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ABSTRACT

Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too
sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches
on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for
visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels,
and propose an orientation selectivity based pattern for local structure description. Experimental results on
texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.

Keywords: Texture Classification, Structure Descriptor, Orientation Selectivity Mechanism, Excitatory/Inhibitory
Interaction

1. INTRODUCTION

The human visual system (HVS) is highly adaptive to extract structure from an image for scene perception
and understanding.1,2 Since structure represents the main visual information of an image, it is widely used in
perception-oriented signal processing tasks, e.g., quality assessment,3 image retrieval,4 texture classification,5

and so on.

Though local structure is used in a mass of image processing works, how to effectively extract structural
information from an image is still an open problem. In the past decades, some local properties, such as the
first order statistic values2 (i.e., mean and variance), the luminance difference6 (i.e., contrast and edge), and
the quantity of information7 (i.e. entropy), are chosen for image texture analysis. These descriptors are easy
to implement and can effectively represent the intensity change of texture, but they cannot describe the spatial
distribution of texture.8 Considering the correlations among neighbor pixels, Ojala et al.9 introduced a set of
texture description models. According to the co-occurring pixel values in a local neighborhood, the spatial joint
distribution is extracted for texture description. Moreover, the signed gray level difference is adopted to replace
the absolute difference in the classical local binary pattern (LBP) texture descriptor,5 with which the feature
dimension is greatly decreased. Since the LBP is based on the signed gray level, it is too sensitive to small
disturbance. However, the HVS is quite robust to disturbance when perceiving image content. Therefore, a more
robust local structure descriptor, which can effectively describe the intensity change and spatial distribution, is
demanded.

In this paper, we turn to investigate the property of HVS on structure perception and try to imitate the
orientation selectivity mechanism for texture extraction. It is well known that the HVS is highly sensitive
to the orientation information for image perception and understanding.10 Moreover, neurophysiology research
on visual cognition indicates that there are a kind of orientation selectivity neurons in the primary visual
cortex.11 According to the interactions among nearby neurons, they will tune specific orientations, which is
called as orientation selectivity mechanism.12,13 Furthermore, there exists two opponent interactions between
these related neurons.14 Generally speaking, neurons with similar preferred orientations tune to excitatory
interactions, and neurons with opposite orientations tune to inhibitory interactions.15 Therefore, the orientation
selectivity mechanism in the primary visual cortex reveals the inner processing on image structure extraction.
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Stimuli Interacti on

By imitating the orientation selectivity mechanism, a novel local structure descriptor is introduced in this
paper. Inspired by the orientation tuning in the primary visual cortex, the preferred orientation of each neuron is
firstly estimated as the gradient direction of each pixel. Next, the spatial correlations among pixels are computed
as the similarities of their preferred orientations. Meanwhile, the signed orientation similarity is employed to
decide the excitatory/inhibitory interaction between two pixels. And then, the orientation selectivity based
pattern of a pixel is computed as the arrangement of the singed values between a central pixel and its surrounding
pixels. With the orientation selectivity based pattern, the spatial distribution of image texture can be effectively
represented. Finally, by considering both of the intensity change and the orientation selectivity based pattern,
a novel structure descriptor is created. The proposed structure descriptor is applied in texture classification.
Experimental results on two large datasets demonstrate that the proposed model is rotation invariant, and it is
much more robust to disturbance than the classic LBP5,16 for texture classification.

The rest of this paper is organized as follows. In Section 2, the orientation selectivity mechanism is explored
and an orientation selectivity based structure descriptor is introduced. The performance of the proposed structure
descriptor on texture classification is demonstrated in section 3. Finally, we draw the conclusions in Section 4.

2. ORIENTATION SELECTIVITY BASED TEXTURE EXTRACTION

In this section, the orientation selectivity based pattern is firstly introduced to represent the spatial distribution
of image texture. Next, by considering the orientation selectivity based pattern and the intensity change, a novel
structure descriptor is created for texture extraction.

