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Abstract

Restrictions of incidence preserving path maps produce oriented hypergraphic All
Minors Matrix-tree Theorems for Laplacian and adjacency matrices. The images of
these maps produce a locally signed graphic, incidence generalization, of cycle covers
and basic figures that correspond to incidence-k-forests. When restricted to bidirected
graphs, the natural partial ordering of maps results in disjoint signed Boolean lattices
whose minor calculations correspond to principal order ideals. As an application, (1)
the determinant formula of a signed graphic Laplacian is reclaimed and shown to be
determined by the maximal positive-circle-free elements, and (2) spanning trees are
equivalent to single-element order ideals.

Keywords Matrix-tree theorem · Laplacian matrix · Signed graph · Bidirected graph ·

Oriented hypergraph

Mathematics Subject Classification 05C50 · 05C65 · 05C22

1 Introduction

An oriented hypergraph is a signed incidence structure that first appeared in [21] to
study applications to VLSI via minimization and logic synthesis, and generalize Kirch-
hoff’s laws [22,24]. This incidence-based approach allows for Laplacian, spectral, and
balanced, graph-theoretic theorems to be extended to hypergraphs using their locally
signed graphic structure [7,17,18]. Moreover, the concepts of a balanced hypergraph
[2,20] and a balanced {0,±1}-matrix [9,10,13] can simultaneously be studied through
their oriented hypergraphic structure [19].

Sachs’ Theorem [11] characterizes the coefficients of the characteristic polynomial
of the adjacency matrix by generalizing the concept of a cycle cover of a graph and has
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long known application in the study of molecular orbitals [14]. Sachs’ Theorem was
recently generalized to signed graphs in [1], and to oriented hypergraphs in [6]. We
show that the incidence generalization of cycle covers (called contributors) obtained in
[6] allows for the hypergraphic generalization of the All Minors Matrix-tree Theorem
of Chaiken in [4,5]. Moreover, when restricted to bidirected graphs, the contributors
align with Chaiken’s k-forests.

Section 2 collects the necessary oriented hypergraphic background to present the All
Minors Matrix-tree Theorem as a consequence of the oriented hypergraphic Sachs’
Theorem in [6]—the coefficients of the characteristic polynomial are the diagonal
minors, are determined by contributor sums, and a similar proof can be used to obtain
any minor.

Contributor maps are specialized to Laplacians of bidirected graphs in Sect. 3. A
natural partial ordering of contributors is introduced where each associated equivalence
class (called activation classes) is Boolean; this is done by introducing incidence

packing and unpacking operations. If an oriented hypergraph contains edges of size
larger than 3, then unpacking is not well defined, and the resulting equivalence classes
need not be lattices. Activation classes are further refined via iterated principal order
ideals in order to examine minors of the Laplacian.

Section 4 examines the contributors in the adjacency completion of a bidirected
graph to obtain a restatement of the All Minors Matrix-tree Theorem in terms of
sub-contributors (as opposed to restricted contributors). This implies there is a uni-
versal collection of contributors (up to resigning) which determines the minors of all
bidirected graphs that have the same injective envelope—see [15] for more on the
injective envelope. These sub-contributors determine permanents/determinants of the
minors of the original bidirected graph and are activation equivalent to the forest-like
objects in [4]. Additionally, the standard determinant of the signed graphic Laplacian
is presented as a sum of maximal contributors, while the first minors of the Laplacian
contain a subset of contributors that are activation equivalent to spanning trees.

While the techniques introduced for bidirected graphs do not readily extend to all
oriented hypergraphs, they bear a remarkable similarity to Tutte’s development of
transpedances in [23]—indicating the possibility of a locally signed graphic interpre-
tation of transpedance theory. Since contributor sets produce the finest possible set of
objects signed {0,±1} whose sum produces the permanent/determinant it is natural to
ask what classes of graphs achieve specific permanent/determinant values. Addition-
ally, recent work on vertex-weighted Laplacians [8], graph dynamics [3], and oriented
spanning trees and sandpile groups [16], seem to have natural oriented hypergraphic
analogs.

