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The properties of grain and phase boundaries depend on five angular coordinates,
i.e. three parameters specifying the orientation difference across the boundary and
two parameters specifying the orientation of the boundary normal direction in space
or with respect to the crystal lattice. Hence, five-dimensional boundary distribution
functions have to be considered. If one considers only misorientation a three-
dimensional misorientation distribution function is obtained. The deviation of this
function from the "uncorrelated" misorientation distribution yields the orientation
correlation function. The most economical representation of these functions is the
one using series expansions in terms of symmetrized harmonic functions. With the
present state of experimental technique it seems to be impossible to determine the
complete boundary distribution functions. However, two-dimensional analoga of
these functions can be obtained from electron diffraction measurements.
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GENERAL DEFINITIONS

In a polycrystalline polyphase material consisting of n different
phases, n2 types of interphase boundaries may occur (including
grain boundaries between grains of equal phases), Figure 1. A
boundary between two crystals (of the same phase or different
phases) is characterized by the orientation difference of the two
adjacent crystallites and the normal direction of the boundary itself,
Figure 2. The considered grain of the phase c may have the
orientationg (with respect to a sample fixed coordinate system KA)
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t3gere 1 Grain and phase boundaries in a polyphase material.

Fignre 2 Definition of the sample coordinate system K4 and the crystal coordinate
systemsK andK in the grains of the orientationsg and gt of the phases cr and/
respectively. The orientation difference across the phase boundary is Ag,. The area
of this boundary is dA ,l. The normal direction of the phase boundary is described by
the vector x in the sample coordinate system or by the vector k in the crystal
coordinate system of the c-phase.
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that of the phase fl the orientation ga. Then the orientation
difference across the boundary is defined as the rotation Ag,a which
transforms the crystal coordinate systemK of the first crystal into
that of the second one, K. The orientation difference is thus
defined by

ag =g .gl
It may be specified in several different ways of which the transfor-
mation matrix [au,], rotation axis and angle {do, ), or the Euler
angles (q, q, q2) are the most frequently used ones (see e.g.
Bunge 1982)

Ago,t (a,k} {dov, to} {tpx, , tp2} (2)
The normal direction of a boundary element may be specified by a
unit vector x pointing in the direction from the phase a towards/3.
Alternatively, if the crystallographic nature of the phase boundry is
to be considered rather than its orientation in space, the normal
direction of the boundary may be referred to the crystal coordinate
system KS. The boundary normal is then a specific crystal direction
k of the tr crystal. The vectors x and k may be specified by cartesian
coordinates or by spherical polar coordinates respectively in the
coordinate system Ka and KS

x= {xa, x2, x}r, {a, fl}r,
(3)

k= (k, k, k},q (0, r},,
(Thereby the angles trfl must not be mixed up with the phase
indices aft). The two vectors x and k are related to each other by
the orientation g of the a crystal

x=g,.k (4)
We consider the area fraction of aft-boundaries which are charac-
terized by the orientation difference Ag within the limits dAg and
the surface normal direction x or k within the solid angular range
dfl. We thus obtain two distribution functions

dA"(Ag, x)
Ao

’(Ag, x)dAgd

dA t(Ag, k)
(5)

A,o t(Ag, k)dAg dfl
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whereby At is the total area of cfl-boundaries in the sample. The
element dAg in the misorientation space Ag is defined in such a way
that

(6)1

Expressed in Euler angles, the element dAg is then to be written

Similarly we assume

sin
dtpdd2dAg= 8;7172 (7)

(8)

which requires, in terms of spherical polar coordinates,

sin o:
do: dfl (9)4:r

With these definitions, the functions tp and p are normalized in
multiples of the random distribution, i.e. it is

trand(Ag, X) 1)rand(Ag, k)-- 1 (10)

The distribution functions qt and are, in principle, independ-
ent of each other.
Three different integrals of these functions may be considered.