2.1 Orientation Selectivity based Pattern

Neuroscience researches indicate that the primary visual cortex presents substantial orientation selectivity when
the human eye perceiving images.12 During the past decades, the orientation selectivity mechanism has been
throughly investigated.17,18 Moreover, orientation selectivity has been one of the standard models to interpret
how the HVS performs a complex computation for visual perception.19,20 The origin of orientation selectivity is
directly related to the spatial arrangement of intracortical responses in a local receptive field of the primary visual
cortex.12,21 Furthermore, the intracortical responses among neurons present two spatial opponent interaction,
namely, excitatory and inhibitory interactions.22 As shown in Fig. 1, cortical neurons with similar preferred
orientations are more likely to present excitatory interactions (‘+’), and these with different preferred orientations
are more likely to present inhibitory interactions (‘-’).19 The spatial arrangement of the excitatory and inhibitory
neurons in a subfield displays the pattern of orientation selectivity.21

Figure 1: The interactions among cortical cells, where ‘+’ means excitatory interaction and ‘-’ means inhibitory
interaction.
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The orientation selectivity mechanism reveals the inner processing of structure extraction.19 Thus, we try
to design a novel structure descriptor by imitating the orientation selectively mechanism. The arrangement of
the excitatory and inhibitory interactions in a local subfield can efficiently express the spatial correlation of
structure.12 Inspired by this, the spatial distribution of image structure can be computed as the organization
of the preferred orientations among nearby pixels. For a given image FN×N , the spatial distribution charac-
teristic of structure for a pixel x ∈ FN×N can be expressed as the correlation between x and its neighborhood
X={x1, x2, · · · , xn},

P(x|X ) = A(I(x|X )) = A(I(x|x1, x2, · · · , xn)), (1)

where P(x|X ) represents the spatial distribution of structure for pixel x, A(·) represents the arrangement of
responses, and I(x|X ) represents the interaction between x and X .

Since the cortical neurons in a local receptive field are connected with each other, pixels xi∈X are not indepen-
dent but correlated. In order to simplify the interactions between x and its neighborhood X={x1, x2, · · · , xn},
Hubel and Wiesel proposed to only consider the connections between two neurons in the feedforward model.12,19

As a result, (1) can be reorganized as

P(x|X ) ≈ A(I(x|x1), I(x|x2), · · · , I(x|xn)), (2)

where I(x|xi) is the interaction between x and xi.

As mentioned above, there exists two opponent interactions, namely, excitatory (‘+’) and inhibitory (‘-’)
interactions. The interaction type between two cortical neurons is determined by the similarity of their preferred
orientation. Researches on synaptic plasticity introduced a correlation-based rule for spatial interaction.18,21

According to this rule, neurons with similar preferred orientations have a higher probability of connection and
are more likely to respond as excitatory interactions. For example, as shown in Fig. 1, the third stimulus and
the last stimulus have quite similar orientation, and they respond as excitatory interaction. While neurons with
dissimilar preferred orientations are more likely to respond as inhibitory interactions. For example, as shown in
Fig. 1, the first stimulus (also the second and the fourth stimuli) has quite different orientation with the last
stimulus, and the interaction between them is inhibitory. Inspired by the feedforward model, we try to estimate
the interaction type I(x|xi) based on the preferred orientations between x and xi.

Firstly, the preferred orientation θ of each pixel x∈F is computed as its gradient orientation,

θ(x) = arctan
Gv(x)

Gh(x)
, (3)

where Gh and Gv are the gradient magnitudes alone the horizontal and vertical directions, respectively. In this
paper, Gh and Gv are acquired with the Prewitt filters,

Gh = F ∗ fh, Gv = F ∗ fv, (4)

fh =
1

3


1 0 −1

1 0 −1

1 0 −1

 , fv =
1

3


1 1 1

0 0 0

−1 −1 −1

 , (5)

where ∗ denotes the convolution operation.

