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Orientation tensors in simple flows of dilute suspensions of non-Brownian 
rigid ellipsoids, comparison of analytical and approximate solutions 
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Abstract: General analytical solutions are obtained for the planar orientation 
structure of rigid ellipsoid of revolutions subjected to an arbitrary homogeneous 
flow in a Newtonian fluid. Both finite and infinite aspect ratio particles are con- 
sidered. The orientation structure is described in terms of two-dimensional, 
time-dependent tensors that are commonly employed in constitutive equations 
for anisotropic fluids such as fiber suspensions. The effect of particle aspect 
ratio on the evolution of orientation structure is studied in simple shear and 
planar elongational flows. With the availability of analytical solutions, ac- 
curacies of quadratic closure approximations used for nonhomogeneous flows 
are analyzed, avoiding numerical integration of orientation distribution func- 
tion. In general, fourth-order orientation evolution equations with sixth-order 
quadratic closure approximations yield more accurate representations compared 
to the commonly used second-order evolution equations with fourth-order 
quadratic closure approximations. However, quadratic closure approximations 
of any order are found to give correct maximum orientation angle (i.e., preferred 
direction) results for all particle aspect ratios and flow cases. 
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1. Introduction 

Flows containing small elongated particles are en- 

countered in a number of engineering and biological 

systems. Such material systems usually exhibit unique 

rheological behavior depending on the particle con- 

centration and other geometrical parameters. The 

rheological characterization and constitutive model- 

ing of particle suspensions have caught the attention 

of  several researchers. Consequently, numerous con- 

stitutive models have been proposed which combine 

microstructural information with continuum repre- 

sentation (Ericksen, 1960; Batchelor, 1970; Hinch 

and Leal, 1975, 1976; Evans, 1975; Dinh and Arm- 

strong, 1984; Phan-Thien and Graham, 1991). 

In general, bulk stress tensor for the dilute suspen- 

sions containing neutrally buoyant,  non-Brownian 

rigid ellipsoids of  revolution is expressed as 

where a f and a p are the stress contributions from 

the suspending fluid and the particles, respectively, 

uij is the velocity gradient tensor, ~v is the particle 

volume fraction, Sij and Sijkl are the second=and  

fourth-order orientation tensors which describe the 

orientation structure, and A, B, C are the material 

constants that depend on the particle geometry. A 

brief discussion of various constitutive models and ex- 

plicit expressions for the material constants A, B, and 

C can be found in Altan (1990) and Tucker (1991). 

Orientation tensors Sij and Sijkt are defined as the 

second- and fourth-order moments of the orientation 

distribution function, and relate rheological proper- 

ties to fluid kinematics. Obviously, using tensorial 

quantities provides a concise and convenient way to 

describe the orientation field. For nonhomogeneous 

flow l) of suspensions where the velocity gradient ten- 

sor is not spatially uniform, Eq. (1) should be used 

a p =/~ cbv (.4 Sek t uk~ + B [S~k ukj + u~k Ski ] + Cuij)  , 

(1) l) In this paper, the term homogeneous flow is used to 
describe flows with spatially constant velocity gradient ten- 
sor. For such flows, the term linear flow is also used by 
some researchers. 
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with Cauchy momentum equations for the solution of 
flow kinematics. In addition, simultaneous solution 

of the orientation evolution equations is also needed 
for the characterization of orientation field. A few 

numerical solutions of this coupled problem have 

recently been reported (Papanastasiou and Alexan- 

drou, 1987; Lipscomb et al., 1988; Chiba et al., 1990; 
Rosenberg et al., 1990; Altan et al., 1992; Lee, 1992). 

The common practice is to calculate the orientation 

tensors directly from flow kinematics by solving a set 

of coupled differential equations. However, the 
resulting orientation evolution equations generate a 

classical closure problem. Different types of closure 

approximations are proposed and investigated by 

several researchers (Hand, 1960; Hinch and Leal, 

1976; Doi, 1981; Advani and Tucker, 1987, 1990; 

Altan et al., 1989; Maffettone and Marucci, 1991). 
The ad-hoc application of such closure approxima- 

tions are found to introduce considerable numerical 

error despite their computational convenience. 

Another approach that avoids using closure ap- 

proximations is suggested by Papanastasiou and 
Alexandrou (1987) and applied to a constitutive 

model for non-dilute fiber suspensions proposed by 
Dinh and Armstrong (1984). This approach evaluates 

the orientation state from the deformation gradient 

tensor of the fluid calculated along the fiber 
pathlines, and so far has only been implemented for 

infinite aspect ratio fibers. The solution of deforma- 

tion gradient equations may present a viable choice 
for fiber suspensions; however, as in the case of other 

deformation-dependent constitutive equations, the 

numerical accumulation of errors at large deforma- 
tion values needs to be investigated further (Keunings, 
1989). More recently, the theoretical basis of a similar 

technique is presented by Szeri and Leal (1992) which 

also proposes the implementation of the Lagrangian 
description in both flow and orientation spaces. 

It should be noted that, at relatively low particle 

concentrations, the particle stress contribution a~j is 
linearly related with particle volume fraction ~v as 

Eq. (1) indicates. Therefore, the particle stress con- 
tribution linearly vanishes for the zero volume frac- 
tion limit. Corollary to this, one can conclude that for 
a complex suspension flow where the velocity gradient 

tensor is spatially non-uniform, there exists a critical 
particle volume fraction below which the material 
system behaves like a Newtonian fluid. However, 

even if the flow kinematics is not affected by the 
presence of particles at such low volume fractions, the 
accurate determination of orientation structure in 
complex flows is of extreme importance. The orienta- 
tion solutions for such cases (i.e., zero-volume-frac- 

tion-limit solutions) provide valuable insight regar- 

ding the suspension behavior and fluid-particle in- 
teractions of very dilute systems. 

In this paper, after a brief introduction of 
theoretical basics, the analytical expressions for the 

evolution of the second- and fourth-order orientation 
tensors of a two-dimensional (i.e., planar) orientation 

structure subjected to an arbitrary homogeneous flow 

are presented. With the availability of analytical ex- 
pressions, accuracies of commonly used quadratic 

closure approximations are analyzed. Particularly, 
the following three important questions are investi- 

gated regarding the closure approximations. 

