by the
polygraph having a single 0-generator and no generator of higher dimensions. Let n ≥ 0 and
suppose On is free on a polygraph. By definition, On+1 = T (On) = O

⊳
n , which is again free on a

polygraph by Proposition 2.4.3. �
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2.4.6. Proposition. Let C = S∗, where S is a polygraph, and let f : C → D be an ω-functor.
Then the action of the ω-functor Tf : TC → TD on generators is given by

(Tf)(a) = ηf(a) for a in Sn with n ≥ 0,

(Tf)(o) = o and (Tf)(ra) = ξηf(a) for a ∈ Sn−1 with n ≥ 1,

where o and ξ respectively denote the origin and the expanding homotopy in TC and TD.

Proof. Let g = ηf : S∗ → TD. By naturality of η, the following diagram commutes:

S∗ f //

η

��

g

""❊
❊❊

❊❊
❊❊

❊ D

η

��
TC

Tf
// TD

Therefore, by Proposition 2.4.3, Tf is the unique ω-morphism commuting to origins and ex-
panding homotopies making the bottom-left triangle commute, and the equations follow from
the description of S⊳. �

By Proposition 2.4.3, if C is freely generated by a polygraph, then the unit of the expansion
monad is given by the morphism η : C → C⊳ of paragraph 2.4.1. We end the section by a
description of the multiplication of the monad:

2.4.7. Proposition. Let C be an ω-category freely generated by a polygraph. Then the multipli-
cation of the expansion monad µ : T 2C → TC is the ω-functor defined on generators by

µ(ηx) = x, µ(o) = o and µ(ξηx) = ξx,

where x is a generator of TC = C⊳.

Proof. The first equation holds for any monad. As for the other ones, they follow from the fact
that µ = UεF is induced by a morphism of ω-categories with expansion. �

3. Oriental calculus

3.1. Syntax for expansion. We consider an ω-category with expansion (C, o, ξ).

3.1.1. For any n-cell x in C, we write 〈x〉 for the (n+1)-cell ξx defined in paragraph 2.2.2, which
we call chevron of x.

• It has the following source and target:

〈x〉 : o → x if n = 0, 〈x〉 : 〈x+n−1〉 → x ∗0〈x
−
0 〉 ∗1 · · · ∗n−1〈x

−
n−1〉 if n > 0.

• It is the principal cell of the n-cone ξ(x) : o y x given by the following cells:

〈x−0 〉, 〈x
+
0 〉, . . . , 〈x

−
n−1〉, 〈x

+
n−1〉, 〈x〉.

3.1.2. Examples. Starting from 〈x〉 : o → x for n = 0, we get 〈x〉 : 〈x+0 〉 → x ∗0〈x
−
0 〉 : o → x+0

for n = 1, and 〈x〉 : 〈x+1 〉 → x ∗0〈x
−
0 〉 ∗1〈x

−
1 〉 : 〈x

+
0 〉 → x+1 ∗0〈x

−
0 〉 : o → x+0 for n = 2.

o
·

〈x〉

��
·
x

o
·

〈x−
0
〉

��✑✑
✑✑
✑✑
✑✑
✑✑
✑

〈x+

0
〉

��✲
✲✲
✲✲
✲✲
✲✲
✲✲

〈x〉

w� ✇✇✇✇✇
✇

·
x−
0

x
// ·
x+

0

o
·

〈x−
0
〉

��✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏

〈x+

0
〉

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳

x
��

〈x+

1
〉

mu

〈x−
1
〉

�	

〈x〉❴jt

·
x−
0

x−
1 ''

x+

1

77 ·
x+

0

3.1.3. The four axioms of paragraph 2.2.2 can be rewritten as follows for any n > p, for any
n-cells x, y such that x+p = y−p , and for any cell u:

〈y ∗p x〉 = y+p+1 ∗0〈x
−
0 〉 ∗1 · · · ∗p−1〈x

−
p−1〉 ∗p〈x〉 ∗p+1〈y〉, 〈1u〉 = 1〈u〉, 〈〈u〉〉 = 1〈u〉, 〈o〉 = 1o.
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3.1.4. Remarks.

• In case n = p+ 1, we get y+p+1 = y, so that our first axiom can be rewritten as follows:

〈y ∗p x〉 = y ∗0〈x
−
0 〉 ∗1 · · · ∗p−1〈x

−
p−1〉 ∗p〈x〉 ∗p+1〈y〉.

• The last axiom has a single occurrence:

o
·

〈o〉=1o

��
·
o

If we write o = 〈∗〉 where ∗ is an extra cell of dimension −1, this axiom becomes a
particular case of the previous one : 〈〈∗〉〉 = 1〈∗〉. We shall not introduce such a cell but
we shall use a similar idea in our simplicial notation for generators of orientals.