2 Preliminaries and thematrix-tree theorem

2.1 Oriented hypergraph basics

A condensed collection of definitions are provided in this subsection to improve read-
ability, for a detailed introduction to the definitions the reader is referred to [6]. An
oriented hypergraph is a quintuple (V , E, I , ι, σ ) where V , E , and I are disjoint sets
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of vertices, edges, and incidences, with incidence function ι : I → V × E , and
incidence orientation function σ : I → {+1,−1}. A bidirected graph is an oriented
hypergraph with the property that for each e ∈ E ,

∣∣{i ∈ I | (projE ◦ ι)(i) = e}
∣∣ = 2,

and can be regarded as an orientation of a signed graph (see [25,26]) where the sign

of an edge e is

sgn(e) = −σ(i)σ ( j),

where i and j are the incidences containing e.

A backstep of G is an embedding of
−→
P 1 into G that is neither incidence-monic

nor vertex-monic; a loop of G is an embedding of
−→
P 1 into G that is incidence-monic

but not vertex-monic; a directed adjacency of G is an embedding of
−→
P 1 into G that is

incidence-monic. A directed weak walk of length k in G is the image of an incidence
preserving embedding of a directed path of length k into G. Conventionally, a backstep
is a sequence of the form (v, i, e, i, v), a loop is a sequence of the form (v, i, e, j, v),
and an adjacency is a sequence of the form (v, i, e, j, w) where ι(i) = (v, e) and
ι( j) = (w, e). The opposite embedding is image of the reversal of the initial directed
path, while the non-directed version is the set on the sequence’s image.

The sign of a weak walk is defined as

sgn(W ) = (−1)k

2k∏

h=1

σ(ih),

which implies that for a path in G the product of the adjacency signs of the path is
equal to the sign of the path calculated as a weak walk.

2.2 Thematrix-tree theorem

It was shown in [18] that the (v,w)-entry of the oriented incidence Laplacian are the
negative weak walks of length 1 from v to w minus the number of positive weak walks
of length 1 from v to w. This was restated in [6] as follows:

Theorem 2.1 The (v,w)-entry of LG is
∑

ω∈Ω1
−sgn(ω(

−→
P 1)), where Ω1 is the set

of all incidence preserving maps ω :
−→
P 1 → G with ω(t) = v and ω(h) = w.

A contributor of G is an incidence preserving function c :
∐

v∈V

−→
P 1 → G with

p(tv) = v and {p(hv) | v ∈ V } = V . A strong-contributor of G is an incidence-monic
contributor of G—i.e., the backstep-free contributors of G. Let C(G) (resp. S(G))
denote the sets of contributors (resp. strong contributors) of G. In [6] contributors
provided a finest count to determine the permanent/determinant of Laplacian and
adjacency matrices and their characteristic polynomials of any integral matrix as the
incidence matrix of the associated oriented hypergraph. The values ec(c), oc(c), pc(c),
and nc(c) denote the number of even, odd, positive, and negative circles in the image
of contributor c. Additionally, the sets C≥0(G) (resp. C=0(G)) denote the set of all
contributors with at least 0 (resp. exactly 0) backsteps.
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Theorem 2.2 ([6]) Let G be an oriented hypergraph with adjacency matrix AG and

Laplacian matrix LG , then

1. perm(LG) =
∑

c∈C≥0(G)

(−1)oc(c)+nc(c),

2. det(LG) =
∑

c∈C≥0(G)

(−1)pc(c),

3. perm(AG) =
∑

c∈C=0(G)

(−1)nc(c),

4. det(AG) =
∑

c∈C=0(G)

(−1)ec(c)+nc(c).