1) Do higher order (i.e., sixth-order) closure ap- 

proximations always yield more accurate results com- 
pared to lower order (i.e., fourth-order) approxima- 

tions? 

2) Are there special conditions where fourth-order 
quadratic approximation fails completely and should 

not be used? 

3) Can any orientation parameter be correctly pre- 
dicted by lower order evolution equations? 

In the last part of this paper, a simple channel flow 

example is presented. The analytical Sij results, 
depicted by orientation ellipses, are compared with 

the Sij values obtained by both second- and fourth- 

order orientation evolution equations. 

2. Theory 

2.1 Descr ip t ion  o f  or ientat ion  s ta te  

2 .1 .1  Orien ta t ion  vec tor  

The orientation of an ellipsoid of revolution 

suspended in a Newtonian fluid can be specified by a 
unit vector. The orientation vector p coincides with 
the major axis of the ellipsoid of revolution and 

rotates with the bulk fluid deformation. The motion 
of a rigid, neutrally buoyant, ellipsoidal particle in 
homogeneous flows is first studied by Jeffrey (1922). 
For such flows, the time rate of change of the orienta- 
tion vector of an ellipsoid of revolution can be ex- 

pressed as 

13 i = (£2ij + ,~ A ij)Pj - 2 P i P t P k A  tk , (2) 

where 0 6 and A/j are the vorticity and strain rate ten- 

sors, respectively. 
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In the above equations, i , j  = 1,2, and summation is 

implied over repeated indices. The parameter 2 is a 

function of the particle aspect ratio ap, which is 

defined as the length to diameter ratio of the particle. 

The ellipsoid of revolutions, with two equal principal 

axes, can be classified as oblate or prolate spheroids. 

For oblate spheroids, the equal axes are larger than 

the third axis. Therefore, ap= l / d < l ,  and 

- 1  <_2 < 0. For prolate spheroids, the equal axes are 

smaller than the third one. Therefore, ap = l / d > l ,  
and 0 < 3~ _< 1. In this study, the analysis will be limited 

to prolate spheroids which will be referred to as 

fibers. 
The rheological behavior of non-dilute systems 

(i.e., ~va2> 1) may not be fully described by the con- 

stitutive equation expressed in Eq. (1) and by the Jef- 

frey's equation given in Eq. (2) since the interactions 

between fibers are not accounted for. Hence, for such 

cases, different forms and extensions of Jeffrey's 

equation are proposed. One approach is to include an 

additional term in Jeffrey's equation similar to the 

Brownian diffusion term used for microscopic par- 

ticles. Such extensions to Jeffrey's equation are ex- 

perimentally observed to be useful in simulating the 

interactions between particles for non-dilute systems 

(Folgar and Tucker, 1984; Stover et al., 1992). Never- 

theless, even for non-dilute systems with ~va2~50, 
the deviation of particle rotations from Jeffrey's or- 

bits are observed to be rather small. Therefore, one 

may expect that the validity of Eq. (1) and Eq. (2) to 

extend over non-dilute suspensions with minor 

modifications (Phan-Thien and Graham, 1991). 

2.1.2 Orientation distribution function 

The orientation distribution function T ~ ,  t) pro- 

vides a complete representation of the fiber orienta- 

tion state. It gives the probability of having a fiber at 

a certain orientation/~ at time t. Equivalently, it can 

also be defined in terms of the orientation angle as the 
probability of finding a fiber within a certain angular 

interval specified by q~l and q~2 at time t. 

For two-dimensional representation of fiber orien- 

tation state, the orientation distribution function 

should satisfy certain conditions. Since one end of a 

fiber is not distinguishable from the other, the distri- 

bution function has a period of n, or 

v , ( ¢ )  = ~e(0 + n )  . (5) 

In addition, the normalization condition is satis- 

fied, implying that the area under a distribution func- 

tion curve is always unity. 

i T(00) dq~ = 1 . (6) 
0 

The orientation distribution function can be deter- 

mined by solving the governing partial differential 

equation expressed as 

0 ~ ( p , t )  _ 0 [ P i ~ ( P , t ) ]  

0t 0pi 
(7) 

where/5 i is given by Eq. (2). The governing equation 

for orientation distribution function is a form of the 

Fokker-Planck equation used for homogeneous flows 

with negligible Brownian motion. 

2.1.3 Orientation tensors 

Orientation state of fibers in a suspension can also 

be described with reasonable accuracy with tensors. A 

number of researchers have used orientation tensors 

successfully for the numerical computation of fiber 

orientation (Lipscomb et al., 1987; Altan et al., 1990; 

Lee, 1992) and for the representation of rheological 

properties of fiber suspensions (Altan et al., 1989; 

Malamataris and Papanastasiou, 1991). The second- 

and fourth-order (i.e., Sij and Sijkt, respectively) 

orientation tensors are defined as 

Sij = (PiPj) = ~PiPj ~(iO)dfi 

Sijkt = (PiPjPkPt) = ~PiPjPkPt T ~ )  dfi . 

(8) 

The order of the indices is not important since the 

orientation tensors are completely symmetric. An im- 

portant property of orientation tensors is that the 

higher order tensors contain the lower order ones 

(i.e., the lower order orientation tensors can be writ- 

ten in terms of the higher order orientation tensors). 

For example, any second-order tensor component can 

be written in terms of fourth-order components as 
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It can also be shown that the trace of the second- uij = = , (14) 
order tensor is unity. 0u2 0u2 c2 

OX 1 OX 2 

Sii-=- 1 . (10)  

The eigenvectors and eigenvalues of  the second- 

order tensor indicate the maximum orientation direc- 

tion and the degree of  alignment with respect to that 

direction, respectively. Hence, the preferred orienta- 

tion angle can be easily computed from the com- 

ponents of  the second-order orientation tensor. 

2.2 Analytical solutions of orientation tensors 

As shown by Bretherton (1962), it is possible to ob- 

tain analytical solution of  Eq. (2), which would 

specify the rotation of non-Brownian rigid ellipsoid 

of  revolutions suspended in an arbitrary two- or 

three-dimensional homogeneous flow. Specifically, 

explicit analytical expressions for planar particle rota- 

tion have been obtained for arbitrary two-dimen- 

sional homogeneous flows. In addition, three-dimen- 

sional particle rotation in some of the simple flows 

has been well characterized. 

