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This paper presents for the first time the orientation de-
pendence of the pseudo-Hall effect in p-type 3C-SiC four-
terminal devices under mechanical stress. Experimental
results indicate that the offset voltage of p-type 3C-SiC
four-terminal devices significantly depends on the direc-
tions of the applied current and stress. We also calcu-
lated the piezoresistive coefficients π61, π62, and π66, show-
ing that π66 with its maximum value of approximately
16.7× 10−11 Pa−1 plays a more dominant role than π61
and π62. The magnitude of the offset voltage in arbitrary
orientation under stress was estimated based on these co-
efficients. The finding in this study plays an important
role in the optimization of Microelectromechanical Sys-
tems (MEMS) mechanical sensors utilizing the pseudo-
Hall effect in p-type 3C-SiC.

Silicon Carbide (SiC), with its large energy band gap (2.3–3.4
eV) and superior mechanical properties, is an excellent candi-
date for electrical devices operating in harsh environments1–5.
Recent studies have paid significant attention to the charac-
terization of the strain effect on SiC for sensing applications
under hostile conditions6–8. Many groups have reported the
piezoresistive effect in various poly types of SiC such as 3C-
SiC, 4H-SiC, and 6H-SiC. Large gauge factors of approxi-
mately 30 were reported in both p-type and n-type single crys-
talline SiC, indicating that SiC has high potential for mechani-
cal sensing applications9–14. Among more than 200 poly types
of crystalline SiC, cubic crystalline silicon carbide (3C-SiC)
is preferable for Microelectromechanical Systems (MEMS)
transducers. The main advantage of 3C-SiC over other poly
types is the capability of growth on a silicon (Si) substrate,
which reduces the cost of wafers and is more compatible with
the conventional MEMS process2,12–15. Most previous stud-
ies on the piezoresistive effect of SiC utilized the conventional
two-terminal resistors requiring a Wheatstone bridge for volt-
age read-out15,16, which faces several drawbacks. For in-
stance, the four resistors in the bridge must be closely iden-
tical to obtain a zero offset17–19. In addition, the resistors in
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the Wheatstone bridge must have almost the same temperature
coefficient to avoid the offset drift due to the change of tem-
perature20. Compared to two-terminal resistors, four-terminal
devices have proved to be more thermally stable and suitable
for the miniaturization of sensors, since they do not require
any external Wheatstone bridge17–21. Under a mechanical
shear strain, a voltage is generated across two terminals of
four-terminal devices due to the distortion of potential distri-
bution, and this phenomenon has been named as the pseudo-
Hall effect22,23. To date, there have been various studies on the
pseudo-Hall effect in silicon material, and in fact this effect in
Si has been utilized in commercial strain sensors for more than
two decades23,24. However, the work on the pseudo-Hall ef-
fect in SiC has been rarely reported25. As the pseudo-Hall
effect in semiconductors depends on the crystallography ori-
entation, it is important to investigate which orientation offers
the most significant effect in 3C-SiC four-terminal devices.

In this paper, we report on the orientation dependence of the
pseudo-Hall effect in p-type 3C-SiC thin films. The piezore-
sistive coefficients, π61, π62, and π66, which define the magni-
tude of the pseudo-Hall effect were also investigated. The in-
sight gained in this study is vital to the development of MEMS
mechanical sensors using the pseudo-Hall effect in 3C-SiC.

The 3C-SiC thin films were grown on (100) Si substrate us-
ing low pressure chemical vapor deposition (LPCVD)26 at a
low temperature of 1000 ◦C. The alternating supply epitaxy
approach was used to achieve single crystalline SiC film de-
position with silane (SiH4) and propylene (C3H6) as precur-
sors. Aluminum was employed as the dopant in the in situ
doping process where trimethylaluminum [(CH3)3Al, TMAl]
was the precursor to form p-type 3C-SiC. The properties of the
grown single crystalline 3C-SiC films were characterized and
reported elsewhere26,27. The X-ray diffraction (XRD) mea-
surement indicated that the SiC film is epitaxially grown on
Si (100) substrate, Fig. 1 (a). Based on the X-ray photoelec-
tron spectroscopy data, the atomic concentrations of carbon
and silicon were found to be approximately 52.9 % and 47.1
%, respectively, while that of aluminum was below 1 %. The
atomic force microscopy (AFM) image of a 380 nm 3C-SiC
film shows that the roughness of a 5 µm × 5 µm area was
20 nm, Fig. 1 (b). The semiconductor type and carrier con-
centration of the films were then investigated using the hot
probe method28. The positive voltage at the hot probe indi-
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Fig. 1 (a) The XRD graph of the 3C-SiC film grown using the
LPCVD process; (b) The AFM image of a 380 nm SiC film; (c) The
fabrication process; (d) The bending experimental setup; (e) The
photograph of a SiC four-terminal device with its dimensions of 500
µm × 500 µm; (f) Schematic sketch of the directions of the current,
voltage and applied stress.

cated the 3C-SiC film was p-type semiconductor, and the car-
rier concentration was calculated to be in the range of 1018

cm−3. Figure 1 (c) shows the fabrication of the 3C- SiC four-
terminal device using a 2-masks-photolithography process. In
the first step, SiC pattern was formed using Inductively Cou-
pled Plasma (ICP) etching with an etch-rate of approximately
200 nm/min27. Next, aluminum was deposited on the SiC
film using sputtering, and aluminum electrodes were then pat-
terned using wet etching. Finally, the SiC/Si wafers were
diced into smaller strips with dimensions of 9 mm × 60 mm
× 0.6 mm for the subsequent bending experiment, Fig. 1 (d).
A photograph of the fabricated devices and a schematic sketch
of the current and applied stress are shown in Fig. 1 (e)(f).