Then, the interaction type I(x|xi) between two pixels x and xi is estimated with the similarity of their
preferred orientations,

I(x|xi) =

{
1 if |θ(x)− θ(xi)| < T
0 else

, (6)

where ‘1’ represents excitatory interaction, ‘0’ represents inhibitory interaction, and T is the decision threshold.
Researches on visual masking of human eye23 demonstrates that nearby signals with same orientations cause
strong masking effect, and the masking effect becomes weak when the differences among their orientations are
larger than a certain threshold (e.g., 12◦). Thus, we set T =6◦ in this paper.
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Figure 2: A example of orientation selectivity based pattern. Pixels which have similar preferred orientations to
the central pixel respond as excitation (‘1’), and these dissimilar ones respond as inhibition (‘0’).

Finally, by considering all of the interaction types between a central pixel and its surrounding pixels, an
orientation selectivity based pattern is acquired, which is composed by a set of binary values and can effectively
represent the spatial distribution of structure. In order to visualize how the orientation selectivity based pattern
varies with the spatial orientation correlations, an example of the spatial arrangement of cortical stimuli and
its corresponding interaction pattern are given in Fig. 2. By comparing the orientation of the central pixel and
its 8-neighbor pixels (i.e., the size of the neighborhood X is set as n=8), As shown in Fig. 2, these neighbor
pixels possess similar preferred orientations with the central one present excitatory interaction, and vice versa.
As a result, the spatial correlation between the central pixel and its 8-neighbor surrounding is simplified into a
8-binary-value pattern.

There are too many types of orientation selectivity based pattern. For example, a 8-neighbor local region
will present 28 different types of pattern. In order to reduce the pattern number, we explore the relationships
among these patterns for further combination. During experiment we have found that these patterns with same
excitatory subfield (where the excitatory interaction respond) are more correlated and represent much similar
response. For example, as the second column shown in Fig. 3, the excitatory subfields (i.e., the sector domain
that value ‘1’ located) of the two patterns [00000001] and [00000010] are the same (within a 45◦ sector domain).
As the last column shown in Fig. 3, the excitatory values of the two patterns [11111110] and 11111010 locate in a

Figure 3: The combination of orientation selectivity based pattern based on their excitation subfield.
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315◦ sector domain, and the two patterns present extremely similar spatial correlation. Therefore, we suggest to
combine patterns according to their excitatory subfield. For example, for a 8-neighbor local region, all of the 256
patterns can be combined into 8 different kinds of sector domains, i.e., {0◦, 45◦, · · · , 315◦}, as shown in Fig. 3.
As a result, the number of patterns is greatly decreased.

2.2 Texture Extraction

A successful structure descriptor should effectively represent the spatial correlation and intensity change of a
local region. The spatial distribution of texture is analyzed with the orientation selectivity based pattern in the
above subsection. Here, we compute the intensity change of a local region as its gradient magnitude,

M(x) =
√
(Gh(x))2 + (Gv(x))2, (7)

where Gh(x) and Gv(x) are the gradient magnitudes of pixel x alone the horizontal and vertical directions,
respectively. The values of Gh(x) and Gv(x) can be acquired with (4).

By combining the orientation selectivity based pattern P and the gradient magnitude M, a novel structure
descriptor {P/M} is created for texture extraction. Firstly, {P/M} for each pixel is computed. Generally
speaking, the texture characteristic of an image is represented by its textural histogram. Therefore, the {P/M}
values are mapped for constructing textural histogram.

There are two types of mapping methods: 1) directly calculate the number of orientation selectivity based
patterns, which we called as Orientation Selectivity based Textural (OST) histogram; 2) the contribution of
gradient magnitude is considered, and the weighted distribution of orientation selectivity based patterns is
calculated, which we called as W eighted Orientation Selectivity based Textural (WOST) histogram. For the
first type of mapping, the textural histogram is mapped as,

H(k) =
N∑

x=1

δ(P(x),Pk), (8)

δ(P(x),Pk) =

{
1 if P(x) = Pk

0 else
, (9)

where N is the size of the image I, and Pk is the k−th orientation selectivity based pattern.

For the second type of mapping,the contribution of the gradient magnitude is considered, and the weighted
textural histogram is mapped as,

Hw(k) =

N∑
x=1

w(x) δ(P(x),Pk), (10)

where w(x) is the weight due to the gradient magnitude of pixel x, and we set w(x)=M(x) for simplicity in this
paper.