Following Bretherton's work, the solution of  

Eq. (2) with the initial condition pi=p 0 has been 

shown to be 

E i l P  o 

P i  = 0 0 1/2 ' 
(Elm EljPj P m ) 

(11) 

where Eij is the particle rotation tensor and defined 

as 

dEij - (f2ik + 2A ik)Ekj (12) 
dt 

with the initial condition E = I (unit tensor). 

This representation is valid for both two- and three- 

dimensional orientations and flow fields. For infinite 

aspect ratio particles (i.e., slender bodies with 2 = 1), 

the particle rotation tensor E~j becomes the actual 

strain tensor of the flow field and is defined as 

Oxi (13) 
e i j  = ° x  o , 

where xi and x ° are the fluid particle coordinates at 

times t and t °, respectively. 

For any two-dimensional homogeneous flow, the 

velocity gradient tensor can be specified as 

where c, cl, and ez are arbitrary constants, and the 

trace of uij should be zero to satisfy the conservation 

of mass for incompressible flow. A single parameter 

w 2 can be utilized to define the solution families of 

Eq. (12) with an arbitrary velocity gradient tensor. 

W2 = 2 2 ( 9 2 + 4 C  2 ) - A 2  
(15) 

where B = c I + c2 and A = c 1 - c 2. Depending on the 

value of w 2, three different solution families are 

possible as shown by Akbar and Altan (1992). 

W h e n  w 2 = 0, 

I 
I+2ct (2B+A)t  1 

2 (16) 

Eij= O~B-A)t 1-Act  
2 

When W2>0, 

e0= 

w cosh (w t ) +2 c sinh (w t) 

(2B-A)sinh(wt) 

(2 B + A )sinh (wt ) 

2w 

wcosh (w t ) - 2csinh (w t 

W 

(17) 

When W2<0, 

E~j= 

wcos (w t) +2 csin(wt) 

(2 B-  A )sin(wt) 

(2B + A w 1 

wcos(wt)- 2csin(wt) 

W 

(18) 

where in Eq. (18) w is defined as w=]/[w2]. Equa- 

tions (16)-  (18) are the possible solutions for particle 

rotation tensor and can be used in Eq. (11) to specify 

the rotation of both oblate and prolate spheroids sub- 

jected to an arbitrary homogeneous flow. Although it 

is straightforward to use Eqs. (16)-(18) for three- 

dimensional orientation vectors, in this paper the 
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analysis will be limited to planar  orientations.  For  in- 

finite aspect ratio fibers where 2 = 1, Eqs. ( 1 6 ) -  (18) 

simplify such that  the three Ea:s represent actual  

strain tensors for  the simple shear, extensional, and 

rotat ional  flows, respectively. 

The particle ro ta t ion  tensors can also be determined 

for  three-dimensional  homogeneous  flows f rom 

Eq. (12). The  resulting equations can he grouped into 

three with each one containing three coupled differen- 

tial equations.  The  analytical solutions o f  these three 

sets o f  equations can be obtained,  characterizing the 

particle rota t ion in general three-dimensional  homoge-  

neous flows. 

I f  the initial distribution of  particle or ientat ion is 

known,  the t ime-dependent  evolution of  orientat ion 

distribution funct ion can be obtained analytically. For  

planar  orientations,  using normal iza t ion condit ion as 

given in Eq. (6), the initial condit ion for  r andomly  

oriented particles becomes 

1 
~ ,  t = O) = - . (19) 

7~ 

Therefore ,  for  r a n d o m  initial condition, the solution 

of  Eq. (7) with Eq. (2) can be expressed as 

~ ( f f ,  t) = 1 (A~mAOpjpm) 1 , (20) 
7~ 

where ~ = i + j .  Similarly,  the four th -o rder  or ienta t ion 

tensor  S~j/a can be expressed as 

Siyli c = 1 i c °s (8 - ( )0  sin(~-4)0 (24) 

zr 0 al cos 2 0 + ~a2 sin 2 0  + a3 sin 2 0 dO , 

where  ~ = i + j + k + l .  The  integrals given in Eqs.  

( 2 3 ) - ( 2 4 )  can be evaluated with the t r a n s f o r m a t i o n  

x = tan  0- 

Consequent ly ,  the Sij componen t s  are ob ta ined  as 

i a 2 - 2 (123 -- 121)(1 -- a3) 
$11 = (25) 

2 (al - a3) 2 + a 2 

1 2 a  2 - az(a 1 - a3) (26) 
$12 = 2 (a 1 - 123) 2 + a 2 

I a 2 + 2 (a 3 - a l )  (1 - a l )  (27)  

$22 = 2 ( a l -  a3)2+ a 2 

F r o m  Eq.  (24), the Sijkl componen t s  become  

81111 = 

where Aij is the inverse of  particle ro ta t ion  tensor  E•. 

Equa t ion  (20) can be rear ranged  by using p lanar  

or ienta t ion  angle 0 as 

SIl12  = 

= -  a l c o s 2 0 +  a 2 s i n 2 0 + a 3 s i n 2 0  , 

zr (21) 

where  

121 = A~I +A~I 
81122 = 

a 2 = 2 (Al lA  12 + A21 A22) (22) 

2 2 
123 = A 1 2  + A 2 2  • 

Determining  analyt ical  solutions o f  the second- and 

four th -order  or ienta t ion  tensors involves calculat ion 

o f  the integrals given by Eq.  (8). For  the second-order  S1222 = 
or ienta t ion tensor  Sij, the result ing integral  becomes  

C0S(4-¢)0 sin(¢-2)O dO , (23) 

Sij=Lircoal cos2 0 +~-a2 sin 2 0  + a3 sin2 0 

(121 -- 3 123) [ (a l  --  a3)  2 -- a2 ]  + 4a22 (al - 123) 

2 [(al - a3) 2 + a2] 2 

4 2 2 4 - - ~ l 3- 2 2 2 
- 4 a l a 2 a 3 +  2ala3 4 

]/4al a3 - a 2 [(al - a3)  2 q- 122] 2 

4 a 3  a2 ( a l  - a3)  + 172 [ ( a  1 - a3)  2 - a 2] 

(28) 

2 [ ( a  1 -- a3)  2 + a2 ]  2 

a2 (3 a 2as - ai a 2 -  2a l  a 2 -  a])  
+ (29) 

