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abstract: Stabilizing selection has been predicted to change genetic

variances and covariances so that the orientation of the genetic

variance-covariance matrix (G) becomes aligned with the orientation

of the fitness surface, but it is less clear how directional selection

may change G. Here we develop statistical approaches to the com-

parison of G with vectors of linear and nonlinear selection. We apply

these approaches to a set of male sexually selected cuticular hydro-

carbons (CHCs) of Drosophila serrata. Even though male CHCs dis-

played substantial additive genetic variance, more than 99% of the

genetic variance was orientated 74.9� away from the vector of linear

sexual selection, suggesting that open-ended female preferences may

greatly reduce genetic variation in male display traits. Although the

orientation of G and the fitness surface were found to differ signif-

icantly, the similarity present in eigenstructure was a consequence

of traits under weak linear selection and strong nonlinear (convex)

selection. Associating the eigenstructure of G with vectors of linear

and nonlinear selection may provide a way of determining what long-

term changes in G may be generated by the processes of natural and

sexual selection.

Keywords: genetic variance, fitness surface, sexual selection, genetic

variance-covariance matrix, lek paradox.

The additive genetic variance-covariance matrix (G) is a

fundamental parameter in microevolutionary theory

(Lande 1979; Agrawal et al. 2001). The G matrix will de-

termine the rate and direction in which a population may

respond to a given selection regime on a multivariate suite

of traits (Lande 1979). The predictive equation for the
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change in means, , will hold for more than oneDz p Gb

generation only if the genetic basis of the traits under

selection, represented by G, does not change. However,

selection may change G as a consequence of the generation

of linkage disequilibrium (Bulmer 1980) or as allele fre-

quencies change since genetic variances (Barton and Tur-

elli 1987) and covariances (Bohren et al. 1966; Turelli 1988;

Shaw et al. 1995) are dependent on allele frequency. Al-

though changes in G under selection attributable to linkage

disequilibrium (the Bulmer effect) have been well char-

acterized (Bulmer 1980; Shaw et al. 1995), the problem of

how allele frequency change results in changes in G re-

mains unsolved.

How the genetic variance may change under selection

as a consequence of allele frequency change has eluded a

predictive theory because unknown genetic details such as

the number of loci, the number of alleles at each locus,

and their distribution of effects can have a dramatic in-

fluence on the response of the genetic variance (Barton

and Turelli 1987). The effect of selection on the genetic

basis of traits under selection has usually been described

under two alternative sets of genetic assumptions. First,

the genetic variance of a single trait may be the result of

many loci, each of which have numerous alleles with a

Gaussian distribution of effects (Lande 1980). As the trait

responds to directional selection, allele frequency change

will be minimal, and the change in genetic variance will

be small, perhaps on the order of less than 20% (Reeve

2000). Alternatively, the distribution of allelic effects may

be leptokurtic as a consequence of the variance of new

mutations being far greater than the variance of standing

allelic effects at a locus, resulting in most of the genetic

variance of the trait being a consequence of a few probably

rare alleles (Turelli 1984). Now as the trait responds to

directional selection, the increase in frequency of rare al-

leles may dramatically increase the genetic variance (Bar-

ton and Turelli 1987), perhaps by as much as sixfold for

some traits (Reeve 2000). There is surprisingly little data

on how genetic variances respond to directional selection

(Barton and Turelli 1987; Keightley and Hill 1989), but at

least one experiment has indicated that a change in selec-

This content downloaded from 23.235.32.0 on Wed, 7 Oct 2015 00:23:52 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


330 The American Naturalist

tion under laboratory and field conditions may increase

genetic variance in a manner consistent with the latter set

of assumptions (Blows and Higgie 2003).

When multiple traits are considered, predicting the ef-

fects of selection on G becomes very difficult (Turelli

1988). Under the first set of assumptions above, G may

evolve the same orientation as the fitness surface if a suite

of traits experience a constant pattern of multivariate sta-

bilizing selection (Lande 1980, 1984; Cheverud 1984).

However, with the addition of strong pleiotropic mutation,

the orientation of G could deviate considerably from that

of the fitness surface (Arnold 1992). Under a wide range

of genetic assumptions, genetic correlations will change

under linear selection, particularly as the distribution of

allelic effects becomes more skewed (Slatkin and Frank

1990) or as the strength of linear selection increases (Turelli

1988), although changes in G may be transitory if the

response to selection is based on single genes of major

effect (Agrawal et al. 2001). While experimental studies

have suggested that genetic drift (Phillips et al. 2001) or

selection (Shaw et al. 1995; Blows and Higgie 2003) can

change G relatively quickly, comparative studies suggest

that G may be similar between phenotypically similar pop-

ulations of the same species but progressively more dif-

ferent as divergence increases (Steppan et al. 2002).

Although some studies suggest that G may change as a

consequence of selection, there have been few attempts to

determine the association between how G changes under

selection and the form of selection. Brodie (1992) found

a qualitative association between the sign of correlational

selection for and the genetic correlation between two traits

of a garter snake. However, for cases when more than two

traits are involved, pairwise comparisons of the sign and

magnitude of correlational selection gradients and genetic

correlations are unlikely to reveal how selection changes

G. Ideally, one would like to orientate G with respect to

the directional selection gradient (b) and the fitness surface

defined by the matrix of quadratic and correlational se-

lection gradients (g). Here we develop approaches for the

direct comparison of the orientation of G with vectors of

linear and nonlinear selection. First, we use the projection

of b onto a subspace of G to determine the association

between linear selection and the orientation of G. Second,

we employ the method of Krzanowski (1979) to simul-

taneously determine the critical angles between the prin-

cipal components (PCs) of G and the fitness surface de-

fined by the principal components of g, resulting in a

quantified measure of the similarity of the orientation of

G and the fitness surface.

