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In nanomaterials, optical anisotropies reveal a fundamental
relationship between structural and optical properties1–6.
Directional optical properties can be exploited to enhance the
performance of optoelectronic devices7–9, optomechanical actua-
tors10 and metamaterials11. In layered materials, optical anisotro-
pies may result from in-plane and out-of-plane dipoles associated
with intra- and interlayer excitations, respectively. Here, we
resolve the orientation of luminescent excitons and isolate photo-
luminescence signatures arising from distinct intra- and inter-
layer optical transitions. Combining analytical calculations with
energy- and momentum-resolved spectroscopy, we distinguish
between in-plane and out-of-plane oriented excitons in materials
with weak or strong interlayer coupling—MoS2 and 3,4,9,10-pery-
lene tetracarboxylic dianhydride (PTCDA), respectively. We
demonstrate that photoluminescence from MoS2 mono-, bi- and
trilayers originates solely from in-plane excitons, whereas
PTCDA supports distinct in-plane and out-of-plane exciton
species with different spectra, dipole strengths and temporal
dynamics. The insights provided by this work are important for
understanding fundamental excitonic properties in nanomaterials
and designing optical systems that efficiently excite and collect
light from exciton species with different orientations.

Different dipole orientations can be resolved by their distinct
antenna-like radiation patterns (Fig. 1a). These radiation patterns
can be discerned experimentally using back focal plane imaging12,
where every point in the image plane corresponds to a distinct
angle of emission, or in-plane photon momentum k‖¼ k0n sin(u).
Momentum-resolved measurements have been used to determine
the orientation of chromophores12,13 and to image radiation patterns
of optical antennas8,14. By focusing back focal plane images onto the
entrance slit of an imaging spectrograph, one can simultaneously
decompose photoluminescence by photon momentum and energy
(that is, frequency v). Energy-momentum spectroscopy has recently
been used to distinguish and quantify the isotropic electric and
magnetic dipole transitions in rare earth ions15.

Expanding the analytical framework of ref. 15 to account for
emission within uniaxial media (Supplementary Section I), exper-
imentally measured s- and p-polarized photoluminescence counts,
Ns,p(v, k‖), can be fit to a superposition of in-plane (IP) and
out-of-plane (OP) dipole emission:

N s,p
(v, k‖) = CexpC0(v)[r̃

s,p
IP (v, k‖)�nIP|mIP(v)|

2

+ r̃
s,p
OP(v, k‖)�nOP|mOP(v)|

2
]

where Cexp is a proportionality constant that depends on experimen-
tal parameters (for example, excitation intensity and integration

time), C0(v) is a sample and orientation-independent prefactor,
r̃
s,p
IP (v, k‖) and r̃

s,p
OP(v, k‖) are the normalized local density of

optical states (LDOS) for IP and OP dipoles, �nIP and �nOP are the
time-averaged populations of IP and OP excitons, and mIP(v) and
mOP(v) are the IP and OP dipole moments of a single emitter.
Figure 1b presents a schematic of the geometry considered in the
calculations and experiments. We consider photoluminescence
emitted in the y–z plane, such that k‖¼ ky. We collect s-polarized
light using an x-oriented polarizer, and p-polarized light using a
y-oriented polarizer. Figure 1c shows the calculated LDOS for
IP- (blue) and OP-oriented (red) dipoles emitting at 700 nm,
located in the middle of a 20-nm-thin uniaxial layer of PTCDA
with IP and OP refractive indices of no¼ 2.1 and ne¼ 1.6, respect-
ively, sitting on a quartz substrate (n¼ 1.5). The s-polarized light
emission arises solely from IP dipoles (that is, r̃s,pOP(v, k‖) = 0),
but p-polarized light can contain contributions from both IP and
OP dipoles. The significant difference in angular dependence
allows us to decompose p-polarized spectra into relative contri-
butions from the IP and OP dipoles.