]/4 a I a 3 - a 2 [(ai - a3) 2 + a212 

(al + a 3) [(al - a3) 2 - a 2] 

2[(al-a3)2+a~] 2 

2 2 3 2 2 2 2 
a 3 a 2 -  2 a  1 a 3 + 4 a  1 a3 + a l  a 2 -  2a~a3 

+ (30) 
+.221 

a2[ - (al - a3) 2 + a21 + 4a l  a2(al - a3) 
2 [(al - a3) 2 + a~l 2 

a 2 [3 a la32- a ~ -  2 a  2a 3 - a2a3] 
+ (31) 

]/4al a3 - 1222 [(al - a3) 2 + a~] 2 
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$2222 = 
(a 3 - 3 al) [(a I - a3) 2 - a21 - 4 a2 (al - a3) 

2[(a1-aa)Z+a~] z 

ae_4ala~a3 2 2 2 2 4 3 + 2 a l a 2 + 2 a i a 3 + 2 d l - 4 a ~ a 3  
4 

]/4 a s a 3 - a 2 [(as - a3) 2 + aZ] 2 

(32) 

2.2.1 Simple shear f l o w  

The velocity gradient  tensor  for  a s imple shear f low is 

expressed as 

ui : (00 o) 
where c~ represents  the shear rate.  It  can be easily 

seen that  w 2, def ined in Eq.  (15), becomes  

w2 _ c2(A 2 -  1) 

4 

Since ~ 2 <  1 for  finite aspect  rat io particles,  w2< O. 

Therefore ,  the second- and  four th -o rder  or ienta t ion 

tensor  componen t s  for  the simple shear f low simplify 

as 

a l + a l a 3 - a 3 + a 2 - 2  
Sli = (35) 

(a i + a3) 2 - 4 

S12 = 
a 2 (2 - al - a3) 

2 [(al + a3) 2 - 41 

$22 = 
a 2 - a l  + a l a 3 + a 3 - 2  

( a l + a 3 ) 2 - 4  

Sl111 ---= 
(al + a3 - 2) 2 (4 + a s + 5 a 3 + 2 a2) 

2 [(as + a3) 2 - 4] 2 

Sl112 --  
(al + a3 - 2)2a2 (1 + a3) 

2 [(al + a3) 2 -- 4] 2 

2;L 
al = 1 - - -  sin 2 wt (43) 

1 + 2  

Sl122 = 
(al + a3 - 2)2(al + 2a l  a3 + a3) 

2 [(a s + a3) 2 - 4] 2 

(as + a3 - 2)2a2 (1 + a3) 

2 [(ai + a3) 2 - 4] 2 

(al + a3 - 2)2(4 + 2 a  2 + 5al  + a3) 

2 [(a 1 + a3) 2 - 412 

$1222 ~- 

$2222 = 

where 

2)~ 
- -  sin 2 wt (44) 

a2 --  ] / I  + , ~ 2  

2;L 
a3 = 1 + - -  sin 2 wt . (45) 

1 - 2  

The analytical  solutions of  Sijkl for  simple shear 

f low indicate tha t  the particle aspect  rat io  ap and the 

total  shear ), (i.e., Y = cl t) characterize the evolut ion 

of  or ienta t ion structure.  Start ing f r o m  r a n d o m  orien- 

ta t ion state, the S;jkt componen t s  as funct ions of  total  

shear are shown for  different  particle aspect  rat ios in 

Figs. 1 a - e .  The  periodic behaviors  of  Sijkt com-  

ponents  originate f r o m  the tumbl ing  o f  finite aspect  

rat io particles in simple shear flow. As il lustrated in 

(34) Figs. 1 a -  e, the per iod o f  Sijkt componen t s  is a s t rong 

funct ion o f  aspect  rat io,  and as ap ~ oo, the 

periodic behav ior  ceases and tensor  componen t s  reach 

their s teady values (i.e., Sl111 = 1 and 

Sin2 = Sl122 = $1222 = $2222 = 0). Figure I a shows 
tha t  S l m  oscillates between a m a x i m u m  value and its 

initial value o f  0.375. The  m a x i m u m  value of  Sin1 is 

dependent  on the aspect  rat io and app roach  to uni ty 

as ap ~ oo. I f  Sin1 is considered to be a measure  of  

the degree of  fiber a l ignment ,  it is obvious  that  the 

suspensions with finite aspect  rat io particles never 

(36) reach a perfect  a l ignment  in simple shear flow. On the 

other  hand,  all componen t s  o f  Sijkt, independent  o f  

particle aspect  rat io,  decrease to their initial values pe- 

(37) riodically, thus indicating that  the suspensions per iod-  

ically f o r m  a r a n d o m  or ienta t ion state before  at tain- 

ing higher a l ignments  in simple shear flow. As shown 

in Figs. 1 a -  e, the r a n d o m  or ienta t ion state does not  

(38) last long, and  especially high aspect  rat io  particles re- 

ma in  aligned mos t  o f  the t ime.  

(39) 

2.2.2 Planar elongational f l o w  

For  p lanar  e longat ional  flows, the velocity gradient  
(40) tensor  is 

:(; o )  ,46, 
(41) uo e 

(42) where c represents  the extension rate,  and f r o m  

Eq.  (15), w 2 becomes  

W 2 = ~ .2e2  . (47) 
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Fig. 1 a. Exact solution for the fourth-order orientation ten- 
sor component Smi as a function of total shear for dif- 
ferent particle aspect ratios 

Since w 2 is always positive, the second- and  

four th-order  or ien ta t ion  tensor componen ts  for pla- 

nar  e longat ional  flow simplify as 

I - -  a 3 
S t 1  - -  (48) 

C/1 - -  a 3 

S12  ---- 0 (49) 
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Fig. I c. Exact solution for the fourth-order orientation ten- 
sor component S~a2 as a function of total shear for dif- 
ferent particle aspect ratios 
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Fig. 1 b. Exact solution for the fourth-order orientation ten- 
sor component Sin2 as a function of total shear for dif- 
ferent particle aspect ratios 
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Fig. 1 d. Exact solution for the fourth-order orientation ten- 
sor component $12z2 as a function of total shear for dif- 
ferent particle aspect ratios 
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81222 = 0 (54)  

82222 = 2 a ~  z - 3 a I + a 3 
2 ( a l - a 3 )  2 ' (55) 

where ai = e-ZeX; a2 = 0; a 3 = e 2e)~, and e is the total 

elongation (i.e., e = ct) .  

