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Abstract While crystallography conventionally presumes that a single crystal carries

a unique crystallographic orientation, modern experimental techniques reveal that a

single crystal may exhibit an orientation distribution. However, this distribution is

largely concentrated; it is extremely concentrated when compared with orientation

distributions of polycrystalline specimen. A case study of a deformation experiment

with a single hematite crystal is presented, where the experimental deformation in-

duced twining, which in turn changed a largely concentrated unimodal “parent” ori-

entation distribution into a multimodal orientation distribution with a major mode

resembling the parent mode and three minor modes corresponding to the progressive

twining. The free and open source software MTEX for texture analysis was used to

compute and visualize orientations density functions from both integral orientation

measurements, i.e. neutron diffraction pole intensity data, and individual orientation

measurements, i.e. electron back scatter diffraction data. Thus it is exemplified that

MTEX is capable of analysing orientation data from largely concentrated orientation

distributions.
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1 Introduction

While crystallography conventionally presumes that a single crystal carries a unique

crystallographic orientation, modern experimental techniques reveal that a single

crystal may exhibit an orientation distribution. Here a single hematite crystal is ex-

perimentally deformed by 3.4% in compression perpendicular to c(0001) at 600◦

Celsius, a strain rate of 10−5/s, and 300 MPa confining pressure. Then its texture is

measured by neutron diffraction and by electron back scatter diffraction (Siemes et al.

2008). To analyse and visualize these measurements we use the free and open source

Matlab® software toolbox MTEX for texture analysis (Hielscher 2007; Hielscher and

Schaeben 2008a, 2008b; Schaeben et al. 2007). A unique feature of the MTEX tool-

box is that it provides a unifying approach to texture analysis with integral (“pole

figure”) or individual (“EBSD”) orientation measurements. Therefore, it is particu-

larly well suited to compare patterns of preferred orientation based on data of such

different origin. Moreover, it is exemplified that the mathematical method and its

numerical realisation encoded in the MTEX toolbox applies to high resolution pole

figure data and sharp textures, and that computations of harmonic coefficients, modal

orientations, volume portions, texture index, entropy, etc. are possible for both kind

of data. Comparing the results based on neutron diffraction or electron back scatter

diffraction, it is concluded that they agree very well and support a plausible interpre-

tation.

2 Preliminaries: Crystallographic Orientation, Orientation Density Function,

Pole Density Function

We commence with the definition of the orientation of a crystal within a polycrys-

talline specimen. Let KS = {x,y, z} be a right-handed orthogonal specimen coordi-

nate system, and let KC = {a,b, c} be a right-handed orthogonal crystal coordinate

system. Then we call a rotation g ∈ SO(3) orientation of the crystal if it rotates the

specimen coordinate system onto the crystal coordinate system, i.e. gx = a, gy = b,

gz = c. Let r = (u, v,w)T be a coordinate vector with respect to the specimen coor-

dinate systems KS , and let h = (h, k, l)T be the corresponding coordinate vector with

respect to the crystal coordinate system KC , i.e. both coordinate vectors represent the

same direction, and we have

ux + vy + wz = ha + kb + lc.

Then, the orientation g ∈ SO(3) identified with a matrix in R
3×3 realizes the basis

transformation between the coordinate systems, and we have the equation

gh = r.

Since the crystal coordinate system can be assigned to the crystal uniquely only up

to crystal symmetry, every orientation g ∈ SO(3) is associated with a whole class of

crystallographically equivalent orientations. Crystallographic symmetries are com-

monly described by symmetry groups. When analysing diffraction data for preferred

crystallographic orientation, it is sufficient to consider the restriction of the Laue
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group GLaue ⊂ O(3) to its purely rotational part G̃Laue = GLaue ∩ SO(3). Then two

orientations g,g′ ∈ SO(3) are called crystallographically symmetrically equivalent

with respect to G̃Laue if there is a symmetry element q ∈ G̃Laue such that gq = g′. The

left cosets gG̃Laue define the classes of crystallographically symmetrically equivalent

orientations. They define a partition of SO(3). A set of class representatives, which

contains exactly one element of each left coset or class, is called a left transversal.

It is not unique. If it is easily tractable with respect to a parametrization, it will be

denoted G. Then G is a subset of SO(3) which contains each physically distinct

orientation exactly once. Many different names have been used for this region, e.g.

asymmetric domain (or unit or region), symmetrically equivalent area, fundamental

zone, MacKenzie cell (cf. Morawiec 1997). Analogously, two crystallographic di-

rections h,h′ ∈ S
2 are called crystallographically equivalent if there is a symmetry

element q ∈ G̃Laue such that qh = h′.

