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Abstract. We study two important families of problems in isogeny-
based cryptography and how they relate to each other: computing the
endomorphism ring of supersingular elliptic curves, and inverting the
action of class groups on oriented supersingular curves. We prove that
these two families of problems are closely related through polynomial-
time reductions, assuming the generalised Riemann hypothesis.
We identify two classes of essentially equivalent problems. The first class
corresponds to the problem of computing the endomorphism ring of ori-
ented curves. The security of a large family of cryptosystems (such as
CSIDH) reduces to (and sometimes from) this class, for which there are
heuristic quantum algorithms running in subexponential time. The sec-
ond class corresponds to computing the endomorphism ring of orientable
curves. The security of essentially all isogeny-based cryptosystems re-
duces to (and sometimes from) this second class, for which the best
known algorithms are still exponential.
Some of our reductions not only generalise, but also strengthen previously
known results. For instance, it was known that in the particular case of
curves defined over Fp, the security of CSIDH reduces to the endomor-
phism ring problem in subexponential time. Our reductions imply that
the security of CSIDH is actually equivalent to the endomorphism ring
problem, under polynomial time reductions (circumventing arguments
that proved such reductions unlikely).

1 Introduction

We study two families of computational problems at the heart of isogeny-based
cryptography, and how they relate to each other: computing the endomorphism
ring of supersingular elliptic curves, and inverting the action of class groups on
oriented supersingular curves. On one hand, the problem of computing endomor-
phism rings is of foundational importance to the field: its presumed hardness is
necessary [GPST16,CPV20,FKM21] (and sometimes sufficient [CLG09,GPS20])
for the security of essentially all isogeny-based cryptosystems. On the other hand,
the action of ideal class groups on sets of elliptic curves induces presumably hard
inversion problems. This action, and the presumed hardness of its inversion, is
the fertile ground upon which many cryptosystems have been built — from
the early work of Couveignes [Cou06], to CSIDH [CLM+18] and its many vari-
ants [CD20,BKV19,CS21]. Thanks to the notion of orientation introduced by
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Colò and Kohel [CK20], it has recently become clear that such actions play a
ubiquitous role in isogeny-based cryptography. On one hand, orientations provide
a framework that directly generalises the family of CSIDH-like cryptosystems.
On the other hand, it has been identified [DDF+21] that even the security of
cryptosystems where group actions were not expected, such as SIDH [JD11]
and its variants, reduces to an action inversion problem, called the Uber isogeny
problem, opening a new cryptanalytic avenue.

1.1 Oriented endomorphism ring problems

Isogenies are morphisms between elliptic curves, and endomorphisms of an el-
liptic curve E are isogenies from E to itself. They form a ring, written End(E).
Given a supersingular elliptic curve E over Fp, the endomorphism ring problem
EndRing consists in computing a basis of End(E). This EndRing problem was
proved in [Wes22] (and heuristically since [EHL+18]) to be equivalent to the
problem of finding isogenies between supersingular elliptic curves, assuming the
generalised Riemann hypothesis. Let O be an order in a quadratic number field
K. An orientation is an embedding

ι : O ↪−→ End(E)

which cannot be extended to a superorder of O. We call (E, ι) an O-oriented
elliptic curve, and E is O-orientable. We introduce three oriented variants of the
endomorphism ring problem, in increasing order of hardness (precise definitions
are provided in Section 4):

– O-EndRing: given an O-oriented elliptic curve (E, ι), compute a basis of
End(E). It is presumably easier than EndRing since ι provides additional
information.

– EndRing|O: given an O-orientable elliptic curve E, compute a basis of
End(E). It is simply the restriction of EndRing to O-orientable inputs.

– O-EndRing∗: given an O-orientable E, compute a basis of End(E) together
with an O-orientation expressed in this basis.

1.2 Class group action problems

A key feature of O-orientations is that they induce a group action. Given an O-
oriented (E, ι), and an invertible O-ideal a, one can construct another O-oriented
elliptic curve a⋆ (E, ι) = (Ea, ιa), and an isogeny φa : E → Ea connecting them.
This construction induces a free action of the ideal class group Cl(O) on O-
oriented curves up to isomorphism. We define four variants of the problem of
inverting this group action (precise definitions are provided in Section 3):

– O-Vectorization: given two O-oriented elliptic curves (E, ι) and (E′, ι′),
find an ideal a such that E′ is isomorphic to Ea. The effective variant asks for
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O-EndRing∗

EndRing|OEndRing

O-EndRing

O-Uber

Effective O-Uber

O-Vectorization

Effective O-Vectorization O-DiffieHellman

Proposition 8

⋆ Corollary 4

Proposition 7

⋆ Theorem 2

S̃SO(p) = SS(p)

Corollary 1

if disc(O)2 < 4p

Theorem 3

Fig. 1. Arrows represent probabilistic polynomial time reductions in the length of the
instance (i.e., log p, log | disc(O)|, and the length of the provided O-orientations), and
for those marked by a star ⋆, in #(Cl(O)[2]), the size of the 2-torsion of the class group.
Arrows with no reference (thin or dotted) are trivial reductions. Thick arrows assume
that the factorisation of disc(O) is known. Dotted arrows assume the stated condition.
The “snake” arrow is a quantum reduction. SS(p) is the set of all supersingular elliptic
curves over Fp2 (up to isomorphism), and S̃SO(p) is the subset of O-orientable curves.
Non-trivial reductions assume the generalised Riemann hypothesis.

the isomorphism to preserve the orientation, and also requires a way to evalu-
ate the action of a on any other O-oriented curve. The vectorization terminol-
ogy comes from Couveignes’ work [Cou06]. The security of many cryptosys-
tems reduces to this problem, such as CSIDH [CLM+18], CSI-FiSh [BKV19],
CSURF [CD20], or generalisations to other orientations [CS21].
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– O-Uber: given an O-oriented elliptic curve (E, ι) and an O-orientable E′,
find an ideal a such that E′ is isomorphic to Ea. The effective variant also
requires a way to evaluate the action of a on any other O-oriented curve.
This Uber terminology was introduced in [DDF+21], where it was shown
that the security of many cryptosystems reduces to this problem, including
SIDH [JD11], OSIDH [CK20] and Séta [DDF+21].

1.3 Contribution

The main contribution of this article is the various reductions summarised in
Figure 1, under the generalised Riemann hypothesis. Some of these reductions
generalise and strengthen previously known results:

– The article [CPV20] was the first to investigate the relation between EndRing
and the vectorisation problem, in the particular case of curves defined over
Fp (i.e.,

√
−p ∈ O). They prove that knowledge of the endomorphism ring

of a CSIDH public key allows one to recover the ideal class of the secret
key. This surprising result, however, only implies a subexponential reduction
from breaking CSIDH to computing endomorphism rings, because it is not
easy to find a good ideal class representative of the key. In essence, they
prove a reduction from the vectorisation problem, but not from its effective
variant. They argue that this effectiveness seems hard to reach, because if
an efficient reduction could find good class representatives, then there would
be an efficient algorithm to compute discrete logarithms in class groups of
large discriminant. We circumvent this issue, proving in Section 6 that the
effective vectorisation problem (hence breaking CSIDH) does reduce to the
endomorphism ring problem in polynomial time. Our reductions not only ap-
ply to CSIDH or close variants restricted to Fp, but to arbitrary orientations,
including generalisations such as [CS21]. To reach this level of generality, we
introduce the notion of O-twists and prove that they enjoy similar proper-
ties to quadratic twists, and can be used to extend some of the techniques
introduced in [CPV20].

– Considering vectorisation as a group-action analog of the discrete logarithm
problem, there is a corresponding Diffie–Hellman analog, O-DiffieHellman
(sometimes called parallelisation). Properly instantiated, it corresponds to
the problem of recovering the shared secret in CSIDH. In [GPSV21], it
was proved that if the action of Cl(O) is efficiently computable, then the
(non-effective) O-Vectorization problem reduces to O-DiffieHellman
in quantum polynomial time. This result hit a similar wall as [CPV20]: the
action is only efficiently computable for hard-to-find good ideal class repre-
sentatives. Here again, our reductions bypass this obstacle, proving in Sec-
tion 7 that O-DiffieHellman is actually equivalent to O-Vectorization
(and to its effective variant, and to O-EndRing) under quantum polynomial
time reductions.
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Finally, we focus in Section 8 on the case where O is a non-maximal or-
der, proving reductions from our problems of interest to their a priori easier
counterpart for superorders (with smaller discriminants and class groups).