The non-zero components  o f  the fourth-order 

orientation tensor Sijkl are shown as functions o f  

total e longation e in Figs. 2 a - c. Unlike simple shear 

f low, the Sijkl components  in planar elongational 

f low are not  periodic and rapidly approach to their 

steady values (i.e., Sin1 = i and $1122 = $2222 = 0). 

Moreover,  Figs. 2 a - c depict that particle aspect ratio 

in planar elongational f low does not  affect the evolu- 

tion o f  Sijkl components  significantly. 
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3. Orientation evolution equations 

The numerical solution of orientation distribution 

function is computationally intensive and not prac- 

tical for complex flows. In addition, fourth-order 

orientation tensor SUK l contains all the required infor- 

mation about orientation field to characterize the 

rheology of suspension described by Eq. (1). It should 

be noted that for two- and three-dimensional orienta- 

tion fields, Sijkl has only four and t4 independent 

components, respectively. Hence, alternative ways are 

sought to evaluate tensor components without using 

orientation distribution function. A number of 

researchers have preferred to utilize evolution 

equations 2) for orientation tensors which may be 

computationally feasible and sufficiently accurate to 

characterize the orientation state and the theology of 

fiber suspensions. The evolution equations for orien- 

tation tensors, if used with closure approximations, 

can be implemented to complex flows. For such cases, 

the evolution equations can be solved either along 

particle pathlines using a Lagrangian approach, or on 

fixed grid points throughout the domain with an 

Eulerian formulation. However, the order of evolu- 

tion equations as well as the order and type of closure 

approximations should be carefully selected for ac- 

curate results. Basic symmetry requirements inherent 

in the constitutive equations should also be accounted 

for in order to obtain consistent and meaningful 

descriptions. 

3.1 Second-  and  f our th -order  evolut ion equat ions  

As stated earlier, most constitutive models assume 

that the orientation of individual fibers is governed by 

Jeffrey's equation as given by Eq. (2). In order to ob- 

tain the orientation evolution equations, definitions 

of the second- and fourth-order orientation tensors 

are used as a starting point. Taking the derivative of 

Eq. (8) with respect to time and using Eq. (2), the 

second- and fourth-order orientation evolution equa- 

tions can be written as 

dSij _ (ff2i m + }~ Aim ) Smj + (ff2jm + '~ Ajm) Smi 
d t  

- 22AktSi jkl  (56) 

2) The terms "dynamic equations" or "equation of 
change" are also used to describe evolution equations. 

dSijkl = (ffJim + ~" Aim ) Smjkl + (ff2jm + ~" Aim ) Smikt 
dt  

-[- ( ff2 km + ~ A km ) Smijl "k" ('Q lm "4:- 2 AIm ) Smijk 

- 42ArsSijklrs . (57) 

The evolution equations given by Eq. (56) for sec- 

ond-order tensor Sij is first proposed by Hand (1960), 

and later by Doi (1981). The details of the 

mathematical manipulations are included in both 

publications with an accompanying proof in Doi 

(1981). The extension of the same idea to a higher 

order tensor is straightforward but cumbersome. 

Equation (57) represents the evolution equations for 

fourth-order orientation t e n s o r  Sijkl which potentially 

provide more accurate representation of the orienta- 

tion structure compared to using lower order evolu- 

tion equations defined by Eq. (56). 

Since calculation of the orientation tensors only re- 

quires solving ordinary differential equations given in 

Eq. (56) or Eq. (57), the tedious computation of 

calculating the orientation distribution function is 

totally avoided. It can be easily seen that for planar 

orientations, three orientation equations result from 

Eq. (56) and five from Eq. (57). However, using 

Sii = 1,  the number of independent components can 

be reduced to two in the case of a second-order tensor 

and to four in the case of a fourth-order tensor. 

Nevertheless, these equations cannot be solved readily 

due to the unknowns appearing in the form of higher 

order tensors. Specifically, Eq. (56) contains the un- 

known fourth-order orientation tensor Sijkt, while 

Eq. (57) contains the unknown sixth-order orientation 

tensor Sijklrs. In order to solve this problem, closure 

approximations need to be used. With the help of 

these approximations, the unknown higher order 

terms are expressed in terms of the lower order ten- 

sors, thus forming a closed set of differential equa- 
tions. 

3.2 Closure approx imat ions  

The idea of introducing closure approximations is 

first explored by Hand (1960) where the fourth-order 

tensor Sijkl is approximated by a linear combination 

of the second-order tensor components. The resulting 

closure approximation and its accuracy is studied by 

Hinch and Leal (1976), and later by Advani and 

Tucker (1987). The required tensorial symmetry for 

the higher order tensor is conserved when it is approx- 
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imated by the linear closure equations. However, 
although the linear approximation yields exact results 

for random particle orientations, one can show that at 

higher degree of alignments the results become oscil- 

latory and unstable for non-Brownian fibers. Cor- 

ollary to this, linear closure approximations have not 

been considered as a viable choice for complex flows. 

One other alternative is to utilize quadratic closure 
approximation as proposed by Hinch and Leal (1976) 

and Doi (1981). In fact, there are a number of ways 

to develop similar quadratic approximations which 

are also referred to as decoupling approximations. 

The most commonly used type of quadratic approx- 

imation is 

S~jkt = Su Skt• (58) 