The orientation density function (ODF) of a specimen is defined as the probability

density function

f : SO(3) → R

which models the relative frequencies of crystal orientations within the specimen by

volume (Bunge 1969; Bunge and Morris 1982). The ODF possesses the symmetry

property

f (g) = f (gq), g ∈ SO(3), q ∈ G̃Laue (1)

and is normalized to ∫

SO(3)

f (g)dg = 8π2, (2)

where dg denotes the rotational invariant measure on SO(3). Given G̃Laue, the do-

main of definition of f can for all practical purposes be restricted to the correspond-

ing G.

The texture index of an orientation density function f is defined as

I (f ) =

∫

SO(3)

f (g)2 dg, (3)

the entropy of an orientation density function f is defined as

S(f ) = −

∫

SO(3)

f (g)lnf (g)dg. (4)

Both provide a measure of the degree of preferred orientation, i.e. a measure of devi-

ation from the uniform distribution.

The axis distribution function (Bunge 1969; Bunge and Morris 1982) or pole den-

sity function (PDF) (Matthies et al. 1987) of a specimen is defined as the function

P : S
2 × S

2 → R

which models the relative frequencies of specific lattice plane orientations, i.e. the

relative frequencies of normal vectors of specified lattice planes, within the specimen
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by volume. Mathematically the PDF P corresponding to an ODF f is characterized

by the fundamental equation of texture analysis (Bunge 1969; Bunge and Morris

1982)

P(h, r) =
1

2

(
Rf (h, r) + Rf (−h, r)

)
,

Rf (h, r) =
1

2π

∫

G(h,r)

f (g)dg,

(5)

where the path of integration G(h, r) := {g ∈ SO(3) | gh = r} is defined as the set

(“fibre”) of all rotations which map the crystallographic direction h ∈ S
2 onto the

specimen direction r ∈ S2. The fundamental equation of texture analysis involves

the integral operator R, recently recognized as the totally geodesic Radon transform

(Schaeben and Boogaart 2003). The properties (1) and (2) of an ODF f imply the

following properties of the corresponding PDF P ,

P(h, r) = P(qh, r), h, r ∈ S
2, q ∈ G̃Laue,

and ∫

S2
P(h, r)dh =

∫

S2
P(h, r)dr = 4π.

Eventually, we are interested in superpositions

∑

h∈Hi

ρh Rf (h, r) = Rf (Hi, r)

where Hi = H(λi, θi) is a set of superimposing crystal directions depending on a

wavelengths λi and Bragg angles θi , and ρh,h ∈ Hi , are the relative reflection inten-

sities.

Then the experimental pole intensity data are modelled as

Iiji
∼ ai

∑

h∈Hi

ρh Rf (h, riji
) + I b

iji
= ai Rf (Hi, rji

) + I b
iji

where i = 1, . . . ,N is the number of pole figures, ji = 1, . . . ,Ni is the number of

specimen directions, Hi = H(λi, θi) is the superposed crystal directions, ρh,h ∈ Hi

is the relative reflection intensities, riji
is the specimen directions, Iiji

is the diffrac-

tion counts, I b
iji

is the background intensities, f : SO(3) → R+ is an ODF, ai ∈ R+

is the normalization constants.

In practice, the problem is to construct a reasonable approximation of the orien-

tation probability density function f explaining the experimental intensities in the

“least-squares” sense

N∑

i=1

Ni∑

ji=1

(
ai Rf (Hi, rji

) + I b
iji

− I iji

)2
→ min,

where ai, i = 1, . . . ,N , are generally unknown. For more details, the reader is re-

ferred to Hielscher and Schaeben (2008a, 2008b).
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3 Radially Symmetric Functions in Texture Analysis

In texture analysis, radially symmetric functions appear as unimodal bell-shaped

“standard” or model ODFs. Mathematically they are defined as functions ψ : SO(3) →

R which do not depend on the rotation g but only on the angle ω(g) of rotation, i.e.

given a center rotation g0 ∈ SO(3), we have

ψ(g;g0) = ψ
(
g′;g0

)

for all rotations g,g′ ∈ SO(3) with ω(gg−1
0 ) = ω(g′g−1

0 ). Analogously to the spheri-

cal case (cf. Dunkl 1966), there is an isomorphism between radially symmetric func-

tions ψ defined on SO(3) and associated functions Ψ defined on [−1,1] (Hielscher

2007). It is well known that all pole figures of radially symmetric ODFs are radially

symmetric.

