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ORIENTED AND WEAKLY COMPLEX BORDISM
ALGEBRA OF FREE PERIODIC MAPS
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KATSUYUKI SHIBATA

ABSTRACT.   Free cyclic actions on a closed oriented (weakly almost complex,
respectively) manifold which preserve the orientation (weakly complex structure)
are considered from the viewpoint of equivariant bordism theory.   The author gives
an explicit presentation of the oriented bordism module structure and multiplica-
tive structure of all orientation preserving (and reversing) free involutions.   The
odd period and weakly complex cases are also determined with the aid of the no-
tion of formal group laws.   These results are applied to a nonexistence problem
for certain equivariant maps.

Introduction.   As the oriented analogue of the free equivariant unoriented bor-

dism theory ?i*(X, A, r) of Stong [12], K. Komiya and C. M. Wu have respectively

defined the free equivariant oriented bordism theories  Q^X, A, r) and fi¡T(X, A, r)

for involutions  (X, A, r) (Komiya [9]), and ÎÎ^X, A, r) for maps of odd prime per-

iod  (X, A, r) (Wu [17]).
The main object of the present paper is to apply Komiya's theories to the geo-

metrical determination of the oriented bordism algebras   Q^ (Z   ) of all orientation-

preserving free differentiable involutions and  Q~ (Z  ) of all orientation-reversing

free differentiable involutions.   (Compare with the semi-geometric methods in Stong

[11, Chapter VIIl]).
We also remark in this paper that the equivariant oriented and weakly complex

theories of Wu, together with Miscenko's theorem [lO, Appendix l],  give rise to a

simple proof of the structure theorem for Q*(Z  ) [2], UÁZ   ),  U*(Z   ) ([3], [5],Í6]
[7]) and   K (Ln(m)) [8].   These results are applied to the nonexistence problem for

equivariant maps.

In §1, we define the bordism groups Q^X, r) and iî~ (X, r), and then intro-

duce the external product and the Pontrjagin product in these theories.

In §§2 and 3, we give two kinds of direct sum decompositions of   0^(5", a)

and QJf(S", a) into isomorphic copies of 0~; (s\ a).   Deviating  slightly from the
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2 OC KATSUYUKI SHI BATA [March

method in [ll], we show explicitly how to construct the elements of fi*(5", a) and

fi* (5", a) from those of flr(5', a).   This permits us to deduce the multiplicative

structures of fi^Z.) and f2^(Z ) in §5.
And in §4, the il^-algebra structure of Q~(5 , a) is explicitly presented.   It

was known to be isomorphic as a  Z  -algebra to Wall's subalgebra   UJ^ of 3l+[l6].

§5 is devoted to the study of Q^-algebra structures of ÇlJyZ  ) and fi~(Z )

with respect to the Pontrjagin product.   We present minimal sets of algebra genera-

tors for Q^iZ ) and f2^(Z ) together with some explicit multiplication formulas.

In §6 we treat the odd period and weakly complex cases in parallel.   We com-

bine the technique of §2 with Kamata's idea in [7] of applying Miscenko series to

U^Lnim)).   We also remark that the multiplicative structures of QJ,Z, ) ik > 3, odd)

and  Uj^Z   ) im > 2) with respect to the Pontrjagin products are trivial.

Finally, in §7, we apply the results on  Uj,Lnim)) obtained in the preceding

section to a nonexistence problem for some equivariant maps considered in [15].

The author is indebted to Professor Fuichi Uchida, Mr. Katsuhiro Komiya and

Professor Ching-Mu Wu for many suggestions concerning these ideas.   And the

author wishes to express his gratitude to Professors Minoru Nakaoka and Akio

Hattori for valuable suggestions and constant encouragements.   Thanks are also

due to  Professor Robert E. Stong and the referee who informed me of many known

results in this field which permitted improvements in the presentation, especially

of §2.

1. Free equivariant oriented bordism groups.  A free equivariant orientation-

preserving bordism class of ÍX, r), where  X is a topological space and r: X —> X

is a continuous map such that r   = id, is an equivalence class of triples  (M, p, /)

with M a closed oriented differentiable manifold,  p.: M —» Al a fixed-point free

differentiable involution which preserves the orientation of M, and /: ÍM, p.)  —>

(X, t) a continuous equivariant map  (r ° f = f ° p).   Two triples  (M, p, /)  and

(M , p , /)  are equivalent, or bordant if there is a triple  (W, v, g) such that  W  is

a compact oriented differentiable manifold with  dW = M U (-M ), v. W —» W  is a

fixed-point free, orientation-preserving differentiable involution restricting to p

on M and p   on M , and g: (W, v) —* (X, r) is a continuous equivariant map

iT ° g - g ° v) restricting to / on M   and  /   on M .

The set of free equivariant orientation-preserving bordism classes  (X, t) be-

comes a graded  Q^-module in the usual fashion and we denote this module by

Ü¡iX, r) (19], [12]).
A similar graded fi^-module is obtained by replacing orientation-preserving

everywhere in the above definition by orientation-reversing.   This module one de-

notes Q-(X, t) [9Î.
Letting X be a point and r the identity map, this reduces to the oriented
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1973] ORIENTED AND WEAKLY COMPLEX BORDISM ALGEBRA 201

analogue of the situation studied by Conner-Floyd [2Î.   Thus we write  ÜÁ7-2) for

&l(pt, 1) and Q~;(Z2) for ü~(pt, l), combining the notations of Conner-Floyd

[2] and Stong [12].
For every involution (X, r), there is the obvious equivariant map (X, r) —»

(pt, 1), inducing the homomorphism c. QAX, r) —Q.Apt, l) and e: Q~(X, r) —»
Ql(pt, 1).   We call both of them the equivariant augmentation homomorphism.

Remark.  We will hereafter use the notations like  c. QAX, t) —» Q.Apt, 1) to

avoid repeating two formulas which are identical except for the signs.

Let   (X, r) and (Y, a) be involutions.   Then both rxl  and  1 x a induce the

same involution on X x Y/r x a.

Lemma 1.1.  The pairings

A: ii*(X, t) <8>q^ Q*(Y, a) -» Í2*(X x Y/r xa, I x o)

sending [M, p., f] ® [N, v, g\ to [M x N/p xv, 1 x v, f x g/p x v\ are well-defined

Q,^-module homomorphisms which are natural with respect to equivariant maps h:

(X, r) -> (X, r) and h': (Y, a) -+{Y', ct).

The proof of the lemma is straightforward.   So we omit the proof.   We call the
above pairings the external products.

Let (X, r ) be an involution.   Then  r induces  a Z   x Z2-action on X x X by

\r x t, t x 1, lxr, 1 x 1¡ and also on X via the addition homomorphism Z   x Z
—>Z2 and by r.