1.4 Notation

We denote by Z and Q the ring of integers and the field of rational numbers.
For any prime power q, we denote by Fq the finite field with q elements, and Fq

its algebraic closure. We write f = O(g) for the classic big O notation, which is
equivalent to g = Ω(f). The size of a set S is denoted by #S. Let a and b be
two integers. We write a | b if a divides b, and a || b if a | b and gcd(a, b/a) = 1.
All statements containing the mention (GRH) assume the generalised Riemann
hypothesis.

2 Preliminaries

In this section, we recall relevant notions related to quaternion algebras, super-
singular elliptic curves, their endomorphism rings, and orientations.

2.1 Quadratic fields and orders

Let K be a quadratic number field. We write α 7→ α for the conjugation, i.e.,
the unique non-trivial involution of K. Given any α ∈ K, we write its norm
N(α) = αα, and its trace Tr(α) = α + α. An order in K is a discrete subring
O ⊂ K such that K = QO. A generator of O is an element ω such that
O = Z[ω]. The ring of integers OK of K is the unique maximal order in K.
Given an order O, the (ideal) class group Cl(O) consists of the invertible ideals
of O modulo principal ideals. The class of an ideal a is denoted [a].

2.2 Quaternion algebras

To any prime number p, one can associate a quaternion algebra Bp,∞ defined as

Bp,∞ = Q+Q i+Q j +Q ij,

with the multiplication rules i2 = −q, j2 = −p and ji = −ij, where q is a
positive integer that depends on p. More precisely, the latter is given by

q =


1 if p ≡ 3 mod 4,

2 if p ≡ 5 mod 8,

qp if p ≡ 1 mod 8,

where qp is the smallest prime such that qp ≡ 3 mod 4 and
(

p
qp

)
= −1 (see

[Piz80]). Assuming GRH, it follows from [LO77] that qp = O((log p)2), which
can thus be computed in polynomial time in log p. For the general theory of
quaternion algebras, we refer the reader to [Vig06] or [Voi21].
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Conjugation, trace and norm. Let α = x1 + x2i + x3j + x4ij be a generic
element in Bp,∞. The algebra Bp,∞ has a canonical involution α 7→ α = x1 −
x2i− x3j − x4ij. It induces the reduced trace and the reduced norm

Trd(α) = α+ α = 2x1, and

Nrd(α) = αα = x21 + qx22 + p(x23 + qx24).

The latter is a positive definite quadratic map, which makes Bp,∞ a quadratic
space, and endows its finitely generated Z-submodules with a lattice structure.

Maximal orders. An order in Bp,∞ is a full-rank lattice that is also a subring.
It is maximal if it is not contained in any other order. For any full-rank lattice
Λ ⊂ Bp,∞, the left order and the right order of Λ are

OL(Λ) = {α ∈ Bp,∞ | αΛ ⊆ Λ} , and
OR(Λ) = {α ∈ Bp,∞ | Λα ⊆ Λ} .

Let O be an order. A lattice I ⊆ O is a left O-ideal if OI ⊆ I, or a right O-ideal
if IO ⊆ I. If O is a maximal order, and I is a left ideal in O, then OL(I) = O
and OR(I) is another maximal order. Given two maximal orders O1 and O2,
their connecting ideal is the ideal

I(O1,O2) = {α ∈ Bp,∞ | αO2α ⊆ [O2 : O1 ∩ O2]O1},

which satisfies OL(I(O1,O2)) = O1 and OR(I(O1,O2)) = O2. Let O be a max-
imal order. Two left O-ideals I and J are equivalent if there exists α ∈ Bp,∞
such that I = αJ . If I and J are equivalent, then OR(I) ∼= OR(J).

2.3 Elliptic curves

Recall that an elliptic curve is an abelian variety of dimension 1, isogenies are
non-trivial morphisms between them, and endomorphisms are isogenies from a
curve to itself. For a detailed reference on elliptic curves, we refer the reader
to [Sil86].

Isogenies and endomorphisms. The set of all isogenies from E to E′ (over the
algebraic closure of the field of definition), together with the trivial map of kernel
E, is written Hom(E,E′). It forms a Z-module for point-wise addition +. The
endomorphism ring End(E) of an elliptic curve E is the Z-module Hom(E,E)
together with the composition of maps ◦. We have an embedding Z ↪→ End(E) :
m 7→ [m], where [m] is the multiplication-by-m map. Dividing by m means
finding a preimage through [m], which in general is not unique.

The degree deg(φ) of an isogeny φ : E 7→ E′ is the smallest positive element
in Z∩(Hom(E′, E) ◦φ). There is a unique isogeny φ̂ such that φ̂ ◦φ = [deg(φ)],
called the dual of φ. The degree is an integral quadratic map; it thereby endows
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the Z-module Hom(E,E′) with the structure of a lattice, with associated bilinear
form

⟨φ,ψ⟩ = 1

2

(
φ̂ ◦ ψ + ψ̂ ◦ φ

)
.

If α ∈ End(E), we write E[α] = ker(α). We also write E[m] = ker([m]) for
m ∈ Z, and E[S] = ∩α∈SE[α] for S ⊆ End(E).

Efficient representation of isogenies. There are many ways to computa-
tionally represent isogenies. Rather that imposing a particular encoding, let us
specify the required properties. As in [Wes22], we say that an isogeny φ : E → E′

is given in an efficient representation if there is an algorithm to evaluate φ(P )
for any P ∈ E(Fpk) in time polynomial in the length of the representation of φ
and in k log(p). We also assume that an efficient representation of φ has length
Ω(log(deg(φ))). With these properties, the quadratic structure of Hom(E,E′)
is computationally available, thanks to the following lemma.

Lemma 1. Given φ,ψ ∈ Hom(E,E′) in efficient representation, one can com-
pute ⟨φ,ψ⟩ in time polynomial in the length of the representation of φ and ψ,
and in log p.

Proof. This is a straightforward generalisation of [EHL+18, Lemma 4]. ⊓⊔

Supersingular curves. Fix a prime number p. If E is an elliptic curve defined
over Fp, it is supersingular if and only if its endomorphism ring End(E) is
isomorphic to a maximal order in the quaternion algebra Bp,∞ (hence Bp,∞ ∼=
End(E) ⊗ Q). Up to Fp-isomorphism, all supersingular elliptic curves over Fp

are defined over Fp2 , and there are ⌊p/12⌋+ ε of them, with ε ∈ {0, 1, 2}.
To any isogeny φ : E1 → E2, one associates a left End(E1)-ideal Iφ =

Hom(E2, E1)φ,which satisfies End(E2) ∼= OR(Iφ). Reciprocally, given a left
End(E1)-ideal I, one can construct an isogeny φI : E1 → E2 of kernel E[I] =
∩α∈I ker(α) and degree Nrd(I). These two constructions are mutual inverses,
meaning that for any I and φ, we have IφI

= I and φIφ = φ (up to an isomor-
phism of the target).

Remark 1. If I and J are coprime to p, we have E[I] ⊆ E[J ] if and only if J ⊆ I.

Remark 2. An equivalent definition of supersingular is that E[pn] is trivial for
any n. Then, for any isogeny φ, the size of its kernel (i.e., its separable degree)
is the largest factor of deg(φ) coprime with p. In particular, given an ideal I, we
have that #E[I] is equal to the largest factor of N(I) coprime with p.

2.4 Orientations

Let K be a quadratic number field, with ring of integers OK , and let O be an
arbitrary order in K.
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Definition 1 (Orientation). A K-orientation on an elliptic curve E is an
embedding ι : K ↪→ End(E)⊗Q. It is an O-orientation if ι(O) = ι(K)∩End(E).
Such a pair (E, ι) is called an O-oriented elliptic curve, and we say that E is
O-orientable.

Note that O-orientions as defined above correspond to the primitive O-orientions
of [CK20]. If (E, ι) is an O-oriented elliptic curve, we will often consider ι as an
embedding of O into End(E) (which naturally extends to an embedding of K
into End(E)⊗Q). This relates to the notion of primitive embedding.

Definition 2. Given two lattices Λ1 and Λ2, an embedding ȷ : Λ1 ↪→ Λ2 is
primitive if the group Λ2/ȷ(Λ1) is torsion-free.