One area of evolutionary biology in which the effect of

selection on the genetic variance has been particularly con-

troversial is the consequence of sexual selection for levels

of genetic variance in male display traits. If females gain

genetic benefits from choosing among males that use dis-

play traits as indicators of genetic quality, then both natural

and sexual selection may operate in the same direction to

greatly reduce the genetic variance in those male display

traits. If genetic variance is low for male display traits, then

benefits accruing to females for making a choice will also

be low, raising the question of why females continue to

choose (the “lek paradox”; Kirkpatrick and Ryan 1991).

Attempts to resolve the lek paradox have centred on mech-

anisms that may maintain high levels of genetic variance

in male display traits (Pomiankowski and Møller 1995;

Rowe and Houle 1996). Although comparative analyses

across traits suggest that levels of genetic variance in male

sexually selected traits may be high, there have been few

attempts to determine whether genetic variance in multiple

male sexually selected traits actually exists in the direction

of sexual selection.

Drosophila serrata individuals use cuticular hydrocar-

bons (CHCs) for mate recognition (Blows and Allan 1998),

and CHCs have been shown to respond to both natural

selection on mate recognition (Higgie et al. 2000) and

sexual selection (Blows 2002). In particular, female D. ser-

rata have a strong preference for certain combinations of

male CHCs (Hine et al. 2002), and females may gain ge-

netic benefits from exercising choice (Blows 2002; Hine et

al. 2002). The D. serrata mate-recognition system therefore

provides an opportunity to determine how sexual selection

may change the genetic variance in male display traits.

Here, we conduct further analyses on two experiments first

reported in Hine et al. (2002) to determine the orientation

between G and the fitness surface for male CHCs. The

first experiment was a half-sib genetic experiment, which

we use here to estimate G for the set of male CHCs under

sexual selection. The second experiment was a mate choice

experiment, which was used to estimate the strength of

linear sexual selection by Hine et al. (2002). This exper-

iment enabled the estimation of the sexual selection fitness

surface of male CHCs for our current purpose by deter-

mining the quadratic and correlational selection gradients

of the g matrix.

Methods

Genetic Analysis of Cuticular Hydrocarbons

A half-sib experiment (Hine et al. 2002) was used to de-

termine the genetic basis of male CHCs. The CHCs in-

cluded in the analysis have been identified in order of their

retention times as Z,Z-5,9-C24:2, Z,Z-5,9-C25:2, Z-9-C25:1, Z-

9-C26:1, 2-Me-C26, Z,Z-5,9-C27:2, 2-Me-C28, Z,Z-5,9-C24:2,

and 2-Me-C30 (Howard et al. 2003). Briefly, 66 sires were

each mated to three virgin females, and two male progeny

from each of the resulting 198 families had their CHCs
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assayed on the gas chromatograph. The standard nested

ANOVA model for a half-sib breeding design was used to

estimate the additive genetic components of variance of

the logcontrasts of relative concentrations of male CHCs.

When analyzing the multivariate set of Drosophila serrata

CHCs, logcontrasts of the relative concentrations of in-

dividual CHCs have first been taken to break the unit-

sum constraint in this set of proportions (Blows and Allan

1998; Higgie et al. 2000; Hine et al. 2002). Logcontrasts

were calculated by dividing all other proportions by an

arbitrarily chosen proportion, after which the log was

taken of each of these ratios (Aitchison 1986) and were

standardized before analysis. The price one pays by using

this transformation is the loss of one variable (the divisor),

in this case Z,Z-5,9-C24:2, but the choice of divisor does

not affect the outcome of subsequent analyses (Aitchison

1986, p. 78). The resulting log ratio covariance matrix S

is well suited to analyses such as multiple regression used

in the selection analyses below, because it is nonsingular.

This is in contrast to the alternative method of transfor-

mation to log ratios, which maintains all variables in the

analysis but results in the centered log ratio covariance

matrix, which is singular (Aitchison 1986).

Measurement of Sexual Selection on

Cuticular Hydrocarbons

Sexual selection on male CHCs was measured in a mate

choice experiment described in Hine et al. (2002). Briefly,

123 virgin females were each allowed to choose between

two males, and after each female made a choice indicated

by successful intromission, the two males were immedi-

ately prepared for analysis on the gas chromatograph. To

investigate the form of sexual selection on male CHCs, we

estimated the linear selection gradient (b) and the matrix

of quadratic and correlational selection gradients (g) using

multiple regression (Lande and Arnold 1983). Standard-

ized logcontrasts were used in the regressions to allow

standardized selection gradients to be estimated. Linear

and nonlinear selection gradients were estimated in sep-

arate regressions to provide unbiased estimates of the par-

tial linear regression coefficients in b (Brodie et al. 1995).

The g matrix was subjected to two transformations.