Integration over the boundary normal orientations (in both coordi-
nate systems) yields the physical misorientation distribution function

k)d FO(Ag)

which is defined by the area fraction of boundaries across which the
orientation difference or "misorientation" Ag occurs (Ref. Bunge
1982)

dA "(Ag) F’(Ag)dAg (12)

Integration over the orientation difference Ag yields the two "shape
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functions" (Hilliard 1982, Bunge 1969)

(x) (Ag, x)dAgS
(13)

ot(k) Jpt(Ag, k)dAg

They describe the orientation of the boundaries in space x or with
respect to the crystallographic nature k (habit plane). In single
phase materials, where only grain boundaries tetr occur, these two
functions describe the grain shape in space and the grain shape with
respect to the crystallographic nature i.e. the "habitus" of the grain.
From Eq. (11) it is seen that the distribution functions tp and p
are not completely independent of each other.

It is further to be mentioned, that the boundary distribution
functions tpa and pa are, in principle, independent of the textures
of the phases, i.e. the orientation distributions of the volume
fractions of the phases, which are defined by

dV(g)
=f(g) dg (14)

Where V is the volume of the phase te in the polyphase material
irrespective of crystal orientation.

Interchanging the phases a and fl leads to

Ag g.g= Ag= (5)
Furthermore, it is

and
(16)

k, -Ag2.k (17)
Hence, the corresponding distribution functions obey the inter-
change relations

tt(Ag, X) t t(Ag-1, --X) (18)
a(Ag, k) (Ag-1, --Ag. k)

Fa(Ag) Fa(Ag-) (19)
s(x) s(-x) (20)

These equations are inter-functional relations in the case of phase
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boundaries and they are intra-functional relations for the grain
boundary distribution functions.

SYMMETRIES

Two types of symmetries are to be considered in a polycrystalline
material. These are the crystal symmetry and the sample symmetry.
In a polyphase material, each phase may have its own crystal
symmetry. It must, however, be assumed that there is only one
sample symmetry (Bunge 1985). The symmetries are characterized
by point symmetry groups G containing symmetry operations o
which may be rotations g or inversion u.

G (o ) {g, u ) sample symmetry
G (o) (g, u} crystal symmetry phase

(21)

Directions (sample or crystal) are equivalent to each other by the
full point symmetry group which is the crystal symmetry for the
crystal directions k and the sample symmetry for the sample
directions x. Hence, symmetrical equivalence of the directions x and
x’ and k and k’ is defined by

x’ ,-- equiv-- x where x’ o" x
(22)k’ -- equiv-- k where k’ o. k

As far as orientations and orientation differences are concerned,
only the rotational elements of the symmetry groups are to be
considered (Bunge, Esling 1985). Hence, symmetrically equivalent
orientations or orientation differences are defined

g --equivg where g gC. g. gS
(23)Agt -- equiv-- Agt where Agt gC" Agt "g

An important case of sample symmetry is the orthorhombic
symmetry of rolled and recrystallized sheet. It contains 4 symmetry
rotations g’. An important case of crystal symmetry is the cubic
one. It contains 24 symmetry rotations g. Hence, in the cubic-
orthorhombic case there are in general 96 symmetrically equivalent
orientations g. If both phases are cubic, then any misorientation
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between two crystals can in general be described by 576 symmetri-
cally equivalent variants Agate.
The distribution functions must be invariant with respect to the

crystal symmetries and to the sample symmetry. As far as the
crystal symmetries are concerned, this is trivial since the choice of a
specific crystal coordinate system among the crystallographically
equivalent systems is only a matter of description which does not
have any physical meaning. In the case of sample symmetry
equivalence of two orientations means that these orientations occur
in the sample with equal statistical trequency. The invariance of all
distribution functions with respect to the sample symmetry opera-
tions can thus be considered as the definition of sample symmetry.
With the equivalences defined in Eqs. (22) and (23) the following

invariance conditions are obtained

(24)

(25)

(26)

