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Abstract

This paper proposes a pooling strategy for local descriptors to produce a vector rep-

resentation that is orientation-invariant yet implicitly incorporates the relative angles be-

tween features measured by their dominant orientation. This pooling is associated with a

similarity metric that ensures that all the features have undergone a comparable rotation.

This approach is especially effective when combined with dense oriented features, in

contrast to existing methods that either rely on oriented features extracted on key points

or on non-oriented dense features. The interest of our approach in a retrieval scenario is

demonstrated on popular benchmarks comprising up to 1 million database images.

1 Introduction

In the last decade, visual recognition has witnessed a sequel of major breakthroughs, most

of them stemming from the introduction of local descriptors such as scale invariant fea-

tures transforms (SIFT) [13, 20]. In particular, the bag-of-words representation [4, 22] has

drastically modified how images are indexed by casting sets of local features into a vector

representation. For image search, inverted files [22, 23] efficiently implement an effective

similarity measure to compare images, especially for large vocabularies [15, 18], while pre-

serving to some extent the desirable properties of local descriptors such as invariance to

changes in scale and orientation. In image categorization, the vector representation under-

pinning Bag-of-words is well adapted to subsequent powerful machine learning techniques

such as support vector machines (SVMs) [21].

Bag-of-words has been extended in various ways. This paper is mostly connected to one

of this improvement, called weak geometry consistency WGC. It enriches the representation

of each descriptor with the (quantized) characteristic scale and dominant orientation [7] as-

sociated with the region of interest. This additional information is exploited by a Hough-like

voting procedure [5] to favor the images that have been scaled and rotated consistently.

More recently, alternative coding techniques have been proposed for local descriptors,

such as the Fisher Vector [3, 16, 17] or VLAD [9]. In large-scale image retrieval, after

dimensionality reduction and compression [9], the database images are represented by as
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few as dozens bytes, thereby allowing the efficient search in hundred millions of images.

These coding techniques have also exhibited superior performance in classification [3].

One of the merit of these new encoding approaches is that they usually rely on small

visual vocabularies. This property is especially interesting for classification. In this con-

text, densely extracting a large number of descriptors on a regular grid provides superior

recognition performance, even though these dense features are not rotation-invariant. The

quantization cost is small compared to that of bag-of-words relying on a large vocabulary,

and compensates the cost of extracting more features. The resulting vectors are not sparse

and therefore not indexed by inverted files, yet in image search competitive search timings

are achieved by using alternative compression-based indexing strategies [9].

This paper makes the following contributions over the existing pooling approaches. First,

we depart from most existing works by using rotation-invariant dense features. In image

search, most systems rely on key-points or region detectors. A description relying on regular

dense features achieves good performance but at the cost of loosing invariance to orientation,

which is not desirable in many applications. Pooling on dominant orientations of the local

features have been explored in the context of object classification [10, 11], however they do

not enforce the relative orientation to be preserved. As we will see, using dense oriented

features without a proper pooling strategy is not sufficient by itself: ignoring the relative

orientation of patches introduces too much invariance. In our case, we aim at obtaining both

the discriminative power conveyed by dense descriptors and invariance to orientation.

Our main contribution achieves this property. It is a novel pooling technique inherited

from VLAD, which uses the dominant angle as a pooling variable, which is obtained as a

byproduct from our oriented-invariant dense descriptor extraction. This pooling variable is

combined with the quantization index. Our pooling approach is associated with a similarity

measure that implicitly selects the relative orientation between images, similar to WGC. Our

method departs from WGC by achieving this covariant property at the pooling level, while

WGC relies on an additional orientation information provided per feature point. Our method

produces a vector representation that is compatible with dimensionality reduction.

Our method is not without drawbacks. Similar to spatial pyramid [12], using dominant

orientation as a pooling variable increases the dimensionality of the vector, typically by a

factor 8 when quantizing the dominant orientation in 8 bins. However, our approach is still

significantly better than the corresponding baseline at a fixed vector dimensionality, i.e.,

when using a smaller vocabulary for SIFTs in our method. In most cases, this conclusion

still holds after dimensionality reduction to a fixed vector size. Another point is that our sim-

ilarity computation strategy requires to produce more distances between two input vectors in

order to detect the relative orientation maximizing the similarity. This last point is partially

alleviated by the use of Fourier domain.