For a V × V matrix M, let U , W ⊆ V , define [M](U ;W ) be the minor obtained by
striking out rows U and columns W from M. Let C(U ; W ; G) be the set of all sub-

contributors of G with c :
∐

u∈U

−→
P 1 → G with p(tu) = u and {p(hu) | u ∈ U } =

W . Define S(U ; W ; G) analogously for strong contributors. Let the values en(c),
on(c), pn(c), and nn(c) denote the number of even, odd, positive, and negative, non-
adjacency-trivial components (paths or circles) in the image of c.

Theorem 2.3 Let G be an oriented hypergraph with adjacency matrix AG and Lapla-

cian matrix LG , then

1. perm([LG](U ;W )) =
∑

c∈C(U ;W ;G)

(−1)on(c)+nn(c),

2. det([LG](U ;W )) =
∑

c∈C(U ;W ;G)

ε(c) · (−1)on(c)+nn(c),

3. perm([AG](U ;W )) =
∑

c∈S(U ;W ;G)

(−1)nn(c),

4. det([AG](U ;W )) =
∑

c∈S(U ;W ;G)

ε(c) · (−1)en(c)+nn(c).

where ε(c) is the number of inversions in the natural bijection from U to W . ⊓⊔

The proof of Theorem 2.3 is analogous to Theorem 4.1.1 in [6] using the bijective
definitions of permanent/determinant.

The value of ε(c) can be modified to count circle and paths separately, as the circle
components simplify identical to the works in [6], thus part (2) of Theorem 2.3 can
be restated as follows:

Theorem 2.4 Let G be an oriented hypergraph with adjacency matrix AG and Lapla-

cian matrix LG , then

det([LG ](U ;W )) =
∑

c∈C(U ;W ;G)

ε′(c) · (−1)pc(c) · (−1)op(c)+np(c).

where ε′(c) is the number of inversions in paths parts of the natural bijection from U

to W . ⊓⊔

Comparing, the nonzero elements of C(U ; W ; G) are the Chaiken-type structures
in [4] with multiplicities replaced with backstep maps.
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3 Contributor structure of bidirected graphs

3.1 Pre-contributors and incidence packing

An oriented hypergraph in which every edge has exactly 2 incidences is a bidirected

graph and can be regarded as orientations of signed graphs (see [12,25,26]).
Throughout this section, G is a bidirected graph in which every connected com-

ponent contains at least one adjacency, and
−→
P 1 is a directed path of length 1. A

pre-contributor of G is an incidence preserving function p :
∐

v∈V

−→
P 1 → G with

p(tv) = v. That is, the disjoint union of |V | copies of
−→
P 1 into G such that every

tail-vertex labeled by v is mapped to v.
Consider a pre-contributor p with p(tv) 
= p(hv) for vertex v ∈ V . Packing a

directed adjacency of a pre-contributor p into a backstep at vertex v is a pre-contributor
pv such that pv = p for all u ∈ V \v, and for vertex v

p((
−→
P 1)v) = (v, i, e, j, w), i 
= j ,

and pv((
−→
P 1)v) = (v, i, e, i, v).

Thus, the head-incidence and head-vertex of adjacency p((
−→
P 1)v) are identified to the

tail-incidence and tail-vertex.
Unpacking a backstep of a pre-contributor p into an adjacency out of vertex v is

a pre-contributor pv is defined analogously but for vertex v, the head-incidence and

head-vertex of backstep p((
−→
P 1)v) are identified to the unique incidence and vertex

that would complete the adjacency in bidirected graph G. Note that this is unique for
a bidirected graph since every edge has exactly two incidences, but this is not the case
in if there are edges of size greater than 2.

For a bidirected graph G and vertex v, let P(G) be the set of all pre-contributors
of G, Pv(G) be the set of pre-contributors with a backstep at v, and let Pv(G) be the
set of pre-contributors with a directed adjacency from v.

Lemma 3.1 Packing and unpacking are inverses between Pv and Pv .