Important conclusions can be drawn from a close examination of
Fig. 1c. First, OP dipoles emit very little light into momentum states
that are collected by optical systems with a moderate numerical
aperture. By integrating the LDOS in the two-dimensional kx2 ky
plane, we can determine the amount of photoluminescence col-
lected by an optical system with a particular numerical aperture.
For example, of the total light emitted into the substrate by OP
dipoles (|k‖/k0|, 1.5), less than 5% falls within the angular range
collected by a numerical aperture of 0.8 (|k‖/k0|, 0.8). To study
the behaviour of OP excitons, the use of high-numerical-aperture
collection optics is imperative. Second, the IP and OP LDOS
differ significantly at the onset of total internal reflection at the air
interface, k‖¼ k0. At this critical momentum, IP dipole emission
vanishes, while OP dipole emission is maximized. Thus, the relative
amount of photoluminescence collected from IP and OP dipoles
strongly depends on the experimental geometry. For this reason,
we use a combination of LDOS calculations and momentum-
resolved photoluminescence measurements to infer relative
measures of the net IP and OP dipole strengths �nIP|mIP(v)|

2 and
�nOP|mOP(v)|

2. Although we cannot determine the absolute dipole
strengths, we can determine how they vary relative to wavelength
and dipole orientation—properties that do not depend on the
specific experimental geometry.

Recently, researchers discovered that monolayers of MoS2 exhibit
a direct energy gap with a significantly enhanced photolumines-
cence quantum yield compared with indirect-gap bulk
samples16,17. As a perfectly oriented, highly anisotropic material
with measurable photoluminescence, MoS2 is an ideal system for
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investigating exciton orientations. The solid lines in Fig. 2a show the
experimental momentum-resolved s- (blue) and p- (purple) polar-
ized photoluminescence of monolayer MoS2 from the A exciton,
which is associated with near band-edge direct-gap transitions at
the K and K′ points of the Brillouin zone, modified by strong elec-
tron–hole interactions. The luminescence at k‖¼ k0 nearly vanishes,
indicating a purely IP dipole moment. By fitting the p-polarized data
(purple dashed line) at every wavelength, we derive a theoretical
curve for s-polarization that is free of any fit parameters (blue

dashed line) and determine the dipole strengths of the IP and OP
excitons (Fig. 2b). We see excellent agreement between theory and
experiment, and at every wavelength the data are best fit by assum-
ing the photoluminescence arises entirely from IP excitons.
Calculations18 and measurements4 indicate that the lowest energy
optical dipole transitions in bulk MoS2 are purely IP. Because
exciton relaxation is negligible, the direct-gap photoluminescence
transitions are identical to those for near band-edge absorption.
Thus, our results are consistent with previous studies and validate
the experimental technique.

In multilayer MoS2 , interlayer interactions modify the elec-
tronic band structure, suppressing direct-gap emission (hot
photoluminescence) and giving rise to prominent lower-energy,
indirect-gap photoluminescence. The indirect-gap feature in the
photoluminescence spectra has been used to distinguish the
number of layers in few-layer MoS2 (refs 16,17). However, the
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Figure 1 | Theory of IP and OP dipole emission. a, Calculated x-polarized

back focal plane emission patterns from purely IP (left) and OP (right)

dipoles emitting at 700 nm, located in the middle of a 20-nm-thin uniaxial

layer of PTCDA with IP and OP refractive indices of no¼ 2.1 and ne¼ 1.6,

respectively, sitting on a quartz substrate (n¼ 1.5). The solid white arrows

denote the x-oriented polarization direction. The s- and p-polarized cross-

sections are indicated by white dashed lines. b, Schematic of the layered

geometry, highlighting the relationship between dipole orientations (mIP and

mOP) and emission polarization. c, The s- (top) and p- (bottom) polarized

LDOS for IP (blue) and OP (red) dipoles. Solid lines: the 20-nm-thin film of

PTCDA considered in a. Dashed lines: an infinitesimally thin film using the

electrostatic approximations derived in Supplementary Section IV. The

s-polarized light only comes from IP dipoles. For p-polarized light, the IP

LDOS vanishes at k‖¼ k0 but the OP LDOS is maximized.
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Figure 2 | Exciton orientation in mono-, bi- and trilayer MoS2.

a, Experimental momentum spectra of 664 nm photoluminescence from a

monolayer of MoS2. Inset: the full x-polarized back focal plane image, which

closely resembles the calculated IP back focal plane image shown in Fig. 1a.