Then, one can equivalently define the notion of O-orientation as a primitive
embedding ι : O ↪→ End(E).

Given a K-oriented elliptic curve (E, ι), any isogeny φ : E → E′ induces a
K-orientation φ∗(ι) on E′ defined as

φ∗(ι)(α) = (φ ◦ ι(α) ◦ φ̂)⊗ 1

deg(φ)
.

From an oriented curve (E, ι), one can naturally define two others. First,
its twist (E, ι), defined by ι(α) = ι(α), further studied in Section 6.1. Second,
its Frobenius (E, ι)(p) = (E(p), (ϕp)∗(ι)), where ϕp : E → E(p) is the Frobenius
isogeny.

Definition 3 (Oriented isogeny). Given two K-oriented elliptic curves (E, ι)
and (E′, ι′), an isogeny φ : (E, ι) → (E′, ι′) is K-oriented if ι′ = φ∗(ι). If deg(φ)
is prime, ι is an O-orientation and ι′ an O′-orientation, then the isogeny is
horizontal when O = O′, ascending when O ⊊ O′, and descending when O ⊋ O′.
We say that an isogeny of composite degree is horizontal, ascending or descending
if it factors as prime degree isogenies all of that type.

We write SSO(p) the set of O-oriented supersingular elliptic curves over Fp

up to K-oriented isomorphism. We write (E, ι) ∼= (E′, ι′) if there is a K-oriented
isomorphism between them. Abusing notation, we often write (E, ι) ∈ SSO(p)
to mean that (E, ι) is a representative of an isomorphism class in SSO(p).

Proposition 1 ([Onu21, Proposition 3.2]). The set SSO(p) is not empty if
and only if p does not split in K and does not divide the conductor of O.

Throughout, we suppose that p does not split in K and does not divide the
conductor of O.

Encoding orientations. Computationally, an orientation is encoded by a gen-
erator ω of O (i.e., O = Z[ω]) together with an efficient representation of the
endomorphism ι(ω). We call this an efficient representation of ι.
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Volcanoes. The following classification of horizontal, ascending or descending
isogenies is commonly referred to as the volcano structure of oriented ℓ-isogeny
graphs. Let (E, ι) ∈ SSO(p), let ℓ ̸= p be a prime, and let ∆ be the discriminant
of O. Let

(
∆
ℓ

)
be the Legendre symbol. From [CK20], the K-oriented isogenies

of degree ℓ from (E, ι) are distributed as follows:

– There are ℓ−
(
∆
ℓ

)
descending isogenies,

– If O is maximal at ℓ, there are
(
∆
ℓ

)
+1 horizontal, and no ascending isogeny.

– If O is non-maximal at ℓ, there is no horizontal, and one ascending isogeny.

This result implies that each connected component of the K-oriented ℓ-isogeny
graph (with vertices SSO(p) and with edges for each isogeny of degree ℓ) consists
of a cycle of horizontal isogenies (called the surface, or the crater), to each vertex
of which is attached an infinite tree of vertical isogenies. The volcano terminology
refers to the shape of this graph.

3 Class groups acting on sets of elliptic curves

Fix an oriented curve (E, ι) ∈ SSO(p). An O-ideal a induces a subgroup

E[a] =
⋂
α∈a

ker(ι(α)),

and an isogeny φa : E → Ea of kernel E[a] and degree N(a) called the a-
multiplication. The target Ea is the a-transform of (E, ι). This construction
induces an action of O-ideals on the set SSO(p), defined by

a ⋆ (E, ι) = (Ea, (φa)∗(ι)),

which factors through Cl(O). This action, well understood for ordinary elliptic
curves with complex multiplication, was first studied in the context of oriented
supersingular curves in [CK20] and [Onu21].

Theorem 1 ([Onu21]). The action

Cl(O)× SSO(p) −→ SSO(p) : ([a], (E, ι)) 7−→ a ⋆ (E, ι)

is free and has at most two orbits. For any orbit A, and any (E, ι) ∈ SSO(p),
either (E, ι) ∈ A, or both (E, ι) and (E(p), ι(p)) are in A.

Proof. This theorem combines [Onu21, Proposition 3.3] and [Onu21, Theorem 3.4].
The statement about (E, ι) is from the proof of [Onu21, Proposition 3.3]. ⊓⊔

Computing the action. The image a⋆ (E, ι) can be computed in time polyno-
mial in the length of the encoding of (E, ι), in log(N(a)) and in the largest prime-
power factor of N(a). This is done by evaluating the action of ι(a) on E[N(a)] to
deduce E[a], as in [CK20]. Evaluating the induced orientation (φa)∗(ι) requires
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a division by deg(φa), which can be done in time polynomial in B if N(a) is
B-powersmooth (meaning that all its prime-power factors are smaller than B).
Yet, it should be noted that the efficiency of this representation degrades after
applying the action of several such ideals, say n, because their product may only
be Bn-powersmooth. This will not be an issue when only a constant number
of actions are applied in this way (as in our forthcoming reductions), or when
the endomorphism ring of the curves are known (in which case an efficient rep-
resentation of the orientation can be recomputed, that does not depend on the
ideal).

3.1 Computational problems

We now define two problems that translate whether or not the action is one-way.

Problem 1 (O-Vectorization). Given (E, ι), (E′, ι′) ∈ SSO(p), find an O-ideal
a such that E′ ∼= Ea.

Per Theorem 1, a solution a of O-Vectorization always exists since the iso-
morphism E′ ∼= Ea does not care about the orientation. The vectorization ter-
minology comes from Couveignes’ work [Cou06], even though proper use of this
terminology should require (E′, ι′) ∼= a⋆(E, ι). We will see that this modification
makes little difference, as O-Vectorization will turn out to be equivalent to
the following stronger problem.

Problem 2 (Effective O-Vectorization). Given three O-oriented supersin-
gular curves (E, ι), (E′, ι′), (F, ȷ) ∈ SSO(p), find an O-ideal a (or decide that it
does not exist) such that (E′, ι′) ∼= a ⋆ (E, ι), and an efficient representation of
φa : (F, ȷ) → a ⋆ (F, ȷ).

Now, a solution to Effective O-Vectorization does not necessarily exist,
since (E, ι) and (E′, ι′) could be in the two distincts orbits described in Theo-
rem 1. At first glance, the Effective O-Vectorization problem seems harder
than O-Vectorization for two reasons. First, an arbitrary ideal a is unlikely
to induce an efficient representation of φa. This has already proved to be a seri-
ous obstacle in the litterature [CPV20,GPSV21], where given an ideal class [a],
heavy work goes into finding a good representative of [a] by a smoothing step
which we do not know how to solve in polynomial time. Second, an isomorphism
E′ ∼= Ea does not imply that (E′, ι′) ∼= a ⋆ (E, ι), and the information lost may
be substantial as h(O) can be arbitrarily large while there are only approxi-
mately p/12 supersingular curves up to isomorphism. Despite these obstacles,
we will show that these two problems are equivalent, by showing they are both
equivalent to an oriented version of the endomorphism ring problem.

These two vectorisation problems are closely related to the following analog
of the Diffie-Hellman problem.

Problem 3 (O-DiffieHellman). Given an oriented curve (E, ι) ∈ SSO(p), and
its images a ⋆ (E, ι) and b ⋆ (E, ι) for the action of two unknown ideals a and b,
compute ab ⋆ (E, ι).
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In Couveignes’ terminology, this is the parallelisation problem. It is clear
that both problems O-Vectorization and O-DiffieHellman reduce to the
Effective O-Vectorization problem, and the converse reductions are the
object of Sections 5, 6 and 7.

Now, one may consider the same problems when no orientation ι′ for E′ is
provided. This modification seems to make the problems much harder, and this
presumed hardness (for large disc(O)) has been introduced in [DDF+21] as the
Uber isogeny assumption.

Problem 4 (O-Uber). Given (E, ι) ∈ SSO(p) and an O-orientable elliptic curve
E′, find an O-ideal a such that E′ ∼= Ea.

The original Uber isogeny assumption from [DDF+21] also asks for an effec-
tive way to apply the action of a, as in the following effective variant.

Problem 5 (Effective O-Uber). Given two O-oriented curves (E, ι), (F, ȷ) ∈
SSO(p) and an O-orientable curve E′, find an O-ideal a such that E′ ∼= Ea, and
an efficient representation of φa : (F, ȷ) → a ⋆ (F, ȷ).