Overall, our approach is interesting in many situations. It remains tractable for millions

of images, and gives a significant improvement when applied either to SIFTs extracted from

key-points or extracted on dense grid. It magnifies the interest of orientation-invariant dense

features for image retrieval, leading to achieve the best performance ever reported with a

vector image representation on INRIA Holidays [7] and the object recognition benchmark

of University of Kentucky. The feature vector is compatible with dimensionality reduction,

and provides an efficient and effective retrieval system with a short image representation.

Our paper is organized as follows. Section 2 briefly introduces VLAD as well as an

improved version that will serve as our baseline for vector image representation. Section 3

describes our covariant pooling technique, which is subsequently evaluated in section 4.
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2 Background: VLAD and the improved VLAD* baseline

The vector of locally aggregated descriptors (VLAD) [9] is an encoding technique that

produces a fixed-length vector representation v from a set X = {x1, ...,xm} of m local d-

dimensional descriptors (e.g., SIFT, d = 128), which have been extracted from a given im-

age. The VLAD computation procedure relies on a visual vocabulary C = {c1, · · · ,ck} where

the dictionary (size k) is trained offline with k-means algorithm. It is used by a quantization

function q : Rd →C that associates xi to its Euclidean nearest neighbor in the vocabulary C,

as q(x) = argminc∈C ‖x− c‖. VLAD is a d × k vector, where each component is indexed

by both the indices i and j associated to the quantization indexes and sift components, re-

spectively. A component of VLAD vector v = [v1,1, . . . ,vi, j, . . . ,vk,d ] associated with X is

obtained as

vi, j = ∑
x∈X :q(x)=ci

x j − ci, j, (1)

where x j and ci, j are the jth components of descriptor x and visual word ci, respectively. As

a post-processing, the vector v is ℓ2-normalized.

VLAD* baseline. To boost the performance of VLAD, we use several recent pre- and

post-processing operations to boost the accuracy of the original VLAD design.

1. We use the RootSIFT variant [1], since it always leads to better performances in the

retrieval task. This simply amounts to square-rooting the (positive) components of the

SIFT on output of the description software.

2. We apply the power-law normalization introduced in [17] for Fisher vector. It updates

the individual components of the VLAD descriptor as

vi, j := sign(vi, j)×|vi, j|
α
, (2)

where α is a constant in the range (0,1], which is fixed to α = 0.2 in all our experi-

ments. This processing is argued [9] to reduce the negative effect of visual bursts.

3. The power-law normalization is more effective if the input feature is rotated with

PCA [9]. In our case, we do not reduce the dimensionality of features when perform-

ing this rotation (before power-law normalization), as we observe that dimensionality

reduction is detrimental with VLAD, unlike for Fisher vectors for which dimensional-

ity reduction is beneficial.

All these stages are applied prior to the ℓ2-normalization, and gives an updated VLAD de-

noted by VLAD* in the rest of this paper.

Several other ameliorations have been proposed very recently, such as using multiple

vocabularies to reduce the quantization noise [6] or introducing a per-cell normalization

strategy instead of power-law [2]. We do not consider these complementary schemes in our

paper, although we mention that they cover other aspects of VLAD and should be comple-

mentary with the approach introduced in our paper.

Oriented dense features. Most of the recent state-of-the-art papers on image classifica-

tion and retrieval compute SIFT on regions of interest, or densely extract patches without

considering orientation invariance. In contrast, we consider the interest of densely extracted
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Figure 1: Orientation-covariant features for two matching images. The lines connect the

descriptors similar in the SIFT feature space. Top: Descriptors extracted in the Hessian-

Affine detector [14]. Bottom: Descriptors densely extracted. In all cases, we estimate the

orientation with the main gradient [13] and compute orientation covariant patches. The

empirical histogram on the right gives the number of matching patches as a function of

the angle difference between their dominant orientation. The lines in red correspond to the

matches which leads to the majority of votes over all orientations. As one can observe, dense

features produces more outliers, as to be expected because many patches on the border of

the painting are similar. Yet the matching dense features cover the images more evenly, in

contrast the ones associated with Hessian-Affine.

orientation-invariant features every 7 pixels1 on the two canonical axes. The dominant angle

is estimated with the main gradient [13]. The method introduced in our paper will avoid

introducing too much invariance by incorporating the dominant angle at the pooling stage.