Proof By definition (pv)
v = p and (pv)v = p for appropriate contributors in Pv or

Pv . ⊓⊔

Lemma 3.2 Packing is commutative.

Proof Let p ∈ Pv ∩ Pw, pvw := pw ◦ pv , and pwv := pv ◦ pw. By definition,

pvw = pwv for all (
−→
P 1)u with u ∈ V \{v,w}. For vertices v and w,

pv((
−→
P 1)w) = p((

−→
P 1)w),

and pw((
−→
P 1)v) = p((

−→
P 1)v).
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Giving,

pvw((
−→
P 1)w) = pw((

−→
P 1)w) = pwv((

−→
P 1)w),

and pvw((
−→
P 1)v) = pv((

−→
P 1)v) = pwv((

−→
P 1)v). ⊓⊔

Lemma 3.3 Unpacking is commutative.

Proof Proof is identical to packing after reversing subscript and superscripts. ⊓⊔

3.2 Contributors and activation

A contributor of G is a pre-contributor where {p(hv) | v ∈ V } = V .
For each c ∈ C(G), let tc(c) be the total number of circles in c; a degenerate 2-circle

(a closed 2-weak walk) is considered a circle, while a degenerate 1-circle (a backstep)
is not. Activating a circle of contributor c is a minimal sequence of unpackings that
results in a new contributor c′ such that tc(c) = tc(c′) − 1. Deactivating a circle of

contributor c is a minimal sequence of packings that results in a new contributor c′′

such that tc(c) = tc(c′′) + 1. Immediately from the definition we have:

Lemma 3.4 Let c, d ∈ C(G). Contributor d can be obtained by activating circles

of c if, and only if, c can be obtained by deactivating a circles of d. Moreover, the

activation/deactivation sets are equal. ⊓⊔

Define the activation partial order ≤a where c ≤a d if d is obtained by a sequence
of activations starting with c, and the activation equivalence relation ∼a where c ∼a d

if c ≤a d or d ≤a c. The elements of C(G)/ ∼a are called the activation classes of

G.

Example 1 Figure 1 is a bidirected graph (with incidences omitted), and some contrib-
utors are depicted, sorted by their associated permutation.

Observe that the fifth contributor in (12) is below the (12)(34) contributor in the
activation partial order.

(12)

(12)(34)(123)

v1 v2

v3v4

e1

e2

e3

e4

e5

Fig. 1 Understanding contributors
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Lemma 3.5 The minimal elements of activation classes are incomparable, consist of

only backsteps, and correspond to the identity permutation. ⊓⊔

Lemma 3.6 All activation classes of G are Boolean lattices.

Proof For a given activation class consider the set of possible active circles. The
elements of each activation class are ordered by the subsets of active circles, with
unique maximal element having all circles active, and unique minimal element having
all circle inactive. ⊓⊔

We have the following lemma using the facts that (1) every connected component
of G is assumed to have an adjacency, and (2) every contributor corresponds to a
permutation on the vertices, there is at least one circle that can be activated for each
minimal element in each activation class.

Lemma 3.7 Each maximal contributor in a activation class contains at least

1 circle. ⊓⊔

Corollary 3.8 Each activation class has at least 2 members. ⊓⊔

Example 2 Figure 2 shows 3 activation classes of the graph from Example 1.
The activation classes are ranked by the number of circles, and the minimal element

corresponds to the identity permutation.