First, a canonical analysis of g was conducted to generate

new axes that were aligned with the major axes of the

quadratic response surface (Phillips and Arnold 1989;

Blows and Brooks 2003). The coefficients that related the

new canonical axes back to the original variables are sum-

marized in the M matrix and may be interpreted in the

same fashion as in principal components analysis. The

eigenvalues of these new canonical axes (the eigenvectors

in M) then allowed the shape of the response surface to

be interpreted. Second, the q matrix was calculated by

taking the negative inverse of g (Arnold et al. 2001). This

transformation of the fitness surface reverses the order of

the eigenvalues and their associated eigenvectors. So, for

example, the first principal component of g (g
max

) is the

direction on the fitness surface with the greatest curvature,

whereas the first principal component of q (q
max

) may be

interpreted as the line of least curvature or selective re-

sistance (Arnold et al. 2001). If stabilizing selection results

in the orientation of G conforming to the fitness surface,

then it is likely that the first few eigenvectors of g will be

associated with the orientation of G. Conversely, the as-

sociation between g
max

and q
max

has been considered an

important empirical issue, as if the two coincide; evolution

along lines of least genetic resistance (Schluter 1996) and

least selective resistance are confounded explanations for

the divergence between populations (Arnold et al. 2001).

Orientation of the Genetic Variance-Covariance

Matrix and the Fitness Surface

Linear Selection. Although g
max

represents the direction of

greatest genetic variance, associating this eigenvector with

directions of divergence, or linear selection as in the pre-

sent case, has limited appeal (Blows and Higgie 2003),

because much of the genetic variance may be excluded

from such a comparison depending on the distribution of

eigenvalues of G. Alternatively, determining the association

between the orientation of G and the direction of linear

selection may be accomplished by determining what is the

closest vector (or projection) of genetic variance to the

vector of linear selection b. A principal components anal-

ysis of G will result in n new orthogonal axes (where

number of traits) that describe a decreasingn p the

amount of the genetic variance. Let a subspace of G be

defined by a subset of principal components of G that

form linearly independent columns of a matrix A. Pro-

jection of b onto the subspace of A is accomplished by

first calculating the projection matrix P (Strang 1998):

T �1 T
P p A(AA) A . (1)

The projection (p) that is closest to b is then calculated

as

p p Pb. (2)

It is important to note that not all the principal compo-

nents of G can be included in A. This is because when

there are n dimensions, a set of n linearly independent

vectors will span the space, and every vector in the space

will be a combination of these vectors (Strang 1998).

Therefore, inclusion of the n principal components in A

will produce the identity matrix for the projection matrix
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in equation (1), and b will simply be recovered from equa-

tion (2). The choice of how many of the principaln � 1

components to include in a particular analysis will depend

on the distribution of the eigenvalues of G. The more

principal components included, the greater the number of

directions in multivariate space that will be explored, and

it is likely that the angle between the projection and b will

become smaller. However, if G is nonsingular, the last few

principal components may explain diminishingly small

proportions of the total genetic variance. In many evo-

lutionary studies, it may be of interest to determine how

the direction of linear selection is orientated with respect

to the majority of genetic variance rather than finding

projections of genetic variance that are the consequence

of the inclusion of eigenvectors of G that explain very

small proportions (say, !1%) of the genetic variance (we

note that the multivariate breeders equation is the ideal

tool for associating the entire space of G and b to result

in a predicted response to selection). We include the first

four principal components (of a total of eight) in our

analysis, which together explain 99% of the genetic

variance.

Nonlinear Selection. The matrix G has been predicted

to evolve to become aligned with the fitness surface under

certain conditions (Lande 1980; Cheverud 1984; Arnold

1992), although to our knowledge an explicit test of this

has not been attempted. Arnold et al. (2001) suggested

that the comparison of g
max

and q
max

would be the first

step in investigating the orientation of G and q. While

this approach has some intuitive appeal, it is not a valid

approach to the comparison of subspaces defined by mul-

tiple principal components (Cohn 1999). The existence of

a large angle between a corresponding pair of principal

components (e.g., PC1 of G and q) does not indicate that

the two sets of principal components describe different k-

dimensional subspaces, where of principalk p number

components that describe the subspace (Krzanowski

1988). For instance, PC1 of G may be perfectly aligned

with PC2 of q while being orthogonal to PC1 of q. Before

such angular comparisons are meaningful, the two sets of

principal components first need to be rotated to find the

best-matching set of orthogonal axes.

Krzanowski (1979) described a method for the com-

parison of two k-dimensional subspaces that calculates the

angles between the best-matched pairs of orthogonal axes.

Let a subset of the principal components of G again be

represented by A as above and those of g be represented

in a matrix B. The eigenvectors in A and B are first nor-

malized by dividing the coefficients of each eigenvector by

the square root of the sums of squares of the coefficients

of the respective eigenvector, as is usual for any angular

comparison of vectors. The two sets of principal com-

ponents can then be compared by defining a matrix S as

T T
S p A BB A. (3)

The matrix S effectively finds the minimum (or critical)

angles between an arbitrary set of orthogonal vectors in

the subspace of A and a set of orthogonal vectors closest

to the same directions in the subspace of B. These arbitrary

vectors are termed the principal vectors in the subspaces

of A and B. Note that equation (3) differs from the ex-

pression in theorem 1 of Krzanowski (1979) because the

matrices A and B have the principal components as col-

umns to be consistent with the projection analysis above,

whereas Krzanowski (1979) starts with two matrices con-

taining the principal components as rows.