The popularity of Eq. (58) only arises from its 

simplicity despite the potential problems. Although 

Eq. (58) gives accurate results for aligned orienta- 

tions, it violates the symmetry of Sijkt. Specifically, 
Eq. (58) yields more than one possible way of approx- 

imating the identical Sijkl components. For example, 

for planar orientations, although $1122 is identical to 

S1212, approximating them with Eq. (58) and, subse- 
quently, using them in Eq. (1) gives two different 

results (i.e., S11S22 ~ S12S12 ). In addition, it can easi- 
ly be observed that if Eq. (58) is chosen as the closure 
equation, it needs to be used in two different places 

for the simulation of complex flows of suspensions 
(see, for example, Eq. (4) and Eq. (6) in Rosenberg et 

al., 1990) which may lead to inaccurate results. In 

complex flows, the effects of implementing Eq. (58) 

in both evolution and constitutive equations are not 
completely known at this point. However, it is 
suspected that this may contribute to the divergence 

of the numerical results for some suspension parame- 

ters as observed by Rosenberg et al. (1990), Chiba et 

al. (1990) and Lee (1992). Other techniques combin- 
ing the linear and quadratic closure approximations in 

some fashion are also available. Such composite or 
hybrid closure equations are investigated in detail by 
Hinch and Leal (1976), Altan et al. (1989), and Ad- 
vani and Tucker (1987, 1990). Since the linear closure 

approximation as suggested by Hand (1960) yields 
unstable orientation dynamics for non-Brownian par- 
ticles, approximations developed by combining linear 
and quadratic closure equations may also be suscepti- 
ble to artificial oscillations as shown by Advani and 
Tucker (1990). In particular, for complex flows where 

all the velocity gradients are nonzero, the stability of 
the hybrid closure equations may not be assured for 

non-Brownian fibers. Of course, such a condition is 

rather difficult to identify and cannot be predicted a 
priori. However, some of the hybrid closure equa- 

tions are shown to be useful and stable for infinite 
fiber aspect ratio if Brownian diffusion exists (Advani 
and Tucker, 1990). Recently, the inadequacies of us- 

ing lower order closure equations with Eq. (56) is also 

addressed by Maffettone and Marrucci (1991). From 
this viewpoint, instead of the second-order evolution 

equations, higher order approximations in conjunc- 

tion with Eq. (57) may be considered as an alternative 
and possibly more accurate approach where Sij~t 

components obtained from Eq. (57) can be directly 

used in Eq. (1) without additional approximation. A 
higher order quadratic approximation that can be 

used in Eq. (57) is expressed as 

Sijktrs = SijktSrs • (59) 

Equation (59), if used with Eq. (57), conserves the 

tensorial symmetry for the fourth-order orientation 

tensor and avoids some of the shortcomings of adopt- 
ing a lower order approach as explained before. 
Higher order evolution equations are first implement- 

ed by Altan et al. (1990) for the three-dimensional 

orientation predictions in Hele-Shaw flows at zero 

volume fraction limit. Later, Altan et al. (1992) ex- 
tended this approach to non-zero particle volume 

fractions where the anisotropic flow of fiber suspen- 

sions in a two-dimensional straight channel is in- 
vestigated. After using the fourth-order quadratic 

closure approximation expressed by Eq. (58) and the 
properties of orientation tensors defined earlier, the 

second-order evolution equations can be obtained as 

(Rao et al., 1991) 

dS l l  _ 2DLAI1Sl l  + (f212 + 2A12)S21 
d t  

-)~{A li Sll + 2A 12S12 +A22822}811] (60) 

dS12 - (~Q21 + ~'A21)$11 + (g212+2AI2)S22 
dt  

- 22[A 11Sli + 2A 12S12 q- A22822}812 (61) 

d822 - 2 [(~Q21 +/~ A 21 ) $12 "}- ~ A 22 $22 
dt  

- 2 {A  11 Sl l  + 2 A  12S12 + A22S22}$22] • (62) 
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Similarly, with the sixth-order quadratic closure ap- 

proximation expressed in Eq. (59), the resulting 

fourth-order evolution equations become (Rao et al., 

1991). 

6S1111 

dt 

d81112 

dt 

681122 

dt 

dS1222 

dt 

- 412A 1181111 + (ff~12 +,~A12)Sl112 

- 2{A 1181m + 2A 12 ($1112 + S1222) 

+ Z122 $2222} $1111 ] (63) 

- 3 [2AllSIlI2+(~12+2AI2)SI122 ] 

+ (~'-~21 + 2A21 )81111 + 2A2281112 

- 42 [{A 11Sllii + 2A 12(81112 -1- 81222 ) 

+ A 22 82222] $1112] 

- 2 [2A ll 81122 + (~Q12 + 2 A  12) $1222] 

+ (O21 + 2A21) Sl112 + 2,d2281122 

- 42 [IA 11 Sin1 + 2A 12 ($1112 + 81222 ) 

+ A 22 82222} 81122] 

- 2 A  11 SI122 + (O12 + 2 A  12)82222 

+ 3 [(~¢~21 + 2 A 21 ) 81122 + 2/-J 22 81222] 

- 42 [{A 1181111 + 2A 12 (S1112 -k- S1222 ) 

(64) 

(65) 

-{- A 22 82222} 81222] (66) 

682222 
- 4 [((221 + 2 A 21 ) 81222 + 2 z~[ 22 82222 

dt 

- 2 { Z l l l S l l l l + 2 A 1 2 ( S l l I 2 + S 1 2 2 2 )  

+ A 22 $22221 82222] • (67) 

The two sets of  ordinary differential equations 

given in Eqs. (60) - (62) and Eqs. (63) - (67) are solv- 

ed separately using the public domain software Liver- 

more Solver for Ordinary Differential Equations 

(LSODE). In this study, the accuracies of fourth- and 

sixth-order quadratic closure approximations are in- 

vestigated for both finite and infinite aspect ratio par- 

ticles. In the next section, predictions for simple shear 

and planar elongational flows are presented and com- 

pared with the analytical solutions obtained earlier. 

3.3 Simple shear f low 

For simple shear flow, the evolutions of fourth- 

order orientation tensor components for infinite 

aspect ratio particles are shown in Figs. 3 a - e .  The 

orientation state is taken to be random initially, and 

the tensor components are drawn as functions of total 

shear. In Figs. 3 a -  e, the analytical solutions are ob- 

tained from Eqs. (38)-(42) ,  whereas the curves 

denoted by Sii and Sijkt are obtained by solving the 

sets of differential equations expressed in Eqs. 

(60) - (62) and Eqs. (63) - (67), respectively. Obvious- 

ly, after Eqs. (60) -  (62) are solved, the fourth-order 

quadratic closure approximation is used once more to 

determine Sijkt components. Hence, as mentioned 

before, if lower order evolution equations are used to 

evaluate higher order tensorial quantities, the closure 

approximations are needed to be implemented twice 

which may possibly decrease the accuracy of  predic- 

tions. As shown in Figs. 3 a - e ,  both the second- and 

fourth-order evolution equations yield correct asymp- 

totic behavior. However, for the Sijkt components 

that are not initially zero, the second-order evolution 

equations, unlike the fourth-order,  do not yield cot- 
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Fig. 3 a. Predictions for the fourth-order orientation tensor 
component $1111 as a function of total shear using second- 
and fourth-order orientation evolution equations with 
quadratic closure approximation. Particle aspect ratio = oo 
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rect starting values. On the other hand, predictions 

from both equations quickly converge to same values 

which later approach to exact results asymptotically. 