3.3 Partitioning activation classes

For u, w ∈ V two contributors c and d are uw-equivalent, denoted c ∼uw d, if
c(hu) = d(hu) = w. Since ∼uw only collects contributors in which the image of

(
−→
P 1)u has head-vertex mapped to w we have:

Lemma 3.9 C(G)/(∼u1w1 ◦ ∼u2w2) = C(G)/(∼u2w2 ◦ ∼u1w1) for u1, w1, u2, w2 ∈

V . ⊓⊔

As w varies, the composition ∼u•:= ©
w∈V

∼uw is well defined without the need for

a total ordering on V . Moreover,

Fig. 2 Activation classes are
Boolean

e

(132)

e

(34)

e

(12)(34)

(34)(12)
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Lemma 3.10 C(G)/(∼uw ◦ ∼a) = C(G)/(∼a ◦ ∼uw) or any u, w ∈ V . ⊓⊔

By construction, the relation ∼uw ◦ ∼a (subsequently, ∼u• ◦ ∼a) refines each
A ∈ C(G)/ ∼a . Let A/ ∼uw and A/ ∼u• denote the refinement of A by ∼uw or ∼u•,
respectively.

Theorem 3.11 C(G)/(∼u• ◦ ∼a) is a refinement of each activation class in C(G)/ ∼a

into two principal order ideals (one upper and one lower, with the upper order ideal

possibly empty) that are Boolean complements. Moreover, the upper order ideal of

activation class A is empty if, and only if, c(hu) = u for all c ∈ A.

Proof Let A ∈ C(G)/ ∼a and observe that every least element of A is an adjacency
free contributor, so the set of possible maximal elements such that c(hu) = u is non-
empty. Using the definition of activation, the facts that A is Boolean, and that there
is at least one element (the 0-element) in each activation class with hu → u, there is
exactly one maximal element with hu → u, let M(u; u;A) be this maximal element.
Thus, the principal ideal ↓ M(u; u;A) exists and is necessarily Boolean. Moreover,
↓ M(u; u;A) = A if, and only if, c(hu) = u for all contributors c ∈ A, thus A/ ∼uw

is empty for all w 
= u.
Since A is Boolean, if there is a contributor d such that d(hu) = w 
= u, then all

contributors of A with hu � u must have hu → w, since every edge is a 2-edge.
Moreover, if there is a contributor of A with hu → w, then there is a unique minimal
element with m(hu) = w 
= u, let m(u;w;A) be this minimal element (if it exists).
By construction, m(u;w;A) is the contributor of A with only the circle containing
the uw-adjacency active, is a rank 1 element in A, and is the Boolean complement of
M(u; u;A). Thus, A =↓ M(u; u;A)∪ ↑ m(u;w;A). ⊓⊔

The (u;w)-cut of activation class A is the subclass of A/ ∼uw where each element
has c(hu) = w—that is, ↓ M(u; u;A) if u = w, or ↑ m(u;w;A) if u 
= w and
m(u;w;A) exists. Let U , W ⊆ V with |U | = |W | = k, and u = (u1, u2, . . . , uk),
w = (w1, w2, . . . , wk) be linear orderings of U and W according to their placement
in the implied linear ordering of V in the underlying incidence matrix. The (u; w)-

cut of the activation class A is the corresponding subclass in A/ ©
i∈[k]

∼ui wi
. Let

A(u; w; G) denote the (u; w)-cut of activation class A, and Â(u; w; G) be the ele-
ments of A(u; w; G) with the adjacency or backstep from ui to wi is removed for
each i . Let C(u; w; G) be the set of all elements in all A(u; w; G), and Ĉ(u; w; G) be
the elements of C(u; w; G) with the adjacency or backstep from ui to wi is removed
for each i .

Example 3 Figure 3 shows (v1, v1)-cuts of the contribution classes from Fig. 2.
Observe that the first two subclasses are non-trivial Boolean lattices, the final sub-

class is a trivial Boolean lattices, and the second subclass has an empty upper order
ideal.
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Fig. 3 (v1, v1)-cuts of
contribution classes

e

(132)

e

(34)

e

(12)(34)

(34)(12)

4 Universal contributors and thematrix-tree theorem

4.1 Adjacency completion

Given an oriented hypergraph G = (V , E, I , ι, σ ) let G ′ = (V , E ∪ E0, I ∪ I0, ι
′, σ ′)

be the oriented hypergraph obtained by adding a bidirected edge to G for every non-
adjacent pair of vertices, where σ ′ = σ and ι′ = ι for all i ∈ I , and σ ′ = 0 for
all i ∈ I0 (see [15] for relationship to the injective envelope). The sign of a (sub-