The eigenvalues of S may then be used to determine

the similarity between the two subspaces. The smallest

angle between any pair of orthogonal axes of A and B is

then defined as , where l1 is the largest eigenvalue�1 �cos l1

of S. The square roots of the inverse cosines of the re-

maining eigenvalues of S will give the remaining set of

angles in increasing order of size. Of particular use here

is that the sum of the eigenvalues of S equals the sum of

squares of the cosines of the angles between the two sets

of orthogonal axes. This sum will lie in the range 0 to k,

as all eigenvalues of S will have values between 0 and 1,

which equate to critical angles between 0� and 90�. The

sum of the eigenvalues of S therefore represents a con-

venient measure of the similarity of the two subspaces

because it is bounded within a range of values that have

a straightforward interpretation (Krzanowski 1979). If the

sum is close to 0, the two subspaces are dissimilar and are

approaching orthogonality, while a sum equal to k would

indicate that two original matrices (G and g in our case)

share the same orientation. Again, it is important to note

that k cannot equal n in this analysis, since including more

than half of the n principal components will constrain the

analysis to recover common dimensions (i.e., angles of 0�),

and if all n principal components are included, the two

subspaces will coincide exactly (W. J. Krzanowski, personal

communication). We again include the first four principal

components of G and g in this analysis, where 199% of

the variation contained in both matrices were explained

by these principal components.

To determine how the original traits contribute to the

similarity between subspaces once two subspaces have

been compared, the eigenvectors of S[ai] that correspond

with each eigenvalue li may be projected onto the subspace

of A by

b p Aa , (4)i i

where bi is a principal vector and may be interpreted in

the same fashion as any principal component with ref-

erence to the coefficients that relate it back to the original
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traits. This expression again differs from that in theorem

2 of Krzanowski (1979), since A has columns of principal

components, not rows. To determine the principal vector

compared in the other subspace of B, BB
Tbi is used. For

our comparisons of the subspaces of G and g, we report

the principal vectors in the subspace of g because this

allowed a determination of whether the strength of non-

linear selection was associated with the similarity between

G and g.

A number of alternative methods are available to assess

principal component subspaces (Flury 1988; Cohn 1999).

We have chosen the method of Krzanowski (1979) because

it alone among those methods reviewed by Cohn (1999)

offers a readily interpretable scale with which one can

assess the similarity between subspaces. While alternative

methods have a lower bound of 0 in the presence of co-

incident subspaces, these test statistics do not have an

upper bound, making it difficult to determine how dif-

ferent two subspaces might be if the null hypothesis is

rejected. Common principal component (CPC) models

(Flury 1988) in particular have become a popular and

effective tool in evolutionary studies as a method of matrix

comparison (Phillips and Arnold 1999). We have avoided

the use of CPC models in the current context for two

reasons. First, CPC was developed specifically for product-

moment-based covariance matrices, a data structure that

neither G nor g strictly satisfies. The simple geometric

approach of Krzanowski (1979) may be applied to the

comparison of subspaces without regard to this restriction.

Second, although Flury’s (1988, p. 134) approach elegantly

includes all eigenvectors of the two covariance matrices,

the common space hypothesis testable under this model

allows similarity between matrices to be driven by simi-

larity between principal components, with small eigen-

values in one matrix and large eigenvalues in the other.

In our case, we are specifically interested in eigenvectors

of G that account for substantial amounts of the genetic

variance.

The Krzanowski method does come, however, with two

related disadvantages. First, as discussed above, no more

than half of the principal components can be included in

the subspace comparison. Selection of a subset of principal

components is therefore required. Here, we have chosen

that subset of the principal components that explain the

greatest amount of the total variance in each matrix, an

approach that ensures the dominant multivariate relation-

ships in the data will be represented in the analysis (Cohn

1999). In our case, 99% of the total variance in each matrix

is represented in the subspace comparison, but such a

fortuitous distribution of eigenvalues may not always oc-

cur. When substantially less variation is explained by the

half of the eigenvectors with the largest eigenvalues, al-

ternative criteria for selecting principal components might

be considered. For instance, choosing between principal

components that have similar eigenvalues on the basis of

a strong contribution from an original trait of particular

interest might have merit in some cases. Alternatively, orig-

inal variables could be removed from the analysis to

change the distribution of eigenvalues, perhaps after using

a variable selection technique for multiple regression to

determine if some traits are not necessary to explain var-

iation in fitness.

Selection of principal components is also at the center

of the second disadvantage of Krzanowski’s method; the

generation of the bootstrapped distribution of the test sta-

tistic (the sum of the eigenvalues of S) is presented in the

appendix and computer code data are available as down-

loadable files in the online edition of the American Nat-

uralist and from the second author on request. If G, for

instance, has principal components that have eigenvalues

that are close in magnitude (i.e., they explain similar

amounts of the genetic variance), repeated sampling will

tend to produce divergent bootstrap replications, resulting

in highly variable critical angles between principal vectors

and thus values of the test statistic. Such a situation might

commonly arise with principal components that explain

small amounts of the total variance. Some alternative

methods inversely weight the contribution of each angle

to the test statistic by its variance, reducing the effect of

such eigenvector instability. However, weighting is com-

putationally demanding, requiring the inversion of a co-

variance matrix to produce these test statistics. The insta-

bility of the eigenvectors could be addressed again by the

judicious selection of the principal components that enter

the analysis (Cohn 1999).

