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Origin and age of the earliest Martian crust from
meteorite NWA7533
M. Humayun1, A. Nemchin2{, B. Zanda3,4, R. H. Hewins3,4, M. Grange2, A. Kennedy5, J.-P. Lorand6, C. Göpel7, C. Fieni3, S. Pont3

& D. Deldicque8

The ancient cratered terrain of the southern highlands of Mars is
thought tohold clues to theplanet’s early differentiation1,2, but until
nownometeoritic regolith breccias have been recovered fromMars.
Here we show that the meteorite Northwest Africa (NWA) 7533
(paired withmeteorite NWA70343) is a polymict breccia consisting
of a fine-grained interclast matrix containing clasts of igneous-
textured rocks and fine-grained clast-laden impact melt rocks. High
abundances of meteoritic siderophiles (for example nickel and iri-
dium) found throughout the rock reach a level in the fine-grained
portions equivalent to 5 per cent CI chondritic input, which is
comparable to the highest levels found in lunar breccias. Furthermore,
analyses of three leucocratic monzonite clasts show a correlation
between nickel, iridium andmagnesium consistent with differenti-
ation from impact melts. Compositionally, all the fine-grained
material is alkalic basalt, chemically identical (except for sulphur,
chlorine and zinc) to soils fromGusev crater. Thus, we propose that
NWA7533 is a Martian regolith breccia. It contains zircons for
which we measured an age of 4,4286 25 million years, which were
later disturbed 1,7126 85million years ago. This evidence for early
crustal differentiation implies that theMartian crust, and its volatile
inventory4, formed in about the first 100 million years of Martian
history, coeval with earliest crust formation on the Moon5 and the
Earth6. In addition, incompatible element abundances in clast-laden
impact melt rocks and interclast matrix provide a geochemical
estimate of the average thickness of theMartian crust (50kilometres)
comparable to that estimated geophysically2,7.
NWA7533 is a polymict breccia, characterized by a variety of clasts

set in a fine-grained (,1mm) interclast crystallinematrix (ICM) (Fig. 1).
The main clast component consists of fine-grained (5–20mm) clast-
laden impact melt rock (CLIMR) occurring as oval or curved smooth
bodies. Other clasts are made up of melt rock, melt spherules and fine-
grained (20–100mm) basaltic clasts, as well as lithic (noritic and mon-
zonitic) and crystal (especially pyroxene and feldspar) clasts that occur
in both melt rock and matrix (Fig. 1 and Supplementary Fig. 1). There
is a surprising dearth of olivine in both matrix and clasts even though
the Mg content of the matrix (,7.5%) is higher than that of Gusev
crater soils.Among the lithic clasts are coarse-grained leucocratic rocks
consisting of alkali feldspar, plagioclase, chlorapatite and ilmenite,with
a monzonitic composition. Exsolution in both pyroxenes and alkali
feldspars indicates that many lithic clasts are plutonic in origin (Sup-
plementary Fig. 1). Chemical and oxygen isotopic3 evidence confirms
that NWA7533 is a Martian meteorite (Supplementary Information).
Here we present laser ablation ICP–MS (inductively coupled plasma
mass spectrometry) elemental abundances and U–Pb zircon geochro-
nology which demonstrate that NWA7533 is a Martian regolith brec-
cia, and discuss the implications of this result.

The ICM and CLIMR have abundances of Ni (400–700 p.p.m.) and
Ir (10–80 p.p.b.) at their respective Mg contents (an index of chemical
differentiation of basaltic liquids) that are much higher than those of
shergottite–nakhlite–chassignite (SNC) meteorites (Ni, 200 p.p.m.;
Ir,1 p.p.b.) and comparable to those of lunar breccias8,9 (Fig. 2), indi-
cating a largemeteoritic component.Moreover, the relative abundances
of Ru, Rh and Os to Ir are in chondritic ratios in the ICM and CLIMR
(Supplementary Fig. 2). The siderophile element contents of ICM and
CLIMR require the equivalent of,5% CI chondrite admixed into the
Martian regolith. Prior explanations of the high Ni abundances in
Gusev soils have included both indigenous10 and meteoritic origins11,
but a chondritic impactor could not be inferred from Ni alone11. Sur-
prisingly, the leucocratic clasts also have high Ni abundances relative
to the SNC trend even at Mg, 0.1wt%. The individual mineral spot
analyses from two of the leucocratic clasts were examined after laser
ablation ICP–MS analysis, and the spots were found to be contained
entirely within the clast, not overlapping the Ni- and Ir-rich matrix
(Supplementary Fig. 3). This is evidence that these leucocratic clasts