Figure 3c illustrates three different predictions for 

Sl122.  The curves denoted by $11 x $22 and $12 X S12 
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are obtained from different implementations of  

Eq. (58) by using the Sij components evaluated from 

Eqs. (60) - (62) .  Clearly, the idea of  using second- 

order evolution equations with fourth-order 

quadratic approximation to predict fourth-order ten- 
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0.4 

- -  analyt ic solut ion 

. . . .  s i j  

0.s Sijkl 

0 5 10 15 20 

total shear 

Fig. 3 e. Predictions for the fourth-order orientation tensor 
component $2222 as a function of total shear using second- 
and fourth-order orientation evolution equations with 
quadratic closure approximation. Particle aspect ratio = oo 

~ 0 . 2 F  
CO 



Alton and Tang, Orientation tensors in simple flows of dilute suspensions of non-Brownian rigid ellipsoids 239 

1.1 

1.0 

0.9 

0.8 

0.7 

C 
Of) 0.6 

0.5 

0.4 

0.3 

0.2 

- -  a n a l y t i c  s o l u t i o n  

. . . .  s u  

- - - -  Si jk l  
I t 

0 5 10 15 20 25 30 35 40 

t o t a l  s h e a r  

Fig. 4a. Predictions for the fourth-order orientation tensor 
component Sm~ as a function of total shear using second- 
and fourth-order orientation evolution equations with 
quadratic closure approximation. Particle aspect ratio = 10 

0.5 

0.2 

0.1 

- -  analytlc solution 

.... $11xS22 

f~ 
. . . .  $ 1 2 x S 1 2  I I 

~l - - - S i j k l  f 

I I 

i I 

0 . 0  . . . . . .  

0 5 10  1 5  20 25 30 35 40 

t o t a l  s h e a r  

Fig. 4c. Predictions for the fourth-order orientation tensor 
component $I~22 as a function of total shear using second- 
and fourth-order orientation evolution equations with 
quadratic closure approximation. Particle aspect ratio = 10 

sors leads to  s ignif icant  er rors ,  pa r t i cu la r ly  for  

N1122" 
In  Figs.  4 a - e ,  the  evolu t ions  o f  f ou r th -o rde r  

o r i en ta t ion  t ensor  c o m p o n e n t s  are  shown for  par t ic les  

wi th  an  aspect  ra t io  o f  10. F o r  f ini te  aspect  ra t io  par -  

ticles, both the analytical solution and the predictions 

from evolution equations depict periodic behavior of 

the tensor components. Hence, as shown in the 

figures, the errors involved in closure approximations 

are also periodic. In general, the errors are most sig- 
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nificant around regions where the orientation evolu- 

tion is fastest (i.e., when orientation structure is 

rapidly passing through a random orientation distri- 

bution). It should also be pointed out that even for 

finite aspect ratio particles, both the second- and 

fourth-order evolution equations predict perfect 

alignment (Sin1 = 1) at some point during the oscilla- 

tory behavior of  orientation structure. Such a predic- 

tion, as shown by analytical results, is not correct 

since orientation structure formed by finite aspect 

ratio fibers never displays a perfect alignment. Hence, 

the errors induced by using quadratic closure approx- 

imations become particularly significant for low 

aspect ratio particles. 

3.4 Planar elongational flow 

The evolution of non-zero components of  the 

fourth-order orientation tensor for infinite aspect 

ratio particles in planar elongational flow is shown in 

Figs. 5 a - c .  Starting from a random orientation 

field, the preferred orientation is always along the 

flow direction, thus yielding only three non-zero Sijkt 
components.  The evolution of orientation structure is 

not periodic for both finite and infinite aspect ratio 

particles. Since the second- and fourth-order evolu- 

tion equations are found to depict similar characteris- 

tics for all particles, the results for finite aspect ratio 

particles are not included. As in the case of simple 
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shear flow, the predictions from second-order evolu- 

tion equations start from incorrect values for all Sgjkt 
components. Moreover, as shown in Fig. 5b, Sl~22 

can erroneously be determined as zero by using 

3 .0  
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Fig. 6 a. The planar channel geometry and flow parameters 
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Fig. 6b. The analytic solutions of So. components repre- 
sented by ellipses in planar Poiseuille flow 

S12 X 812, which illustrates the possibility of inconsis- 

tent approximations for identical Sijkt components. 

On the other hand, results from both equations 

asymptotically approach to correct Sijkl values. 

3.5 A simple example: planar Poiseuille flow 

The analytical solutions of  orientation evolution 

can also be determined for a class of non-homoge- 

neous flows at zero volume fraction limit. The exact 

expressions for the rotation of a particle and for the 

orientation distribution function can be derived for 

both two- and three-dimensional flows and orienta- 

tion fields, if the form of velocity gradient tensor does 

not change along particle pathlines. Hence, for such 

complex flows, the accuracies of  closure approxima- 

tions can be analyzed throughout the flow domain 

(i.e., Eulerian representation) by solving the com- 

ponents of orientation tensors using orientation evo- 

lution equations along particle pathlines. 

A simple example is the planar Poiseuille flow 

through a channel as shown in Fig. 6 a. The randomly 

oriented particles are assumed to be introduced into 

the fully developed velocity profile at x = 0. If the 

half channel width is taken to be unity (i.e., y = 1 at 

the channel wall), the parabolic velocity profile can be 
expressed as 
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Fig. 6c. The Sq components obtained from the second- 
order evolution equations with quadratic closure approx- 
imation in planar Poiseuille flow 
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Fig. 6d. The S u components obtained from the fourth- 
order evolution-equations with quadratic closure approx- 
imation in planar Poiseuille flow 
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u = l - y 2  . (62) 

The only non-zero velocity gradient is the shear rate 

cl, and therefore, simple shear flow equations 

(35)- (45) can be utilized with wt defined as 

w t = -  yX ]/1_)~ 2 (63) 
1 _y2 

F igures6b-d  depict the orientation field repre- 

sented by ellipses which are evaluated from the sec- 

ond-order orientation tensors. The fiber aspect ratio 

is taken to be 10 and random fiber orientation at the 

inlet is shown as circles. Although the actual ratio of 

channel length to half channel width (i.e., aspect ratio 

of the computational flow domain) is four, the chan- 

nel width is stretched in Figs. 6 b - c  for clarity. 