Results

Genetic Analysis of Cuticular Hydrocarbons

The additive genetic variance-covariance matrix (G) of the

set of eight male CHCs is presented in table 1. Visual

inspection of the genetic correlations given above the di-

agonal in table 1 indicated the three 2-methylalkanes (2-

Me-C26, 2-Me-C28, 2-Me-C30) were almost perfectly posi-

tively genetically correlated with each other, suggesting that

the same genes contributed to the variation in the relative

concentration of these three CHCs. The group of 2-meth-

ylalkanes were weakly genetically correlated with Z,Z-5,9-

C25:2, which is the major component of hydrocarbons on

the cuticle of Drosophila serrata and typically accounts for

about 60% of all hydrocarbon. The other major feature

of G was the strong genetic correlations between Z,Z-5,9-

C29:2 and all but one other CHC (Z-9-C25:1). The degree

of structure in G may be quantified by conducting a prin-

cipal components analysis of the covariance matrix in table
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Table 1: Additive genetic variance-covariance matrix (G) for standardized logcontrasts of eight male cuticular hydrocarbons

h2 Z,Z-5,9-C25:2 Z-9-C25:1 Z-9-C26:1 2-Me-C26 Z,Z-5,9-C27:2 2-Me-C28 Z,Z-5,9-C29:2 2-Me-C30

Z,Z-5,9-C25:2 .242 .06050 .777 .781 .456 .767 .364 .933 .329

Z-9-C25:1 .514 .06846 .12849 .799 .357 .591 .511 .390 .669

Z-9-C26:1 .212 .04429 .06607 .05316 .479 .815 .484 1.133 .383

2-Me-C26 .596 .0432 .04942 .04265 .14902 .499 .999 1.327 1.001

Z,Z-5,9-C27:2 .568 .07115 .07991 .07090 .07266 .14224 .422 .995 .321

2-Me-C28 .262 .02291 .04689 .02854 .09862 .04073 .06544 1.232 1.013

Z,Z-5,9-C29:2 .204 .05204 .03170 .05923 .11609 .08510 .07143 .05138 .943

2-Me-C30 .145 .01542 .04569 .01683 .07362 .02311 .04934 .04071 .03629

Note: Genetic variances and covariances are in boldface below the diagonal, and genetic correlations are displayed above the diagonal. Heritabilities

(h2) are given in the first column.

1. The first principal component of G, g
max

(Schluter 1996;

Arnold et al. 2001), accounted for 51.9% of the genetic

variance in the set of eight CHCs. The coefficients of g
max

indicated that the strong positive relationships between

the 2-methylalkanes and Z,Z-5,9-C29:2 contrasted to the

other CHCs was primarily responsible for the dominance

of this major axis.

Measurement of Sexual Selection on

Cuticular Hydrocarbons

The standardized partial regression coefficients comprising

b are given in table 2. Hine et al. (2002) previously esti-

mated the strength of directional sexual selection on male

CHCs using discriminant function analysis (Endler 1986).

The discriminant function provided a univariate descrip-

tion of male CHCs, which best distinguished between cho-

sen and rejected males, and the standardized linear selec-

tion gradient was large ( ) and significant. Theb p 0.756

discriminant function and multiple regression approaches

are closely related, and when there are two groups involved

as in the present case, the discriminant function coeffi-

cients and partial regression coefficients that comprise b

will be proportional (Endler 1986). Here, our goal was

not to retest the partial regression coefficients of each in-

dividual CHC for significance but rather to associate the

orientation of the fitness surface with the genetic basis of

the CHCs. Employing the regression approach of Lande

and Arnold (1983) provided estimates of selection that could

be directly associated with the orientation of the genetic

variance-covariance matrix. The partial regression coeffi-

cients of b (table 2) suggested strong directional selection

on 2-Me-C28 and to a lesser extent on Z,Z-5,9-C29:2 and

linear selection in the opposite direction on 2-Me-C30.

None of the quadratic or cross-product coefficients in

the g matrix were significant (table 2), suggesting at first

glance that there was little nonlinear selection acting on

male CHCs, although some of the correlational selection

gradients are quite large. Quadratic surfaces with large

correlational selection gradients are difficult to interpret

from the g matrix alone (Phillips and Arnold 1989). A

canonical transformation of g provides a more straight-

forward way to interpret the form of selection operating

on male CHCs, because it rotates the axes until the cor-

relational selection gradients are eliminated to find the

major axes of the quadratic response surface (Box and

Draper 1987). Canonical axes and their associated eigen-

values are displayed in table 3. The eigenvector that ac-

counted for the most curvature on the fitness surface, m
8
,

contrasted 2-Me-C26 with Z,Z-5,9-C25:2 and 2-Me-C28. The

eigenvector with the second largest eigenvalue, m
1
, had a

strong contribution from 2-Me-C28, which was opposed

by Z,Z-5,9-C25:2. Considerable nonlinear selection was in-

dicated by the size of the eigenvalues for each of these

axes (0.394 and �0.595, respectively), which equate to

standardized quadratic selection gradients (Blows and

Brooks 2003). Significance of nonlinear selection along the

major axes was determined by placing all major axes back

into a quadratic regression (Blows and Brooks 2003). Para-

metric significance testing was appropriate here as the bi-

nomial distribution closely approximates the normal dis-

tribution when the number of observations is large, and

the two outcomes have equal probability under the null

hypothesis, both of which are satisfied here. Significant

quadratic selection was indicated on this set of traits by

the partial F-test considering the contribution of all axes

simultaneously ( , , ); how-F p 3.43 df p 8, 202 P ! .001

ever, nonlinear selection along no single axis reached sig-

nificance in this analysis.