1Department of Earth, Ocean and Atmospheric Science, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA. 2Department of Applied Geology, Curtin
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Figure 1 | Backscattered-electron image of NWA7533 section 1. The
breccia contains many large bodies of clast-laden impact melt rock (light or
medium grey), some outlined with dot–dash lines, in fine-grained interclast
crystalline matrix. Solid ellipses show crystal and lithic fragments, close-ups
of which (lettered) are shown in Supplementary Information. Pyroxene
(pxn; light or medium grey), feldspar (dark grey) and pyroxene–feldspar
rock fragments are found in both melt rocks and matrix. Bright grey minerals
include chlorapatite and Fe-rich oxides and oxyhydroxides.
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crystallized from impact melts enriched in siderophile elements to
concentrations similar to those in the ICM and CLIMR.
The remarkable chemical similarity betweenNWA70343 andGusev

rock and soil analyses12,13 is confirmed here forNWA7533.Abundances
of major elements (Si, Al, Fe, Ca and Na) in CLIMR and ICM are
identical to those in Gusev soils, except for higher Mg in CLIMR and
ICM (Supplementary Fig. 4). Amongminor elements, the similarity of
CLIMR and ICM to Gusev soils is evident in Ni (Fig. 2), Ti and K,
although P is up to twice as high as in Gusev soils owing to the abund-
ant chlorapatite in NWA7533. The fine-grained textures and uniform
chemical composition of CLIMR and ICM, which resembles the ubi-
quitous soil composition reported by NASA’s Viking14, Pathfinder15

andMars Exploration Rover12,13missions, indicate that thesematerials
contain important amounts of wind-blown dust. Because Ni is a reli-
able tracer for soil, Gusev rocks with high Ni contents12,13 may be
lithified sediments or impact breccias and cannot be regarded as
basalts10. Unlike modern Martian soils11–15, ICM and CLIMR do not
show enrichments of S, Cl and Zn with values similar to SNCmeteor-
ites (Fig. 3). These elements are likely to be in water-soluble phases in
modern soils and the lack of enrichment observed in NWA7533 com-
ponents is probably due to the transportation of these salts into ancient
seas or lakes16 by liquid water present onMars at the time of formation
of ICM and CLIMR.
Rare-earth element (REE) abundances for ICM are identical in

pattern to those for CLIMR, indicating that the two fine-grained lithol-
ogies in this meteorite are derived from similar precursors (Fig. 4). The
REE pattern for ICM and CLIMR in NWA7533 agrees well with the
pattern previously reported for bulkNWA70343, except that our in situ
analyses are less contaminated with leucocratic clasts that carry a strik-
ing negative Eu anomaly (Fig. 4). The absolute enrichment of REE
varies from 40 to 46 times the CI chondrite level owing to the ubiquit-
ous presence of 10–100-mm clasts in all the analyses. Some of these
clasts contribute small Eu anomalies, in the absence of which the REE

patterns of the CLIMR and ICM from NWA7533 would be smooth
and depleted in heavy REEs.
The chemical composition of Martian wind-blown dust, present as

ICM and CLIMR in NWA7533, should provide clues to the original
igneousprocesses that formed theprimaryMartiancrust.Apartial-melting
model of a primitive mantle composition for Mars (Supplementary
Information) indicates that a ,4% partial melt of a fertile mantle
containing ,1% garnet provides a fit to the CLIMR and ICM REE
patterns (Fig. 4). The exact value of the melt fraction depends on the
absolute REEabundances,which are diluted by the presence of clasts. If
thismeltwere extracted fromthe entireMartianmantle itwould forma
uniform global layer 50 km thick, which is incidentally identical to the
average thickness of theMartian crust inferred from gravity and topo-
graphymeasurements byNASA’sMars Global Surveyor7. The absence
of a garnet (majorite) signature argues against formation of this enriched
material as the last dregs of a magma ocean. Combined 142Nd–143Nd
isotope evidence in shergottites implies that the formation of the
enriched and depleted reservoirs on Mars occurred within the first
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100Myr of the planet’s history17. Here we identify the enriched res-
ervoir to be the crust. It is no longer necessary to invoke amagmaocean
from Nd isotope evidence for Mars18, and we take the 100-Myr Nd
isotope timescale to imply that the Martian crust formed very early.
Removal of this primary melt yields a depleted residue (Fig. 4), which,
on subsequent melting (,15%), yields a composition like that of
Tissint meteorite19, a depleted shergottite. Crustal assimilation by
depleted-shergottite magmas then gives rise to intermediate and
enriched shergottites3.
NWA7533 contains numerous evolved igneous clasts that contain