)contributor is the product of the weak walks. The inclusion of 0-signed-incidences in
G ′ implies that an element of Ĉ(u; w; G) has nonzero sign if, and only if, it exists in G.
Let Ĉ
=0(u; w; G ′) be the set of nonzero elements of Ĉ(u; w; G ′). This fact gives the
following simple Lemma that relates the global contributors of G ′ to the Chaiken-type
forests of [4] separated by multiplicity:

Lemma 4.1 If U , W ⊆ V with linear orderings u and w, then

Ĉ
=0(u; w; G ′) = C(U ; W ; G). ⊓⊔

Example 4 Figure 4 shows an additional contribution class from Fig. 2 that exists in
the adjacency completion.

Observe that the (142) contributor with the v4v2-adjacency removed is a member
of Ĉ
=0(v4; v2; G ′), exists in G, and counts in the v4v2-minor calculation.

Lemma 4.1 provides the following restatement of Theorem 2.3:

Theorem 4.2 Let G a bidirected graph with Laplacian matrix LG . Given U , W ⊆ V

with |U | = |W | and linear orderings u and w, let [LG](u;w) be the minor of LG formed

by the ordered deletion of the rows corresponding to the vertices in U and the columns

corresponding to the vertices in W . Then we have,

1. perm([LG ](u;w)) =
∑

c∈Ĉ
=0(u;w;G ′)

(−1)on(c)+nn(c),

2. det([LG](u;w)) =
∑

c∈Ĉ
=0(u;w;G ′)

ε(c) · (−1)on(c)+nn(c).

where ε(c) is the number of inversions in the natural bijection from U to W . ⊓⊔
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e

(142)

e

(132)

e

(34)

e

(12)(34)

(34)(12)

Fig. 4 Contributors in G′

4.2 Applications

We now examine alternate proofs of established results using the Boolean order of
contributor maps. Besides providing more insight into contributors, the hope is these
techniques can be generalized to a complete theory for oriented hypergraphs—as
evidenced by Theorem 2.3.

Let M− be the set of maximal elements from the positive-circle-free activation
classes.

Lemma 4.3 If G is a signed graph, then det(LG) =
∑

c∈M−

2nc(c).

Proof From Theorem 2.2 and Lemma 3.6

det(LG) =
∑

c∈C≥0(G)

(−1)pc(c)

=
∑

A∈C(G)/∼a

∑

c∈A

(−1)pc(c).

Let M−
A

be the minimal element of activation class A that has the maximal number of
negative circles (if it exists).

Case 1 (M−
A

does not exist): If M−
A

does not exist, then A is a Boolean lattice with every
circle positive. Since each contributor is signed (−1)pc(c), the signs of the contributors
of A alternate with rank. Thus, the sum of elements is the alternating sum of binomial
coefficients which equals 0.

Case 2 (M−
A

exists): If M−
A

exists, it is necessarily unique, ↓ M−
A

is Boolean, and
every element of ↓ M−

A
is signed +1.

Case 2a (no positive circles): If there are no positive circles in A, then ↓ M−
A

= A

and the sum of the elements is 2nc(MA).
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Case 2b (at least one positive circle): Suppose 1A has exactly n positive circles, let
p1, p2, . . . , pn be contributors of A with exactly one positive circle, and let Pi =

[0A, pi ]. For k ∈ [0, n], consider the collection of Boolean lattices

Bk = (↓ MA) ∨

k∨

i=1

Pi ,

where B0 =↓ MA. By construction, Bi
∼= Bi ∨ pi+1, Bi+1 = Bi ∨ Pi+1, Bi+1 is a

Boolean lattice 1 rank larger than Bi , and Bn = A. Additionally, for each b ∈ Bi and
b ∨ pi+1 ∈ Bi ∨ pi+1,

(−1)pc(b∨pi+1) = (−1)pc(b)+1.