SPECIAL CASES

It may be useful to consider some special cases of the distribution
functions defined above. If misorientation distribution is independ-
ent of angular distribution of the boundaries then it is

 0(Ag, x) F t (Ag).
k) F t (Ag) (27)

Furthermore, if the grains of the phases a and fl are assumed to be
randomly distributed in space irrespective of their crystallographic
orientation or shape then the misorientation function Ft is
completely determined by the respective textures (Bunge, Dahlem
1986, Plege 1987)

If(g). f(Ag, g) dg (28)FO(Ag)
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This function may be called the "uncorrelated" misorientation
function. Indeed, Eq. (28) may be considered as the definition of
random spacial distribution of the grains of the phases a and ft.
Hence, using this definition, the term "uncorrelated" is to be
strictly kept apart from "random" misorientation which means
independence of F(Ag) of Ag, i.e.

Frna(Ag)-- 1 (29)

If the physical misorientation function Fa(Ag) deviates from the
uncorrelated one, then we can define an orientation correlation
function by

(Ag) t(Ag)
ft(Ag)

(30)

In this definition, orientation correlation means that certain orien-
tation differences Ag are preferredly assumed by a and fl crystals
compared to their occurrence "by chance" which were to be
expected by considering just the relative frequencies of crystal
orientations g and gt i.e. the two textures. As an example,
"random correlation"

rand(Ag) 1 (31)

may be assumed in a primary recrystallized material immediately
after impingement of the crystallites. Whereas a non-random
correlation may develop gradually during continuous grain growth
as a consequence of lower grain boundary energy of the boundaries
of certain orientation differences e.g. the low- coincidence
boundaries.

It should be mentioned that the uncorrelated misorientation
distribution function for grain boundaries F(Ag) at the origin
Ag (0, 0, 0} is identical with the texture index J (see e.g. Bunge
1982)

F,(0) [f,(g)]2 dg j, (32)
J

Furthermore, it is

’(g) f’(Ag g)]2 dg >-0 (33)
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from which follows

f[f(g)]2 dg + f[f(Ag g)]2 dg >-2ff=(g) f’(Ag g) dg (34)

The two terms on the left-hand side are equal and, according to Eq.
(32), they are equal to J. Hence, it is

f(Ag) _< f’(0) J (35)
The uncorrelated misorientation distribution function always takes
on its maximum value at the origin. Equation (35) does, however,
not hold in general for the physical misorientation distribution
FO(Ag) as it was defined in Eq. (12) including the case F(Ag).

SERIES EXPANSION

The functions tp and p may be expanded into series in the following
way

L M(I) MIJ(I) A N(,) hqt(Ag, x)= E ] AT(Ag)R(x)
l=0 .=1 v=l x=0 o= (36)L M(l) M#(1) A M(X) ;

W’(Ag, k)= BOT(Ag)Kf(k)
l=O =1 v=l =0 p=l

h
where T(Ag) are symmetry invariant harmonic functions obeying
the symmetry relationship Eq. (25). The functions (x) are
normalized spherical surface harmonics obeying the rotational
sybsymmetry of the sample symmetry and K(k) are spherical
harmonics of the crystal symmetry of the -phase. Similarly, the
misorientation distribution functions are expanded in the fo
(Bunge 1982)

L Ma(I) l) h
F ’(ag) E (37)

/=0 #=1 v=l

The shape functions are written in the form (Bunge 1982)

(38)
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The dots on top of the functional symbols denote the sample
symmetry (.), the a-crystal symmetry (:), and the fl-crystal sym-
metry () respectively. Finally the textures are expanded in the
form (Bunge 1969)

fO,(g) E C"T"(g) (39)
1=0 =1 v=l

By using symmetry invariant functions in Eqs. (36-39) the cor-
responding coefficients become linearly independent. Their variabi-
lity range is then only restricted by the positivity condition of all
distribution functions.
The texture index J mentioned in Eq. (32) is expressed in the

form

jo,= E (40)
t=0 ,=a =a 21 + 1

WithK , Eq. (11) leads to

D’=’Aovl= -’Bo’ (41)
and Eq. (13) leads to

E 0xaXl’, G 0xol10 (42)
Furthermore, in the special ease Eq. (27), it is

A["=D. E[

B" D.G (43)

and the coefficients of the uncorrelatred misorientation distribution
function Eq. (28) are expressed by those of the two texture
functions (Ref. Bunge 1982)