A nonparametric visualization of the sexual selection

surface using a thin-plate spline (fig. 1A) that does not

constrain the visualization of the relationship between the

CHCs and fitness to be quadratic (Blows et al. 2003) sug-

gested that there was little curvature to the surface, which

is instead dominated by the strength of linear selection

(the slope of the plane). The area of high fitness repre-

sented primarily large values of 2-Me-C28 as it is only this

variable that had large coefficients in m
1

and m
8

with the
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Table 2: Vector of standardized directional selection gradients (b) and the matrix of standardized quadratic and correlational

selection gradients (g)

b Z,Z-5,9-C25:2 Z-9-C25:1 Z-9-C26:1 2-Me-C26 Z,Z-5,9-C27:2 2-Me-C28 Z,Z-5,9-C29:2 2-Me-C30

Z,Z-5,9-C25:2 �.061 �.016

Z-9-C25:1 �.034 .168 �.016

Z-9-C26:1 .082 �.029 .035 .021

2-Me-C26 �.115 .173 .081 .100 �.124

Z,Z-5,9-C27:2 �.082 .061 �.082 �.044 �.314 .04

2-Me-C28 .481 �.536 �.163 �.079 .377 .359 .027

Z,Z-5,9-C29:2 .189 �.043 .115 �.009 .228 �.05 �.164 �.001

2-Me-C30 �.287 .299 .054 .005 �.306 �.112 .085 .011 �.062

Note: Linear and nonlinear selection gradients were estimated in separate regressions.

correct combination of signs (table 3), consistent with the

linear selection analysis (table 2). It should be noted, how-

ever, that the area of extreme high fitness on the predicted

surface is not supported by any individuals with that phe-

notype, probably as a consequence of a strong genetic

constraint that exists between these two variables.

Orientation of the Genetic Variance-Covariance

Matrix and the Fitness Surface

Linear Selection. To investigate the nature of the association

between directional selection and G, we first calculated the

angles and their 95% bootstrapped confidence intervals

(CIs) between the first four principal components of G,

denoted g
max

, g
2
, g

3
, and g

4
in decreasing order of their

eigenvalues, and b. Resampling for the bootstrapped con-

fidence intervals was conducted by resampling with re-

placement sire families from the half-sib experiment for

genetic eigenvectors and mating pairs for the linear selec-

tion gradients. The angles (lower 95% CI, upper 95% CI)

between g
max

, g
2
, g

3
, g

4
, and b were 84.3� (74.2�, 94.2�),

79.3� (68.3�, 111.1�), 86.6� (70.8�, 107.6�), and 81.5� (70.5�,

109.7�), respectively. Although these angles suggest a lack

of association between the direction of selection and the

presence of genetic variance, projection of b onto the sub-

space of G defined by these four principal components is

required to identify the direction of genetic variance most

similar to b. The angle between the projection (p) and b

of 74.7� (50.5�, 82.4�) indicated that the direction favored

by sexual selection was considerably divergent from the

directions in which the vast majority of genetic variance

currently lies.

A visual impression of the lack of association between

the direction of sexual selection and the genetic variance

in male CHCs is given in figure 1B, where the fitness

surface represented by the two major canonical axes m
1

and m
8

is shown as a contour plot and best linear unbiased

predictor estimates of the breeding values of the 66 sires

have been placed on the same surface. The breeding values

for m
1

and m
8

are strongly negatively correlated, and the

axis of their negative correlation is clearly unaligned in

this two-dimensional space, with the major slope of the

fitness surface representing the direction and strength of

linear selection.

Nonlinear Selection. The comparison of the subspaces

of G and g defined by the first four principal components

resulted in the sum of the eigenvalues of S of 1.41, which

was more extreme (i.e., smaller) than all 1,000 of the boot-

strap replications (appendix and computer code data), in-

dicating that the null hypothesis of coincident subspaces

could be rejected at . After taking the negativeP ! .001

inverse of g to generate the q matrix, principal compo-

nents analysis of q enabled the determination of the line

of least selective resistance of the fitness surface, q
max

. The

line of least selective resistance explained 65.6% of the

variance in q. The first principal components from G and

q, g
max

and q
max

, were compared (Arnold et al. 2001),

which indicated that the two dominant eigenvectors were

at an angle of 54.2�. The subspaces remained quite dif-

ferent when the four principal components of G and q

were compared, resulting in a sum of the eigenvalues of

S of 2.59 ( ). Note how the comparisons of theP p .013

first four principal components of G with the first four

principal components of g and q combine to give a sum

of the eigenvalues of S equal to 4, as this is equivalent to

including all the eigenvectors of g in a single analysis.

To determine which parts of the two subspaces were

more similar and to relate these similarities back to the

original CHC traits, the eigenvectors of S constrained in

the g subspace are presented in table 4. The eigenvector

that was most similar between G and g had the largest

contribution from the traits that experienced the weakest

linear selection, Z-9-C25:1, and a secondary contribution

from the trait that experienced the strongest nonlinear

(convex) selection, 2-Me-C26 (table 2). In contrast, the

eigenvector that was most different between G and g had

the strongest contribution from 2-Me-C28, which experi-

enced the strongest linear selection (table 2).
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Table 3: The M matrix of eigenvectors from the canonical analysis of g

mi li Z,Z-5,9-C25:2 Z-9-C25:1 Z-9-C26:1 2-Me-C26 Z,Z-5,9-C27:2 2-Me-C28 Z,Z-5,9-C29:2 2-Me-C30

m
1

.394 .518 .309 .081 �.031 �.358 �.662 .169 .183

m
2

.200 �.239 .135 .214 .600 �.481 .142 .391 �.337

m
3

.028 .217 .320 �.648 .183 .359 .168 .489 .016

m
4

.008 .262 .345 .686 .160 .515 .202 .054 .086

m
5

�.016 .165 .113 �.100 .232 �.368 .473 �.282 .676

m
6

�.058 �.429 �.026 .188 �.391 �.044 .010 .615 .496

m
7

�.094 .405 �.806 .084 .262 .086 .002 .293 .127

m
8

�.595 .427 �.021 �.077 �.551 �.318 �.498 �.178 .354

Note: The eigenvalue (li) of each eigenvector (mi) is given in the first column.