3. EXPERIMENTAL RESULTS

The proposed structure descriptor is quite consistent with the subjective perception. In order to demonstrate
its effectiveness, we firstly illustrate its rotation invariance for texture description. Next, the robustness of the
proposed structure descriptor on noise is demonstrated for texture classification.

The proposed structure descriptor is rotation invariance. Fig. 4 (a)-(c) show three textural images, which
possess a same texton and different rotations (the rotation angles for Fig. 4 (a)-(c) are 0◦, 45◦, and 90◦, respec-
tively). Their corresponding OST based histograms are mapped with (8), as shown in Fig. 4 (d). As can be
seen, the OST based histograms of Fig. 4 (a) and (c) (as the blue and red bars shown in Fig.fig:exam-ri (d)) are
almost same. There are a little bit of difference between the OST based histograms of Fig. 4 (a) and (b). That
is because with the rotation of the 45◦, there exist a bit of difference in visual contents for the two image. In
summary, the OST histograms for the three images are quite similar, which confirms that the proposed structure
descriptor is rotation invariance.
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The proposed structure descriptor is adopted for texture classification. Firstly, the image texture is extracted
and mapped into histogram. Next, the chi-square distance is employed to calculated the difference between two
textural histograms H1 and H2. The chi-square distance function is regarded as the weighted L2-norm between
two histograms,

D(H1,H2) =
n∑

k=1

(H1(k)−H2(k))
2

H1(k) +H2(k)
. (11)

In this paper, a publicly textural database, namely Outex,24 is chosen for texture classification. Outex
database includes 24 classes of textures, and each class of texture possess three illuminations (‘horizon’, ‘inca’,
and ‘t184’) and nine angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦). The experiments are carried on two
test suites of Outex database, namely, Outex TC 00010 (TC10 for short) and Outex TC 00012 (TC12 for short),
which include the same 24 classes of textures. As in16 described, the training/testing conditions for TC10 and
TC12 are listed as follows,

• On TC10 suite: images under ‘inca’ illumination and ‘0◦’ angle (totally 480 images) are chosen for classifier
training, and the other images for testing (480×8 images).

• On TC12 suite: the classifier is trained under the same training condition as that for TC10, and is tested
on images under two (i.e., ‘t184’ and ‘horizon’) illuminations and nine angles (480×2×9 images).

The performances of the proposed OST and WOST are evaluated according to the classification rates by
using the chi-square distance and the nearest neighborhood classifier. Moreover, the classic and latest texture
classification methods, i.e., local binary pattern (LBP)5 and its improved method LBP with variance (LBPV)16

are adopted for comparison. For fair comparison, the size of the local region for all methods is set as 8-
neighborhood.

The classification results on TC10 and TC12 are listed in Table 1. By comparing the proposed OST with
the classic LBP, we can see that OST outperforms LBP on both TC10 and TC12, which achieves 20% − 30%
increase on classification rates. Moreover, the proposed WOST performs a little worse than LBPV on TC10, but
a little better than LBPV on TC12. In summary, the proposed WOST is comparable with the latest LBPV for
texture classification.

The proposed OST/WOST is quite robust to disturb, while LBP/LBPV is too sensitive to small disturb.
In order to give a clear view about the robustness, the effect of white noise on LBP/OST based histogram is
analyzed. We only choose LBP/OST based textural histogram, rather than LBPV/WOST based histogram for
this experiment. That is because the LBP/OST based textural histogram is directly calculated with the number
of patterns, which can better represent the change on textural pattern.

Fig. 5 shows a texture image contaminated by two levels of noise, namely, weak white noise (with PSNR=30)
and strong white noise (with PSNR=23) respectively. As shown in Fig. 5 (b), though it is contaminated by white
noise, it is too weak to be sensed by the HVS. In other words, the HVS can hardly sense the noise in Fig. 5 (b),
and the noise in it has limited damage on its textural information. The LBP is quite sensitive to any disturbance.
As the blue and green bars shown in Fig. 6 (a), the LBP histograms of the original image (i.e., Fig. 5 (a)) and the
weak noise contaminated image (i.e., Fig. 5 (b)) are quite different, which means the small disturbance changes
the LBP histogram greatly. On the contrary, the weak noise has limited affection on the proposed OST based
structure descriptor. As the blue and green bars shown in Fig. 6 (b), the two OST histograms for the original
image and the weak noise contaminated image are quite similar. When the white noise becomes strong, the

Table 1: Texture classification rates (%) by different descriptors.