Figure 1 illustrates the use of oriented features to facilitate the matching between two images

where rotation is introduced.

3 Covariant pooling

This section introduces our main contribution, which is motivated by the observation that

VLAD2, does not control the degree of geometrical invariance. Either too much invariance

is introduced when using orientation- or scale-invariant features, either these is not invariant

if non-oriented features are densely extracted. This is in contrast with matching techniques

such as WGC [7], which incorporate per-features geometrical information. Yet those are

memory-demanding and are not vector representation suitable to dimensionality reduction

to produce short vectors or codes as with VLAD [9].

1This step size is larger than the one commonly used in classification. This choice is probably sub-optimal, yet

it limits the features at a reasonable size, compatible with real-time query processing.
2likewise Bag-of-features and the Fisher vector.
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A key interpretation of VLAD is to view it as a cross-matching performed on aggregated

features. In the regular VLAD, features with different orientation are aggregated, loosing the

possibility to estimate any geometrical transformation between the aggregated features.

To alleviate this problem, we propose to pool features according to some characteris-

tic geometrical quantities, more specifically the characteristic scales and dominant orienta-

tions [13] obtained as a byproduct of the descriptor computation stage. In other terms, we

only aggregate features having similar characteristic scales or dominant orientations, to ob-

tain a new pooling strategy termed Covariant-VLAD (CVLAD). Without loss of generality,

the description of our method focuses on the dominant orientation. As we will see in the

experimental section, it leads to the more effective pooling strategy.

Let denote by θ the dominant orientation associated with a given feature x, and let

bB(θ) =

⌊

B
θ

2π

⌋

(3)

be the quantization function used to quantize angles with B equally sized bins. Our pooling

strategy modifies Equation 1 as

pb,i, j = ∑
x∈X :q(x)=ci∧bB(θ)=b

x j − ci, j. (4)

In Eqn. 4, the pooling of the feature x is controlled by both its quantization index q(x) and

its quantized dominant angle bB(θ). Another way to see the CVLAD construction proce-

dure is to consider that P = [P1, . . . ,PB] is a concatenation of B VLAD k× d-dimensional

vectors, each of which encodes the features having the same quantized dominant orienta-

tion. This produces a vector B times longer than VLAD. Similar pooling is feasible with the

characteristic scale. Notice that the series of pre-processing and post-processing mentioned

in section 2, in particular ℓ2-normalization, are applied separately for each of the B VLAD

sub-vectors. CVLAD is illustrated in Figure 2.

The similarity s(., .) between two CVLAD vectors Pi and P j is defined on the basis of

VLAD sub-vectors as

s(Pi,P j) = argmax
∆t∈0...B−1

B−1

∑
t=0

cos
(

Pi
t ,P

j

mod (t+∆t,B)

)

(5)

which amounts to selecting the orientation maximizing the similarity between the two vec-

tors. This process is comparable to estimating the dominant rotation transformation between

two feature sets in WGC [8], however here it is done directly on the aggregated vectors.

Improving matching efficiency with circulant encoding. Eqn. 5 performs a circulant

matching between two sets of VLAD sub-vectors. The matching shifts the VLAD sub-vector

in P j circularly to search for the best match between two groups of VLAD. This introduces

a complexity overhead when comparing the similarity metric of our CVLAD with that of

VLAD vectors in the same size. More precisely, if done naively, the computation cost is

multiplied by a factor B. Fortunately this computation overhead is partially alleviated by

performing the circulant matching in the frequency domain, which is interesting for large

values of B. This maximum correlation search strategy is common with temporal data, see

for instance a recent paper on video matching [19].

Note that the method also allow us to restrict the comparison to a subset of possible

rotations, possible only one. For instance, if no rotation is expected, Eqn. 5 becomes simply

the direct cosine between the two CVLADs.
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Figure 2: Illustration of the pooling scheme. Hessian-Affine features from each image have

been quantized with four visual words and pooled in 8 orientations. Four sub-vectors of

CVLAD (top two rows) from image on the left correspondingly match to four CVLAD sub-

vectors from image on the right (bottom two rows). Their similarities are (in clockwise):

0.94, 0.89, 0.83 and 0.85. Positive and negative components are colored in red and blue

respectively.