The main interest for these Uber problems is that the security of most
isogeny based cryptosystems reduce to them [DDF+21, Section 5], even systems
such as SIDH [JD11] for which no class group action is immediately visible.
For instance, SIKEp434 [JAC+17] could be broken by solving an instance of
Effective O-Uber with O = Z+2n Z[

√
−1], for some n ≤ 217.

Remark 3. Complexities will often be expressed as a function of the length of
the input. Whenever the input contains an O-orientable elliptic curve over Fp2 ,
we assume that p and O are part of the input, so its length is always Ω(log p+
log |disc(O)|). For O-oriented curves, the length may be longer, depending on
the quality of the provided orientations.

3.2 Some known or simple algorithms

Let us briefly present algorithms to solve some of the problems introduced above.

Proposition 2. The Effective O-Uber problem can heuristically be solved
in expected time lO(1)|disc(O)|1/2, with l the length of the input.

Proof. This is the running time of an exhaustive search restricted to pow-
ersmooth ideals, with the estimate #(Cl(O)) = O(log(|disc(O)|)|disc(O)|1/2),
as discussed in [DDF+21, Section 5.3]. ⊓⊔

Proposition 3. The O-Vectorization problem can heuristically be solved in
expected time lO(1)|disc(O)|1/4, with l the length of the input.

Proof. This is the running time of the meet-in-the-middle approach, as described
for instance in [DG16,CLM+18], but using only powersmooth walks. ⊓⊔
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In the following, we use the classic notation

Lx(α) = exp
(
O
(
(log x)α(log log x)1−α

))
for subexponential complexities.

Proposition 4. The O-Vectorization problem can heuristically be solved in
quantum subexponential time lO(1)L| disc(O)|(1/2), with l the length of the input.

Proof. The O-Vectorization problem reduces to the hidden shift problem with
respect to the functions f, f ′ : Cl(O) → Fp2 defined by f([a]) = j(a ⋆ (E, ι)) and
f ′([a]) = j(a⋆ (E′, ι′)). It only remains to prove that the action can be evaluated
in quantum subexponential time, then apply Kuperberg’s algorithm [Kup05]. It
is tempting to simply adapt the method of [CJS14], but they find smooth class
representatives, when we need powersmooth class representatives. We take a
cruder, simpler, but heuristic route. One can randomize the class representative
of [a], until it has a powersmooth norm. The number of Lx(1/2)-powersmooth
numbers at most x is Lx(1/2) (see [CN00, Section 3.1]), so under the heuris-
tic assumption that norms of random class representatives behave like random
integers of the same size, we may find an Ld(1/2)-powersmooth representative
in time Ld(1/2), with d = disc(O). Its action can then be evaluated in time
Ld(1/2). ⊓⊔

4 Oriented versions of the endomorphism ring problem

4.1 The endomorphism ring problem

To define the endomorphism ring problem in its strongest form, we introduce the
notion of ε-basis, thereby unifying the two variants EndRing and MaxOrder
proved to be equivalent under the generalised Riemann hypothesis in [Wes22]
(and heuristically since [EHL+18]).

Definition 4 (ε-basis). Let ε : Bp,∞ → End(E)⊗Q be an isomorphism. Given
a lattice L ⊆ Bp,∞, an ε-basis of L is a pair (α, θ) where (αi)

rank(L)
i=1 is a basis of

L and θi = ε(αi). Abusing language, we also call (α, θ) an ε-basis of the image
lattice ε(L).

Remark 4. We will often talk about an ε-basis without specifying a priori an
isomorphism ε. The ε is then implicit, and when L has full rank, it is uniquely
determined by the ε-basis.

Encoding. Computationally, we suppose that elements in Bp,∞ are encoded as
vectors of rational numbers with respect to the basis (1, i, j, ij). We assume that
elements η⊗n−1 of End(E)⊗Q are encoded as pairs (η, n) where n is an integer
and η is an endomorphism in efficient representation.
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The endomorphism ring problem can be defined as either finding a basis of a
maximal order O of Bp,∞ isomorphic to End(E), or finding four endomorphisms
that generate End(E). Both have their own advantages. On one hand, knowledge
of the order O enables the use of powerful algorithms for orders in quaternion
algebras (notably, finding ideals connecting orders is much easier that finding
isogenies connecting elliptic curves [KLPT14]). On the other hand, an explicit
basis of End(E) provides actual endomorphisms that can be evaluated. It was
proved in [Wes22] that a basis of either O or End(E) can be transformed into an
ε-basis of End(E), assuming GRH. We therefore define the endomorphism ring
problem as follows.

Problem 6 (EndRing). Given a supersingular elliptic curve E over Fp2 , find an
ε-basis of End(E).

Proposition 5. The EndRing problem can heuristically be solved in expected
time (log p)O(1)p1/2.

Proof. This is the running time of the best known algorithms for EndRing, for
instance [DG16] and [EHL+20]. ⊓⊔

4.2 Oriented variants of the endomorphism ring problem

The EndRing problem can naturally be restricted to O-orientable curves, re-
sulting in the following problem.

Problem 7 (EndRing|O). Given an O-orientable E, find an ε-basis of End(E).

Now, if an orientation is provided, we obtain the following variant.

Problem 8 (O-EndRing). Given (E, ι) ∈ SSO(p), find an ε-basis of End(E).

One could require solutions to O-EndRing to be in some way compatible
with the orientation. It is unnecessary: as formalised in the following lemma, it
is actually easy to express a given orientation in terms of a given ε-basis.

Lemma 2. Given (E, ι) ∈ SSO(p) and an ε-basis of End(E), one can find an
embedding ȷ : O ↪→ Bp,∞ such that ε ◦ ȷ = ι in time polynomial in the length of
the input.

Proof. We can compute scalar products between endomorphisms with Lemma 1,
so we can express the orientation ι in terms of the ε-basis. ⊓⊔

Finally, we consider the seemingly harder problem of computing the endo-
morphism ring and an orientation.

Problem 9 (O-EndRing∗). Given a supersingular O-orientable curve E, find
an ε-basis of End(E) and an embedding ȷ : O ↪→ Bp,∞ such that ε ◦ ȷ is an
O-orientation.

Clearly, O-EndRing reduces to EndRing|O, which reduces to O-EndRing∗.
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4.3 Computing an orientation from the endomorphism ring

While EndRing|O reduces to O-EndRing∗, the converse boils down to the
following question.

Question 1. Given an O-orientable curve E and an ε-basis of its endomorphism
ring, can one compute an O-orientation of E in probabilistic polynomial time in
log(p) and log |disc(O)|?

We only provide a positive answer to this question when the discriminant of
the order O is small enough, in Proposition 6. The general case may be more
difficult.

Proposition 6. Given an O-orientable curve E and an ε-basis of its endomor-
phism ring, if |disc(O)| < 2p1/2 − 1, then one can compute an O-orientation of
E in probabilistic polynomial time in log(p).

Proof. Let ι be an O-orientation of E. Let d = disc(O). Let ω be a Minkowski
reduced generator of O (of trace either 0 or 1). Then, we have Nrd(ω) ≤ (d+1)/4.
For any β ∈ End(E), we have |disc(Z[β])| = 4Nrd(β) − Trd(β)2 ≤ 4Nrd(β).
Also, for any β ∈ End(E) \ ι(O), it follows from [Kan89, Theorem 2’] that
disc(O) disc(Z[β]) ≥ 4p, hence

Nrd(β) ≥ p

d
>
d+ 1

4
≥ Nrd(ω).

This proves that the shortest vector in End(E) \Z is a generator of ι(O), which
can be recovered in polynomial time. Expressing this generator as a linear com-
bination of the ε-basis of End(E) provides an efficient representation of the
orientation ι. ⊓⊔

Proposition 6 has the following immediate consequence.

Corollary 1. If |disc(O)| < 2p1/2− 1, then O-EndRing∗ and EndRing|O are
equivalent.

5 Endomorphism rings from orientations

In this section, we prove reductions from the family of endomorphism ring prob-
lems to the family of vectorisation problems. A key ingredient is the constructive
Deuring correspondence in the ‘order-to-curve’ direction, Lemma 3, a result first
heuristically proved in [EHL+18, Proposition 13]. Observing that it is easy to
produce orders with a primitive embedding of O, we deduce in Lemma 4 that
we can construct O-oriented elliptic curves of known endomorphism ring, to be
used as starting points for vectorisation problems.