Definition 1.2.   In case there is a continuous map 0: X x X —» X which is

equivariant with respect to the above-mentioned Z   x Z -actions, we call cf> a

multiplication map with respect to t.   Notice that ct> induces a  Z -equivariant

map <7j: (X x X/r x r, I x r) —* (x, t).   Associative and commutative multiplication

maps and multiplication maps with unit are to be considered in the usual sense
and we omit their detailed definition.

Examples 1.3.  (1) The constant map tf,   ; pt x pt —>pt is an associative and
commutative multiplication map with unit with respect to the trivial involution.

(2) Let S1   = ÍZ e C; \Z\ = 1} be the unit sphere in C and a: S1 -> S1  be
the antipodal involution:  a(Z) = -Z.    Then the map u: S1 x Sl —> Sl   defined by

p(Z, Z ) = Z ' Z    is an associative  and commutative multiplication map with unit
with respect to a.

Definition 1.4.  Let <fi: X x X —»X be a multiplication map with respect to an
involution (X, r).   The composites of the external products of 2.1 by the induced
Q^-module homomorphisms  ¿^

Ô* (*> r) ®n+ Ô*(X, r) — n*(X x X/t x r, 1 x r) — ft* (X, r)
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give rise to product operations in n*(X, t) and Q~(X, r).   We call them the Pon-

trjagin product with respect to the multiplication map cb.   In this case, fl^CX, r)

and Q^ÍX, t) become graded algebras over Q^.

2.   First direct sum decompositions.  Let (A/, r) be a free involution.   Suppose

(L, r|L) is an invariant subspace of (A/, r) with a given finite dimensional  C°°-

manifold structure on  L  making  r| L  differentiable and with an invariant neigh-

bourhood which is equivariantly homeomorphic to (L x [-1, l], r\ L x (-1)) and

L x {0!= L.

Proposition 2.1.   There is an exact triangle of Çl^module homomorphisms

fi±(N, r) -*-, fi*(L, r| L)

i\ /X[S%]

Ô*(/V- L, t\N- L)
where  A denotes the map sending   [M, p, /] with f t-regular on  L  to  [/     (L),

p |/_   (L), f\f~   (L)],  z+ ¿fee homomorphism induced by the inclusion and X[5   , a]

the map sending  [AI, p, /] ;o  [AI x 0[-l, 1], px (-1), t ° (/ xl)] wz'rfe  t: L x <9[-l, l]
C L x [-1, 1] CAÍ.

We call  A  the Smith homomorphism.    This proposition is a variant of the

Smith exact sequence in [9], [12] and the proof is analogous.   It was pointed out

by the referee that the exact sequence of the pair (A/, N - L) together with a Thorn

isomorphism Q¿(N, N - L, r) ^» Q|(L, r | L) given by /-regularity supplies an

alternative proof.

Let  (X, r) be an involution.   Denote by  F"X the 72-fold unreduced suspension
of X, i.e.

EnX = D" x X/is, x) - (5, x'):    s £ dDn,  x, x   £ X,

and define  E"ir): EnX -» E"X by  En(r)[d, x] = [a(¿), H*)], where  a is the anti-

podal map.   Let (AI, p, /) be a representation of a class in 0r(X, r).   Let us define
DniM), Dnip) and D"if) as follows:

D"(A1) = D" x M/is, x) ~ (s, p(x)):    s £ r9D",  x £ M,

DB(fi): D*(Al) -»D"(M) is defined by D"(p)[i/, x] = [«(,/), p(x)] and Dn{f): DnÍM)
-*EnX by D"(/)[¿, x] = [d\ /(*)].

Proposition 2.2.   The map  D": Q~(X, r) — Q<T ' )n + 1(E"X, F"(r)) sending
[M, p, /] to [DnÍM), Dnip.), D"(/)]  z's a well-defined ÇI¿homomorphism of degree  n.
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1973] ORIENTED AND WEAKLY COMPLEX BORDISM ALGEBRA 203

In case (X, r) is a free   C°°-involution on a finite dimensional C0"-manifold and

n=\  or in case (x, r) = (Sn, a) and n>\, we have A °D" = Dn~l   (n > l), where

A  »5 the Smith homomorphism of 2.1 with respect to (En~lX, En~ X(r)) C (E"X,
En(r)).

The proof is straightforward from the definition.   We call D" the n-fold sus-

pension of the first kind.   This notion is due to Uchida.

Corollary 2.3.   Let  r: L —> L  be a differentiable involution on a finite dimen-

sional C™-manifold.    L.    (1)  There is a split short exact sequence of Çl^-homomor-

phisms
[S  >al . A+Cc-1,     bU.W—£-0 - O. -£Ä Îlï(Ell, £Hr))ï===in-(L, r) - 0.

n
(2) There is an exact sequence of Q^-homomorphisms

n*~ % -^- «"(e'l, F»(r)) -^ Ô*(L. r) -^ 2l^-»0.
Here the  [S  , a] denote the composite maps

O,-ya*<S0, «) — â*(ErL. BHr))
uz/'i/b z'(+l) = [+1, x] and i(-l) = [-1, x] and p is the map sending  [M, p, /] to  [M].

Proof.  The fact that Image p = 2Ù^. was proved in [2].   Since (£!L - L, E1^))
is equivariantly homotopy equivalent to (S  , a), the rest follows from 2.1 and 2.2.

Lemma 2.4.  (1) Let (X, r) be a fixed-point free involution.    The map  r¡:

il AX, r) —> Qj,X/r) sending  [M, p, f] to [M/p, f/p] is a well-defined isomorphism
of Q^-modules.

(2) Let  (L, a) be a fixed-point free differentiable involution on a finite dimen-

sional C   -manifold.    The map

r, o Di. Q-(L, o) -» (£(BlL.  rA(o)) -g* QAElL/Fl(o))

is a well-defined Q^-isomorphism onto QJ.E1 L/E1(a)).

Part (1) is well known and (2) is a result of Atiyah in [l].   The proof of (1)

is completely analogous to that of Theorem 19.1 in [2].   To see that the image of

ri °D1  lies in ü¿E1L/E1(o)), one has only to observe that Dl(M) bounds D2+(M) =
\[d, x] 6 D2(M); d e D2 D H2A.   Then part (2) is a paraphrase of 2.3(1).

Now, as an analogue of Theorem 3 and 4 (3) of Wu [17], we obtain the follow-
ing exact sequence.

Proposition 2.5.  (See Stong [11, p. 175].)   There is a split short exact se-
quence of Çl^modules, for each n > 2:
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0 - Q;iS\ a)~ü;(5", a) r-^fí-(5"-2, a) - 0.
D2

Proof.    The equality A   ° D2 = id follows from 2.2.   The exactness at

n*(5n, a)  is easily proved geometrically as in [17].   The fact that   i^ is monomor-

phic can be seen by utilizing the preceding lemma together with the collapsibility

of the bordism spectral sequence for  RP(n) [2, Theorem 15.2].