Solid lines: experimental s- (blue) and p- (purple) polarized cross-sections

at 664 nm. The p-polarized cross-sections exhibit vanishing luminescence

intensity at k‖¼ k0. The p-polarized data are fit (dashed lines) to a

superposition of IP and OP dipole emission, generating an expected

s-polarized spectrum that has no free fit parameters. b, Total OP (solid lines)

and IP (dashed lines) dipole strengths inferred from independent fits to

angular spectra at each wavelength. Both the direct (≏660 nm) and indirect

(≏840 nm) gap luminescence from MoS2 multilayers arise entirely from IP

(intralayer)-oriented excitons.
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orientation of the indirect-gap dipole moment is unknown,
because this transition contributes negligibly to optical absorp-
tion. In general, photoluminescence measurements can reveal
the properties of relaxed exciton states that are not probed by
other methods. Our results (Fig. 2b) demonstrate that the indir-
ect-gap transition is also IP-oriented. Even though this feature
is only prominent in MoS2 multilayers, it is not the result of an
OP interlayer transition. In the next section, we investigate a
material in which strong interlayer coupling causes photolumines-
cence from both IP- and OP-oriented excitons.

Polycyclic aromatic hydrocarbons (PAHs)—such as pentacene,
perylene and graphene—are tremendously important materials in
contemporary organic electronics research. In PAHs, overlapping
pz atomic orbitals form p bonds with a delocalized electron
density above and below the plane of the carbon atoms. In single
PAH molecules, optical transitions between the highest-energy
occupied molecular orbital (p) and the lowest-energy unoccupied
molecular orbital (p*) are characterized by an IP dipole
moment19. Here, we study photoluminescence from highly oriented
thin films of the perylene derivative PTCDA.

We determined the molecular and crystallographic orientation of
PTCDA films using angle-resolved near-edge X-ray absorption fine
structure (NEXAFS) spectroscopy and grazing incidence X-ray dif-
fraction (GIXD), respectively. The strong angular dependence of the
C 1s� p* transitions near 285 eV (Fig. 3a) indicates molecules that
are highly oriented parallel to the substrate (IP). GIXD patterns
(Fig. 3b) show oriented crystals of both a- and b-PTCDA, with
molecules preferentially oriented parallel to the substrate
(Supplementary Section III, Figs S3 and S4). The high-intensity
(102) diffraction peak near 2 Å21 arises from PTCDA molecules
that are closely stacked (3.2 Å) along the substrate normal (OP),
resulting in a large overlap of p orbitals and strong interlayer inter-
actions20. As a result of these interactions, the photoluminescence
from PTCDA changes markedly as the material evolves from dis-
crete single molecules to a layered nanomaterial21. In a weakly
coupled material, the optical properties would be dominated by
Frenkel excitons, which retain the localized orbitals and IP orien-
tation characteristic of monomers. In PTCDA, however, theoretical
models of both dimers22 and one-dimensional stacks23 capture the
importance of the OP-oriented interlayer charge-transfer

2

3

7

680660 740720700

Wavelength (nm)

OP (charge-transfer exciton)

IP (excimer)

e

760

0

2

4

6

8

−1.0 −0.5 0.50.0 1.0

k||/k0

C
o

u
n

ts
 (

a.
u

.)

d

e−

h+

e−

h+

Excimer

Charge transfer exciton

π* σ*

θ

E

 20°
 70°
 33°
 44°
 70°

280 285 290 295 300

0

1

2

3

P
ar

ti
al

 e
le

ct
ro

n
 y

ie
ld

 (
a.

u
.)