The linear current-voltage characteristics of the SiC four-
terminal devices were measured using TMHP4145B, indicat-
ing a good Ohmic contact between the aluminum electrodes
and the p-type 3C-SiC films. The current leakage between the
3C-SiC layer and the Si substrate was also investigated to en-
sure that Si substrate did not contribute to the measured results
(See the supporting information). To characterize the pseudo-
Hall effect in the four-terminal SiC devices, we applied stress
to the SiC films using the bending beam method, while sup-
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Fig. 2 The generated voltage across terminals 3 and 4 when
supplying a constant current of 10 µA through terminals 1 and 2 of a
SiC four-terminal devices under several applied stresses from 0 to
264 MPa. Note that the orientation of the current is [100], while that
of the applied stress is [110] in (100) plane.

plying a constant current through terminals 1 and 2 and mon-
itoring the change of the generated voltage across terminal 3
and 4 of the SiC devices, Fig. 1 (d)(f). Since the thickness
of the SiC films (∼300 nm) is less than 0.1 % of that of the
Si substrate (600 µm), we assumed that the strain induced into
the SiC films is approximately equal to that of the surface of
the Si substrate: ε = Mt/2ESiI, where M is the bending mo-
ment; I is the moment of inertia; ESi and t are the Young’s
modulus and the thickness of the Si layer, respectively. Ac-
cordingly, for an applied load varied from 0 to 2 N to the free
end of the Si strips, the strain induced into the SiC layer was
in a range of 0 to 900 ppm. The stress applied to the SiC layer
(σSiC) was then calculated using Hooke’s law: σSiC = ESiCε,
where ESiC is the Young’s modulus of 3C-SiC29.

We investigated the orientation dependence of the pseudo-
Hall effect of p-type 3C-SiC thin films by characterizing SiC

Table 1 List of SiC four-terminal samples

Test Orientation Orientation θ β

samples of current of uniaxial stress

A [100] [110] 0◦ 45◦

B [110] [110] 45◦ 0◦

C [110] [11̄0] 45◦ 90◦

D [110] [100] 45◦ 45◦

E [100] [100] 0◦ 0◦

F [100] [010] 0◦ 90◦

θ is the angle between the direction of the applied current and
[100] orientation, and β is the angle between the directions of the
applied stress and the current in 3C-SiC (100) plane.
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Fig. 3 The ratio of the generated voltage and applied voltage of the
SiC four-terminal devices aligned in different orientation. Inset: The
equivalent four resistors R13, R14, R23, and R24 of a 3C-SiC
four-terminal device 32.

four-terminal devices aligned in different directions and being
stressed in different orientations, as summarized in Table. I.
Figure 2 shows that for sample A (the orientation of the cur-
rent is [100], and the direction of the stress is [110]), an offset
voltage was generated across terminals 3 and 4 when we ap-
plied a stress in [110] orientation. It is also clear that, the
offset voltage increased when increasing the applied stress to
264 MPa. The offset voltage then decreased with decreasing
the stress, and returned to 0 when the load was completely
removed. The generated voltage of the SiC four-terminal re-
sistors under stress was measured for several testing cycles,
showing a good reproducibility without any significant drift
voltage (See supplementary information). This indicates the
feasibility of using the pseudo-Hall effect in p-type 3C-SiC
four-terminal devices for MEMS strain/stress sensors.

The same phenomenon was also observed in other samples
(B, C, D, E, F), but with different order of magnitude. Figure
3 shows the ratio of the output voltage to the input voltages
of different samples A, B, C, D, E and F, indicating a linear
relationship between the output offset voltage (Vout/Vin) and
applied stress (σ). These results also show that the magnitude
of the generated offset voltage in 3C-SiC four-terminal de-
vices varies with the directions of the current and the applied
stress, indicating the orientation dependence of the pseudo-
Hall effect in p-type 3C-SiC thin film. As 3C-SiC has the
cubic crystalline structure like Si, we qualitatively and quan-
titatively explained the pseudo-Hall effect and its orientation
dependence in p-type 3C-SiC, using the model proposed by
Kanda et al. for the case of Si17,30. Figure 3 (Inset) shows
an equivalent circuit of the four-terminal device, which con-
sists of four resistors R13, R14, R23, and R24. In the strain-
free state, these four resistors are considered to be identical
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Fig. 4 (a) The coefficients π61, π62, and π66 of SiC four-terminal
devices when θ varies from 0 to π; (b) π61 and π62 are plotted in a
different scale.