3.1.5. Examples.

• If x, y are 1-cells such that x+0 = y−0 , we get 〈y ∗0 x〉 = y ∗0〈x〉 ∗1〈y〉.
• If x, y are 2-cells such that x+0 = y−0 , we get 〈y ∗0 x〉 = y+1 ∗0〈x〉 ∗1〈y〉.
• If x, y are 2-cells such that x+1 = y−1 , we get 〈y ∗1 x〉 = y ∗0〈x

−
0 〉 ∗1〈x〉 ∗2〈y〉.

o
·

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎

�� ��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

〈x〉

x� ②②②
②

②②②
② 〈y〉

{� ⑧⑧
⑧⑧⑧
⑧

·
x

// ·
y

// ·

o
·

�� ��❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

❂❂

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁

x�� y��jrz�

〈x〉
❴jt 〈y〉

❴jt

lt��·
%%
99 ·

%%

y+
1

99 ·

o
·

〈x−
0
〉

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

x��
y��

ks
�	 u}

〈y〉
❴jt〈x〉

❴jt

· ''//77 ·

• If u is a 0-cell, we have 1u : u → u and 〈u〉 : o → u. So we get

〈1u〉 = 1〈u〉 : 〈u〉 → 1u ∗0〈u〉 = 〈u〉 and 〈〈u〉〉 = 1〈u〉 : 〈u〉 → 〈u〉 ∗0〈o〉 = 〈u〉 ∗0 1o = 〈u〉.

o
·

〈u〉

��☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

〈u〉

��✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

〈1u〉=1〈u〉
ssss

u} ssss

·
u 1u

// ·
u

o
·

〈o〉=1o

��☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

〈u〉

��✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

〈〈u〉〉=1〈u〉
ssss

u} ssss

·
o 〈u〉

// ·
u

• If u is a 1-cell, we have 1u : u → u : u−0 → u+0 and 〈u〉 : 〈u+0 〉 → u ∗0〈u
−
0 〉 : o → u+0 .

So we get 〈1u〉 = 1〈u〉 : 〈u〉 → 1u ∗0〈u
−
0 〉 ∗1〈u〉 = 〈u〉 and

〈〈u〉〉 = 1〈u〉 : 〈〈u〉
+
1 〉 = 〈u ∗0〈u

−
0 〉〉 = u ∗0〈〈u

−
0 〉〉 ∗1〈u〉 = u ∗0 1〈u−

0
〉 ∗1〈u〉 = 〈u〉 →

〈u〉 ∗0〈〈u〉
−
0 〉 ∗1〈〈u〉

−
1 〉 = 〈u〉 ∗0〈o〉 ∗1〈〈u

+
0 〉〉 = 〈u〉 ∗0 1o ∗1 1〈u+

0
〉 = 〈u〉.
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o
·

〈u−
0
〉

��✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏

〈u+

0
〉

��✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳
✳✳

1u��

〈u〉

ks

〈u〉

�	

〈1u〉=1〈u〉
❴jt

·
u−
0

u
''

u
77 ·
u+

0

o
·

〈o〉=1o

��✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑

〈u+

0
〉

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇

〈u−
0
〉

✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪

��✪
✪
✪
✪
✪
✪
✪
✪
✪
✪

〈〈u+

0
〉〉=1

〈u+
0

〉

z�
〈u〉

��

〈〈u−
0
〉〉=1

〈u−
0

〉

☛☛
☛

☛☛
☛

�	 ☛
☛☛☛☛
☛

〈〈u〉〉=1〈u〉

❴jt · u+

0

o ·

〈u−
0
〉

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖

〈u+

0
〉

33

〈u〉

��

·
u−
0

u

DD✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

3.2. Syntax for orientals. In paragraph 2.4.1, the unit η : C → C⊳ of the expansion monad
is considered as an inclusion, but since orientals are obtained by iterating this monad, our
simplicial notation for orientals uses an explicit shift.

3.2.1. Let us introduce the following notations:

• If x is an m-cell in On, we write ⌈x⌉, called shift of x, for the m-cell η(x) in On+1.
• We write 〈0〉 for the origin o, which is a 0-cell in On for any n.
• More generally, if 0 ≤ i ≤ n, we write 〈i〉 for the 0-cell ηi(o) in On.
• If x is an m-cell in On, we write 〈0, x〉 for the chevron 〈x〉, which is an (m+1)-cell in On.
• More generally, if 0 ≤ i ≤ n and x′ is anm-cell in On of the form ηi(x) for some x in On−i,
we write 〈i, x′〉 for the (m+ 1)-cell ηi〈x〉 in On.