Let κ be a parameter within a set A, which is either an interval (a, b) with

0 ≤ a < b ≤ ∞ or N, and let κ0 be either a, b, or ∞. The family of radially sym-

metric functions (ψκ (ω(g)), κ ∈ A) on SO(3) centered at the identity of SO(3) with

a parameter κ ∈ A controlling the localization is called a kernel if

1

8π2

∫

SO(3)

ψκ

(
ω(g)

)
dg = 1 for all κ ∈ A. (6)

If ψκ ≥ 0, κ ∈ A, then (6) implies in particular the uniform boundedness of

(ψκ , κ ∈ A) with respect to its L1-norm. In practice, ψκ are often non-negative uni-

modal bell-shaped functions with their parameter κ ∈ A controlling the width of the

graph of ψκ .

Example 1 An example of a well localized, non-negative, radially symmetric func-

tion on SO(3) is the de la Vallée Poussin kernel (Schaeben 1997, 1999; Hielscher

2007). It is given for any κ ∈ N by

ψ(g;g0) =
B( 3

2
, 1

2
)

B( 3
2
, κ + 1

2
)

cos2κ
ω(gg−1

0 )

2
.

Its Radon transform reads

Rψ(h, r) =
1 + κ

2κ
(1 + g0h · r)κ = (1 + κ) cos2κ

(
arccos(g0h · r)

)
.

The parameter κ controls the halfwidth of the kernel. For illustration of the de la

Vallée Poussin kernel ψ , its Radon transform Rψ and its Chebyshev coefficients ψ̂

are plotted in Fig. 1. It is emphasized that the harmonic series expansion of the de

la Vallée Poussin kernel is finite. For κ ∈ N it is obvious, as the de la Vallée Poussin

kernel is just a well normalized even power of cosine.

A kernel (ψκ , κ ∈ A) is an approximate identity if (Freeden et al. 1998)

lim
κ→κ0

∫

ω(gg−1
0 )≥δ

ψκ

(
ω

(
gg−1

0

))
dg = 0, (7)
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Fig. 1 The de la Vallée Poussin kernel ψκ for κ = 7, its Radon transform Rψκ , and its Chebyshev

coefficients Ψ̂

or

lim
κ→κ0

[
sup

ω(gg−1
0 )≥δ

ψκ

(
ω

(
gg−1

0

))]
= 0. (8)

Thus, as κ → κ0, the kernel ψκ approximates Dirac’s δ-function. In order to con-

sider crystal symmetry, we define symmetrized radially symmetric functions

ψG̃Laue
(g) =

1

|G̃Laue|

∑

q ′∈G̃Laue

ψ
(
gq ′

)
= ψ

(
gG̃Laue

)

which are effectively defined on G ⊂ SO(3).

4 Orientation Density Estimation with Integral Orientation Measurements

Let g1, . . . , gM ∈ SO(3) be an approximate equidistribution in SO(3) with resolu-

tion δ = minm �=m′ ω(gmg−1
m′ ). Then, we apply the model assumption that there are

coefficients c ∈ R
M
+ such that

f (g) ∼

M∑

m=1

cmψκ

(
ω

(
gg−1

m

))
.

Since the Radon transform is linear, its application to the superposition of radially

symmetric functions results in

Rf (h, r) =

M∑

m=1

cmRψκ(gmh · r).

Then, the finite dimensional minimization problem to be solved for the unknown

normalization constants ai ∈ R+ and the unknown weights cm ∈ R+ is

J (c,a) =

N∑

i=1

Ni∑

j=1

(ai

∑M
m=1 cmRψκ(gmHi, r iji

) + I b
iji

− I iji
)2

I iji

→ min
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subject to constraints a ≥ 0, c ≥ 0,
∑M

m=1 cm = 1, and setting Hi = H(λi, θi) is the

superposed crystal directions, r iji
is the specimen directions, I iji

is the diffraction

counts, I b
iji

is the background intensities, ψκ : SO(3) → R is the radially symmetric

functions, gm ∈ SO(3) is the approx. uniform grid of rotations, m = 1, . . . ,M .