zircons. These evolved lithologies (monzonitic or mugearitic20 mag-
mas) probably formed by re-melting of the primary Martian crust
either at depth in the presence of volatiles20 or by differentiation of
large impact melt sheets. Sensitive high-resolution ion microprobe
(SHRIMP) dating of these zircons (Fig. 5) provides a powerful lower
limit on the timescale of crustal differentiation. The zircon grains were
from 6–70mm and the spot size for the SHRIMP was ,7mm in dia-
meter; as a result, some of the analysed spots overlapped the matrix
(Supplementary Information and Supplementary Fig. 5). The analyses
of overlapping spots were excluded. The analyses for five of ten inves-
tigated grains that were entirely within zircon fall on a single discordia
line with an upper intercept of 4,4286 25Myr (1s) and a lower inter-
cept of 1,7126 85Myr (1s) (Fig. 5). The mean squared weighted
deviation, of 2.4, most probably results from the analyses being per-
formed on a polished section with some variability in relief, yielding
excess scatter of calculatedU/Pb in the sample compared with the stand-
ard. All analyses, with the exception of two, show 206Pb/204Pb. 400,
withamaximumvalueof,1,600 (Supplementary Information).Although
these ratios are lower than those usually observed in terrestrial zircons
of the same age6, the common-Pb correction was insensitive to the
choice of common-Pb composition. A single, nearly concordant zircon
(Z11) with a 207Pb/206Pb age of 41146 30Myr (1s) may represent a
different age population of zircons in the sample.
These ancient ages for Martian zircons are strikingly similar to the

ages of the earliest terrestrial6 and lunar zircons5, implying coeval crust
formation on the Earth,Moon andMars. Because the leucocratic clasts
formed either by impact or by internal melting of the crust, the events
dated by the zircons post-date the emplacement of the Martian crust
(4.47Gyr (ref. 17)) by only ,40Myr. The cause of the younger age
intercept at 1.7Gyr is not known, but it is close to the Rb–Sr age of
2.1Gyr for NWA70343, indicating major disturbance of both U–Pb
and Rb–Sr ages for the leucocratic clasts at this time.

The combination of compositional and chronological evidence pre-
sented here for NWA7533 implies that it originated from the earliest
Martian crust brecciated by impacts. The alkali basalt composition of
this crust is now ubiquitously distributed by impacts and wind-blown
dust in all major Martian soils sampled by spacecraft landers11–15. The
observation that Ni remains as high in modern soils as in CLIMR
implies minimal subsequent crustal resurfacing on Mars. Evidence
for early differentiation (.4,400Myr ago) within the crust to form
leucocratic rocks, and the redistribution of these clasts into highland
breccias, forms a potent means by which large areas of Martian crust
can retain K/Th signatures distinct from that of the uniform wind-
blown dust21. The early magmatic build-up of the Martian highland
crust requires an equally rapid release of volatiles from the Martian
interior, forming the early atmosphere and hydrosphere of Mars1,4,
with implications for early Martian climate and biological potential22.
Further studies of this meteorite will shed light on plutonic rock com-
positions of theMartian highlands, Martian zirconology and the earli-
est sedimentary compositions on Mars.

METHODS SUMMARY
Samples of NWA7533 were analysed using a Tescan VEGA II LSU scanning
electron microscope and a Zeiss SIGMA scanning electron microscope at MNHN
Paris and ENS Paris, and a CAMECA SX5 electron microprobe at the Université
Paris VI. An uncoated section,NWA7533 section 3, was analysed by laser ablation
ICP–MSusing anElectroScientific InstrumentsNewWaveUP193FXArF excimer
(193 nm) laser ablation systemcoupled to aThermoElectronElementXR ICP–MS
at Florida State University. Altogether, 76 peaks for major and trace elements and
their interferences were monitored. Spot sizes of 50–150mm were used, and the
laser repetition rate was 50Hz, with a fluence of.2GWcm22. Raster rates were
10mms21. Laser dwell times on a spot were 20 s, resulting in a pit depth of
,100mm. Relative sensitivity factors obtained from separate standards for many
well-characterized lithophile elements agreed to 2–5%, but the accuracy wasworse
for elements for which only one standard was available, for example NIST SRM
610 (,10–20%). Before U–Pb analysis, zircons were imaged by cathodolumines-
cence using a variable-pressure Zeiss EVO scanning electronmicroscope at Curtin
University configured to collect a cathodoluminescence signal, with an accelera-
tion voltage of 10 kV. The working distance was 8.5mm. Uranium–lead isotope
analyses on Au-coated NWA7533 section 4 were performed on a SHRIMP II at
Curtin University under analytical conditions described previously5. The beam
spot was reduced to 7mm to effectively analyse the small zircons observed with a
primary O22 beam current of 0.5 nA (Methods).