3.2.2. Remarks.

• Shift is a notation for the embedding η : On →֒ O
⊳
n = On+1 induced by the map i 7→ i+1

from ∆n = {0, . . . , n} to ∆n+1 = {0, . . . , n + 1}, which must not be confused with the
canonical inclusion On ⊂ On+1 induced by the inclusion ∆n ⊂ ∆n+1.

• In practice, ⌈x⌉ is obtained by incrementing all integers occurring in x, or more precisely,
by applying the following rules:

⌈〈i〉⌉ = 〈i+1〉, ⌈〈i, x〉⌉ = 〈i+1, ⌈x⌉〉, ⌈y ∗p x⌉ = ⌈y⌉ ∗p⌈x⌉, ⌈1u⌉ = 1⌈u⌉.

3.2.3. By paragraph 2.4.2, the oriental On has a 0-generator 〈0〉, and any m-generator s of On

yields two generators of On+1:

• a shifted m-generator s′ = ⌈s⌉ standing for η(s), with shifted source and target if m > 0,
• an expanded (m+1)-generator 〈0, s′〉, which is just a new notation for the chevron 〈s′〉,
whose source and target are given by the same formulas as in paragraph 3.1.1.

3.2.4. By induction on n, we get that any 0-generator of On is of the form 〈i〉 with 0 ≤ i ≤ n,
and more generally, any m-generator of On is of the form

〈i0,〈i1, . . . ,〈im〉 · · ·〉〉 with 0 ≤ i0 < i1 < · · · < im ≤ n.

In other words, the set of m-generators of On is in canonical bijection with the set of injective
order-preserving maps from ∆m to ∆n.

We write 〈i0, i1, . . . , im〉 for the above m-generator, which is in fact defined by induction on m:

〈i0, i1, . . . , im〉 = 〈i0,〈i1, . . . , im〉〉.

In particular, we get a single generator |On| = 〈0, 1, . . . , n〉 of maximal dimension n, which is
called the principal generator of On.
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3.2.5. The above notation extends to the case of a nondecreasing sequence i0 ≤ i1 ≤ · · · ≤ im.
This is easily seen by induction on m, since we get 〈i0, i1, . . . , im〉 = ηi0〈0,〈i1 − i0, . . . , im − i0〉〉,
but this defines a generator only if the sequence is (strictly) increasing. Otherwise, we get a unit.
For instance, if 0 = i0 = i1 ≤ i2 · · · ≤ im, then we get the following unit:

〈0, 0, i2, . . . , im〉 = 〈0,〈0,〈i2, . . . , im〉〉〉 = 1〈0,i2,...,im〉.

The second equality follows indeed from the degeneracy axiom 〈〈u〉〉 = 1〈u〉 where u = 〈i2, . . . , im〉
and 〈u〉 is written 〈0, u〉.

3.2.6. Examples.

• O0 = ∅
⊳ has a single 0-generator 〈0〉.

• O1 = O
⊳
0 has the generator of O0 and the following ones:

– the 0-generator ⌈〈0〉⌉ = 〈1〉,
– the 1-generator 〈0,〈1〉〉 = 〈0, 1〉 : 〈0〉 → 〈1〉.

• O2 = O
⊳
1 has the generators of O1 and the following ones:

– the 0-generator ⌈〈1〉⌉ = 〈2〉,
– the 1-generator 〈0,〈2〉〉 = 〈0, 2〉 : 〈0〉 → 〈2〉,
– the 1-generator ⌈〈0, 1〉⌉ = 〈1, 2〉 : 〈1〉 → 〈2〉,
– the 2-generator 〈0,〈1, 2〉〉 = 〈0, 1, 2〉 : 〈0, 2〉 → 〈1, 2〉 ∗0〈0, 1〉.

For s = 〈1, 2〉 : 〈1〉 → 〈2〉, we get indeed

〈0, s〉 : 〈0, s+0 〉 = 〈0,〈2〉〉 = 〈0, 2〉 → s ∗0〈0, s
−
0 〉 = 〈1, 2〉 ∗0〈0,〈1〉〉 = 〈1, 2〉 ∗0〈0, 1〉.

• O3 = O
⊳
2 has the generators of O2 and the following ones:

– the 0-generator ⌈〈2〉⌉ = 〈3〉,
– the 1-generator 〈0, 3〉 : 〈0〉 → 〈3〉,
– the 1-generator ⌈〈0, 2〉⌉ = 〈1, 3〉 : 〈1〉 → 〈3〉,
– the 2-generator 〈0, 1, 3〉 : 〈0, 3〉 → 〈1, 3〉 ∗0〈0, 1〉,
– the 1-generator ⌈〈1, 2〉⌉ = 〈2, 3〉 : 〈2〉 → 〈3〉,
– the 2-generator 〈0, 2, 3〉 : 〈0, 3〉 → 〈2, 3〉 ∗0〈0, 2〉,
– the 2-generator ⌈〈0, 1, 2〉⌉ = 〈1, 2, 3〉 : 〈1, 3〉 → 〈2, 3〉 ∗0〈1, 2〉,
– the 3-generator 〈0, 1, 2, 3〉 : 〈2, 3〉 ∗0〈0, 1, 2〉 ∗1〈0, 2, 3〉 → 〈1, 2, 3〉 ∗0〈0, 1〉 ∗1〈0, 1, 3〉.