From this proposition and 2.3(1), we obtain the direct sum decompositions of

fi*(s", a) such as

tt;is2n+l, «)=   ©  d2íü;ís\ a).
n>i>0

But we prefer another kind of decompositions which we will present in the next

section.

3.  Second direct sum decompositions.   For the sake of the description of

multiplicative structures in  fi*(Z-,),  we give another kind of suspension operators

in this section.

Regard  52" + 1  as the unit sphere in the complex  (re + l)-space   C" + I,   and let

52",  S2n and  52"-1 denote the submanifold of 52n+1 defined by

52" = KZ0, Zv ••-, Zje52"+1| Z0 is real!,

52" = ¡(Z0, Zv ..., Zn)£S2n+l\ Zn isreali,

52"-1 = l(Z0,  Zv...,ZjeS2n*l\ Zr_ = 0i.

Let p: 52n + 1 x 51 — 52* + 1  be the map defined by piiZQ, Z v ■ ■ ■ , Z), Z) =
(ZQZ, Z^Z, • • •, ZnZ).   Then,  p induces an equivariant map p: (52"+1 x Sl/a x a,

axl)—> (52" + 1, a) which is /-regular on S2n~( (e = 0, l),  and ß~Hs2"~l)
= ÍS2n- 1 x Sl/a x a) (Uchida [l4l).

Definition and notation 3.1.   (1) For an element  x in  fi*(5", a),  we also de-

note by  x the element in  Q*{S"+k, a) fot  k > 1  which should be denoted by  i£x).

And denote by [5", a]  the element which should be denoted by [5", a, id].
(2) For each « > 0,  define an fi^-module homomorphism

E2": %iSl. a)-* n;iS2n+1, a)

of degree 2n  by letting  E2n(x) be the image of [52*, a] ® x mapped by the com-

posite |p|(52" x 5 Va x aM*°(0x id/a x a)* ° A:

Q-(52*, a)®„   ñliS1, a) —â-(52*x S1/ax a, a x l)

- Ô;(52* x Sl/a x a, a x l) - ß;(S2"+1, «),
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where À is the external product and 6: (S2n, a) —> (S2", a \S2n) is the equivariant

diffeomorphism defined by  0(ZQ, Z l, ■ ■ ■ , Z      ,, Z) = (Z  , Z,, • • • , Z      ,, ZQ).
Obviously,  £° = id and  E2n[S°, a\ = [S2n, a].

(3)  For each  « > 0,  define an  ß^-module homomorphism

E2n+l: Ü:(S\ a)^riAs2n+2, a)

of degree   2n + 1  by  E2n + l = A ° E2n + 2.   Obviously,  E2n + 1[S°, a] = [S2n+ \ a].

Lemma 3.2.   A ° En = En~ x (n > l).

Proof.   It suffices to prove  A2 °E  * = E2n~2 for w> 1.   This follows from

the fact that fi ~ Ks2n~ l) = (S2n~ ' x S Va x a) and the definition of E2n and

E2"-2.

Corollary 3.3.

(1) Ô-(S2" + 1, a) =      ©     E2ià;(sK a).
« > f > 0

(2) ñ^(S2", a) =   j      ©       E2l'n-(51, a)[ © QJ{[S2", a}\\.
I n - 1 > i > 0 J

(3) Ô-/(Z2) S íl-ÍS00. a) = ©  E2iQ;(S\ a).
¿>o

Ô;(S2"+1, a)

= QJ\[Z2, Z2]\\® \     ©       B2i*lQ;i.Sl, a)\®%{\[S2nn, a]}}.
( 7! - 1 > z' > 0 J

(5) Ô*+(S2*, a) = njj[Z2, Z2]|| © I      ©      Bw+1Qi(5l. «){.

(6) Q¿(Z2) S* â+(S°°, «ï = Q*{{[Z2, Z2W © j © B"*1^1, a)[.
( i > 0 J

Here il All   ]\\ denotes the 0.^-free module generated by a class [ *1  and

[Z 2, Z2]   ¿s /¿e class of the action of Z? on itself by the addition homomorphism.

Proof.  From 2.5 and 3-2, (1)   and (2) are easily obtained by induction on n.

Then (4) and (5) follow from 2.3(1) and 3.2.   Now fi*(Z2) B 0^5°°, a)  is  a para-
phrase of [2, (19.1)1-   Therefore

6*(Z2) Ä 0*/ U (S\ a)) = Dir. Lim ñ*(S¿, a).
\ f > o / •      '

Recalling that  [S\ a] = E!'[S°, al,   (3) and (6) follow from (1), (2) and (4), (5).
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4.  Determination of fi*(51, a).   In this section, we determine the Q^-algebra

structure of fi^"(51, a).   In view of Corollary 3.3, this determines completely the

fi^-module structures of Q#(5*, a).

Let [£„,= Z2^-X2k-V X2k'  k ¿ 2*' ^ ^ be tne polynomial subalgebra of 3l#
defined by Wall in [l6].   Regard fi*(5, a) as a ring via the Pontrjaginproduct with

respect to the multiplication map p of  1.3(2).

Lemma 4.1 (Wall [l6l, Stong [ll]).   The map 77: ii~(51, a) —> 91*,  sending
ÍM, p, /]  to [Al/p],   is a ring isomorphism onto Hi*.

Proof.    It is clear by definition that 77 is a well-defined ring homomorphism.

From the definition of (l^ in [l6],  it is also clear that  77 is an epimorphism onto

(l+.      Considering the orientation covering of an unoriented manifold, one sees that

77oo- 0^(5°°, a) —» 31* defined by  i]jM, p, /] = [Al/pl is a bijection.   Therefore
77 = 77    ° i* is monic since  ¿# is so by 3-3(3)-

Now we proceed to the description of fl*(5 , a) as an 0^-algebra.

Notation 4.2 (cf. [l6]).   (1) Let 77 denote the set of all partitions co = (a

a 2'
, a ) with unequal parts  a. none of which is a power of 2.   And let  | co \

be the length of (a.
(2) For partitions  co, a>   e 77,  let gj n co  e 77 be their intersection i.e. the

partition whose parts belong to both co and co'.   Also  o> 0 o)   £ 77 be their

symmetric difference, i.e. the partition whose parts belong to either  w or a    but

not to both.
(3) For a partition  co = ia , a , ■ ■ ■ , a \  let  co ■ denote the partition obtained

from  co by omitting  a..

With these notations, Wall's result on Q* can be stated as follows.

Theorem 4.3 (Wall [l6]).   (1) The ring structure of Q* can be described by

the following polynomial presentation:

o-â
11 \  ■      i tit

^Z[h4k;k>0, gúJ;co£7T~\±n^0,

where  Z[ • • • ]  denotes the polynomial ring over Z with generating set !•••!,

$[•••]  the ideal generated by \ ■ • ■ \,  k  the natural inclusion and \ is the quo-

tient homomorphism.   ÍFor representing manifolds of g      see [l6].)
(2) The generators of £l* given above are irredundant and the relations are

independent.