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Laser ablation ICP–MS measurements of NWA7533. An uncoated section,
NWA7533 section 3, was analysed by laser ablation ICP–MS using an Electro-
Scientific Instruments New Wave UP193FX ArF excimer (193 nm) laser ablation
system coupled to a Thermo Electron Element XR ICP–MS at Florida State
University, as described elsewhere31–33. Spot sizes of 50–150mm were used, the
laser repetition rate was 50Hz and the fluence was .2GWcm22. Raster rates
were 10mms21. Laser dwell times on a spot were 20 s, resulting in a pit depth of
,100mm. Altogether, 76 peaks for major and trace elements and their interfer-
ences were monitored, and the intensities converted to concentrations using a
combination of silicate, sulphide and metal standards, including NIST SRM 610
glass34; USGS glasses BHVO-2g, BCR-2g and BIR-1g; NIST SRM 1263a steel35;
Hoba36 (IVB); North Chile (Filomena, IIA); and a pyrite crystal. The MPI-DING
glasses were measured as independent controls. Major elements were determined
using published methods37. Relative sensitivity factors obtained from separate
standards for many well-characterized lithophile elements agreed to 2–5%, but
the accuracy is worse for elements for which only one standard was available, for
example NIST SRM 610 (,10–20%). Interference corrections for doubly charged
Ba, Nd and Sm ions on Zn, Ga, Ge, As and Se were performed by monitoring
137Ba21, 145Nd21 and 149Sm21. Owing to interference from ZrO1 andMoO1, no
data are reported for Pd, Ag and Cd here. The absence of suitable standards
prevented data from being obtained for Br, I and Hg. Representative chemical
compositions for selected samples discussed in the text, peaks monitored and
detection limits determined on MPI-DING glasses are provided in Supplemen-
tary Table 1, together with the bulk composition of NWA70343. Section 3 was
then carbon-coated and examined by EMP in Paris. Examples of post-ablation
images are provided in Supplementary Fig. 3.
SHRIMP U–Pb analyses of zircon and baddeleyite. Before U–Pb analysis, zir-
cons were imaged by cathodoluminescence using a variable-pressure Zeiss EVO
scanning electron microscope at Curtin University configured to collect a cath-
odoluminescence signal, with an acceleration voltage of 10 kV. The working dis-
tance was 8.5mm. Uranium–lead isotope analyses on Au-coated NWA7533
section 4 were performed on a SHRIMP II at Curtin University under analytical
conditions described previously38–40. The beam spot was reduced to 7mm using a
30-mm Kohler aperture to effectively analyse the small zircons observed with a
primary O22 beam current of 0.5 nA. Secondary ions were passed to the mass
spectrometer operating at a mass resolution (M/DM at 1%) of ,5,000. Each
analysis was preceded by a 2-min raster to remove the Au coating and surface
contamination. Thepeak-hoppingU–Pbdata collection routine consisted of seven
scans through the mass stations, with signals measured using an ion-counting
electron multiplier. Compared with a typical zircon ion probe analysis, counting
times were increased for 204Pb (to 20 s), 206Pb (to 20 s) and 207Pb (to 50 s) to
increase the precision of 207Pb/206Pb for individual spot analyses. The sensitivity
of the instrument during the session was determined to be 20 c.p.s. p.p.m.21nA21

using Pb isotopes. Measured Pb/U and Pb/Th ratios in zircon grains were cor-
rected using a 562-Myr-old CZ3 zircon standard41. Twenty seven analyses of this
standard made during the session resulted in an external error of 2.4% (1s) in
206Pb/238U,whichwas added to the errors in 206Pb/238Uobtained for eachMartian
zircon.

Considering that SHRIMP analyses of U/Pb in baddeleyite suffer from strong
orientation effects, preventing reliable estimates ofU/Pb (ref. 42), only 207Pb/206Pb
ages have been calculated for three baddeleyite grains identified in the section
(Supplementary Fig. 6). CommonPb in both zircon and baddeleyite was corrected
using present-day terrestrial ratios43, following the observation that much of the
common Pb in sections of extraterrestrial materials comes from contamination of
the samples during their preparation44. However, correcting all analyses using
more primitive Pb isotope compositions does not result in anymeaningful change
in the calculated ages. Raw data have been reduced using SQUID245. Concordia
diagrams and intercept calculationsweremade using Excel add-in ISOPLOT3.7546.
The calculated data are presented in the Supplementary Table 2 with errors
reported at the 1s level. Ellipses and error bars in all diagrams are shown at the
2s level and intercept ages are calculated at the 95% confidence level.
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