For s = 〈1, 2, 3〉 : 〈1, 3〉 → 〈2, 3〉 ∗0〈1, 2〉 : 〈1〉 → 〈3〉, we get indeed

〈0, s〉 : 〈0, s+1 〉 = 〈0,〈2, 3〉 ∗0〈1, 2〉〉 = 〈2, 3〉 ∗0〈0,〈1, 2〉〉 ∗1〈0,〈2, 3〉〉 = 〈2, 3〉 ∗0〈0, 1, 2〉 ∗1〈0, 2, 3〉 →
s ∗0〈0, s

−
0 〉 ∗1〈0, s

−
1 〉 = 〈1, 2, 3〉 ∗0〈0,〈1〉〉 ∗1〈0,〈1, 3〉〉 = 〈1, 2, 3〉 ∗0〈0, 1〉 ∗1〈0, 1, 3〉.

〈0〉
·

〈0〉
·

〈0,1〉

��
·
〈1〉

〈0〉
·

〈0,1〉

��✎✎
✎✎
✎✎
✎✎
✎✎
✎✎

〈0,2〉

��✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴

〈0,1,2〉
④④④④

y� ④④④④

·
〈1〉 〈1,2〉

// ·
〈2〉

〈0〉
·

〈0,1〉

��✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏

〈0,3〉

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

〈0,2〉

✪✪
✪✪
✪

��✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪
✪

〈0,1,3〉
w� 〈0,2,3〉

��

〈0,1,2,3〉
❴jt ·〈3〉

〈1〉·

〈1,2〉
''❖❖

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖

〈1,3〉
33

〈1,2,3〉

��

〈0,1,2〉ks

·
〈2〉

〈2,3〉

DD✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠

3.2.7. Remarks.

• We have a canonical inclusion On ⊂ On+1, so that once the generators of On are known,
it suffices to give the last generation (of generators) of On+1. The latter is obtained by
applying s 7→ s′ = ⌈s⌉ and then s′ 7→ 〈0, s′〉 to the last generation (of generators) of On.
In particular, it does not contain the origin 〈0〉.
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• Once we have computed the source u and the target v of the principal generator |Om|,
we get the source and target of any other m-generator 〈i0, . . . , im〉 of On for n > m

by applying the substitution 0 7→ i0, . . . , m 7→ im to u and to v. In other words, we
apply the functor O : ∆ → Catω, which is described in the next subsection, to this
substitution, seen as an injective order-preserving map from ∆m to ∆n.

3.3. Expansion monad on orientals.

3.3.1. By construction, the expansion monad restricts to orientals:

• It maps the oriental On to the oriental O⊳
n = On+1, and the ω-functor f : On → On′ to

the ω-functor f⊳ : O⊳
n = On+1 → O

⊳

n′ = On′+1 defined as follows by proposition 2.4.6:

f⊳〈0〉 = 〈0〉,

{
f⊳⌈s⌉ = ⌈f s⌉,

f⊳〈0, ⌈s⌉〉 = 〈0, ⌈f s⌉〉
for any m-generator s of On.

• Its unit is the ω-functor η : On →֒ O
⊳
n = On+1 defined as follows:

η(s) = ⌈s⌉ for any m-generator s of On.

• Its multiplication is the ω-functor µ : O⊳⊳
n = On+2 → O

⊳
n = On+1 defined as follows by

proposition 2.4.7:

µ〈0〉 = 〈0〉,

{
µ⌈s⌉ = s,

µ〈0, ⌈s⌉〉 = 〈0, s〉
for any m-generator s of On+1.

More explicitly, we get the following formulas for η and µ:

η〈i0, . . . , im〉 = 〈i0+1, . . . , im+1〉 for 0 ≤ i0 < · · · < im ≤ n,

{
µ〈i0+1, . . . , im+1〉 = 〈i0, . . . , im〉,

µ〈0, i0+1, . . . , im+1〉 = 〈0, i0, . . . , im〉
for 0 ≤ i0 < · · · < im ≤ n+ 1.

3.3.2. Remarks.

• Unlike η, the ω-functor µ is not rigid, since we get the following degenerate case for i0 = 0:

µ〈0, 1, i1+1, . . . , im+1〉 = 〈0, 0, i1, . . . , im〉 = 1〈0,i1,...,im〉.