Thus, the sum of all contributors is necessarily 0 as long as there exists a positive
circle.

The only non-cancellative activation classes are those that are positive-circle-free,
and the result follows with the observation that an empty sum is 0. ⊓⊔

Corollary 4.4 If G is a balanced signed graph, then det(LG) = 0. ⊓⊔

Let Â 
=0(u;w; G ′) be the set of nonzero elements of Â(u;w; G ′).

Lemma 4.5 If G is a bidirected graph, then the set of elements in all single-element

Â 
=0(u;w; G ′) is activation equivalent to the set of spanning trees of G.

Proof Case 1a (u = w): Suppose u = w, and let Â 
=0(u; u; G ′) be a single-element
activation classes of G ′. The element of Â 
=0(u; u; G ′) consists of exactly |V | − 1
backsteps, all of which exist in G, but none of which contain u. Unpacking all backsteps
results in a circle-free subgraph on |V | vertices with |V | − 1 edges, i.e., a spanning
tree—if it was not circle-free then Â 
=0(u; u; G ′) would have more than a single
element. Thus, the cardinality of the set of single-element Â 
=0(u; u; G ′) is less than,
or equal to, the number spanning trees of G.

Case 1b (u = w): Now consider all spanning outward arborescences of G rooted
at u. For each arborescence, pack all adjacencies along the opposite orientation of
the arborescence to produce a unique, nonzero, element of an Â(u; u; G ′). Thus, the
cardinality of the set of single-element Â 
=0(u; u; G ′) is greater than, or equal to, the
number spanning trees of G.

Case 2a (u 
= w): Suppose u 
= w, and let Â 
=0(u;w; G ′) be a single-element
activation class of G ′. Since Â 
=0(u;w; G ′) is obtained by the upper order ideal of
A(u;w; G ′) generated by the maximal contributor M(u;w;A), and Â 
=0(u;w; G ′)

consists of a single element, M(u;w;A) must be unicyclic. Thus, the corresponding
contributor in Â 
=0(u;w; G ′) must contain a wu-path on k vertices, and backsteps at
the |V |−k vertices outside the path. Unpacking all backsteps is a circle-free subgraph
on |V | vertices and |V | − 1 edges—if not then Â 
=0(u;w; G ′) would have more than
a single element. Thus, the cardinality of the set of single-element Â 
=0(u;w; G ′) is
less than, or equal to, the number spanning trees of G.
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Case 2b (u 
= w): Now consider the set of spanning trees of G. To see that the
cardinality of the set of single-element Â 
=0(u;w; G ′) is greater than, or equal to, the
number spanning trees of G, examine the following sub-cases:

Case 2b, part 1 (u 
= w): If a spanning tree T contains an adjacency between u and w

construct the unicyclic-contributor of G as follows: (1) add another parallel adjacency
between u and w, (2) orient the parallel edges to form a degenerate 2-circle, and (3)
pack all remaining adjacencies away from u and w. The member of Â 
=0(u;w; G ′) is
obtained by deleting the uw-directed adjacency.

Case 2b, part 2 (u 
= w): If a spanning tree T does not contain an adjacency between
u and w construct the unicyclic-contributor of G as follows: (1) add a uw-directed
adjacency, (2) oriented the resulting unique fundamental circle coherently with the
uw -directed adjacency, and (3) pack all remaining adjacencies away from the funda-
mental circle. The member of Â 
=0(u;w; G ′) is obtained by deleting the uw-directed
adjacency. ⊓⊔

Using the techniques of the previous two Lemmas, adjusting for the cofactor, and
using the fact that every adjacency (hence, circle) is positive in a graph, it is easy to
reclaim:

Corollary 4.6 If G is a graph, then the uw-cofactor of LG is T (G), the number of

spanning trees of G. ⊓⊔
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