DB.

Algo.
LBP5 OST LBPV16 WOST

TC10 55.16 84.53 91.41 88.83

TC12 49.00 71.81 76.41 78.80
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Figure 6: The robustness of the LBP/OST based structural histograms on noise.
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Table 2: Classification rate (%) on contaminated images by different structure descriptors.

DB.

Algo.
PSNR LBP5 OST LBPV16 WOST

TC10

30 44.19 80.78 86.88 88.73

27 37.68 73.20 79.84 87.27

23 24.74 61.59 62.27 77.16

TC12

30 44.61 69.49 73.84 78.73

27 38.59 66.27 67.64 77.64

23 26.81 52.73 53.84 68.94

(a) TC10 (b) TC12

Figure 7: Decrease of classification rates under different levels of white noise.

visual content of Fig. 5 (c) is obviously distorted. Under the affection of strong white noise, both of the LBP
and OST based histograms are obviously changed, as the red bars shown in Fig. 6 (a) and (b). According to the
analysis above, we can conclude that the proposed OST based structure descriptor is robust to disturbance, and
it performs quite consistently with the HVS.

In order to present a comprehensive analysis on the robustness of the proposed method against noise, the
texture classification experiments on white noise contaminated TC10 and TC12 datasets are demonstrated.
Firstly, different levels of white noise are injected into the two datasets. In this experiment, we choose three
different levels of white noise: 1) PSNR=30dB, under which the image is slightly distorted; 2) PSNR=27dB,
under which the image is obviously distorted; and 3) PSNR=23dB, under which the image is severely distorted.

The texture classification results on TC10 and TC12 are listed in Table 2, and the decreases of the classification
rates against the original results are shown in Fig. 7. As the black dash lines shown in Fig. 7 (a) and (b), LBP
is severely affected by noise, and the classification rates are obviously decreased with the increase of white noise.
By comparing the green dash lines with black dash lines, we can see that OST is more robust to noise than LBP.
Moreover, as shown in Table 2, OST achieves about 40% increase on TC10 against LBP under white noise, and
achieves about 25% increase on TC12.

WOST also outperforms LBPV for white noise contaminated texture classification. As shown in Fig 7, the
classification rates are almost unchanged on both datasets under weak white noise (PSNR=30), while the perfor-
mance of LBPV for this is obviously decreased. When the white noise becomes stronger (PSNR=27), the classi-
fication rates from WOST have quite small decreases (−1.56% on TC10 and −1.16% on TC12), while that from
LBPV is greatly decreased (−11.57% on TC10 and −8.77% on TC12). For the largest white noise (PSNR=23),
the performance of both WOST and LBPV are decreased a lot, but WOST still performs much better than
LBPV for this condition (WOST achieves about 15% increase than LBPV).
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According to the analysis above, we can conclude that the proposed orientation selectivity based structure
descriptor performs highly consistent with the HVS, which is robust to noise and outperforms the state-of-the-art
algorithms for texture classification.

4. CONCLUSION

In this paper, we have introduced a novel structure descriptor based on the orientation selectivity mechanism
of the primary visual cortex. The HVS is highly adaptive to extract structure for scene understanding, and
structure character is widely used in image processing tasks. However, existing structure descriptors mainly
describe the intensity change, but ignore spatial distribution of texture. Inspired by the orientation selectivity
mechanism in the primary visual cortex, we imitated the excitatory/inhibitory interactions among nearby neurons
and introduced an orientation selectivity based pattern to represent the spatial distribution of structure. Then,
by combining the intensity change and the orientation selectivity based pattern, a novel structure descriptor was
proposed. Experimental results on texture classification demonstrated that the proposed structure descriptor
performs highly consistent with the HVS, which is rotation invariant and robust to disturbance.
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