• Our formulas for µ and η are generic, since they do not depend on the dimension n of On.
For that reason, objects are omitted in our notation for those natural transformations.

3.3.3. Example. The ω-functor µ : O3 → O2 is defined as follows:

µ〈0〉 = µ〈1〉 = 〈0〉, µ〈2〉 = 〈1〉, µ〈3〉 = 〈2〉,

µ〈0, 1〉 = 1〈0〉, µ〈0, 2〉 = µ〈1, 2〉 = 〈0, 1〉, µ〈0, 3〉 = µ〈1, 3〉 = 〈0, 2〉, µ〈2, 3〉 = 〈1, 2〉,

µ〈0, 1, 2〉 = 1〈0,1〉, µ〈0, 1, 3〉 = 1〈0,2〉, µ〈0, 2, 3〉 = µ〈1, 2, 3〉 = 〈0, 1, 2〉,

µ〈0, 1, 2, 3〉 = 1〈0,1,2〉.

3.3.4. Proposition. The cosimplicial object of orientals O : ∆ → Catω maps the object ∆n to
the oriental On, and the order-preserving map φ : ∆n → ∆n′ to the ω-functor f : On → On′

defined as follows:

f〈i0, . . . , im〉 = 〈φ(i0), . . . , φ(im)〉 for 0 ≤ i0 < · · · < im ≤ n.

Proof. By the description of the functor O : ∆ → Catω given in paragraph 2.3.7, it suffices to
apply the formulas of paragraph 3.3.1. �
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4. Comparison with Street’s orientals

4.1. Steiner’s theory. All the definitions and results presented in this subsection are extracted
from [Ste04].

4.1.1. Definition (Augmented directed complexes).
An augmented directed complex K consists of an augmented chain complex of abelian groups in
non-negative degrees

· · ·
d // Kn

d // · · ·
d // K1

d // K0
e // Z

(meaning that we have dd = 0 and ed = 0) endowed with a submonoid K∗
n of Kn for every

n ≥ 0.
If K and L are two such augmented directed complexes, a morphism from K to L is a

morphism f of augmented chain complexes

· · ·
d // Kn

d //

f

��

· · ·
d // K1

d //

f

��

K0

f

��

e // Z

· · ·
d // Ln

d // · · ·
d // L1

d // L0
e // Z

such that f(K∗
n) ⊂ L∗

n for every n ≥ 0.
We will denote by ADC the category of augmented directed complexes.

4.1.2. We define a functor λ : Catω → ADC in the following way. Let C be an ω-category.
For n ≥ 0, the abelian group λ(C)n is defined to be the quotient of the free abelian group on
the set of n-cells of C by the subgroup generated by the elements of the form x ∗j y − x − y,
where x, y is a pair of n-cells, 0 ≤ j < n and x ∗j y is defined. We will denote by [x] the image
of an n-cell x of C in λ(C)n. If n > 0, the differential d : λ(C)n → λ(C)n−1 is defined on the
generators by d[x] = [∂+x]− [∂−x]. If n = 0, the abelian group λ(C)0 is free on the set of objects
of C and the augmentation e : λ(C)0 → Z is the sum of the coefficients. Finally, for n ≥ 0, the
monoid K∗

n is the submonoid of Kn generated by the generators [x].
If f : C → D is an ω-functor, then λ(f) is defined on generators by λ(f)[x] = [f(x)].
One can check that these constructions are well-defined and indeed define a functor λ.

4.1.3. We now define a functor ν : ADC → Catω.
Let K be an augmented directed complex. For n ≥ 0, an n-cell of ν(K) is a table

(
x−0 · · · x−n

x+0 · · · x+n

)

where

• xεi belongs to K∗
i for ε = ±,

• x−n = x+n ,
• d(xεi ) = x+i−1 − x−i−1 for 0 < i ≤ n et ε = ±,
• e(xε0) = 1 for ε = ±.

When n > 0, the source and target of such a table are given by the tables
(
x−0 · · · x−n−2 x−n−1

x+0 · · · x+n−2 x−n−1

)
and

(
x−0 · · · x−n−2 x+n−1

x+0 · · · x+n−2 x+n−1

)
.

For n ≥ 0, the identity of such a table is the table
(
x−0 · · · x−n 0

x+0 · · · x+n 0

)
.

Finally, if

x =

(
x−0 · · · x−n

x+0 · · · x+n

)
and y =

(
y−0 · · · y−n

y+0 · · · y+n

)
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are two n-cells such that ∂−
j y = ∂+

j x for a j such that 0 ≤ j < n, then the cell y ∗j x is the table
(
x−0 · · · x−j x−j + y−j · · · x−n + y−n

y+0 · · · y+j x+j + y+j · · · x+n + y+n

)
.