Definition 4.4-   For each partition co e n, define an element  W^ in

^JlUII^1' a^ by  Wu= 7?_1^X^'  where    ^   is the  isomorphism of 4.1,
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X œ = X2fl    • • • Xja   f°r (o = (a., a , ■ ■ •, aj  is as defined in [l6] and  ||o>|| =
a; + a2 + ■ ■ ■ + ax.   For convenience, let  W#  imply [S , a] and h^ = 1.

Theorem 4.5.   (1)  The structure of il~(s , a)  as an il*-module is described

by the following Q^-free presentation:

0-QJ2[50, a], 2Wù), Aœ, |«| > 2, 9^,1

-^ QJjtS0, a], Wa; <oen\\-L il;(S\ a) - 0,

where HA\ • • • \\ denotes the free  il^module with generating set  !■••!, HA • • • !

the il*-submodule generated by  !•••!,  i the natural inclusion,  j the quotient

homomorphism and the symbols A w, B^ œ>   stand for the following.

Aw=IgSaW^.-gJS°,a].       i     ii
and

Hco,a>< = Z ha>.no' &a  Wco.Qo' ~ êuWco'-
. i ii
i

(2) The il*-module generators given above are irredundant and the relations

are independent.

(3) The Pontrjagin products in H*(S , a)   are described as follows:

(a) [S , a]  serves as the identity.

<b>  WJcJ   = *W   **&>'>   in particular,   Wm- W^W^ • ■ • W^
for each  a> = (a , a., ■ • ■ , a) 6  n.

Proof. (1) It suffices to prove the exactness of the sequence in the theorem,

and that is easily derived from 4.1 except for the assertion that ker ; C Image i.

So we only prove that part, which requires a cumbersome argument. The verifica-

tion of the remaining parts are left to the reader.

Denote  by A+ the polynomial ring  Z[h^, ; k > 0,gœ; O) £ ni given in 4.3 and
let A^ii ••• !S denote the free A#-module with generating set {••■!.   The ring

epimorphism  A: A^ —► Q+ of 4.3 induces a A^-module epimorphism A*: A*\\ • • • !!

—► fi^ii •••!>,  where  il* is regarded as a  A^-module via A.   Define a  A^-homomor-

phism A: AA\[s°, a], W w, a £ n}\ — A* by A[S°, a] = 0 and A(Wj = ga¡.   Simi-
larly, let A': O^H[S°, a], Wu; co e n\\ —» il* be the fi^-homomorphism defined by
A'[5°, a] = 0 and A'(Wj = ga.   By definition,  A ° A = A' ° \* and A ° / = [Z2] °
A',  where [Z ]: il* —' il*(S , a) is the isomorphism sending [m] to [M][Z2, Z/\

and [Z , Z ]  is as defined in 3-3-
Now suppose  j(x) = 0 for some homogeneous element x.   Take an element

x   in  AJ{[S°, a], W   ;co€ nW  such that A*(x) = x.   Then,   A ° A(x) = A' ° A*(x) =
A'(x) = 0 because  [Z2] o \'(x) = A ° j(x) = 0.   Therefore A(x) is in Image k by

4.4, i.e.
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M* )=!>„• 2g„ +       T    ßJLga.g
& | O) | 2 3 \ z '

+ ¿Z yco,u> \T.(hœ.nu'ga.ga>.e^ ~So>8co'\

fot some  as, /3w and  y        .   £ A%.

Define an element %    in A.,.[{[50, a], W   ; co   £ n\\ by

*' = 2X-2W„ +    T    ßJT8a*a-gjLS°.a\)
\a,\>i \i '       ' ]

+     ¿Z   Y*,a>' \ll(ha>.na>'gaWco.e^ * 8<oWu'\-
OJOT

Then

(4#5) A(x') = A(x)    and    X*{x') e Image  z.

Now x - x      in  A+ii[5°, a], W ̂; co £ 7r|} can be uniquely expressed as

x-x' = a[5°, a] + lfli2Ll°) + L£>)W   ,  where  a,   L(0>   and L(1> are polyno-

mials in  A.  such that each monomial in  L*   '  has coefficient one or zero.   Then.Ie Co '

Z(2Li°KL^)g^7\G-r) = 0

and so

Since gw is a polynomial generator of A^ for each co £ 77, the above equality

implies that, if L^'g contains a monomial a * gaia £ \*) with coefficient one,

there should exist an co' such that co' ¿ cu and that L ¿/ g^' contains the same

monomial with coefficient one. This implies that a = b ' -g > for some monomial

b in A^ and that L J< contains the monomial b ' g^ with coefficient one. By

this correspondence b ' g < *-* b ' g (not necessarily unique), we can pair all

the terms in 1„L™W „ »a 2UL™W „-1^ K„y igjfj +8a)'Wj for some

Define an element  "x "   in   A^H[5   , a], W œ; co £  tt\\ by x " =

Wiw/(«A'+CV^nffl'S^lS0,fl]).   Then,

(4.7) i .
X*G") =    E   MK^Mw A^, - B^, - BU,B + Z h (^co-) .8 a ̂ cQco^)

CultCú' \ i I

£ Image   i.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973] ORIENTED AND WEAKLY COMPLEX BORDISM ALGEBRA 209

It follows that

x = A,(x) = \*G") + £ A*(LL0))(2W J + A,(x")
(4.8)

+ (a>) +   Z   MV|U^'«^'[5°'a1'

By (4.6), (4.7) and (4.8),

(a>)+    X    MK^.H^g^.ltS0, al = ;(x) = 0

in il;(S\ a). This implies, by 2.3(2), A>) + l^j K^K^'KnJ &a&¿ =
2[M] for some [Al] in il*. So that last terms in (4.8) can be expressed as [M] ■

2[S , a].   Therefore x e Image i and this completes the proof of (1).

(2) is clear from (1).
(3) Part (a) is clear from the definition.   Part (b) is proved by 4.1 as follows:

V(WJJ) = XJj = X2unj  • X^   = ¿banJ W^.) since r(hJ = X¿ for
a> e 77 [16].   This completes the proof of the theorem.

5. Multiplicative structures of ilAzA  and il~(ZA.   For the calculation of

the multiplicative structures of H*(Z )  and il*(Z ) with respect to the Pontrjagin

products, we need the following two lemmas.

Lemma 5.1.  The following sequences are exact for k > 0:

(1) 0¿(Z2)^ñ¿(Z2)^(Z2),

and

(2) 0^-(Z2)-.?Rfe(Z2).

Proof. The lemma is a direct consequence of the equivariant version of the

generalized Rochlin type exact sequence in [9], letting (X, A, r) be (pt, í>, id).

Notice that  2 ' Q~(Z2) = 0 by 3.3 and 4.5(1).