Dimensionality reduction. One of the main interest of VLAD is to be a vector represen-

tation suitable to dimensionality reduction such as Principal component analysis (PCA). It is

also true for CVLAD. In order to fit CVLAD in the context of large-scale task, CVLAD has

to be mapped to lower dimension by PCA. However, the mapping should not treat CVLAD

as whole, since if that, the pooling structure that is built in CVLAD will be destroyed. As a

result, the PCA mapping is performed on each VLAD sub-vector. In order to enable the cir-

culant matching between mapped sub-vectors, one universal mapping matrix is learned for

all the sub-vectors. The sub-vectors are further ℓ2-normalized right after the PCA mapping.

4 Experiments

This section evaluates the performance of VLAD with pooling (CVLAD) and compares it to

existing approaches, Bag-of-words and regular VLAD. First we introduce the datasets used

to analyze and evaluate our approach. Then we analyze the parameters and evaluates the

interest of our approach with different feature detectors.

4.1 Datasets and evaluation protocol

The evaluation has been conducted with different settings and for three popular datasets,

namely, Holidays dataset [8], the Oxford5k Building dataset [18] and the University of

Kentucky object recognition benchmark [15]. Table 1 summarizes the main statistics and

evaluation measures associated with each of this dataset. In our experiments, the visual

vocabularies and PCA mapping matrices have been trained on a distinct image set.

Holidays [7] contains 1,492 images, which cover a large variety of scene types (natural,

man-made, water and fire effects, etc) and images are of high resolution. 500 images have

been selected as queries for each of the 500 partitioning groups on the image set.
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Table 1: Statics on the four evaluation datasets
Dataset Size Num of queries Performance Measure

Holidays [7] 1,492 500 mAP

Oxford5k [18] 5,063 55 mAP

UKB [15] 10,200 10,200 4×Recall@top4

Holidays + Flickr1M 1,001,492 500 mAP
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Figure 3: Performances of pooling with dominant orientation (orient) and characteristics

scale (scale). (a) In comparison with conventional VLAD and VLAD*. (b) Performances

of pooling on orient with varying number of bins. VLAD, VLAD* and CVLAD are all

computed with Hessian-Affine+SIFT.

Oxford5k contains images of Oxford famous buildings. There are 55 query images corre-

sponding to 11 distinct buildings. A bounding box is provided for each query to define the

area of the query image depicting the building.

University of Kentucky Benchmark (UKB) contains 2,550 different objects or scenes.

Each one is represented by four images taken from four different viewpoints.

In addition to these three datasets, one million images collected from Flickr (the same

as [8]) are adopted as distractors to evaluate the scalability of the proposed method.

4.2 Impact of the parameters

The effectiveness of VLAD* and CVLAD is first evaluated as a function of the vocabulary

size (k = 4,8, . . . ,256). Observe in Figure 3(a) is that VLAD* consistently outperforms

VLAD, which confirms the interest of the pre- and post-processing that we employ, see

section 2 for details. These extra operations are adopted for CVLAD as well, which is

compared to the stronger VLAD* baseline instead of the regular VLAD.

Figure 3(a) also shows the respective performance of CVLAD when constructed with

either the dominant orientation or the characteristic scale associated with the local features.

These quantities are pooled in B = 8 bins (in log-scale for characteristic scale), therefore the

resulting CVLAD consists of 8 sub-vectors in both cases. Both variants of CVLAD (scale

and orient) outperform the baseline. Pooling with the characteristic scale gives a perfor-

mance on par with simply increasing the vocabulary size. Using the dominant orientation is

noticeably better than using the scale and we therefore adopt it in the rest of our experiments.
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Table 2: The Performances of the oriented pooling with Hessian-Affine and Oriented dense

feature on Holidays, Oxford5k and Kentucky datasets.
k Holidays (mAP) Oxford5K (mAP) Kentucky (Recall@top4)

HesAff ODense HesAff ODense HesAff ODense
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4 52.0 62.7 62.3 75.6 23.0 38.0 14.7 33.4 3.02 3.30 2.99 3.25