One can check that these cells and operations define an ω-category ν(K).
If f : K → L is a morphism of augmented directed complexes, then, for n ≥ 0, the action of

ν(f) : ν(K) → ν(L) on n-cells is defined by
(
x−0 · · · x−n

x+0 · · · x+n

)
7→

(
f(x−0 ) · · · f(x−n )

f(x+0 ) · · · f(x+n )

)
.

One can check that these constructions define a functor ν : ADC → Catω.

4.1.4. Proposition (Steiner). The functors

λ : Catω → ADC ν : ADC → Catω

form a pair of adjoint functors.

Proof. This is [Ste04, Theorem 2.11]. �

4.1.5. A basis of an augmented directed complex K is a subgraded set
∐

n≥0Bn of
∐

n≥0K
∗
n

such that Bn is a basis of the Z-module Kn that generates the monoid K∗
n. We will say that an

augmented directed complex is free if it admits a basis.

4.1.6. Remark. If such a basis exists, then we have, for n ≥ 0,

Kn ≃ Z
(Bn) and K∗

n ≃ N
(Bn).

It follows from the second isomorphism that Bn is uniquely determined by K∗
n. In other words,

a free augmented directed complex admits a unique basis.

4.1.7. Let K be a free augmented directed complex with basis B. Let z be in Kn for some n ≥ 0.
This element can be written in a unique way

z =
∑

b∈Bn

zbb,

where Bn is the basis of Kn. The support of z is the subset of Bn consisting of those b such
that zb 6= 0. We define z+ and z− to be the unique elements of K∗

n with disjoint supports such
that

z = z+ − z−.

For n ≥ 1 and x in Kn, we set

d−(x) = d(x)− and d+(x) = d(x)+,

and, for 0 ≤ i < n, we set

d−i (x) = (d−)n−i(x) and d+i (x) = (d+)n−i(x).

Note that d−i (x) and d+i (x) are elements of K∗
i .

4.1.8. Let K be a free augmented directed complex with basis B. To any x in K∗
n for some n ≥ 0,

we associate a table (
d−0 (x) · · · d−n−1(x) x

d+0 (x) · · · d+n−1(x) x

)
.

This table satisfies all the conditions to be an n-cell of ν(K) except maybe that e(d−0 (x)) = 1
and e(d+0 (x)) = 1, where e : K0 → Z is the augmentation of K.

The complex K is said to be unital if, for every n ≥ 0 and every x in Bn, we have e(d
−
0 (x)) = 1

and e(d+0 (x)) = 1. In this case, the table associated to x is indeed an n-cell of ν(K) that is
called the atom of x.
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4.1.9. A free augmented directed complex K with basis B is said to be strongly loop-free if there
exists a partial order ≤ on the set B =

∐
n≥0Bn such that, for every x in Bm and y in Bn, if

{
m ≥ 1 and y belongs to the support of d+(x)

or
n ≥ 1 and x belongs to the support of d−(y)

then we have x ≤ y.

4.1.10. A strong Steiner complex is a free augmented directed complex that is both unital and
strongly loop-free.

4.1.11. Theorem (Steiner). The functor ν : ADC → Catω is fully faithful when restricted to
strong Steiner complexes.

Proof. This follows from [Ste04, Theorem 5.6 and Proposition 3.7]. �

4.1.12. Theorem (Steiner). For any strong Steiner complex K, the ω-category ν(K) is freely
generated, in the sense of polygraphs, by its atoms.

Proof. This follows from [Ste04, Theorem 6.1 and Proposition 3.7]. �

4.1.13. Remark. Steiner actually proved the two previous theorems for a more general class
of complexes, where the strong loop-freeness condition is replaced by a weaker one (see [Ste04,
Definition 3.5]).

4.2. A uniqueness result.

4.2.1. Proposition. If S is a polygraph, then λ(S∗) is free and its basis consists of the [x], where
x varies among the generators of S.

Proof. Let n ≥ 0. For every x in Sn, we will denote by ex the corresponding element of the
canonical basis of Z

(Sn). Consider the morphism γ : Z(Sn) → λ(S∗)n defined by sending ex
to [x], for every x in Sn. We claim that this morphism is an isomorphism. Indeed, by [Mét03,

paragraph 3.3], there exists a map S∗
n → Z

(Sn) sending x in Sn to [x] in Z
(Sn) and compositions

in S∗ to sums. In particular, we get a morphism λ(S∗)n → Z
(Sn) sending [x] in λ(S∗)n, for x

in Sn, to ex in Z
(Sn). This morphism provides an inverse to γ. �

4.2.2. Let S be a polygraph.
We say that a generator x in Sn is atomic if, for every i such that 0 ≤ i < n, the supports

of [x−i ] and [x+i ] are disjoint. The polygraph S is said to be atomic if all its generators are
atomic.