Estimation of the normalization constants can explicitly be rewritten as

ai(f ) =

∑Ni

ji=1 I iji
− I b

iji∑Ni

j=1 Rf (Hi, r iji
)
.

Summarily, the recipe of the novel method comprises

1. Choosing a radial basis function ψ : SO(3) → R

2. Choosing an approximate equidistribution of orientations g1, . . . , gM ∈ SO(3)

3. Representing the unknown ODF as a superposition of unimodal ODFs f (g) =∑M
m=1 cmψκ(gg−1

m )

4. Computing the coefficients c1, . . . , cm by minimizing the functional J .

For more details, the reader is referred to Hielscher and Schaeben (2008a, 2008b). A

measure of goodness-of-fit is provided by

RP(Hi) =

Ni∑

j=1

(ai

∑M
m=1 cmRψκ(gmHi, r iji

) + I b
iji

− I iji
)2

I iji

.

5 Non-parametric Kernel Density Estimation with Individual Orientation Data

Non-parametric kernel density estimation on SO(3) is applied analogously to spher-

ical density estimation (Schaeben 1982; Parzen 1962; Tapia and Thompson 1978;

Hall et al. 1987). It may be seen as a convolution of a kernel chosen by the user and

the discrete uniform measure assigning to each observation the probability 1
n

, where

n denotes the sample size. Any kernel density estimation inevitably involves some

smoothing, the extent of the smoothing depending on the “width” of the kernel con-

trolled by its parameter κ , or its bandwidth, respectively. In fact, choosing the proper

kernel width is critical, much more critical than the choice of the kernel itself (cf.

Scott 1992, p. 133).

Let gi ∈ SO(3), i = 1, . . . , n, be a sample of individual orientation measurements

of sample size n. Should the measurements initially be spatially referenced, this ref-

erence is neglected here. In fact, the sample is seen as a realization of a mathematical

sample of random orientations Gi : (θ, A,P ) → (SO(3), B(SO(3))), i = 1, . . . , n,

which are assumed to be identical independent distributed with finite expectation and

finite variance. Then, the basic kernel density estimator is defined as

f ∗
κ (g;G1, . . . ,Gn) =

1

n

n∑

i=1

ψκ

(
ω

(
gG−1

i

))
, κ ∈ A,
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where (ψκ , κ ∈ A) is actually an approximate identity. It should be noted that the

estimator is a random variable itself. An actual estimate is given by

f ∗
κ (g;g1, . . . , gn) =

1

n

n∑

i=1

ψκ

(
ω

(
gg−1

i

))
, κ ∈ A.

Since it will be clear by the context if the random estimator or its corresponding

estimate is meant, they are not distinguished, but both denoted f ∗
κ . Formally, the

actual estimate differs from the estimator by replacing Gi by their realizations gi, i =

1, . . . , n.

Considering crystal symmetry, the basic kernel density estimator is generalized to

f ∗
κ

(
g;G1G̃Laue, . . . ,GnG̃Laue

)
=

1

n

n∑

i=1

1

#G̃Laue

∑

σ∈G̃Laue

ψκ

(
ω

(
gG−1

i σ
))

=
1

n

n∑

i=1

ψκ

(
ω

(
gG−1

i G̃Laue

))
, κ ∈ A,

and is thought of as being effectively defined on G ⊂ SO(3). As usually, the Radon

transform of f ∗
κ (g;G1G̃Laue, . . . ,GnG̃Laue) is given by

R
[
f ∗

κ

(
◦;G1G̃Laue, . . . ,GnG̃Laue

)]
(h, r) =

1

n

n∑

i=1

Rψκ

(
GiG̃Laueh · r

)

=
1

n

n∑

i=1

Rψκ(Gih · r),

and is itself again a random variable. The mathematical properties of the kernel den-

sity estimator will be pursued by the authors elsewhere.

6 Practical Example of a Hematite Texture

Using MTEX we shall elaborate on the methodological aspects of analysis of pre-

ferred crystallographic orientation of a hematite specimen H43C1 which has been in-

terpreted in terms of experimental deformation by Siemes et al. (2008). The twofold

subject of their communication are the evaluation of the glide modes of hematite and

their critical resolved shear stresses depending on deformation temperature.