Discussion

Genetic Analysis of Cuticular Hydrocarbons

The cuticular hydrocarbons of Drosophila serrata have

been the subject of a number of genetic experiments

(Blows and Allan 1998; Hine et al. 2002; Blows and Higgie

2003), but here we have concentrated on the genetic re-

lationships between individual CHCs for the first time.

Heritabilities of the CHCs varied from low (2-Me-C30) to

moderately high (Z,Z-5,9-C27:2) values, consistent with the

demonstration that heritable variation existed in D. serrata

CHCs through their direct response to selection (Higgie

et al. 2000). Of greater importance was that the pattern

of genetic covariances seemed to reflect developmental re-

lationships between the eight CHCs. In particular, the

block of the 3-methylalkanes that were almost perfectly

positively correlated with each other may be a consequence

of a shared biosynthetic pathway. The 2-methylalkanes

with an even number of backbone carbons are formed by

insects using the amino acid valine as the sole source of

the methyl groups (Nelson 1993).

Measurement of Sexual Selection on

Cuticular Hydrocarbons

Strong linear selection dominated the sexual selection fit-

ness surface of male CHCs, with only limited evidence for

the presence of nonlinear selection. Nonparametric visu-

alization of the two major canonical axes of the quadratic

response surface indicated that the major feature of the

fitness surface was a sloping plane. This orientation of

fitness surface suggests that females have a strong pref-

erence for an extreme male CHC blend and that male

mating success increases in a roughly linear fashion with

increasing levels of those CHCs. The CHC shown to be

under strongest linear selection was 2-Me-C28, which also

was the CHC that contributed most strongly to the fitness

peak revealed by the nonparametric visualization of the

quadratic response surface. Therefore, increasing relative

concentrations of 2-Me-C28 are implicated by both analyses

as being under strong directional sexual selection.

The shape of the fitness surface for male CHCs suggested

that female preference for male CHCs may be open-ended.

Open-ended female preferences occur when a female’s re-

sponse increases with an increase in the male trait (Kirk-

patrick 1987), resulting in preferences for extreme male

traits (Ritchie 1996). Open-ended preferences are impor-

tant in sexual selection theory because they may be more

likely to result in rapid coevolution between male traits

and female preferences since stabilizing selection on the

male trait is weak (Hall et al. 2001). Male and female CHCs

have been observed to respond rapidly to the manipulation

of sexual selection in hybrid populations (Blows 2002),

suggesting that the preferences displayed here may result

in rapid evolutionary change in this system.

Orientation of the Genetic Variance-Covariance

Matrix and the Fitness Surface

We found evidence against the coincidence between the

eigenstructure of G and g that has been predicted by quan-

titative genetic theory (Lande 1980; Cheverud 1984). This

is perhaps not surprising given that strong directional se-

lection rather than stabilizing selection is the predominant

form of sexual selection that operates on male CHCs in

this population. Suggestively, weak linear selection and

strong convex selection seemed to be associated with the

principal vector that was most similar between the two

subspaces. In addition, there was some indication that the

principal vector most different between G and g was as-

sociated with the trait under strongest linear selection.

However, a robust test of the effect of nonlinear selection

on the orientation of G will require a system in which the

fitness surface for the set of traits under consideration

displays much more curvature. In particular, a system in

which a stationary point exists within the sampled space

(i.e., the eigenvalues of g would be all negative in the case

of a stationary peak) would be the ideal system to test

Lande’s (1980) hypothesis. Therefore, the type of selection
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Figure 1: Nonparametric visualization of the fitness surface defined by the canonical axes m
1

and m
8
. The surface has been fitted using a thin-plate

spline, the multivariate generalization of the cubic spline, using the SAS TPSPLINE procedure. The value of the smoothing parameter chosen

minimized the generalized cross-validation score. A, Three-dimensional surface displaying the predicted values of all chosen (filled circles) and

rejected (open circles) males. B, Contour plot of the same surface, with the enlarged section of the contour plot displaying the breeding values for

each sire estimated from the best linear unbiased predictor values from the linear model for a half-sib breeding design. Note how the major axis

of genetic variation (imagine the major axis through an ellipse around the breeding values) is roughly orthogonal to the slope of the fitness surface

running from the bottom corner (low fitness) to the top corner (high fitness). The Pearson’s product-moment correlation between the breeding

values is �0.823 ( ), which is reduced to �0.770 ( ) with the removal of the sire with extreme negative values of m
1

and positiveP ! .001 P ! .001

values of m
8
.
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Table 4: Eigenvectors of S constrained to be in the

subspace of g (the V
1

matrix of principal vectors)

that were compared with G

Cuticular

hydrocarbon b
1

b
2

b
3

b
4

Z,Z-5,9-C25:2 �.130 .112 .231 �.012

Z-9-C25:1 �.755 �.227 �.053 .008

Z-9-C26:1 .100 �.088 .052 �.004

2-Me-C26 .467 �.341 �.024 .030

Z,Z-5,9-C27:2 .226 .273 �.104 .015

2-Me-C28 .173 �.020 �.104 �.059

Z,Z-5,9-C29:2 .288 �.162 .130 �.009

2-Me-C30 �.001 .194 .028 .033

Note: The bi’s are listed in this table in increasing size of

the angle between the bi and the corresponding vector in the

subspace of G.

operating on the traits of interest should be used as a guide

to determine which analysis is more appropriate for a

particular system under consideration.