The polygraph S is strongly loop-free if there exists a partial order ≤ on the generators of S
such that, for every m ≥ 0 and n ≥ 0, every x in Sm and y in Sn, if

{
m ≥ 1 and y belongs to the support of [x+]

or
n ≥ 1 and x belongs to the support of [y−]

then we have x ≤ y.
Finally, S is a strong Steiner polygraph if it is both atomic and strongly loop-free.

Here is a reformulation of a result of Steiner based on [AGRO23]:

4.2.3. Theorem. The adjoint pair

λ : Catω → ADC ν : ADC → Catω

induces an equivalence of categories between the full subcategory of Catω consisting of ω-categ-
ories freely generated by a strong Steiner polygraph and the full subcategory of ADC consisting
of strong Steiner complexes.

Proof. This follows from [AGRO23, Theorem 2.30], based on [Ste04, Theorem 5.11]. �
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4.2.4. Proposition. Let S and T be two polygraphs and let f be a dimension-preserving bijection
between the generators of S and the generators of T . Suppose that, for every n ≥ 1 and every x

in Sn, we have
f [x−] = [f(x)−] and f [x+] = [f(x)+].

Suppose moreover that S is a strong Steiner polygraph and that T is atomic. Then T is a strong
Steiner polygraph and the map f induces an isomorphism between S∗ and T ∗.

Proof. If x is in Sn, we have

fd[x] = f([x+]− [x−]) = f [x+]− f [x−] = [f(x)+]− [f(x)−] = df [x]

and, by Proposition 4.2.1, the map f defines an isomorphism from λ(S∗) to λ(T ∗). Using the
previous theorem, to conclude the proof, it thus suffices to show that T is strongly loop-free.
But being strongly loop-free only depends on the generators and on the operations z 7→ [z−]
and z 7→ [z+], where z is a generator. Since the bijection f is compatible with these, we get the
result. �

4.3. Uniqueness of orientals. We shall now give a “linear characterization” of On, aiming at
proving it is isomorphic to Street’s oriental. We saw in paragraph 3.2.4 that the m-generators
of On correspond to the injections ∆m →֒ ∆n. We now describe the linear source and target of
such a generator:

4.3.1. Proposition. Fix n ≥ −1. For every m ≥ 1 and every m-generator x of On considered
as an injection x : ∆m →֒ ∆n, we have

[x−] =
∑

0≤i≤m
i odd

[xδmi ] and [x+] =
∑

0≤i≤m
i even

[xδmi ].

Proof. We prove the result by induction on n. The assertion is clear if n = −1 or n = 0. Suppose
n > 0. Let m ≥ 1 and let x = 〈i0, . . . , im〉 be a generator of On (see paragraph 3.2.4).

(1) Suppose first that i0 6= 0. This means that x = η(y), with y = 〈i0 − 1, . . . , im − 1〉 an
m-generator of On−1, where η : On−1 →֒ On is the ω-functor coming from the fact that
On is the free expansion on On−1. By induction, we have

[y−] =
∑

0≤i≤m
i odd

[yδmi ] and [y+] =
∑

0≤i≤m
i even

[yδmi ],

so that

[x−] = [η(y)−] = [η(y−)] = λ(η)[y−]

= λ(η)
( ∑

0≤i≤m
i odd

[yδmi ]
)
=

∑

0≤i≤m
i odd

[η(yδmi )]

=
∑

0≤i≤m
i odd

[η(y)δmi ] =
∑

0≤i≤m
i odd

[xδmi ],

whence the desired formula, and similarly for [x+].
(2) Suppose now that i0 = 0. This means

x = ξη(y),

with y = 〈i1 − 1, . . . , im − 1〉 an (m − 1)-generator of On−1, where ξ is the expansion
of On. In particular,

η(y) = 〈i1, . . . , im〉 = xδm0 .

(a) If m = 1, so that x = 〈0, i〉, then η(y) = 〈i〉 and

ξη(y) : 〈0〉 → 〈i〉.