Lemma 3 (GRH). There is an algorithm that given p and a maximal order
O ⊂ Bp,∞, returns an elliptic curve E such that End(E) ∼= O together with an
ε-basis of End(E), and runs in time polynomial in log(p) and the length of the
basis of O.
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Proof. From [EHL+18, Proposition 13] (but using [Wes22] instead of [KLPT14]
to get rid of the heuristic assumptions), we get an elliptic curve E such that
End(E) ∼= O. From [Wes22, Algorithm 6], we deduce an ε-basis of End(E). ⊓⊔

Definition 5. Let O be a maximal order in an algebra B ∼= Bp,∞, and ȷ :
O ↪→ O a primitive embedding. Let I be a left O-ideal of prime norm ℓ, and let
O′ = OR(I)∩ (ȷ(O)⊗Q). The ideal I is ȷ-descending if O′ ⊊ ȷ(O), ȷ-horizontal
if O′ = ȷ(O), and ȷ-ascending if O′ ⊋ ȷ(O).

Remark 5. It immediately follows that an O-oriented isogeny φ : (E, ι) → (E, ι′)
of prime degree is descending (respectively horizontal or ascending) if and only if
the kernel ideal Iφ = {α ∈ End(E)| kerφ ⊆ kerα} is ι-descending (respectively
ι-horizontal or ι-ascending). In particular, given O and ȷ, almost all ideals of
norm ℓ are ȷ-descending, with at most two exceptions [Onu21, Proposition 4.1].
Therefore, a ȷ-descending ideal can be found in time polynomial in log(ℓ) by
listing three ideals of norm ℓ, and testing them using [Rón92, Theorem 3.2].

Lemma 4 (GRH). Given O and the factorisation of its discriminant, one can
find some O-oriented curve (E, ι) ∈ SSO(p) together with an ε-basis of End(E)
in probabilistic polynomial time in log(p) and log(|disc(O)|).

Remark 6. There is a heuristic algorithm [LB20, Algorithm 1] that solves this
task in the case where O is maximal. Our approach in the proof below is different,
assumes only GRH, and avoids potentially hard factorisations.

Proof. We start by computing some arbitrary maximal order O0 in Bp,∞ (for
instance, a special order as in [KLPT14, Section 2.3]). Let K be the quadratic
field containing O, with ring of integers OK . Let ωK be a Minkowski reduced
generator of OK , with minimal polynomial x2 − tx + n. To find a quaternion
ω ∈ Bp,∞ with the same minimal polynomial, solve

(t/2)2 + qb2 + p(c2 + qd2) = n

for b, c, d ∈ Q with [Sim06] (using the factorisation of disc(O)). Let ω = t/2+bi+
cj+dij, which has same norm and trace as ωK , hence same minimal polynomial.
Let a be the smallest integer such that aω ∈ O0. Let I = O0ωa+O0a. We have
Iω ⊆ I, so ω ∈ OR(I), and OR(I) can be computed with [Rón92, Theorem 3.2].
The corresponding embedding ȷ : OK ↪→ OR(I) : ωK 7→ ω is primitive since OK

is maximal, and it remains to descend to O. Let c be the conductor of O. For
any prime power ℓk || c,
– let J̃ℓ be any ȷ-descending OR(I)-ideal of norm ℓ (see Remark 5), and
– let Jℓ ⊆ J̃ℓ an ideal of norm ℓk such that Jℓ ̸⊆ ℓOR(I).

By construction, each Jℓ is the kernel ideal of a cyclic isogeny of norm ℓk whose
first step (hence all steps, because of the volcano structure) is descending. The
cyclicity of each Jℓ comes from Jℓ ̸⊆ ℓOR(I) and Remark 1. Then, J = ∩ℓ|cJℓ is
the kernel ideal of a descending isogeny of degree c, hence O ↪→ OR(J) : cωK 7→
cω is a primitive embedding. So we define O = OR(J). Applying Lemma 3, we
can construct E with an ε-basis of End(E) ∼= O. The orientation ι is provided by
the induced efficient representation of the endomorphism ι(cωK) = ε(cω). ⊓⊔
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Proposition 7 (GRH). Given the factorisation of disc(O), the O-EndRing
problem reduces to O-Vectorization in probabilistic polynomial time in the
length of the instance.

Proof. Suppose we are given an instance (E, ι) ∈ SSO(p) of O-EndRing. Find
(E′, ι′) ∈ SSO(p) together with an ε-basis of O′ ∼= End(E′) using Lemma 4. Solv-
ing O-Vectorization, find an O-ideal a such that E = E′a. Then, the kernel
ideal I = O′ · ι′(a) of φa : E′ → E is a connecting ideal between O′ ∼= End(E′)
and OR(I) ∼= End(E). The right-order OR(I) can be computed with [Rón92,
Theorem 3.2], thereby solving O-EndRing for (E, ι). ⊓⊔

Proposition 8 (GRH). Given the factorisation of disc(O), O-EndRing∗ re-
duces to O-Uber in probabilistic polynomial time in the length of the instance.

Proof. We proceed as in Proposition 7, except that no O-orientation of E is
provided, which still allows us to apply O-Uber instead of O-Vectorization.

⊓⊔

6 Reducing vectorisation to endomorphism ring

It is shown in [CPV20] that in the particular case of curves defined over Fp,
and

√
−p ∈ O, solving the endomorphism ring problem allows one to solve the

O-Vectorization problem. They note however that in general, the resulting
ideal does not necessarily have a smooth norm, so it is hard to compute its
action. They conclude that this approach necessitates an expensive smoothing
step, hence only provides a sub-exponential reduction of the security of CSIDH
to the endomorphism ring problem. A priori, their methods seem very specific
to the CSIDH setting, exploiting the action of Frobenius and quadratic twists.
Introducing an appropriate generalisation of twisting, we prove in this section
that O-Vectorization reduces to O-EndRing in all generality. Pushing the
results farther, we circumvent the smoothness obstruction by proving polynomial
time reductions between these problems and Effective O-Vectorization,
observing that the action of non-smooth ideals can be efficiently evaluated on
elliptic curves of known endomorphism ring. The idea that endomorphisms allow
one to evaluate non-smooth isogenies had been observed in [FKM21], and the
following proposition extends it to the action of ideals on oriented curves.

Proposition 9 (GRH). Given (E, ι) ∈ SSO(p), an ε-basis of End(E), and
an O-ideal a, one can compute a ⋆ (E, ι) and an efficient representation of φa in
probabilistic polynomial time in the length of the input (i.e., log p, log(|disc(O)|),
log(N(a)) and the length of ι and of the ε-basis of End(E)).

Proof. We are given an isomorphism ε : O → End(E). Let ȷ : O → O such
that ε ◦ ȷ = ι (see Lemma 2). Let I = Oȷ(a), and use [Wes22, Theorem 6.4]
to find α ∈ I such that J = Iα/N(a) has powersmooth norm. Then, J is
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the kernel ideal of an efficiently computable isogeny φJ (for instance by adapt-
ing [GPS20, Lemma 5] to the provided ε-basis instead of the special O0

1). We
have φa ◦ [Nrd(J)] = φJ ◦ ε(α), so Ea = φJ(E). It only remains to compute the
O-orientation on Ea, i.e., an efficient representation of ((φa)∗(ι))(ω) for some
generator ω of O. We have

((φa)∗(ι))(ω) = (φa ◦ ι(ω)◦ φ̂a)/N(a) = (φJ ◦ε(αȷ(ω)α)◦ φ̂J)/(Nrd(a)Nrd(J)2).

Now, since α ∈ Oȷ(a), we have αȷ(ω)α ∈ ON(a). Let δ = (αȷ(ω)α)/N(a), so

((φa)∗(ι))(ω) = (φJ ◦ ε(δ) ◦ φ̂J)/Nrd(J)2.

One can compute the quaternion δ ∈ O, express it as a linear combination of the
ε-basis, and deduce an efficient representation of the numerator γ = φJ◦ε(δ)◦φ̂J .
One can evaluate ((φa)∗(ι))(ω) at any input point with [EHL+18, Algorithm 5],
in polynomial time because the denominator Nrd(J)2 is powersmooth. Therefore
we have an efficient representation of the orientation (φa)∗(ι). ⊓⊔

6.1 O-twists, a generalisation of quadratic twists

We now introduce the notion of O-twists, that enjoys properties similar to
quadratic twists.