Lemma 5.2.   A.WJ . (d^Jti1, a\2 + XjS°, a\2 in %(Z J, where d{ =
roß   [16] and [Sl, a]     implies r([Sl, a]).

Proof.   Let A2 denote the ordinary Smith homomorphism Jt,(Z ) —> 9t,      (Z2)

[12] and e be the equivariant augmentation homomorphism.   Since A   ° r(W^ =

r o( oA(Wj = roe(gùi- [Z2, Z2]) = (S^ J[S\ a]},

r(W) = (d,X)[S\ a]7 + [M][S°, a]
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for some [Ai] £ 3Ï* [2].   But

[Ml = c*([m] ■ [5°, alp = c*or(wJ - id^J c*i[Sl, a\2)

-V^J-id^J.lP^^X^-O^X^,

where  77 is the isomorphism of 4.1.   This proves the lemma.

Theorem 5.3.   The set  \[S°, a], [S2\ a]; i > 1, W(k; k ¿ 2'\ supplies a mini-
mal set of generators for the commutative and associative Çl -algebra with unit

^*(Z2).   The multiplicative relations in fi~(Z )  are as follows:

(D */„' = *„n«« ^o&J .   in Particular,  W„ = W(a ^ {a ) ... W(fl) for co =
(a1? a2, ., , , a) £ n.   iHere  Vl^ = [5°, a] and h¡ = h Q.)    l

(2) E2"M/^ = [52*, a] • WM for each n > 0 and co £ 77.
(3) 7¿e products of the form  [52", a] - [52"  , a]  are calculable in theory by

5.1, 5.2 and the results of Uchida [14]  on  9l*(Z2).    For example,   [S2n, a]2 =
[P„(C)][5°, a] area" [52, a] ■ [54, a] = [56, a] + W(J).

Proof.   From 1.3,  Q^.(Z ) becomes a commutative and associative fi^-algebra

with unit via the Pontrjagin product with respect to  cbp.   Part (1) follows from

4.5(3), part (2) follows from the definition of  E     ,  and part (3) is clear.   The

assertion that the set stated in the theorem generates Q~(Z ) as an Q^-algebra is

easily proved from parts (1), (2), O)   of the theorem and from 3.3, 4.5, 5.1, 5.2

together with the fact that A2"+2n'([52n, a] 2 ■ [52n', a] 2) = ("+") [5°, a]2 [13].
The irredundancy of the generators  [5  , a]  and [52 , a] (z > l) is clear from parts

(1), (2), (3) and the result on  9l*iZ.)  mentioned above.   The irredundancy of  VI ,

ik ¿ 2>)  is derived from that of X Jk  in  ÍX 2k; k>0, XJk_1; k ¿ 2l (i > O), k > 3!
as a set of polynomial generators for  31*.   We leave the details to the reader.

Theorem 5.4.   The set  \[Z2, Z2], [S2l + 1, a]; 1 > 0,   E2'*1«^; co £ 77, z > 0|
supplies a minimal set of generators for the commutative and associative Çl*-alge-

bra with unit Q,*(Z7).   The multiplicative relations are as follows:

(1) [52¿ + 1, a]' [S2i + l, a] = 0 (/, 7 > 0).

(2) The products of the form [S2i+1, a] • E^'+1Wa and (E2i + 1W J(E2j + lWj)
can be calculable in theory as in the case for Q~(Z2).   In particular,   (E   !+ VIJ

= 0 for co £ 77,  i > 0.

The proof is analogous to that of 5.3.   So we omit it.

6. The odd period cases and weakly complex cases. In this section we con-

sider the free equivariant oriented (weakly complex, respectively) bordism group

fl^X, r) W*iX, r))   of Wu [17] for a pair (X, r),  where X  is a topological space
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and  r: X —» X  isa continuous periodic map with odd period p > 3 (with period

m > 2).   Its definition is completely analogous to that of il A , ) given at the be-

ginning of §1,  only to replace involution by map of odd period p > 3 (7720p of per-

iod m > 2,   and orientation by weakly complex structure).

As in §3, regard S2" + 1  as the unit sphere in  CB+1.   For each integer m > 2,

let T(m): 52" + 1 — 52" + 1 be the free periodic map defined by  T     (ZQ, .,,, Z ) =

(A(m)Z0' '"• \m)^J  where  X(m) - «p(2»i/»).
Analogously to 2.5, we can easily modify Theorem 3 and 4(3) of Wu [17] as

follows.   The proof is omitted.

Theorem 6.1.  (1)  For each integer m > 2,  the sequence

0-►I/.(S1, 7,    ï— I7.CS1, Tf   0->V,(S2n + l, T.   .)
fe (m) fc (m) ft (m)

-^U.    0(S2"-1, T,   0—>0
k-2 (m)

is exact for each n > 1, where  i: (S , T(m)) C (S "    , T(m)) is the natural inclu-

sion, U*(S  '     , T(m)) is the kernel of the ordinary augmentation homomorphism

U*(S2i + l,T(m)) -*m Up2l + l/T(m)) -» U^,  and A is the Smith homomorphism

analogous to that of 2.1.
(2) In case  m is an odd integer > 3,  analogous results hold in the oriented

case: one can replace   U*( )  of (1) by QA )•

Now denote the quotient spaces S "    /T(m) by  L"(m)  and the complex pro-

jective spaces by CP(n).   Let [L"~'(m), z] be the weakly complex bordism class

in ¡7.,,      .,   ,(L"(ttz))  represented by the natural inclusion map  z: L("-,'(7n) C2(n-/)+l r 7 r
Ln(m),   and   D: (/ .,..(Ln(m)) — U2> <Ln(m))  be the Atiyah-Poincaré duality

2(rz —;) + l ' '
[l].   And denote by 77 the canonical complex line bundle over CP(tz),  77: Ln(m)

—> CP(n)  the natural projection, and c.(cf)  the first Chern class of a complex vec-

tor bundle   çf in   U -cobordism theory in the sense of Conner-Floyd [4].

Theorem 6.2 (Kamata [7]).  With the notations as above,   it holds that

D[Ln-i(m), i] = \Cl(7T*rj)\' for m > 2,  n > 1 and j > 0.

As in [7], [10],   let  F(X, Y) be the formal group law defined in  U*[[X, Y]]
characterised by the property that c^cf ® çf' ) = F(c j(tf), Cj(f )) for complex line

bundles   cj and rf    over the same CW-complex.   For each integer m> 2, define

a formal power series [m]F(X) £ E*[[X]] by [2]F(X) = E(X, X) and [m + l]p(X) =
F(X, [m]F(X)).   Then   [m]p(x)   is   uniquely expressed as   [m]p(X) =

1        K(m)xfe + i     ith  y(m) £  (y-2fe_   Hereafter we identify  U* with  (7* via D

and denote by  V\m) the element D'Kv^)  in  U^.
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Now set  a2/fe + 1 = lS2k+l, Tim), i] £ U2k+]iS2n+1, Tim)) in > k > 0)  and
02A+1 = 2oS;sfe Vk-ia2jn-  Let R: U*^ü* and R: ^2"+1. Tim)) -^Q*iS2n+1, Tim))
(in case  m  is odd) be the homomorphism forgetting a weakly complex structure.