Figure 6b represents the analytical solution; whereas, 

Fig. 6 c and d are obtained from the evolution expres- 

sions given in Eqs. (60)-(62) and Eqs. (63)-(67), 

respectively. It should be noted that although the use 

of second-order tensor is not convenient for rheologi- 

cal characterization, its graphical representation 

throughout the flow domain illustrates some of the 

important physical aspects. Moreover, if the flow 

contains too few particles to affect the flow behavior, 

then practically, one only needs to determine Sij com- 

ponents for the complete orientation characteriza- 

tion. Therefore, for the second-order orientation ten- 

sor, it is more useful to concentrate on the degree of 

alignment and maximum orientation angle predic- 

tions as opposed to individual tensor components. A 

careful review of Figs. 6 b - d  shows that the maxi- 

mum orientation angles are accurately predicted by 

both the second- and fourth-order evolution equa- 

tions. However, the degree of alignments, as illustrat- 

ed by the degree of deformation of orientation ellip- 

ses, differ considerably in regions where particles are 
moderately aligned. 

From this viewpoint, Tables 1 and 2 present the ac- 

curacies of evolution equations characterized by the 

maximum orientation angles and degree of align- 

ments for particles with aspect ratio infinity and 10, 

respectively. Both tables show that the exact maxi- 

mum orientation angle values are predicted by both 

evolution equations. The same behavior is also ob- 

served in numerous other homogeneous flows. On the 

other hand, the degree of alignments are not deter- 

mined accurately at low total shears. In fact, surpris- 

ingly, the degree of alignments obtained from fourth- 

order equations are found to be slightly worse than 

the ones obtained from second-order evolution equa- 

tions. Therefore, if only Sa components are needed, 

the use of fourth-order evolution equations is not 

justified. However, as described earlier, fourth-order 

evolution equations provide significant improvements 

for the prediction of Sijkl values. 

4. Concluding Remarks 

The analytical expressions for the evolution of 

planar orientation structure which is characterized by 

tensorial quantities are presented for dilute particle 

suspensions subjected to two-dimensional arbitrary 

homogeneous flow fields. The general analytical ex- 

pressions are simplified for simple shear and planar 

elongational flows, which are later used to evaluate 

the accuracies of commonly used orientation evolu- 

Table 1. The degree of alignments and maximum orientation angles in shear flows for infinite aspect ratio particles 

Total Analytical results Second-order evolution Fourth-order evolution 
shear dSij dSijet 
7 equations: - -  equations: 

dt dt 

21 ~m~ 21 ~m~ 21 ~m~ 

1.0 0.7236 31.7175 0.8727 31.7175 0.9375 31.7175 
2.0 0.8536 22.5000 0.9714 22.5000 0.9895 22.5000 
3.0 0.9160 16.8450 0.9917 16.8450 0.9971 16.8450 
4.0 0.9472 13.2825 0.9969 13.2825 0.9990 13.2825 
5.0 0.9642 10.9007 0.9986 10.9007 0.9995 10.9007 
6.0 0.9743 9.2175 0.9993 9.2175 0.9998 9.2175 
7.0 0.9808 7.9727 0.9996 7.9727 0.9999 7.9727 
8.0 0.9851 7.0181 0.9998 7.0181 0.9999 7.0181 
9.0 0.9881 6.2644 0.9999 6.2644 1.0000 6.2644 

10.0 0.9903 5.6550 0.9999 5.6550 1.0000 5.6550 
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Table 2. The degree of alignments and maximum orientation angles in shear flows for particle aspect ratio ap = 10 

Total Analytical results Second-order evolution Fourth-order evolution 
shear dSij 
y equations: equations: dSij~l 

dt dt 

Ai ~max ~1 ~max ILl ~max 

2.0 0.8488 22.3111 0.9693 22.3111 0.9887 22.3111 
4.0 0.9429 12.6707 0.9964 12.6707 0.9988 12.6707 
6.0 0.9703 8.1697 0.9991 8.1697 0.9997 8.1697 
8.0 0.9810 5.5279 0.9996 5.5279 0.9999 5.5279 

10.0 0.9860 3.7016 0.9998 3.7016 0.9999 3.7016 
12.0 0.9885 2.2786 0,9999 2.2786 1.O000 2.2786 
14.0 0.9898 1.0591 0.9999 1.0591 1.0000 1.0591 
16.0 0,9900 -0.0758 0.9999 -0.0758 1.0000 -0.0758 
18.0 0.9897 -1.2166 0.9999 - 1.2166 1.0000 - 1.2166 
20.0 0.9883 -2.4555 0.9999 -2.4555 1.0000 -2.4555 

tion equations with quadratic closure approxima- 

tions. Specifically, importance of the order of  closure 

approximations and evolution equations is examined. 

Although the second-order orientation evolution 

equations with quadratic closure approximations 

have been used most  often for complex flows, a num- 

ber of  significant limitations are found regarding the 

determination of the componems of fourth-order 

orientation tensor. First, when the particles are initial- 

ly in random orientation, the starting values for non- 

zero tensor components are not correctly predicted 

with the fourth-order quadratic closure equations. 

Second, after solving the second-order evolution 

equations, the implementat ion of the fourth-order 

quadratic closure approximation is shown to yield dif- 

ferent results for the approximation of  some of  the 

identical fourth-order tensor components.  These two 

important  shortcomings can be avoided by using the 

fourth-order  evolution equations with a sixth-order 

quadratic closure approximation.  However,  for the 

prediction of  second-order orientation tensor, the sec- 

ond-order evolution equations performed slightly bet- 

ter compared to fourth-order equations. It is also 

found that for all aspect ratios and flow cases, the 

correct preferred orientation direction is predicted by 

both the second- and the fourth-order evolution equa- 

tions with quadratic closures; whereas, the degree of 

alignment which is described by the maximum eigen- 

value of the second-order tensor is not determined ac- 

curately by using both evolution equations. 
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