Hematite, Fe2O3, is a trigonal mineral with corundum structure and a hexagonal

cell with a0 = 0.5038 nm, c0 = 1.3772 nm, to which the symbols for planes (hkil),

sets of symmetry related planes {hkil}, directions [uvtw], and sets of symmetry re-

lated directions 〈uvtw〉 refer. Tetragonal prismatic specimen sized 7 × 7 × 14 mm3

were prepared from naturally grown single crystals in different crystallographic ori-

entations with their top plane either parallel to c(0001), r(011̄2), f (101̄1), a(112̄0),
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Fig. 2 Stress–strain curve of

specimen H43C1 deformed by

3.4% in compression

perpendicular to c(0001)

Fig. 3 Experimental pole

figures (equal area projection,

upper hemisphere) of the

reflections c(0001), f (101̄1),

r(011̄2), e(101̄4), and a(112̄0)

measured by neutron diffraction

with specimen H43C1 deformed

by 3.4% in compression

perpendicular to c(0001)

or m(101̄0), respectively. These specimens with different crystallographic orienta-

tions are necessary in order to initiate different glide modes, as translation glide (slip)

and twin gliding.

Compression tests were performed at the Geoforschungszentrum Potsdam using

a high temperature high pressure gas-medium apparatus (Paterson 1970, 1990). Fig-

ure 2 shows a stress–strain curve of specimen H43C1 deformed by 3.4% in compres-

sion perpendicular to c(0001) at 600◦ Celsius, a strain rate of 10−5/s, and 300 MPa

confining pressure. Indicated is the onset of deviation from linear increase of the

stress strain curve. For details concerning the equipment and the experimental proce-

dure, see Siemes et al. (2008).

6.1 Integral Orientation Measurements with Neutron Diffraction

Complete pole figures (Fig. 3) representing the crystallographic preferred orienta-

tions of the bulk volume of specimen H43C1 were measured with a neutron texture-

diffractometer SV7 (Jansen et al. 2000) at the Research Center Juelich. Since this dif-

fractometer is equipped with a position sensitive detector, the reflections of c(0003),



368 Math Geosci (2010) 42: 359–375

Fig. 4 Application of

zero-range method, white areas

indicating zero-intensity areas

r{011̄2}, f {101̄1}, e{101̄4}, and a{112̄0} were simultaneously measured for a 2Θ-

range of 50 degrees using a wavelength of 0.2332 nm, with c(0001) obtained from

the third order reflection (0003). To detect the very sharp peaks of the single crys-

tals the standard scanning grid comprising about 500 sample positions was extended

to 14616 positions with a mean distance of 1.5◦ which require a measuring time of

about three days. The corrected intensity data were plotted in an equal area projection

oriented parallel to the (0001) top plane of the specimen.

The neutron diffraction pole figures (Fig. 3) of the bulk volume of specimen

H43C1 show the major parent position and three weaker twin positions. In compres-

sion tests perpendicular to c(0001), the three r-planes are in an orientation of high

shear stress to activate r-twinning. Here the zero-range approximation was applied

to speed up the computation of an ODF. This approximation is particularly useful

for sharp textures with large areas of zero intensity in the experimental pole figures

(Fig. 4). In this case, the ODF is initialized to be zero for all orientations which cor-

respond to a zero-intensity direction in the experimental pole figures. In this way, the

computational time is greatly reduced and the resolution of the ODF may be largely

improved.

Then, instead of a total of 743,120 only a total of 533 de la Vallée Poussin ker-

nels with a halfwidth of 1.5 degree corresponding to a bandwidth of 286 were fitted

to explain the data. The time elapsed to compute the ODF was 271 seconds with a

notebook equipped with a Core 2 Duo CPU with 1.86 GH cpu-frequency and 2 GB

RAM. The computed orientation density is displayed in 12 σ -sections of Fig. 5. Its

texture index is approximately 3400, the entropy is approximately −7.35. There is

a major mode at (155,3,53) computed by MTEX in terms of an Euler angle triplet

using Matthies’ y-convention. The corresponding volume portion in the 10 degree

neighbourhood of the major mode is approximately 0.45, the value of the ODF at

the major mode is approximately 14.709. Three minor modes are recognized by vi-

sual inspection at about (90,65,59), (30,115,1), and (150,115,1), respectively. The

three minor modes are related to one another by rotations of 120 degrees about the

specimen z-axis. The corresponding volume portions in the 10 degree neighbourhood

of the three minor modes are approximately 0.09, 0.18, and 0.09, respectively; they

sum to approximately 0.36. The values of the ODF at the three minor modes are
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Fig. 5 σ -sections of MTEX’s recovered ODF based on experimental pole figures of the reflections

c(0001), r(011̄2), f (101̄1), e(101̄4), and a(112̄0)