0.5

1.0

1.5

2.0

2.5

Q
o

u
t-

o
f-

p
la

n
e 

(Å
−

1 )

Qin-plane (Å−1)

0.0−0.5−1.0−1.5−2.0305

Photon energy (eV)

a b c

(102)

5

4

6

s-pol. exp.

s-pol. fit

p-pol. exp.

p-pol. fit
In

fe
rr

ed
 d

ip
o

le
 s

tr
en

gt
h

, n
– μ

2
 (a

.u
.)

Figure 3 | Morphology and exciton orientations in a PTCDA thin film. a, Angle-dependent NEXAFS. The C 1s�p* transitions near 285 eV and C 1s� s*

transitions near 295 eV both exhibit very strong dependence on the incident angle of the p-polarized X-ray source, indicating molecules that are highly

oriented parallel to the sample surface. The two lowest-energy p* peaks originate from carbon atoms in the aromatic perylene core, and the highest-energy

p* doublet originates from carbon atoms in anhydride functional groups. b, GIXD 2D reciprocal space patterns where colour corresponds to a logarithmic

intensity scale. Diffraction peaks are consistent with a mixture of a- and b-phase PTCDA crystals (Supplementary Section III). The highest-intensity peak

arises from (102) diffraction and is largely confined to the OP axis. This indicates a crystal orientation with molecules aligned parallel to the substrate surface,

consistent with the NEXAFS results and previous structural investigations of PTCDA thin films. c, Schematics showing the orientation of excimers and charge

transfer excitons relative to a pair of PTCDA molecules within the crystalline thin film. d, Solid lines: experimental s- (blue) and p- (purple) polarized

momentum-resolved photoluminescence from a PTCDA thin film at 700 nm. Dashed lines: associated fits. The luminescence intensity at k‖¼ k0 is nearly

equal to that at k‖¼0. e, Inferred dipole strengths for IP and OP excitons in PTCDA. Oscillations with wavelength arise from etalon effects in the CCD array

at long wavelengths. IP and OP emissions are assigned to excimers and interlayer charge transfer excitons, respectively.
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exciton—an electron and hole localized on adjacent molecular
layers. The description of exciton states in PTCDA is further com-
plicated by the existence of mixed charge transfer and Frenkel
exciton states and IP-oriented intralayer charge-transfer excitons.
Regardless of specific assignments, previous ellipsometry5 and elec-
tron energy loss spectroscopy (EELS)24 experiments indicate that
our pump laser predominantly excites IP excitons.

After excitation, IP excitons in PTCDA films quickly undergo
intraband relaxation to lower-energy Bloch states25 and lower
their energy by coupling to interlayer lattice deformations26, a
process referred to as self-trapping or excimer formation. Time-
and temperature-dependent PTCDA photoluminescence spectra
have previously been decomposed into contributions from different
excitons using multi-Gaussian fits motivated by theoretical calcu-
lations27–29. These studies suggest that room-temperature photolu-
minescence arises primarily from IP excimers, with a small
contribution from OP charge-transfer excitons that emit at nearly
the same frequency.

The momentum-resolved photoluminescence from a PTCDA
thin film is shown in Fig. 3d. Unlike MoS2 , there is significant
p-polarized (purple) luminescence at k‖¼ k0 , indicating the pres-
ence of OP excitons. By fitting the photoluminescence traces
(dashed lines), we determine relative measures of the intrinsic IP
and OP dipole strengths �nIP|mIP(v)|

2 and �nOP|mOP(v)|
2 respectively

(Fig. 3e). Although light absorption predominantly generates IP
excitons, the dipole strengths for IP (blue) and OP (red) excitons
are within a factor of two of one another. Additionally, the emission
from OP excitons is redshifted compared with IP states. These
results demonstrate significant differences between photolumines-
cence and absorption anisotropies. By identifying IP orientation
with excimers and OP orientation with charge-transfer excitons
(Fig. 3c), comparisons can be made with previous studies of
PTCDA luminescence, where the contributions of various exciton
species were determined by means of multi-Gaussian fits27–29.
Both the large dipole strength and noticeable redshift of the OP
charge-transfer exciton are not evident in these investigations, high-
lighting the importance of momentum-resolved techniques for
experimentally distinguishing excitons by their orientation.