D’u= u) C(fl) C’(a) (44)21+ 1=
The series expansion is a rather "economic" representation of
distribution functions especially in highly symmetrical cases. In the
cubic-cubic case for instance, the number of coefficients of each
degree l is given by M(l)z which is shown in Table 1. Furthermore,
the symmet relation Eq. (19) applied to grain boundaries aa
leads to the condition

(45)
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Table 1 Number of independent parameters of the series expansion of a misorien-
tation distribution function in the case of cubic-cubic symmetry, trfl =phase
boundaries, trtr grain boundaries, n(l) parameters of degree l, N(l) parameters
of all degrees up to

4 6 8 9 10 12 13 14 15 16 17 18 19 20 21 22

n(l) 1 1 1 1 1 4 1 1 1 4 1 4 4 4 4o:fl N(l) 1 2 3 4 5 9 10 11 12 16 17 21 22 26 30 34

oot n(l) 1 1 1 1 1 3 1 1 1 3 1 3 1 3 3 3
N(I) 1 2 3 4 5 8 9 10 11 14 15 18 19 22 25 28

which further reduces the number of parameters as is also given in
Table 1. It is seen from Table 1 that there is only one coefficient for
each degree l up to 1 10. Hence, a cubic-cubic misorientation
function is described by a total of 5 parameters up to 10 (Bunge
1982). A rather good approximation of this function can thus be
obtained by a small number of individual orientation
measurements.

MEASUREMENT BY ELECTRON DIFFRACTION

At the present state of experimental technqiue, it seems to be
virtually impossible to determine the boundary distribution func-
tions Eq. (5) experimentally. Using electron diffraction, either with
the back-reflection or transmission technique (Gotthard et al.
1973, Haessner 1981, Pospiech et al. 1986, Weiland and Schwarzer
1986), it is, however, possible to determine the two-dimensional
analoga of the functions q and p and the deduced functions F, S, o.
The analogous functions tp. and p. in a section perpendicular to
the sample direction n are defined by

dLtJ(Ag, x’)
Lt p(Ag, x’)dAg rig2

dL(Ag, k’)
(46)

where L’a is the length of afl boundary lines in the considered
planar section, x’ is the normal direction to the boundary line in the
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section and k’ is the crystallographic direction parallel to x’.
Similarly, the misodentation function F.) is defined by

dL(Ag)
L F(Ag)dAg (47)

And finally also the texture functions may be defined two-
dimensionally

dA(g)
f(g) dg (48)

where now A is the total area of the -phase in the section. In a
homogeneous sample the texture function defined according to Eq.
(48) is identical with that of Eq. (14). Hence, the function in Eq.
(48) has been written without an index (n). The other two-
dimensional functions, including F, may definitely depend on the
orientation n of the section.

Furthermore, polycrystalline samples can often not be considered
as being homogeneous. Then all the considered functions may
depend on the location r within the sample at which they are being
measured (see e.g. Bunge 1982b). In this case "local" and "global"
quantities are to be distinguished. The global texture, for instance,
is the integral over all local textures

f,,(g) fo,(g, r) dV (49)

where the integral is to be taken over the whole sample. Similar
inhomogeneities are to be considered for all the other distribution
functions.
As a general rule, the inhomogeneities will be the stronger, the

smaller the considered volume elements. Hence, all functions
determined by electron microscopy and electron diffraction must, in
principle, be considered as local functions which may be different
from sample to sample in the same material and which may also be
different from the corresponding quantities determined by other
methods e.g. the texture functions determined by x-ray or neutron
diffraction. It must, however, also be admitted that, for instance,
the correlation function tp(Ag) may be found independent of the
location r while the local textures f(g, r)ft(g, r) and the misorien-
tation Fa(Ag, r) are strongly r-dependent (Plege 1986).
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SINGLE ORIENTATION MEASUREMENTS