Definition 6 (O-twist). We define the O-twisting involution as the map τ :
SSO(p) → SSO(p) defined as τ(E, ι) = (E, ι), where ι(α) = ι(α). The oriented
curve τ(E, ι) is the O-twist of (E, ι).

Lemma 5. For any (E, ι) ∈ SSO(p) and O-ideal a, we have τ(a ⋆ (E, ι)) =
a ⋆ τ(E, ι).

Proof. It follows from the fact that ∩α∈a ker(ι(α)) = ∩α∈a ker(ι(α)). ⊓⊔

Recall that sets of isogenies Hom(E,E′) (and in particular End(E)) are lat-
tices. They have a quadratic structure, hence an associated notion of orthogo-
nality. Given S ⊆ Hom(E,E′), we write S⊥ ⊆ Hom(E,E′) the set of isogenies
orthogonal to all elements of S.

The following lemma can be seen as an analog of [CPV20, Lemma 11].

Lemma 6. Let (E, ι) ∈ SSO(p). For any non-zero θ ∈ End(E), we have θ ∈
ι(O)⊥ if and only if θ∗(ι) = ι.

Proof. First suppose θ ∈ ι(O)⊥. Since 1 ∈ O, we have θ ∈ 1⊥, i.e., θ = −θ̂.
Then, for any α ∈ O, we have 0 = θ ◦ ι(α)+ ι(α) ◦ θ̂ = θ ◦ ι(α)− ι(α) ◦ θ. We get

θ∗(ι)(α) = (θ ◦ ι(α) ◦ θ̂)⊗ 1

deg(θ)
= (ι(α) ◦ θ ◦ θ̂)⊗ 1

deg(θ)
= ι(α),

1 Alternatively, one can observe that the treatment of O0 in [GPS20, Lemma 5] is
sufficient. Indeed, the ideal J is constructed in [Wes22, Theorem 6.4] as a composition
of two O0-ideals, which can each be translated to an isogeny via [GPS20, Lemma 5].
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which proves the first implication. For the converse, suppose that θ∗(ι) = ι.
Then, θ ◦ ι(α) = ι(α) ◦ θ for any α ∈ O. Let ω ∈ O be a non-zero element of
trace 0, so ω = −ω. Write θ = x + θ0 where x ∈ Q and θ̂0 = −θ0 (concretely,
x = Trd(θ)/2 and θ0 = (θ − θ̂)/2). Then,

[x] ◦ ι(ω) + θ0 ◦ ι(ω) = θ ◦ ι(ω) = ι(ω) ◦ θ = −ι(ω) ◦ θ
= −ι(ω) ◦ [x]− ι(ω) ◦ θ0,

hence [2x] ◦ ι(ω) = Trd(θ̂0 ◦ ι(ω)) ∈ Q, which implies x = 0 because ι(ω) ̸∈
Q. This proves θ = θ0, which is orthogonal to 1. The above also implies that
θ ◦ ι(ω) = −ι(ω) ◦ θ, which means that θ is orthogonal to ι(ω), so θ ∈ ι(O)⊥. ⊓⊔

An issue with O-twisting is that it might not preserve Cl(O)-orbits. We
introduce the following involution to resolve this.

Definition 7. We define the involution τp : SSO(p) → SSO(p) as τp(E, ι) =
(E, ι)(p), with (E, ι)(p) = (E(p), (ϕp)∗(ι)) where ϕp : E → E(p) is the Frobenius
isogeny.

Proposition 10. There exists an ideal a such that τp(E, ι) = a ⋆ (E, ι).

Proof. The only troublesome case is if SSO(p) partitions into two Cl(O)-orbits
A and B. In that case, both τ and the Frobenius involution interchange A and
B (Theorem 1). It follows that τp stabilizes A and B. ⊓⊔

It still enjoys some of the useful properties of O-twisting.

Lemma 7. We have τp(a ⋆ (E, ι)) = a ⋆ τp(E, ι).

Proof. It follows from Lemma 5 and the fact that a⋆(E, ι)(p) = (a⋆(E, ι))(p). ⊓⊔

Corollary 2. An isogeny φ : (E, ι) → τp(E, ι) is K-oriented if and only if
φ ∈ (ϕp ◦ ι(O))⊥, where ϕp : E → E(p) is the Frobenius isogeny.

Proof. By the definition of τp, the isogeny φ is K-oriented if and only if φ∗(ι) =

(ϕp)∗(ι). The latter is equivalent to (ϕ̂p)∗(φ∗(ι)) = (ϕ̂p)∗((ϕp)∗(ι)). Since

(ϕ̂p)∗(φ∗(ι)) = (ϕ̂p ◦ φ)∗(ι), and

(ϕ̂p)∗((ϕp)∗(ι)) = [p]∗(ι) = ι,

we deduce that (ϕ̂p ◦ φ)∗(ι) = ι. From Lemma 6, this is equivalent to ϕ̂p ◦ φ ∈
ι(O)⊥, i.e., φ ∈ ϕp ◦ (ι(O))

⊥
= (ϕp ◦ ι(O))

⊥. ⊓⊔

Corollary 3. The integral lattice (ϕp◦ι(O))⊥ ⊂ Hom(E,E(p)) is primitive (i.e.,
the greatest common divisor of the integers represented by the associated integral
quadratic form is 1).

Proof. There exist two coprime ideals a and b such that τp(E, ι) = a ⋆ (E, ι) =
b ⋆ (E, ι) (see for instance [Cox11, Corollary 7.17]). We deduce from Corollary 2
that there are two lattice vectors φa, φb ∈ (ϕp ◦ ι(O))⊥ ⊂ Hom(E,E(p)) of
coprime norm. ⊓⊔
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6.2 Vectorisation problems from endomorphism rings

We now prove that vectorisation problems reduce to endomorphism ring prob-
lems, with a strategy similar to that of [CPV20].

Lemma 8. Let (E, ι) ∈ SSO(p), a non-zero O-ideal a, and a left End(E)-ideal
I such that E[a] = E[I]. Then, I ∩ ι(O) = ι(pka) for some k ∈ Z, where p is the
prime ideal above p.

Proof. This lemma is a generalisation of [CPV20, Lemma 14], from which we
adapt the proof. Write a = pib where b is coprime to p. Similarly, write I = Ip∩J ,
where Ip = I + pvalp(Nrd(I))O is the p-part of I (i.e., Nrd(Ip) is a power of p),
and Nrd(J) is not divisible by p. Following the observation of Remark 2, we have
#E[a] = #E[b] and #E[I] = #E[J ], hence

E[b] = E[a] = E[I] = E[J ].

From the correspondence between ideals coprime to p and kernels of separable
isogenies, we have

b = {α ∈ O | E[b] ⊆ ker(ι(α))}, and
J = {θ ∈ End(E) | E[J ] ⊆ ker(θ)}.

Together with E[b] = E[J ], we deduce that

J ∩ ι(O) = {θ ∈ ι(O) | E[b] ⊆ ker(θ)} = ι(b).

There exists j such that Ip ∩ ι(O) = ι(pj), hence I ∩ ι(O) = ι(pj−ia), proving
the lemma. ⊓⊔

Lemma 9. A separable K-oriented isogeny of prime degree is horizontal if and
only if it is of the form ψ◦φa where ψ is a K-isomorphism and a is an invertible
ideal in an order of K.

Proof. Let φ : (E, ι) → (E′, ι′) be a separableK-oriented isogeny of prime degree
ℓ. It can be written as φ = ψ ◦ φ0 where φ0 : E → E/ ker(φ) is the canonical
projection, and ψ is an isomorphism. Suppose it is horizontal. Then, its kernel
is of the form E[a] with N(a) = ℓ, so φ0 = φa. We have

ψ∗((φa)∗(ι)) = (ψφa)∗(ι) = φ∗(ι) = ι′,

so ψ : a ⋆ (E, ι) → (E′, ι′) is a K-isomorphism. The converse is clear. ⊓⊔

Proposition 11 (GRH). Given (E, ι) ∈ SSO(p) and an ε-basis of End(E),
one can find a such that τp(E, ι) = a ⋆ (E, ι) in probabilistic polynomial time in
the length of the input.
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Proof. From Corollary 3, the lattice Λ = (ϕp◦ι(O))⊥∩Hom(E,E(p)) is primitive,
so one can find φ ∈ Λ of prime degree coprime to p and to the conductor of O
(for instance with the algorithm [Wes22, Proposition 3.6], which ensures that
deg(φ) is a large enough prime, assuming GRH). The algorithm returns

a = ι−1((Hom(E(p), E) ◦ φ) ∩ ι(O)).