As described previously, the thin-film LDOS for IP and OP emit-
ters are significantly different at the onset of total internal reflection
(k‖¼ k0). At this momentum, p-polarized photoluminescence orig-
inates purely from OP excitons. However, the p-polarized lumines-
cence at k‖¼ 0 and s-polarized luminescence at all momenta arise
from IP excitons only. Thus, by filtering polarized luminescence
in momentum space, we can obtain a fit-independent method for
isolating photoluminescence from IP or OP excitons. Using an
optical fibre as described in the Methods, we collected and plotted
(Fig. 4) the normalized s-polarized spectrum at k‖¼ k0 (green)
and the p-polarized spectra at k‖¼ 0 (blue) and k‖¼ k0 (red). The
green and blue spectra are identical and representative of pure IP
excimer emission. In contrast, the red spectrum arises from OP
charge-transfer excitons only and exhibits a redshift similar to
that shown in Fig. 3e (note the different wavelength scale). In
addition to confirming our fit results, this technique enables more
sophisticated experimental investigations.

By isolating the photoluminescence from different exciton orien-
tations, we can use a single high-speed photodetector to indepen-
dently study the dynamics of charge-transfer excitons and
excimers (see Methods). Traces of time-resolved photoluminescence
at various momenta and polarizations are shown in Fig. 5. These
were taken at low pump fluence, where the dynamics are indepen-
dent of pump fluence. All traces exhibit a fast decay component at
early times and a slow decay component at later times (t. 5 ns).
However, differences between traces demonstrate the existence of
distinct exciton populations. All traces arising from IP emission
(that is, the p-polarized trace at k‖¼ 0 (blue) and all s-polarized
traces; cyan, magenta, grey) have identical decays and represent
excimer photoluminescence. In contrast, the purely OP emission
(that is, the p-polarized trace at k‖¼ k0 (red)) arises from
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to longer times indicative of slower dynamics. The slopes of the decay traces
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occurs at early times. The p-polarized photoluminescence at k‖¼ 1.2k0
(black) arises from both exciton species and exhibits intermediate dynamics.
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charge-transfer excitons and has significantly slower dynamics, as
evidenced by its separation from all other curves. The p-polarized
trace at k‖¼ 1.2k0 (black) displays intermediate dynamics, as
expected from a mixture of excitons. The majority of the difference
between charge-transfer exciton and excimer dynamics occurs at
early times and may arise from the distinct recombination pathways
for the two exciton species. Alternatively, charge-transfer exciton
decay may be convolved with a rising charge-transfer exciton popu-
lation density as initially excited IP excitons reorient in the OP
direction. Although the exact dynamical mechanisms are not yet
known, it is clear that the room-temperature photoluminescence
from PTCDA arises from two distinct exciton species with different
spectra, dipole strengths and temporal dynamics.

Our results demonstrate the fundamental relationship between
the morphology of thin-film materials and the orientation of exci-
tons. Although the momentum-resolved techniques demonstrated
here are restricted to thin films, they can be applied to any material
and adapted to a variety of other optical measurements. For
instance, although we have used momentum-resolved spectrosco-
pies to isolate luminescence from IP and OP excitons, time-reversal
symmetry dictates that these techniques can also be used to selec-
tively excite either IP or OP excitons. Thus, the concepts and tech-
niques presented here may lead to better control and understanding
of both the generation and recombination processes in other highly
oriented materials. In a planar bilayer heterojunction30 organic
photovoltaic, for example, selective excitation of OP excitons
could be used to directly measure the cross-section and energy spec-
trum of charge-transfer excitons at a donor/acceptor interface.
Similarly, selective detection could be used to measure charge-
transfer exciton dynamics associated with diffusion, dissociation
and recombination processes. We anticipate these results will have
a significant impact on both fundamental and applied organic
optoelectronics research in a variety of materials systems1,31–34.