Using electron microscopy and diffraction, the orientations g’{, g of
the individual crystals i, j of the phases , /3 can be measured as
well as the areas A}, A and the boundary lengths Lt (Weiland,
Schwarzer 1986). This allows one to determine the textures fO(g),
ft,(g), the physical misorientation function Ft(Ag) and the cor-
relation function tpa(Ag). The textures and the misorientation
function are defined by Eqs. (39) and (37) respectively with the
coefficients

with

Cf’(i) a(l, too). ’(g);
where

(50)

Df"(i]) a(l, OOo). T’(Ag) (51)

exp {-41ZWZo} -exp {-4(1 + 1)zw)a(l, 00)
1 exp {-40)0)" 2 (52)

is a "convergence factor" which depends on the spread too of a
Gaussian peak superimposed to each measured orientation g or
misorientation Ag. The spread Oo is to be chosen the smaller the
higher the number of measured orientations g or misorientations
Ag (Wagner 1986).

It is to be mentioned that Eqs. (50-52) give the correct
symmetries independent of which symmetry variant according to
Eq. (23) is being used for gi or Agij. This is due to the
representation of the distribution functions by symmetry invariant
harmonic functions. The symmetry invariance is an essential ad-
vantage of the representation of all orientation dependent distribu-
tion functions in the way described above. An other principle of
dealing with symmetries has been used by Mackenzie (1964). He
used the representation of orientations and misorientations by
rotation axis and angle and selected the symmetry variant with the
smallest rotation angle. This leads to non-constant distributions of
the rotation axes as well as angles in the case of random
distribution. Using this representation, it is much more difficult to
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estimate whether any deviation from random distribution is statisti-
cally significant or not (Prantl et al. 1987).

BOUNDARY ENERGIES

The energy of grain and phase boundaries depends on the misorien-
tation Ag as well as on the crystallographic boundary orientation k
whereas it must be independent of the spacial orientation x of the
boundary. Hence, the total energy of affl boundaries is given by

A. ff),’(Ag, k). ’(Ag, k)dAg df (53)E

where ), is the specific boundary energy. In the special case Eq.
(27b), Eq. (53) can be split up into the two integrals

E A. f?’(Ag), t’(Ag)dAg (54)
with

k). (7(k) (55)

In the case of single phase materials and if nearly equiaxed grains
are being considered, then aa(k) may be assumed to independent
of k. In this case, and if Eq. (27b) holds, the total grain boundary
energy depends only on the misorientation function Fa(Ag) as
given in Eq. (54).

SOME EXAMPLES

The uncorrelated misorientation distribution function was defined in
Eq. (28) as the "auto-convolution" of the texture function. It
expresses itself most easily in terms of the coefficients C’ according
to Eq. (44). This function was calculated for some different textures
as is shown in Figures 3 to 6. Figure 3a is the texture of A1Mnl cold
rolled 90%. The corresponding uncorrelated MODF is given in
Figure 3b. It is represented in (p2-sections which are identical with
-sections. Because of the symmetry, i.e. cubic in both coordinate
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systems, the represented range 0 -< tp _< 90, 0 -< -< 90, 0 -< i92
45 still contains 18 symmetry variants of each general Ag (including
Ag-). Figure 4a and b show the texture and MODF of the same
material annealed 5 seconds at 600C which corresponds to primary
recrystallization and some continuous grain growth. Figure 5a and b
are the texture and MODF of a low carbon steel cold rolled 90%
and Figure 6, finally shows texture and MODF of the same steel
after recrystallization 20h at 560C.
Although the four textures are quite different, the differences in

the MODFs are much smaller. This is not at all astonishing. Rather,

60

25

65

tO 15

70

80 85 90

0.00
22.00
33.00

4.00
5C.00

8. O0
7. 12.00

i7.00

(a)