Fig. 6 Recalculated pole

figures (equal area projection,

upper hemisphere) of the

reflections c(0001), r(011̄2),

f (101̄1), e(101̄4), and a(112̄0)

1,675, 715, and 573. The recalculated pole figures are displayed in Fig. 6, the rela-

tive ℓ1-norm errors (RP errors) are RP(0001) = 0.55,RP(011̄2) = 0.75,RP(101̄1) =

0.87,RP(101̄4) = 0.70,RP(112̄0) = 0.90 for the five crystal forms c(0001), r(011̄2),

f (101̄1), e(101̄4), and a(112̄0) considered. Then, the plots of the experimental pole

figures are augmented with the pole points corresponding to the major and minor

modes and shown in Fig. 7, where the major mode depicted black represents the

parent crystal orientation, and the three minor modes depicted blue, red, and green,

respectively, indicate three r-twin orientations. The texture based on integral neutron

diffraction data may be characterized by some numbers as follows. Computations
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Fig. 7 Experimental pole figures (equal area projection, upper hemisphere) of the reflections c(0001),

r(011̄2), f (101̄1), e(101̄4), and a(112̄0) augmented with major mode (155,3,53) (black), and minor

modes (90,65,59) (blue), (30,115,1) (red), and (150,115,1) (green), respectively

Table 1 The major mode gM and the three minor modes gmi
, i = 1,2,3, are given in terms of Euler

angles (α,β, γ ) (zyz-convention) (left column), and characterized by their probability mass according to

the orientation density function in a ball b(gm;10) of 10 degrees (center column), and their values of the

orientation density function f (gm)

Neutron (α,β, γ )
∫
b(gm;10) f (g)dg f (α,β, γ )

gM (black) (155,3,53) 0.45 14,709

gm1 (blue) (90,65,59) 0.09 1,675

gm2 (red) (30,115,1) 0.18 715

gm3 (green) (150,115,1) 0.09 573

Sum 0.36

Fig. 8 Specimen H43C1

deformed 3.4% in compression

perpendicular to c(0001).

OIM® maps of both side planes

of the specimen with three

r-twins (blue, red, and green)

yielded a texture index J = 3400, and an entropy E = −7.35. Analysis of major and

minor modes is summarized in Table 1.

6.2 Individual Orientation Measurements with Electron Back Scatter Diffraction

Electron back scatter diffraction (EBSD) measurements (Kunze et al. 1993) were

performed on a SEM CamScan CS44LB equipped with an EBSD attachment at ETH
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Fig. 9 Specimen H43C1 deformed 3.4% in compression. Pole point figures (equal area projection, upper

hemisphere) of plane (m) rotated in a position with the compression direction perpendicular to the plane

of projection: parent crystal (black), three r-twins (blue, red, and green). The colours in the pole figures

correspond to those in the OIMŮ maps of Fig. 8

Fig. 10 RGB- and IHS-colour coded raw EBSD measurements of specimen H43C1 deformed by 3.4% in

compression perpendicular to c(0001) (left and center), EBSD measurements in Rodrigues space (right)

Zurich, Switzerland, and a total of 69,541 individual orientations were measured. Us-

ing the processing software OIM® (EDAX–TSL Inc.), orientation image microscopy

maps (OIM® maps) were acquired. The top plane of specimen H43C1 is c(0001),

one side plane is a(112̄0), and the other one is m(101̄0) (Fig. 8).

The OIM® maps display the EBSD pattern quality parameter by grey levels. Bright

pixels relate to sharp diffraction patterns indicating intact crystal spots (areas), and

dark levels mean high density of near surface defects, boundaries, obstacles like holes

or insufficient surface preparation. Black color is assigned to pixels with non-reliable

indexing of the acquired EBSD pattern, defined by a threshold in the confidence

index CI < 0.1. Twin orientations are highlighted by superimposed color in the maps

as well in the adjacent pole figures (Fig. 9). OIM® maps of both planes are mounted

in a 3D-micrograph (Fig. 8) and shows on side planes (m) and (a) three sets of r-twin

lamellae which are coloured in blue, red, and green. The local pole figures of the side

plane m(101̄0) of the prismatic specimen are calculated from the orientation data and

presented in Fig. 9.

Later, the data were analysed with the free and public domain software MTEX.