It remains to show that this output is correct. From Corollary 2, we have that
φ : (E, ι) → τp(E, ι) is an O-isogeny, and it is horizontal. Applying Lemma 9,
the isogeny φ is induced by an invertible O-ideal b. We have E[b] = ker(φ) =
E[(Hom(E(p), E) ◦ φ], so from Lemma 8, we have ι(a) = ι(pkb) for some k ∈ Z.
But N(b) = deg(φ) is coprime with p, and b ⊆ a, so k = 0. Therefore a = b,
hence τp(E, ι) = b ⋆ (E, ι) = a ⋆ (E, ι). ⊓⊔

Lemma 10. Suppose τp(E1, ι1) = a ⋆ (E1, ι1) and τp(E2, ι2) = b ⋆ (E2, ι2). Any
ideal c such that c ⋆ (E1, ι1) = (E2, ι2) satisfies [c2] = [ab].

Proof. We have the chain of equalities

ba ⋆ (E1, ι1) = b ⋆ τp(E1, ι1) = b ⋆ τp(c ⋆ (E2, ι2))

= cb ⋆ τp(E2, ι2) = c ⋆ (E2, ι2)

= c2 ⋆ (E1, ι1),

and we conclude from the fact that the action of the class group is free. ⊓⊔

Theorem 2 (GRH, Effective O-Vectorization reduces to O-EndRing).
Given O and the factorisation of its discriminant, three O-oriented elliptic

curves (E, ι), (E′, ι′), (F, ȷ) ∈ SSO(p), together with ε-bases of End(E), End(E′)
and End(F ), one can compute (or assert that it does not exist) an O-ideal c such
that (E′, ι′) = c ⋆ (E, ι) and an efficient representation of φc : (F, ȷ) → c ⋆ (F, ȷ)
in probabilistic polynomial time in the length of the input and in #(Cl(O)[2]).

Proof. Suppose we are given (E, ι), (E′, ι′) ∈ SSO(p), together with End(E)
and End(E′). We can compute a and b such that τp(E, ι) = a ⋆ (E, ι) and
τp(E

′, ι′) = b ⋆ (E′, ι′) with Proposition 11. From Lemma 10, the ideal class of c
is one of the #(Cl(O)[2]) square roots of [ab]. They can be enumerated follow-
ing [BS96, Section 6], and each of them can efficiently be checked for correctness
with Propositon 9. Once the ideal c has been found, compute an efficient repre-
sentation of φc : (F, ȷ) → c ⋆ (F, ȷ) with Proposition 9. ⊓⊔

Corollary 4 (GRH). Given the factorisation of disc(O), Effective O-Uber
reduces to O-EndRing∗ in probabilistic polynomial time in the length of the
instance and in #(Cl(O)[2]).

Proof. Suppose we are given (E, ι), (F, ȷ) ∈ SSO(p) and an O-orientable elliptic
curve E′. Solving O-EndRing∗, one can find ε-bases of End(E), End(F ) and
End(E′), and an O-orientation ι′ of E′. The result follows from Theorem 2. ⊓⊔
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7 The oriented Diffie-Hellman problem

In this section, we study the relation of O-DiffieHellman with other O-
oriented problems, proving that it is essentially quantum-equivalent to the prob-
lem O-EndRing. First, we have the following simple reduction from the problem
O-DiffieHellman to Effective O-Vectorization.

Proposition 12. O-DiffieHellman reduces to Effective O-Vectorization
in probabilistic polynomial time in the length of the instance.

Proof. Suppose we are given an oriented curve (E, ι) ∈ SSO(p), and its images
a ⋆ (E, ι) and b ⋆ (E, ι). Solving Effective O-Vectorization, one can recover
the class of a, and apply its action on b⋆(E, ι), thereby obtaining (ab)⋆(E, ι). ⊓⊔

Now, it remains to prove that the Effective O-Vectorization problem
reduces to O-DiffieHellman. In [GPSV21], it was proved that if the action
of Cl(O) is efficiently computable, then (non-effective) O-Vectorization re-
duces to O-DiffieHellman in quantum polynomial time. Unfortunately, the
action of Cl(O) is not efficiently computable in general, since only the action
of smooth class representatives can be computed efficiently. Therefore the re-
duction does not run in polynomial time, and it does not apply to the ef-
fective variant of O-Vectorization. We resolve both limitations. First, we
prove that the O-Vectorization problem does reduce to O-DiffieHellman
in quantum polynomial time because an oracle for O-DiffieHellman pro-
vides an efficient way to evaluate the group action (by a trick similar to what
is done in [GPSV21, Lemma 1]). Second, Proposition 7 and Theorem 2 im-
mediately enhance the reduction from O-Vectorization to a reduction from
Effective O-Vectorization.

Theorem 3 (GRH). O-Vectorization reduces to O-DiffieHellman in
quantum polynomial time in the length of the instance.

Proof. This is essentially an application of a generalisation of Shor’s algorithm
for the discrete logarithm problem [Sho97], with the observation that an oracle
for O-DiffieHellman makes the implicit group structure of a Cl(O)-orbit effi-
ciently computable. More precisely, let (E, ι) ∈ SSO(p), and (E′, ι′) = a ⋆ (E, ι)
be an instance of O-Vectorization. From [Bac90], assuming GRH, there is a
bound B polynomial in log(disc(O)) such that B = {p | N(p) < B is prime} is
a generating set of the group Cl(O). Let

f : ZB ×Z −→ SSO(p)

((ep)p, k) 7−→

(
ak ·

∏
p

pep

)
⋆ (E, ι).

We prove below that one can evaluate f in quantum polynomial time. Sup-
pose we also have an efficiently computable injective function enc : SSO(p) →
{0, 1}∗. Then, solving the Abelian hidden subgroup problem (see [Mos08]) for
enc ◦ f leads to a vector (ep)p such that a ∼

∏
p p

ep . One can then return any
ideal in the class of

∏
p p

ep (thereby solving the O-Vectorization instance).
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Unique encoding of oriented curves. We now define the function enc. Any input
(F, ȷ) ∈ SSO(p) is assumed to be in efficient representation; the issue is that
this representation is not unique. Let ω be a Minkowski-reduced generator of O.
To find a unique encoding enc(F, ȷ), one can first turn F into some canonical
form, such as Fcan : y2 + xy = x3 − (36x + 1)/(j(F ) − 1728) [Sil86, page 47].
For ease of exposition, assume that all curves under consideration are already
in canonical form F = Fcan. From there, one can, in a deterministic way, find a
point P ∈ F of order larger than 4N(ω). Since (F, ȷ) is in efficient representation,
one can compute Q = ι(ω)(P ) in polynomial time. The triple (F, P,Q) is a
unique encoding of the K-isomorphism class2 of (F, ȷ). Indeed, suppose that
(F, ȷ) and (F, ȷ′) are both encoded as (F, P,Q). Let α = ȷ(ω) − ȷ′(ω). We have
α(P ) = Q−Q = 0, so if α ̸= 0, we get

4N(ω) < ord(P ) ≤ deg(α) ≤
(
deg(ȷ(ω))1/2 + deg(ȷ′(ω))1/2

)2
= 4N(ω),

a contradiction, so α = 0 and ȷ(ω) = ȷ′(ω).

Evaluating f . It remains to prove that f can indeed be computed in polynomial
time. This is only feasible thanks to the O-DiffieHellman oracle O, which
makes the implicit group multiplication ⊙ on the orbit Cl(O) ⋆ (E, ι) efficiently
computable, as

(b ⋆ (E, ι))⊙ (c ⋆ (E, ι)) = (bc) ⋆ (E, ι) = O((E, ι), b ⋆ (E, ι), c ⋆ (E, ι)).