Theorem 6.3 (cf. Conner-Floyd [2], [3], torn Dieck [5], Giffen [6], Kamata [7]).
(1)  For each integer m > 2,   Ui.S2n+1, Tim))  (re > 0)  is isomorphic as a U*-module

to the quotient of the free U*-module generated by  a     a , •.,, a by the sub-

module generated by  ßx, ß , ■ . , , ß     _

(21 In case  m  is an odd integer > 3,  analogous results hold in the oriented

case: one can replace   U^{ ),   a. and ß. of (1) by 0^, Ria) and Riß), respectively.

(3) Let  [5  "+   x Z   ,  1 x Tim), p]  be the equivariant bordism class in

U2     j(5  "+ , Tim)) represented by the equivariant map which is the restriction of

p: 52n + l x Sl  _S2n + l   defined in   §3     Then   [¿2«+l x Z   ,   1 x T(m);     ] „ ß
Equivalently, the bordism class  [5  "+ , 77   ] £  U*iLnim)) represented by the

standard m-fold covering map of S "+    onto  Lnim)  is expressed as

[S2n+l, 77U      Y    V(m).[Uim), i]     in  VAL im)).
0 < j < n

(4) «Al"U)) ^ A^DLp/, /]) 8 ü*t[c1]]/(c!|+1, [Aflpícj»,  u-èere [p/, z'] f
UÂLnim))  is the class of an inclusion map of a point  A   *( )  z's the exterior alge-

bra over  U , c. = c An * 77),   aw^ (*   *)  denotes the ideal generated by the set

Outline of Proof.   The proof has nothing new than those of the oriented cases

for involutions although there exists no splitting homomorphism as  D    here.

(1) It is easily seen that  U*iS  , Tim)) is a free U^-module generated by  a. y

Then, the Smith homomorphism argument shows that  a2 generates a free   U*-

submodule  in  U*iS 2" + 1, Tim))  and that  a l , a?, . . • , a-2n + 1   generates

Uf.52n+1, Tim)),   applying 6.1(1).    By the duality in 6.2,

D',s2itlu z vj-_>c--y=cr1-*/' z vw^'Ucr'-^uipU,)
o<ysfe \o<;<fe /

forO<¿<»-l.   But Mpic^ c1({7r*r7!OT) = c1(lc) = 0.   So /32fe + 1 = 0 for
0 < ¿ < re - 1.   The assertion that all the module relations are generated by ß x,

ß , • • • , ß2       is easily proved by induction on  re,  applying 6.1(1).

(2) From part (1),  Riß2k + l) = 0 (0 <k<n- l) in Q^S2"*1, 7(m)) when m
is odd > 3.   The rest of the assertions are proved in the same way as part (1),

applying 6.1(2).
(3) Let  rf: Uj,S2n + l, Tim))  -» U*iLnim))  be the natural isomorphism taking

orbit spaces.
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In case n = 0,  Tj(ßA = [S   , n   ]  is clear by considering the evaluation homo-

morphism U*(L\m)) ^H*(Ln(m); Z).
Assume that part (3) holds for « - 1.   Then A[S2n + l, n  ] = [S2""1, n   ] =

r^, m m

'?(ß2„_1)  in UAL"-Hm)).   So  A([S2n + l, nj - f?(/32n + 1)) = 0 and, by 6.1(1),

[52"+1,77m]=,7y(/32n + 1) + [M]7)'(a1) for some [M] e l/2n.   But z °77m:S2" + 1 -

Ln(m) C L" + 1(m) bounds D2n + 2 C S2n+3 - Ln + 1(m), and so z'  [S2" + 1, n   ] = 0 in

ÏJ^L""^)),  which implies [M]t] (a x) = 0 in (7!(:(L" + 1(ra)) and M e mU*.
Therefore  [M] 77 (a^) = 0 holds also in  UALn(m)), and this completes the proof of

the induction step.

(4)  Part (4) directly follows from part (1), applying the duality in 6. 2.
Remark 6.4.  (1) The U.- (il..) module structure of UAZ   ) fot m > 2 (O (Z )

for odd integer p > 3) follows from the above theorem by taking direct limit.   Im-

posing a complete and Hausdorff topology on U*(Z   ) [5], the cobordism algebra

U  (Z   ) is determined from 6.3(4) by taking inverse limit, which deletes the exter-m jo'

ior algebra part of U (L"(m)).
(2) The Pontrjagin products in  U*(Z   ) and HAZ  ) (p: odd integer > 3) are

trivial in the sense that x • y = 0  for any elements in   Ü*(Z   ) (and il*(Z  )).

This follows from the dimensional reason and the fact that [Ln(m)] = 0 in U¿.

(3) In case  m = 2,  UAS ", a) and U*(S2n, a) ate easily determined by 6.3,

using the cofibration (RP(2n), RP(2n-l)).

Corollary 6.5 (cf. Kambe [8]).   Let m > 2 be an integer.
(1) K°(Ln(m)) = Z[[a]]/(an + l, (l + a)m - l), where a = 77*77 - 1.

(2) The Todd genus  ToddtV      ] is equal to the binomial coefficient

(_ l)m + 1(.7j).   /„ particular,   ToddtV^J = 0  for  i > m - 1.

Proof.  Let c      ( ) be the z'th Chern class in K -theory defined in [4] and

G(X, Y) e K  (pt)[[X, Y]] be the formal group law characterized by the property

c(^(çf ®cf) = G(cl^HO, c{l¡Hçf')) for line bundles cf and cf '   over the same

CW-complex.   It is well known that G(X, Y) = X + Y - XY.    Then,  [m]G(X) =
1 —(l — X)m.   Part (1) follows from 6.3(4) by considering the natural transformation

p  : U  ( ) —' K  () defined in [4].   It is easily seen that pAc^ = - a.   Part (2)
follows from the fact that p  : U^ = U*(pt) ~* K  (pt) = Z ¡s given by the corre-

spondence of Todd genus [4].

Lemma 6.6.  Let p > 2 be a prime integer and k > 1, 7 > 1 be integers.   Then

every Chern number of CP(kp1 - l) is divisible by pJ.

Proof.  It is easily seen by induction on j > 1 that (l + x)p   = (l + xp)p        +

p'F,.Ax) fot some polynomial F,.Ax) with integer coefficients.   Therefore the

total Chern class of CP(kp] - l) is expressed as (l + u)kp1 = [0 + up)p,~ ' + p'F.(u)\k,
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where u £ H iCPikp' - l); Z) is the first Chern class of r¡.   So the Chern class

c .iCPikp1 - l)) is divisible by p1  if i is not a multiple of p.   Since kp1 - 1 is
not a multiple of p, any monomial in c., • • • , c of dimension kp1 - 1  should

kpJ-ï
contain some c. with z  not a multiple of p.   Therefore the lemma follows.