8 56.0 66.4 67.2 78.3 28.0 39.1 17.5 36.3 3.22 3.42 3.23 3.41

16 58.1 67.0 71.7 79.9 30.9 40.7 22.6 42.0 3.30 3.48 3.40 3.50

32 59.7 68.8 73.3 80.4 33.3 42.7 24.4 45.9 3.34 3.50 3.49 3.53

64 61.3 70.3 74.8 81.9 35.0 43.6 28.5 47.8 3.39 3.55 3.54 3.57

128 61.3 71.4 76.5 82.6 37.4 46.0 31.8 50.4 3.42 3.57 3.58 3.60

256 62.6 73.0 77.6 82.7 39.1 47.9 35.9 51.4 3.44 3.58 3.59 3.62

Considering vectors of fixed dimensionality, it is better to use orientation-based pool-

ing than simply increasing the size of VLAD* vocabulary. For instance, with a given vo-

cabulary size k = 16, CVLAD achieves mAP=67%, while VLAD* with k = 128 achieves

mAP=61.3%. In the rest of our experiments, the pooling is only applied to dominant orien-

tation and the number of orientations is fixed to 8, which as indicated in Figure 3(b), gives a

good trade-off between performance gain and computational cost.

4.3 Oriented Dense Features

Table 2 gives the performance of CVLAD (based on orientation) on three popular bench-

marks for varying vocabulary sizes. As a first rough observation, CVLAD achieves a perfor-

mance similar to that of VLAD* with a vector size 4 to 8 times shorter.

Table 2 also analyzes the behavior of VLAD* and CVLAD-orient for two different fea-

ture detectors, namely Hessian-Affine (HesAff) and the oriented dense (ODense) extraction

introduced in section 2. Unlike object classification task, dense sampling does not necessar-

ily outperform the region detector if the features are aggregated with conventional VLAD.

However, when the dense SIFT is coupled with oriented pooling, it is much better on Hol-

idays and Oxford5K datasets. In particular, the mAP on Holidays dataset is already above

mAP=80.0% with a small vocabulary, which is also quite competitive with the best results

reported in [8]. The performances on UKB from different detectors are similar.

4.4 Large scale experiments

In order to make VLAD* and CVLAD more suitable for indexing large-scale databases,

both of them are reduced to a lower dimensionality by PCA. For CVLAD, the mapping is

performed on each VLAD sub-vector. CVLAD is built with vocabulary sized of k = 16.

Each sub-vector is mapped to 64 dimensions. VLAD* is built with k = 64 visual words and

reduced to 512 dimensions. CVLAD and VLAD* have therefore the same dimension after

dimensionality reduction. The results of bag-of-words (BoW) and Hamming Embedding

(BoW+HE) are also presented for reference. These approaches are significantly more costly

in terms of both time and memory efficiency (by at least one order of magnitude).

Figure 4 shows that, with Hessian-Affine detector, the performances of VLAD* and

CVLAD are similar if the reference set is small. However VLAD* suffers a faster per-

formance drop than CVLAD as the reference set grows. The performance degradation of
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Figure 4: Performance of CVLAD in large-scale image search as a function of database size.

The performance of VLAD has been compared with CVLAD*, BoW and BoW+HE [8].

CVLAD* is similar to that of BoW+HE, but CVLAD has lower memory requirements. Ori-

ented dense features boost the performances of CVLAD and VLAD* by more than 10%.

CVLAD takes an edge on other pooling approaches, with a performance comparable to the

one achieved by BoW+HE, and better than the BoW+WGC variant reported in [8].

5 Conclusion

We have presented a simple yet effective strategy, namely covariant pooling, to encode the

descriptors based on some geometrical properties, and in particular their dominant orienta-

tions. This approach builds upon the recent VLAD descriptor, but offers a new trade-off

with respect to geometrical invariance by implicitly selecting the rotation (likewise scale) to

maximize the similarity for a given image pair.

Our CVLAD approach outperforms VLAD in almost all configurations at the cost of

an increased comparison complexity. The pooling strategy increases the dimensionality, yet

for a fixed one and/or after dimensionality reduction, CVLAD is shown of interest. When

combined with dimensionality reduction, our approach is very efficient and easily scales to

one million images in database.
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