The spatially indexed orientation measurements were RGB- and IHS-colour coded,

i.e. a triple of Euler angles was associated with corresponding colours, and plotted

in the (x, y)-plane of measurements (Fig. 10). Neglecting their (x, y)-position, they
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Fig. 11 Pole point plots (equal

area projection, upper

hemisphere) of the crystal forms

c(0001), r(011̄2), f (101̄1),

e(101̄4), a(112̄0), and m(101̄0)

Fig. 12 σ -sections of MTEX’s estimated ODF based on EBSD measurements and non-parametric kernel

density estimation with the de la Vallée Poussin kernel

were also displayed as scatter plot in Rodrigues space (Fig. 10). Then, corresponding

pole point plots were computed and are displayed in Fig. 11.

Non-parametric kernel ODF estimation was done with a de la Vallée Poussin ker-

nel with a halfwidth of 2.0 degrees corresponding to the finite bandwidth of L = 213

of the series expansion into generalized spherical harmonics. Its σ -sections are dis-

played in Fig. 12, the corresponding pole density functions of the crystal forms

c(0001), r(011̄2), f (101̄1), e(101̄4), a(112̄0), and m(101̄0) augmented with the ma-

jor mode (100,178,11) (black), and minor modes (90,65,59) (blue), (30,115,1)

(red), and (150,115,1) (green) are depicted in Fig. 13. Even though the major mode

(155,3,53) of Neutron diffraction data and the major mode (100,178,11) of elec-
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Fig. 13 Corresponding

computed pole density functions

of the crystal forms c(0001),

r(011̄2), f (101̄1), e(101̄4),

a(112̄0), and m(101̄0)

augmented with major mode

(100,178,11) (black), and

minor modes (90,65,59) (blue),

(30,115,1) (red), and

(150,115,1) (green),

respectively

Fig. 14 Pole point plots (equal

area projection, upper

hemisphere) of the crystal forms

c(0001), f (101̄1), r(011̄2),

e(101̄4), a(112̄0), and m(101̄0)

colour coded according to their

classification with respect to

modes of the estimated ODF,

and augmented with major mode

(100,178,11) (black), and

minor modes (90,65,59) (blue),

(30,115,1) (red), and

(150,115,1) (green),

respectively, computed and

displayed with MTEX

tron back scatter diffraction data look different, they are not. A crystallographically

symmetrical equivalent orientation of (100,178,11) is (−80,2,−71). Considering

that for small angles β the orientation is approximately given by α + γ , this sum is

155 + 53 = 208 degrees for the Neutron diffraction data and −80 − 71 + 360 = 209

degrees for the electron back scatter diffraction data. In fact, the difference of the two

modal orientations considering crystal symmetry is smaller than 5 degrees, which is
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Table 2 The major mode gM and the three minor modes gmi
, i = 1,2,3, are given in terms of Euler

angles (α,β, γ ) (zyz-convention) (left column), and characterized by their probability mass according to

the orientation density function in a ball b(gm;10) of 10 degrees (center column), and their values of the

orientation density function f (gm)

EBSD (α,β, γ )
∫
b(gm;10) f (g)dg f (α,β, γ )

gM (black) (100,178,11) 0.45 12,251

gm1 (blue) (90,65,59) 0.05 699

gm2 (red) (30,115,1) 0.04 450

gm3 (green) (150,115,1) 0.33 2,611

Sum 0.42

Fig. 15 EBSD measurements

of specimen H43C1 colour

coded according to their

classification with respect to

modes of the estimated ODF

interpreted as being in fair agreement. Then, the EBSD measurements were classi-

fied according to 10 degree neighbourhoods of the major and the three minor modes,

respectively, and the classes were colour coded with the same colours as the modes

themselves. Figure 14 shows the corresponding classified pole point plots, Fig. 15

shows the corresponding spatial map of classified EBSD measurements. A numerical

summary of texture estimated from individual orientation measurements includes a

texture index J = 3400, an entropy E = −7.42, and modes as compiled in Table 2.

7 Conclusions

Focusing on the methodological aspects we are lead to the brief conclusion that the

results of texture analyses based on integral Neutron diffraction data and on individ-

ual electron back scatter diffraction data agree very well.

It is once more confirmed that an interpretation of an orientation probability den-

sity function in terns of its individual values may be deceiving. As for any density
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function, a proper interpretation is accomplished in terms of volume portions only.

Thus, MTEX features a unique approach to analyse individual or integral orientation

measurements.
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