Proposition 6.7 (cf. [2], [3], [5], [6], [7]).   Let p > 2, r > 1, a > 1 be integers
such that p is prime and ir, p) = 1.   Put m = par,

(1) A// Chern numbers of V.m) (z > 0) are divisible by m.

(2) Under the conditions that  0 < i <pa - 1 and 0 < a < a, y^flr) £ pa~qU*

if and only if pq~ l \i + 1.   /re particular,   V(Qm) = rez, V^\ s ¿"Hm - 7rep)[CP(p - l)]
mod idecomposables  in  (/*) Dp2aU* and S    •_ x Ty(m)    + p-'mpi[CPipi - l)]] = pa.

So the classes V^pj_1   are Milnor base elements for U /pU .

(3) In U*iLnim)) iand ü,*ÍL"im)) when m  is odd) with n > 1,  the order of the
class  [L'im), i] (0 < /' < re) is p r m where d is the integer determined by

2dip - l) < 2; + 1 < 2(a" + l)(p - l) and r   is the integer with ir , p) = 1 which is
determined analogously as d from the prime decomposition of r.   Moreover we have

pd-lr'm[L^p-l\m\ ,']- i-Ûdpa-lrr'[CPip - l)]rf[L°U), ¿].

Proof.  Let gix) £ U   ® Q[[X]]   be the logarithm of the formal group law

FiX, Y), i.e. giFiX, Y)) = gix) + giY).   MiScenko's theorem [10, Appendix l]
asserts that giX) = 2Q¿k i[CPik)]/ik + l))Xkn.   Comparing the coefficients of X¿
in the equation  (11^     . /') g([mlF(X)) = (Ilj   .   . j)m giX), we obtain  V ™     = m and,
for i > 2,

I    u    j) V£\ + G(0(V8"\ • ■ - , V[™\) = (     Il       j)im - mKCPii - 1)1,
\i<y< i / \i<j<i-i I

where  G,..(•••)  is a polynomial in the  Vq',...,V\_2  with coefficients in  U

and each monomial in  C,.,(- • • )  is an integer multiple of the form

n    ¡\icpik-ii\v)m)---v™

with /', + ...+ j   > 0.   Part (1) and (2) easily follow from the above equation and

6.6 by induction.
Now we prove part (3) by induction on /' (0 < / < re).  It is easily derived from

the reduced bordism spectral sequence ([2], [7]) that the order of ÍL  im), il is

772  as asserted.

Suppose the assertion is proved for 0, •••»/'— 1  (/ > l).   We prove the asser-

tion for / dividing cases.

(i) In case  p - \\f.   By 6.3(1) we have
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j82y+, = m[L'(m), f] + ... + v£\[L'-» + 1U), «] + ... = 0.

Multiplying £ r , we obtain p r'm[L'(m), z] = 0 by the induction hypothesis and

part (2).
Let  A: UALn(m)) —> U^_2(Ln(m)) be the ordinary Smith homomorphism.   Then

by the induction hypothesis,  A(pd~ lr'm[L!(m), z'l) = pd~ lr'm[L'~ l(m). i] 4 0 as

desired.
In case   / = d(p -1) for some  d >  1.   As in case (i), we have

pd- \'m[Ld{p-l\m), i] + ... + /- VV^\[LW- 1)(i'- 1}U), i] + • ■ • = 0.

But by the induction hypothesis and part (2), this reduces to

pd~ \'m [Ld(p~} Km), z] = -pd~ 2r'm [CP(p - l)][L(á- 1)("~ l\m), i].

The assertion follows directly from this.

This completes the proof of the theorem.
Remark 6.8. Since we now know the structure of  U A^Ln(m)), the method of

Conner-Floyd [2, Theorem 40.1], permits us to generalize a result in [3] and [18]

concerning the fixed point sets of a weakly complex involution to the case of a

semifree weakly complex periodic maps of arbitrary period whose fixed point set

is a ^-dimensional manifold (for some fixed k) with trivial normal bundle in the

sense of [2, §40].    (See also Kasparov [19].)

7.   An application to equivariant maps.   Let  m,  q > 2 be integers.   Consider

the periodic map  T(mq): S —> S "      defined in the preceding section.   Since

(T(mq))q = T(m), T(mq) induces a free periodic map  T(q): S n   l/T(m) = L"(m)

—* L"(m) of period   q sending   \ZQ, ■ ■ • , Z  ]  to   [A(mc7)Z0, • - . , \(mq)Z  ] where

K(mq) = exp(2ni/mq).
Let  A(q): M —> M be a free differentiable periodic map of period   q

on a (2k + l)-dimensional  C^-manifold   M .   Suppose there exists an equivar-

iant map / : (Ln(m), T(q)) —» (M , A(q)).   Taking the orbit space,  /   induces a
map

/: Ln(m)/T(q)= Ln(mq)   - *A2kn/A(q)
~ ... t

and  /   becomes a homomorphism of principal  Z  -bundles over  /.   Let   y__, y_> s„

be the complex line bundles associated to the principal  Z    -, Z -, Z -bundlesL _ r r mq q  '       q

S2n + l ^S2nn/T(mq), Ln(m)^Ln(m)/T(q), M2k + l ^M2k + l/A(q), respectively.

Lemma 7.1.   f*Ç   a (y     )m.'     ^q 'mq
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Proof.  It is clear from the definition of an induced bundle and an associated

bundle that f*£q =y=iy     )m.'      y        'q 'mq
By the naturality of the cobordism Chern classes, it follows from 7.1 that

i*cliÇq) = cli\ymq\m) = [m\Ficxiym)).   Since M2k + 1/Aiq) is also a ilk + l)-dimen-
sional C°°-manifold, Cj(<f  )k + l = 0 in U*ifA2k + l/Aiq)) for the dimensional reasons.

So we obtain the following.

Lemma 7.2. // \[m]Fic x)\k + l ¿ 0 in  U*iLnimq)) where  cx = cÁym ), then

there does not exist an equivariant map ÍLnim), Tiq)) —* (A4 , Aiq)).

Theorem 7.3.  Let p > 2, r > 1  be integers such that p is prime and that

ir, p) = 1.   And let a > 1, k > 0 be integers.
(i) i[par]F(Cl)lfe + 1 =0 in  U*iLnipa + lr)) implies n<kpa.

(ii) // r = 1  z'n  (i),  then the converse holds, i.e.   re < kpa   implies
¡[pa]F(Cl)^ + 1=0 in  U*iLnipa + l)).

Theorem 7.4.  Let p > 2 be a prime integer and r, r  > 1  be integers such that

(p, r) = ip, r ) = 1.   Further let a, b > 1   area" k >0 be integers.