Methods
Experimental set-up. A schematic of the experimental apparatus is shown in
Supplementary Fig. S2. The photoluminescence from our samples was excited and
collected by an oil immersion objective (Nikon CFI-Plan Fluor ×100, NA¼ 1.3)
mounted in an inverted Nikon Eclipse microscope. A Bertrand lens with a focal
length of 50 mm was used to reimage the objective’s back focal plane onto the
entrance slit of an imaging spectrograph (Princeton Instruments SP2300i) equipped
with a 150 lines mm21 grating blazed at 800 nm (MoS2 data, Fig. 2) and a
300 lines mm21 grating blazed at 500 nm (PTCDA data, Fig. 3). In imaging mode
(Fig. 2a, inset), the slit was open wide, an angled mirror was used for specular
reflection, and the back focal plane image was focused onto a Princeton Instruments
Pixis 1024B charge coupled device (CCD) array. In spectroscopy mode (Figs 2 and
3), the slit was narrowed and the grating angled to disperse the photoluminescence
by wavelength such that one axis of the CCD array corresponded to wavelength and
the other to in-plane momentum. MoS2 data were taken with a 488 nm argon ion
excitation laser (Coherent Innova 300C) and Princeton Instruments ProEM Excelon
camera with a pixel width corresponding to k‖≈ 0.033k0. PTCDA data were taken
with a 532 nm excitation laser (Coherent Verdi) and Princeton Instruments Pixis
1024B camera with a pixel width corresponding to Dk‖≈ 0.025k0. The observed
photoluminescence results were insensitive to the polarization of the pump laser for all
measurements. All spectra presented are background-subtracted raw data without
intensity calibration. The combination of chromatic dispersion in the objective,
gratings and cameras causes a continual decrease in collection efficiency as the
wavelength increases past 600 nm.However, this does not affect themomentum-space
fits, which are performed separately at each wavelength. Furthermore, the momentum-
space fits were performed over the momentum range 21.1k0≤ k‖≤ 1.1k0 to
minimize the effect of imaging artefacts observed at higher-numerical-aperture
values and to account for the lower effective numerical aperture of the coupled
microscope-lens–spectrograph system15.

For momentum filtering experiments, a Bertrand lens with a focal length of
250 mm was used to reimage the back focal plane to a much larger size. For
spectroscopic measurements, the photoluminescence was filtered in momentum
space by a 100 mm (corresponding to k‖≈ 0.02k0) core optical fibre coupled to the
spectrograph/camera system described above, operating with a 150 lines mm21

grating blazed at 500 nm. For time-resolved measurements, a 100-mm-diameter
(k‖≈ 0.02k0) circular pinhole on a translation stage was used to filter the
photoluminescence, which was then reimaged onto the active area of a single photon
avalanche diode (PicoQuant Tau-SPAD). Samples were excited by a 485 nm pulsed

laser diode with sub-100 ps pulse widths at a 2.5 MHz repetition rate (PicoQuant
LDH-D-C-485). Signals from the photodiode were recorded with a resolution of
512 ps using a PicoHarp 300 time-correlated single-photon counting system.
Photons were counted until a peak value of 60,000 was achieved. All traces exhibited
a maximum at the same time bin. Traces were recorded at various pump powers to
confirm that the decays were pump power-independent.

Sample fabrication. Few-layer MoS2 samples were mechanically exfoliated from
bulk MoS2 crystals (SPI Supplies) and deposited on thin (150–180 mm) quartz
coverslips. Mono-, bi- and trilayer MoS2 were identified using optical microscopy.
Their thicknesses were confirmed by atomic force microscopy (AFM) and
photoluminescence measurements16. PTCDA films were thermally evaporated in a
physical vapour deposition system at ,5× 1027 torr with substrates held at room
temperature. Films were deposited on quartz coverslips for photoluminescence
measurements and on silicon substrates with a 100-nm oxide layer for reference
AFM, ellipsometry and X-ray studies. Samples were annealed on a hot plate at
100 8C for 24 h. To minimize free parameters, we determined the thickness of the
PTCDA layers from AFM measurements (20 nm) and the refractive indices from
ellipsometry measurements.
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