Directional selection, however, may have had a sub-

stantial influence on the eigenstructure of G. The vector

of directional selection gradients was unaligned with 99%

of the genetic variance in male CHCs, suggesting that the

strong, open-ended female preferences may have reduced

genetic variance in the direction of sexual selection. Such

a response of genetic variances and covariances to direc-

tional selection would require large changes in allele fre-

quencies, which would need to increase well beyond their

symmetrical frequencies to result in large reductions in

the level of genetic variance and/or covariance. Although

we have observed large increases in genetic variances as a

consequence of natural selection on mate recognition in

populations of D. serrata (Blows and Higgie 2003), we

have yet to directly observe the consequence of sexual

selection on genetic variances. Nevertheless, the genetic

variance in CHCs may be a consequence of a genetic basis

(perhaps a few genes of major effect, for example) that

may result in large changes in allele frequency under

selection.

The maintenance of genetic variance in male sexually

selected traits, particularly when those traits may be in-

dicators of fitness as in this case (Hine et al. 2002), has

been problematic for sexual selection theory (Turner 1995;

Kotiaho et al. 2001). Natural and sexual selection operating

in the same direction would be expected to decrease ge-

netic variance, at least until a cost to the expression of the

male trait causes the process to reach an equilibrium

(Fisher 1930; Kirkpatrick 1987). At least two hypotheses

have been put forward to explain the maintenance of ge-

netic variance in male sexually selected traits that predict

that genetic variance in these traits will actually increase

as a consequence of selection on the variance (Pomian-

kowski and Møller 1995) or as sexually selected traits

evolve to become condition dependent (Rowe and Houle

1996). Indeed, sexually selected traits have been reported

to display larger coefficients of genetic variation than life-

history traits (Pomiankowski and Møller 1995; Kotiaho et

al. 2001).

Our results indicate that simply relying on comparisons

of heritability or coefficients of variation across traits may

be inadequate to assess the effect of selection on levels of

genetic variation in male display traits. Heritabilities in

male CHCs were moderate in most cases (table 1), the

median coefficient of genetic variation for these traits was

13.5% (which is higher than the median level of 8% for

sexually selected traits in other species; Pomiankowski and

Møller 1995), and CHCs respond rapidly to natural se-

lection (Higgie et al. 2000), all of which suggest ample

genetic variation in this set of sexually selected traits. The

point is that virtually none of this genetic variation lies in

the direction of sexual selection. Consequently, the pre-

dicted response of male CHCs to sexual selection using

the equation and the estimates of G and b fromDz p Gb

tables 1 and 2 indicates that all males CHCs would change

by only about 1% of a phenotypic standard deviation per

generation or less. A similarly small predicted response to

sexual selection was reported by Brooks and Endler (2001)

for a set of eight color and body size traits in male guppies

that also had high coefficients of additive genetic variation

(a median of 28%, assuming an autosomal mode of in-

heritance, with a lower limit of 7% if all traits are com-

pletely Y-linked). Projection of b (Brooks and Endler 2001,

their table 6) onto the subspace defined by the first four

principal components of G (Brooks and Endler 2001, their

table 2), which explains 97% of the genetic variance in

male guppy ornaments, results in an angle between b and

the closest direction of genetic variance of 50.7�. Again,

there appears to be little genetic variation in male display

traits left in the direction of sexual selection, in spite of

the male traits displaying high levels of genetic variance.

If G does evolve in response to the form and strength

of selection operating on a set of traits, using G from extant

populations in evolutionary analyses faces at least two

problems. First, using the eigenstructure of G as a tool for

determining whether populations or species have evolved

in a particular direction as a consequence of genetic con-

straint becomes even more difficult when one considers

how G might change under selection (Arnold et al. 2001).

If G and the fitness become aligned as a consequence of

a pattern of multivariate stabilizing selection, then it will

be difficult to distinguish between the effects of G (genetic

constraint) and the fitness surface (the position of an op-

timum) on the direction that a set of populations has

evolved in. Second, many retrospective selection analyses

are interested in predicting past directional selection gra-
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dients based on estimates of G from extant populations.

If the unaligned nature of G eigenstructure and b in our

population was a consequence of past selection as we sug-

gest, a retrospective selection analysis would fail spectac-

ularly using parameters from this population, since G ei-

genstructure is likely to be a consequence of selection

rather than a fixed constraint, as these analyses assume.

The genetic basis of adaptation remains an outstanding

question in evolutionary genetics (Orr and Coyne 1992).

If many genes with equal effects underlie a set of traits,

allele frequency change as a consequence of selection is

likely to be slow because selection on each locus will be

weak compared with selection on the mean (Barton and

Turelli 1989). Alternatively, if numbers of alleles per locus

and loci per trait are moderate and the distribution of

allelic effects is skewed (Turelli 1984) or if genes with major

effects are common (Orr 1998; Agrawal et al. 2001), allele

frequencies are likely to change substantially in response

to natural and sexual selection. It is then not a question

of whether G will change under selection but how. While

direct experimental tests of changes in genetic variances

and covariances under selection can determine changes

over the short term and are still needed (Barton and Turelli

1987; Keightley and Hill 1989), associating the eigenstruc-

ture of G with that of the fitness surface may provide a

way of determining what long-term changes in G may be

generated by the processes of natural and sexual selection.
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