Suppose there exists an equivariant map

f: iLnipar), Tipbr'))^iM2kn, Aipbr'))

for some smooth periodic map Aiphr) on a smooth (2& + \)-manifold AI .   Then

(i) re < k  if ak — b < — 1 and this is the best possible result.

(ii) re < kp" if ak - b > 0 (Munkholm-Nakaoka).

Remark 7.5.   This is a generalization of a result of Vick Ll5J-   In the original

manuscript of this paper, the statement of Theorem 7.4 was weaker than the

present one.   While revising this article, I was informed by M. Nakaoka that, re-

placing the formal group in cobordism theory in Lemma 7.2 by that of K-theory

and applying a number theoretic argument of Munkholm, Ore the Borsuk-Ulam
9—1 ?    — 1

theorem for Z  a actions on S  "       and maps S  n      —» Rm (Osaka J. Math. 7

(1970), 423-441), he has obtained the result stated in Theorem 7.4 (ii).   This
inspired me to carry out the detailed calculation below in cobordism theory to ob-

tain Theorem 7.3,   I also learned from Nakaoka that (Al , A(p r )) need only

be a continuous free periodic map on a finite CW-complex thanks to the theory

of co-index.
The rest of this section is devoted to the proof of 7.3 and 7.4.

For a partition w = ii., i 2, • • • , i )  of nonnegative integers, let r(z, w)  be the

occurrence of i in w,  and let
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j\        0    if  \a)\ > j(1) =\(ú/        /!//II(r(i, û))!)i(; - |fi>|)I if \a\<j.

Define <?'pVJ*a,) e (7* ® g for ; > 0 by

ajv|.»-') = (i/p)vj*a+1'>-v<*-'),

a/v^) = 0,-iv(A).i£^î]       £        f/+ V(í,a+Ir)

where   y(p*^r) ^ yip«^r) . . . y(p«^r).
CO zi iq

Put U{par) = div1^ ( = di+lV{par) =...).   Let (c?'V(*Br>)     and t7(*a')
i p     i pi p CO CO

be respectively ^V^' . . . f3'pVJPa'> and U1.»** .. . [/¡*"».

Lemma 7.6. /«  UALkp" +l(pa + V)), we have that

s\[p«Ap(c.)\k*l = sp°r(V^)kc\pa^ +      Z      (k+ \uf^+k + l
pa-1 \o,\*h*l   \ W   /

/or a suitable integer s > 1 swcè that (s, p) = 1  and sU(-pUr' e U*C U* 9 Q  (|<y| =

* + 1, ||oj|| + k + 1 < kpa + l).

Proof.

|0<7       ' j |co|=*+l   \    °J    / '

-  z f*4lW    r    (A+1-V'M-|H+1.
By 6.3, we have in  l/*(LfePa +1(fa + 1r))  that

(7.7) (pfl+Mc1 = -jZ   Vf ^+1[.a+1

IS;

(p«r)   ,   „« + !-,•„*  f„r   „«-From 6.7 we know that Vtp  r' e pa*l~lU* for p1-   - 1 < ; < ?' - 1 and

0 < i < a.      So it is easily deduced that we can apply the formula (7.7) to

(par)lv~p     c,   z   times repeatedly to obtain

OSÍSfc + l  eu,«» W   \       W        /W

the last summation being taken over all partitions &> and co    of positive integer

components with  \u>\ = k + 1 - i  and  |w | = z.
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Notice that the order of c\P*n = D~l[LQipa+lr), i] is pa + 1r,  v\Pa + l'K
p(yipar) _ dOV[p*rï)   and   d0yip"r)  £     y*     Sq
r      i pi P   p"-l       r

= *-r([-U - 1>*+1 - xfe + 1l  -1KV^))M"fl+1 - pMV<^)fec^+1.
r x   l      p   -\ b   -1

Analogously,

l«»l>A+l\« / "

We carry out this kind of transformation of formulas inductively

♦A« / *      wl        ,+1i-it+tV« rp      )afl1 J

with (/., p) = U.,p)= 1, s... =/.s. and s,.+.(<9Í+1V(<'ar))     £ U*.i    r ;   r '     7 + 1       ;  ; 7 + 1    p cu

So, after sufficiently many iterations, this formula  stabilizes to

U>l=fe + i

This proves the lemma.

Proof of Theorem 7.3.   Define  d>u\p"T) £ U* ® Q  by

z z

' + 1   |„k+i,hi-*-A w y

and define id>U{p"r))     as 0'i/?8r)) . . ■ (d'(7<f r)).   We remark that d'I/*.*"'' = 0
izj zi '<? z

for / greater than or equal to i  by virtue of Mlscenko's theorem.   (See the proof

of 6.7(1), (2).)
Analogously as in the proof of Lemma'7.6, we can find a suitable integer

s.  > 1  for every / > 1  such that is. , p) = 1  and that
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Z   (k+1)s:u^c\^+k+l
l-*+i \ w / 7

Z [/*(/.*)]( Z (ra)(^L/<^'

+ Emm-)! z (^W°tf
™'>t+i \L,'I=™' \w / /

IK

7«'=>jfe + 1 \ ûj'  =m'

where  [M(j, m)], [N(j, m')] ate polynomials in  U   ® Q  such that [M(j, m)](d'U^p r^),

[N(j, m')]lfpi r' 6 U   C U   ® Q.   Therefore, for sufficiently large /, we have

(7.8)

s>        Z      lk-l)u<Par)M+^
'u.*+1\* / "     !

z [N(;,ra')]f z (";Wy„
We can perform the same procedure for every ztz    in the right side of (7.8) to ob-

tain

Z [NV..0][  s ("!Wta
m">k+2 \|eu"|=7n

After sufficiently many iterations of this procedure, all partitions appearing in

the right side of (7.8) are made to have their length as large as we please.   So

the right side of (7.8) becomes zero since  UQp      =0 and c *. = 0 for i greater

than kpa + 1.   Consequently, for a suitable s > 1  with (s, p) = 1,  we have

(7.9) s\[par]Ac.)\k + 1 = s(par)(v(pa^)kckpa+l
r     l i>   -1

in  UALkpa + l(pa + lr)).   Since  c\pa + 1 = D~ l[L°(pa + lr, i)], the theorem easily

follows from (7.9) by virtue of 6.7(2), (3).
Proof of Theorem 7.4.  (i) \[par]p(c ^ = (par)k + lc\ +l  in uALk + l(pa+brr')).

By the hypothesis, (par)k+1 ■{ pa+brr' and so \[par]p(c A\k + l 4 0, which implies

n <k by 7.2.
Conversely, if n < k, there exists the equivariant map /: (L  (m), T (q)) —*

(S2k + \ T(q)) defined by
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(ii) It suffices to prove the case for b = r   =1, which follows immediately

from 7.2 and 7.3.
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