Figure 3 Texture and MODF of AIMnl cold rolled 90%. (a) the orientation

distribution function ODF, (b) the uncorrelated misorientation distribution function

MODF.
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it is due to the very definition of the uncorrelated MODF given in
Eq. (28). According to Eq. (35), this function must take on its
maximum value at Ag {0, 0, 0}. Furthermore, the series expan-
sion of this function must be very rapidly convergent. This can be
seen from Eq. (44) expressing the coefficients in terms of those of
the texture. The texture coefficients decrease with increasing 1.
Hence, the product of two such coefficients decreases even faster.
Second, the terms in the sum in Eq. (44) may have opposite sign
and finally also the factor 1/(2/+ 1) decreases with increasing l.
Hence, the coefficients D}’/" decrease much more rapidly than the
coefficients C}’ of the texture. This is shown for example in Figure
7 where the mean absolute values of these coefficients are plotted
versus for the texture of Figure 3 as an example. Because of the
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lgre 4 Texture and MODF of AIMnl annealed 5 sec. at 600C (a) ODF, (b)
Uncorrelated MODF.

rapid convergence of the coefficients of the MODF, and bearing in
mind the low number of linearly independent harmonic functions
(Table 1), the MODF contains only a very low number of free
parameters which explains the general similarity of the four
MODFs. Nevertheless, there are differences in detail as is to be
seen in Figure 8 which shows some sections of these functions
through the Ag-space.
The physical MODF of recrystallized A1Mnl as defined according

to Eq. (12) was also determined using individual orientation
determination of neighbouring grain pairs in the transmission
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(b)
Figure 4b

0.00
.00
1.50
2. O0

electron microscope. The orientations were measured by means of
Kikuchi lines (Weiland, Schwarzer 1986). In this way the orienta-
tion differences Ag of 144 pairs of grains were determined. From
these values the MODF was obtained according to Eqs. (50-52)
with too 8. The result is shown in Figure 9. This function is the
"physical" MODF as compared with the "uncorrelated" MODF of
this material shown in Figure 3b. Figure 9 is similar to Figure 3b but
there are differences in detail which can be seen best by calculating
the correlation function q0(Ag) defined in Eq. (30), i.e. by divid-
ing the physical MODF by the uncorrelated one. The result is
shown in Figure 10. It is seen that the actual frequency of grain
boundary misorientations deviates from that expected according to
the frequency of crystal orientations in the texture by a factor of
1.56 at the origin and it reveals a second peak at tpl 4’ 0,
tp 45. These two boundary misorientations are thus preferred
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(a)
Figure $ Texture and MODF of low carbon steel cold rolled 90% (a) ODF,
(b) Uncorrelated MODF.

from physical reasons with respect to the other ones. In the case of
continuous grain growth, these reasons may be either a lower grain
boundary energy or a higher mobility of these boundaries or both.
An example of two-phase correlation is given in Figure 11 which

shows the misorientation distribution function between ferrite and
martensite in a dual-phase steel deformed 14% in tension. The
orientations g of ferrite and g of neighbouring martensite grains
were measured by means of Kikuchi lines (Weiland, Schwarzer,
1986). From these, the misorientations Agt of 49 neighbour pairs
were obtained and the physical MODF was then calculated with
too 8. The result is shown in Figure lla. It is to be mentioned,
that in this case the represented region contains 9 symmetry variants
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for each general Ag (in this case Ag-1 is not symmetrically
equivalent with Ag).
The uncorrelated MODF was obtained by selecting 300 pairs of
g and g-values at random out of the above-mentioned ones.
These pairs are generally not neighbours. The MODF calculated
from the so obtained Ag is given in Figure 11b. It is the
uncorrelated MODF as compared with the physical MODF of
neighbour pairs given in Figure 11a. It is seen that the uncorrelated
MODF is near to random whereas the physical MODF shows
pronounced details. By dividing the function of Figure 11a by that
of 11b the correlation function (Ag) is obtained which is shown
in Figure 12. Since the uncorrelated MODF was very near to
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(a)
Figure 6 Texture and MODF of low carbon steel cold rolled 90% and annealed 20h
560C. (a) ODF, (b) Uncorrelated MODF.