Thus
[x−] = [〈0〉] = [xδm1 ] and [x+] = [〈1〉] = [xδm0 ],

whence the result.
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(b) If m > 1, then

ξη(y) : ξη(y)+m−1

→ η(y) ∗0 ξη(y)−
0

∗1 · · · ∗m−1 ξη(y)−m−1

,

so that

[x−] = [ξ
η(y)+m−1

] = [ξη(y)+ ] = [ξη(y+)]

and

[x+] = [η(y)] + [ξη(y)−m−1

] = [η(y)] + [ξη(y−)],

since [z] = 0 if z is an identity. To be able to use this, we will need the fact
that the oplax transformation ξ induces a Z-linear map (and actually even a chain
homotopy)

λ(ξ) : λ(On)k → λ(On)k+1

[z] 7→ [ξz]

for every k ≥ 0 (see the proof of Theorem 6.1 of [Mét03]). Now by induction, we
have

[y−] =
∑

0≤i≤m−1
i odd

[yδm−1
i ] and [y+] =

∑

0≤i≤m−1
i even

[yδm−1
i ],

so that

[x−] = [ξη(y+)] = λ(ξ)λ(η)[y+] = λ(ξ)λ(η)
( ∑

0≤i≤m−1
i even

[yδm−1
i ]

)

= λ(ξ)
( ∑

0≤i≤m−1
i even

[η(yδm−1
i )]

)
= λ(ξ)

( ∑

0≤i≤m−1
i even

[η(y)δm−1
i ]

)

=
∑

0≤i≤m−1
i even

[ξ
η(y)δm−1

i
] =

∑

0≤i≤m−1
i even

[ξη(y)δ
m
i+1]

(the equality ξ
η(y)δm−1

i
= ξη(y)δ

m
i+1 being more transparent

under the form 〈0, 〈i1, . . . , im〉δm−1
i 〉 = 〈0, i1, . . . , im〉δmi+1)

=
∑

0≤i≤m−1
i even

[xδmi+1] =
∑

1≤j≤m
j odd

[xδmj ] =
∑

0≤j≤m
j odd

[xδmj ]

as wanted. Similarly, one gets that

[ξη(y−)] =
∑

1≤j≤m
j even

[xδmj ]

and hence that

[x+] = [η(y)] + [ξη(y−)] = [xδm0 ] +
∑

1≤j≤m
j even

[xδmj ] =
∑

0≤j≤m
j even

[xδmj ],

thereby ending the proof. �

4.3.2. Proposition. For every n ≥ −1, the polygraph defining On is atomic.

Proof. We will prove more generally that if S is an atomic polygraph, then so is the polygraph S⊳

of paragraph 2.4.2. The result will then follow by induction as the polygraph defining On is
obtained by iterating this construction from the empty polygraph, which is atomic.

Let thus S be an atomic polygraph. Consider a generator x of S⊳ of dimension n ≥ 1.

• If x = η(y) for y a generator of S, where η : S → S⊳ is the canonical morphism, then,
as y is atomic by hypothesis, so is x, as η is injective on cells.
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• Otherwise, x = ry for y a generator of S, with the notation of paragraph 2.4.2. If n = 1,
then

(ry)
− = o and (ry)

+ = y,

where o is the origin of S⊳. If n > 1, using the formulas

(ry)
− = ry+n−2

and (ry)
+ = y ∗0 ry−

0

∗1 · · · ∗n−2 ry−n−2

,

where y was identified with η(y), we get by induction that, for i such that 0 < i < n,

(ry)
−
i = ry+i−1

and (ry)
+
i = y+i ∗0 ry−

0

∗1 · · · ∗i−1 ry−i−1

,

and that

(ry)
−
0 = o and (ry)

+
0 = y+0 .

The supports of (ry)
−
i and (ry)

+
i , for 0 ≤ i < n, are thus disjoint and x is atomic, whence

the result. �

4.3.3. Proposition. Fix n ≥ −1 and let S be an atomic polygraph such that

(1) for every m ≥ 0, we have Sm = {x : ∆m →֒ ∆n | x injective and order-preserving},
(2) for every m ≥ 1 and every x : ∆m →֒ ∆n in Sm, we have

[x−] =
∑

0≤i≤m
i odd

[xδmi ] and [x+] =
∑

0≤i≤m
i even

[xδmi ].

Then S∗ is canonically isomorphic to On.

Proof. By paragraph 3.2.4 and Proposition 4.3.1, these two properties are satisfied by the poly-
graph defining On, which is atomic by the previous proposition. To get the result, using Propo-
sition 4.2.4, it thus suffices to produce a strong Steiner polygraph S that satisfies these two
properties. We could prove that the polygraph defining On does the job but it is simpler to refer
to Steiner: the polygraph associated to the complex ∆[n] of [Ste04, Example 3.8] satisfies these
conditions. �

4.3.4. Theorem. The cosimplicial object O : ∆ → Catω of Definition 2.3.6 is canonically
isomorphic to the cosimplicial objects of orientals as introduced by Street in [Str87].

Proof. By [Str87, Section 3 and Corollary 4.2], the n-th oriental defined by Street satisfies the
conditions of the previous proposition. This shows that the two cosimplicial objects agree on
objects. To show that they also agree on morphisms, by using Theorem 4.2.3, it suffices to
show that they agree after applying λ : Catω → ADC. This follows from Proposition 3.3.4
and [Str87, Section 5]. �
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