Therefore, given any k ≥ 0 and b ⋆ (E, ι), one can compute bk ⋆ (E, ι) = (b ⋆
(E, ι))⊙k by square-and-multiply. Then, for any (ep)p ∈ ZB

≥0 and k ≥ 0, one can
efficiently compute

f((ep)p, k) =

(⊙
p

(p ⋆ (E, ι))⊙ep

)
⊙ (E′, ι′)⊙k,

given the oriented curves p ⋆ (E, ι). Since each p has small norm, these p ⋆ (E, ι)
can be computed in polynomial time. To deal with negative exponents, we note
that the class number h(O) is computable in quantum polynomial time [BS16],
so all exponents can be reduced modulo h(O). ⊓⊔

Corollary 5 (GRH). The problem CSIDH-DiffieHellman of recovering
CSIDH shared secrets reduces to the problem EndRingFp

of computing the full
endomorphism ring of supersingular elliptic curves defined over Fp, under a
probabilistic polynomial time reduction in log p. Conversely, EndRingFp reduces
to CSIDH-DiffieHellman in quantum polynomial time in log p.

Proof. The problem CSIDH-DiffieHellman is equal to O-DiffieHellman
for some order O containing

√
−p. There are at most two possibilities for O:

2 In the rare case where F has non-trivial automorphisms {σ}, we have that (F, σ∗ι)
are all K-isomorphic, so one should replace Q with the set {(σ∗ι)(ω)(P )}.
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either Z[
√
−p] or Z[(1+

√
−p)/2]. The latter is only possible when p ≡ 3 mod 4.

They differ by an index 2, and correspond to CSIDH on the floor or on the surface
— see CSURF [CD20].

In either case, for such an order O, we now prove that EndRingO reduces to
EndRingFp

. Let E be an EndRingO-instance. Since E is O-orientable, there
exists α ∈ End(E) of degree p. Since E is supersingular, α is purely inseparable,
so it factors as α = β ◦ϕEp where ϕEp : E → E(p) is the Frobenius and β : E(p) →
E is an isomorphism. This proves that E ∼= E(p), hence j(E) ∈ Fp and one can
compute an isomorphism γ : E → E′ to a curve E′ defined over Fp. Therefore,
the EndRingO-instance E reduces to the EndRingFp -instance E′.

Finally, we prove that EndRingFp reduces to O-EndRing. If E is defined
over Fp, then either ι :

√
−p → ϕEp is an O-orientation on E, or there exists

an isogeny φ : E → E′ of degree 2 such that φ∗(ι) is an O-orientation on E′

(see [DG16, Theorem 2.7]). So EndRingFp
for E reduces to O-EndRing either

for E or for one of its three 2-neighbours.
These new reductions at hand, the corollary follows from the other reductions

summarised in Figure 1, given that the factorisation of disc(O) is either −p or
−4p, and from genus theory, #(Cl(O)[2]) ≤ 2. ⊓⊔

8 The case of non-maximal orders

The OSIDH cryptosystem [CK20] exploits elliptic curves oriented by an order
of the form Z+ℓeO, where ℓ is a small prime, and O has small discriminant. It
is observed however that with such parameters, the (Z+ℓeO)-Vectorization
problem is not hard, hence it would be unsafe for the protocol to provide full
efficient encodings of (Z+ℓeO)-orientations. In this section, we generalise this
fact and study its consequences for relevant variants of the endomorphism ring
problem.

Lemma 11. Let c be a positive integer. Given (E, ι) ∈ SSZ+cO(p) in efficient
representation, one can compute the kernel of an isogeny φ : E → E′ of degree c
such that φ∗(ι) is an O-orientation of E′ in probabilistic polynomial time in the
length of the input, the largest prime factor of c, and, for each ℓe || c, the degree
of the extension of Fp over which E[ℓe] is defined.

Proof. Let φ : (E, ι) → (E′, ι′) be the unique ascending K-isogeny of degree c,
where ι′ = φ∗(ι) is an O-orientation. We are given a generator ω of Z+cO and
an efficient representation of ι(ω). The generator is of the form ω = a + cω0

where ω0 is a generator of O and without loss of generality, a = 0. We have

ι(ω) = (φ̂∗(ι
′))(ω) =

φ̂ ◦ ι′(ω) ◦ φ
c

= φ̂ ◦ ι′(ω0) ◦ φ.

It implies ker(φ) ⊆ ker(ι(ω)). Now ker(ι(ω)) is cyclic (otherwise ι(ω) would
be divisible by an integer, hence ι would not be a primitive embedding), so
ker(φ) = ker(ι(ω)) ∩ E[c] = ∩ℓe||c(ker(ι(ω)) ∩ E[ℓe]) can be recovered in time
polynomial in the largest prime factor of c, and, for each ℓe || c, in the degree of
the extension of Fp over which E[ℓe] is defined. ⊓⊔
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In particular, if c is smooth and E[c] is defined over a small extension of Fp,
given (E, ι) ∈ SSZ+cO(p), it is easy to find the unique isogeny ascending to an O-
orientable curve. This is the crux of so-called torsion point attacks on SIDH-like
cryptosystems [Pet17,KMP+21], which can be reinterpreted as an attempt to
recover a (Z+cO)-orientation from some information on the action of isogenies
on torsion points, and some carefully chosen O.

Lemma 12 (GRH). Given the kernel of an isogeny φ : E → E′, and an ε-basis
of End(E), one can compute an ε-basis of End(E′) in probabilistic polynomial
time in the length of the input and the largest prime factor of deg(φ).

Proof. This statement seems folklore; we give a proof for completeness. Let us
describe a simple (and certainly not optimal) algorithm. We may assume that
ker(φ) is cyclic. Choose any prime ℓ | deg(φ), and let φ1 : E → E1 = E/(ker(φ)∩
E[ℓ]). One can compute the left End(E)-ideals I1 of norm ℓ corresponding to φ1

(for instance with an exhaustive search among the ℓ + 1 possibilities, checking
each guess by evaluating a basis on the kernel of φ1). Now, OR(I1) ∼= End(E1),
and one can find an ε-basis of End(E1) (for instance with [Wes22, Algorithm 6]).
The isogeny φ factors as φ′ ◦ φ1 with deg(φ′) = deg(φ)/ℓ, and one can iterate
the procedure. ⊓⊔

Theorem 4 (GRH). (Z+cO)-EndRing reduces to O-EndRing∗ in proba-
bilistic polynomial time polynomial in the length of the input, the largest prime
factor of c, and, for each ℓe || c, the degree of the extension of Fp over which
E[ℓe] is defined.

Proof. Let (E, ι) ∈ SSZ+cO(p) be an instance of (Z+cO)-EndRing. From
Lemma 11, we can compute (within the claimed running time) an isogeny φ :
E → E′ where E′ is O-orientable. One can solve O-EndRing∗ for E′ to find
an ε-basis of End(E′). Now, Lemma 12 allows us to find an ε-basis of End(E)
thanks to the ε-basis of End(E′) and the kernel of φ̂. ⊓⊔

Lemma 13. The O-EndRing∗ problem can heuristically be solved in expected
time lO(1)|disc(O)|1/2, where l is the length of the input.

Proof. By Proposition 8, one can reduce O-EndRing∗ to O-Uber in time poly-
nomial in log p and log |disc(O)|. Then, one can solve O-Uber with Proposi-
tion 2, under the same heuristics. ⊓⊔

Corollary 6. (Z+cO)-EndRing can heuristically be solved in probabilistic poly-
nomial time in the length of the input, |disc(O)|, the largest prime factor of c,
and, for each ℓe || c, the degree of the extension of Fp over which E[ℓe] is defined.

Proof. It immediately follows from Theorem 4 and Lemma 13. ⊓⊔

This corollary implies that if O has small discriminant and c is powersmooth,
then knowledge of a (Z+cO)-orientation leaks the whole endomorphism ring.
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Theorem 5 (GRH). Suppose c is (log p)O(1)-powersmooth. Then, the problem
(Z+cO)-EndRing reduces to O-EndRing in probabilistic polynomial time in
the length of the input.

Proof. We proceed as in the proof of Theorem 4, but reducing to O-EndRing
using the O-orientation φ∗(ι) on E′. We only need to prove that we have an
efficient representation for φ∗(ι). For any α ∈ O, we can write

φ∗(ι)(α) = (φ ◦ ι(cα) ◦ φ̂) /c2.

We have cα ∈ Z+cO, so the efficient representation of ι implies that we have
an efficient representation of the numerator φ ◦ ι(cα) ◦ φ̂. The powersmoothness
of c allows one to divide by c2. ⊓⊔
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