random in this case the correlation function q0t(Ag) is nearly
identical with the physical MODF of Figure 11a. This result is, in
some respect, opposite to that of the previous example in which the
physical MODF was similar to the uncorrelated one. The two
examples thus illustrate the two factors contributing to a physical
MODF. A preference of certain misorientations Ag in the grain or
phase boundaries may arise simply because there are much more
orientations in the texture which have just these misorientations.
Hence, these misorientations are preferred by chance, simply from
statistical reasons. This expresses itself in the uncorrelated MODF.
This was mainly the case in the first example AIMnl. The second
reason is a preference of certain misorientations Ag from physical
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Figure 6b

reasons, e.g. grain boundary energy or a particular orientation
relationship during phase transformation. This expresses itself
most clearly in the correlation function (pP(Ag) which is thus
cleared of the mere statistical effects. This is the main factor in the
physical MODF of the second example.

In this second example, the uncorrelated MODF can also be
obtained in a second way. First the ODFs of ferrite and martensite
can be calculated separately from the corresponding g and g
(being the individuals of the above pairs). The so obtained ODFs
are given in Figures 13a and b. The uncorrelated MODF is then
obtained by the convolution of these two functions with each other
according to Eq. (28) with the coefficients according to Eq. (44).
The result of the "folding" is shown in Figure 14. It is similar to that
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Fignre 9 Physical MODF of AIMnl cold rolled and recrystallized, obtained by
electron diffraction measurement of 144AgtLvalues of neighbouring crystal pairs
(smoothed by too 10).

of Figure llb. The differences between the two functions are due to
the rather poor statistics obtained with 49 values each in Figures
13a, b and 300 pairs in Figure llb. In all experimental determina-
tions of MODFs by individual orientation measurements the
statistics is always the main problem. That has, indeed, two
different reasons. First, the measurement of individual orientations
is still a tedious task, notwithstanding a certain semiautomatization
of the method (Weiland and Schwarzer, 1986). Hence, the number
of individuals used in any statistical manifold is usually rather
limited. The more severe reason is, however, to be seen in the
inhomogenity of texture which is the stronger the smaller the scale
at which texture is being considered. Hence, electron diffraction
samples taken from different places of a macroscopic sample may
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Figure 10 Orientation correlation function tp(Ag) obtained by dividing the function
of Figure 9 by that of Figure 3b.

show quite different local textures. In the present example of a dual
phase steel it is not even possible to determine the global texture of
the material (e.g. by x-rays or neutrons) since the Bragg angles of
ferrite and martensite are too close to be separated. Hence, an
x-ray determination of the texture is always the weighted superposi-
tion of the ferrite and the martensite texture. In the present case,
the sample contained about 20% martensite. Hence, the x-ray
texture is "near" to the ferrite texture as is seen by comparing
Figure 15 with the local ferrite texture ot Figure 13a.

It was the purpose of the present paper to show how misorienta-
tion distribution functions and correlation functions can be deter-
mined and how they can be represented. It is not the purpose to
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(a)
Figure 11 MODF of ferrite and martensite in a dual phase steel. (a) the physical
MODF obtained from Ag/Lvalues of 49 neighbour pairs measured by electron
diffraction, (b) the uncorrelated MODF obtained from Ag/Lvalues of 300 pairs
selected at random among all ferrite orientations g and all martensite orientations
g/.