(R13 = R14 = R23 = R24). Under a uniaxial mechanical strain
as shown in Fig. 1 (d), these four resistors are stressed, and
their resistances change. As R13, R14, R23, and R24 are aligned
in different orientations, these resistance changes are differ-
ent, leading to an unbalance of the bridge circuit, which re-
sults in a non-zero voltage across terminals 3 and 4. The ra-
tio of the generated voltage (Vout ) across terminals 3 and 4
to the applied voltage across terminals 1 and 2 (Vin) due to
stress can be quantified by the coefficients π61, π62, and π66,
as expressed in the following equation (see the supplementary
information)33,34:

Vout =Vin(π61σ1 +π62σ2 +π66σ6) (1)

where σ1 and σ2 are normal stresses parallel and perpendicu-
lar to the current, and σ6 is the in-plane shear stress which are
calculated from the applied uniaxial stress σ, using Mohr’s
circle (see the supplementary information):

σ1 = σcos2 β

σ2 = σsin2
β

σ6 =−
sin2β

2
σ

(2)

here, β is the angle between the applied uniaxial stress (σ) and
the current. The piezoresistive coefficients are defined in the
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Fig. 5 The ratio of the generated voltage across terminals 3 and 4 to
the input voltage across terminals 1 and 2 per unit uniaxial stress σ.

following equation30,31 (see the supplementary information):
π61 =−

1
4

asin4θ

π62 =
1
4

asin4θ

π66 = b+asin2 2θ

(3)

where θ is the angle between the direction of the applied cur-
rent and [100] orientation in (100) plane, and a = π11−π12−
π44 and b = π44 are constant parameters. Thus, by measur-
ing the change of the generated voltage in samples A and D,
we can determine parameters a and b, and consequently, the
piezoresistive coefficients π61, π62 and π66. From the exper-
imental results shown in Fig. 3, a and b were calculated to
be −14.8× 10−11 Pa−1 and 16.7× 10−11 Pa−1, respectively.
As a result, substituting a and b into Eq. 3, the magnitude of
the coefficients in any arbitrary orientation on (100) plane can
be estimated, Fig. 4. These results show that for the p-type
3C-SiC four-terminal devices, the coefficient π66 plays a more
dominant role than π61 and π62. The experimental data ob-
tained in samples B, C, E, F was also in good agreement with
the theoretical calculation that the output offset voltage was
approximately 0, since the coefficients π61 and π62 are 0 when
θ is equal to 0 or π/4 radian.

Based on the coefficients, we estimated the magnitude of
the output offset voltage of 3C-SiC four-terminal devices un-
der stress for MEMS mechanical sensors. Substituting Eq. 2
into Eq. 1, and using the calculated piezoresistive coefficients
shown in Fig. 4, it is possible to theoretically estimate the
magnitude of the pseudo-Hall effect of 3C-SiC four-terminal
devices aligned in arbitrary orientations. Figure 5 shows the
ratio of the generated voltage to the applied voltage per unit
applied stress ([Vout/Vin]/σ). It is obvious that, the magni-
tude of the effect in p-type 3C-SiC varies with orientations
of current and stress. Accordingly, in (100) plane, the ab-
solute offset voltage (|Vout |) gains its maximum value when

(θ, β) = (mπ/2, (2n+ 1)π/4), where m and n are integers.
Therefore, when designing MEMS mechanical sensors using
the pseudo-Hall effect in p-type 3C-SiC four-terminal resistor,
these orientations should be chosen to enhance the sensitiv-
ity of sensors. On the other hand, for the Hall-devices where
a constant offset voltage under external stress is desired, the
orientations of (θ, β) = (mπ/4, nπ/2) should be selected to
minimize the pseudo-Hall effect (here m and n are integers).

In conclusion, we reported on the pseudo-Hall effect in
p-type 3C-SiC four-terminal devices, the orientation depen-
dence, and piezoresistive coefficients π61, π62, and π66. The
maximum value of π66 was found to be 16.7× 10−11 Pa−1,
while that of π61 and π62 was 3.7× 10−11 Pa−1, implying
that π66 plays a more dominant role than the other coeffi-
cients. Based on these piezoresistive coefficients, it is pos-
sible to estimate the magnitude of the pseudo-Hall effect in
any arbitrary orientation. Furthermore, the large output volt-
age at a certain applied current and stress along with a di-
rect/simple signal-readout method indicate that pseudo-Hall
effect in p-type 3C-SiC is a good candidate for MEMS appli-
cations. These findings in this study play an important role
in designing/optimizing MEMS mechanical sensors as well as
Hall devices utilizing p-type 3C-SiC material.

This work was performed in part at the Queensland node of
the Australian National Fabrication Facility, a company estab-
lished under the National Collaborative Research Infrastruc-
ture Strategy to provide nano and micro-fabrication facilities
for Australia’s researchers. This work has been partially sup-
ported by the Griffith University’s New Researcher Grants.
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