discuss the physical reasons leading to the specific functions given as
examples. This will be done in other papers. It is then necessary to
discuss the specific nature of boundaries the Ag-values of which
correspond to peaks in the correlation function p=a(Ag). In this
respect it is helpful to use "misorientation charts" which give the
position of some specific misorientations Ag in the Euler space, e.g.
the Kurdjumov-Sachs or Nishiyama-Wassermann relationship or
the various coincidence boundaries Zn (see e.g. Plege 1986).
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CONCLUSIONS

In order to characterize grain and phase boundaries in polyphase
materials, five angular parameters are needed. Three of them
characterize the orientation difference across the boundary and two
parameters characterize the boundary orientation either with re-
spect to the macroscopic sample coordinate system or with respect
to the crystal coordinate system of one of the neighbouring crystals.
Hence, the grain boundary distribution is described alternatively by
two five-dimensional boundary distribution functions.

If one considers only the dependence of the three misorientation
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Figure 12, The correlation function (pP(Ag) for ferrite-martensite grain boundaries
obtained by dividing the function Figure 11a by that of Figure 11b.

parameters (Ag) then a misorientation distribution function
(MODF) is obtained.

If one considers only the boundary orientation then two orienta-
tion or "shape" functions are obtained.
The functions must obey the crystal symmetries of the involved

phases and the sample symmetry.
The functions can be represented by series expansion which is

especially "economic" in the case of high symmetries e.g. cubic
symmetries.
Two-dimensional analogae of the general distribution functions

can be obtained from individual orientation measurements e.g. by
Kikuchi lines in the transmission electron microscope.
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(a)
Figure 13 The textures of ferrite and martensite ina dual phase steel obtained by
individual orientation measurement in the electron microscope. (a) Ferrite (110
orientations g, to 8), (b) Martensite (203 orientations g, to1 8).

As a special case, the "uncorrelated" misorientation distribution
function is considered. It is defined on the basis of the textures of
the involved phases irrespective of the neighbourship relations of
the considered crystals.
The "physical" misorientation distribution function of grain or

phase boundaries may be divided by the "uncorrelated" one
deduced from the textures. The so obtained function was called the
"correlation function". It describes the preference for certain grain
or phase boundary misorientations Ag from "physical reasons" (e.g.
energetical reasons or orientation relationships due to oriented
phase transformation).
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The uncorrelated MODFs always have their maximum value at
Ag=0, this is in the region of small angle grain boundaries.
Furthermore, the series expansions of these functions converge very
rapidly. Hence, the angular variation of these functions in the
Ag-space is not very rapid. In the case of high crystal symmetry
(e.g. cubic in both phases) the asymmetric unit in the Ag-space is
rather small. Together with the slow angular variation of the
uncorrelated MODFs these functions do not reveal much detail.
Rather, they are very similar even for rather different textures as
was shown in several examples. This behaviour is, however, not
astonishing. Rather, it is due to the definition of the uncorrelated
MODF. Within the usual spread ranges of textures a wide range of
Ag-values can always be found. And if one bears in mind that in
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the case of high crystal symmetries all symmetrically equivalent
values are superposed in the Ag-space, then it is evident that the
uncorrelated MODFs of different textures may look very similar as
it was really found.
The uncorrelated MODF is the expectation value of any orienta-

tion difference Ag if the grains of the textured material were
distributed at random in space such that they become neighbours
simply according to their relative frequency. A situation like that
may be expected, for example, immediately after primary re-
crystallization, assuming that the nucleation sites are not correlated
to each other.

If there is some physical preference for certain grain or phase
boundary orientation differences Ag and if the material is textured
then the uncorrelated MODF is, so to speak, the basic level by
which any MODF has to be divided in order to "sieve out" the
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Figure 15 Texture of the dual phase steel obtained by neutron diffraction to be
compared with the ferrite texture Figure 13a.

physical preferrence, which may be due to lower boundary energy
in the course of grain coarsening processes or due to specific
orientation relationships during phase transformation. These physi-
cal effects are then best seen in the deviation of the correlation
function tp(Ag) from unity.
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