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Abstract: Molecular analyses are providing new elements to decipher the origin, 

domestication and dispersal of native Amazonian crops in an expanding archaeological 

context. Solid molecular data are available for manioc (Manihot esculenta), cacao 

(Theobroma cacao), pineapple (Ananas comosus), peach palm (Bactris gasipaes) and 

guaraná (Paullinia cupana), while hot peppers (Capsicum spp.), inga (Inga edulis), Brazil 

nut (Bertholletia excelsa) and cupuassu (Theobroma grandiflorum) are being studied. 

Emergent patterns include the relationships among domestication, antiquity (terminal 

Pleistocene to early Holocene), origin in the periphery, ample pre-Columbian dispersal and 

clear phylogeographic population structure for manioc, pineapple, peach palm and, 

perhaps, Capsicum peppers. Cacao represents the special case of an Amazonian species 

possibly brought into domestication in Mesoamerica, but close scrutiny of molecular data 

suggests that it may also have some incipiently domesticated populations in Amazonia. 

Another pattern includes the relationships among species with incipiently domesticated 

populations or very recently domesticated populations, rapid pre- or post-conquest 

dispersal and lack of phylogeographic population structure, e.g., Brazil nut, cupuassu and 

guaraná. These patterns contrast the peripheral origin of most species with domesticated 
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populations with the subsequent concentration of their genetic resources in the center of the 

basin, along the major white water rivers where high pre-conquest population densities 

developed. Additional molecular genetic analyses on these and other species will allow 

better examination of these processes and will enable us to relate them to other historical 

ecological patterns in Amazonia. 

Keywords: molecular markers; genetic analysis; phylogeography; phylogenetics;  

crop dispersal 

 

 

1. Introduction 

 

At least 138 crops with some degree of domestication were being cultivated or managed by native 

Amazonians in various types of production systems at the time of European conquest, including 83 

crops native to Amazonia and immediately adjacent areas in northern South America, and 55  

exotic ones, i.e., from other Neotropical regions, such as northeastern Brazil, the Caribbean and 

Mesoamerica [1]. Among the 52 crops with domesticated populations, 14 are fruit or nut trees or 

woody vines (27%); among the 41 crops with semi-domesticated populations, 35 are trees or woody 

vines (87%); and among the 45 crops with incipiently domesticated populations, all but one are fruit 

and nut trees. Overall, 68% of these Amazonian crops are trees or woody perennials. In landscapes 

largely characterized by forest, a predominance of tree crops is perhaps not surprising [1]. Nonetheless, 

the most important subsistence crop domesticated in Amazonia is an herbaceous shrub, manioc [2], 

and several other domesticates are also root or tuber crops, most of which are adapted to  

savanna-forest transitional ecotones with pronounced dry seasons. 

Two types of domestication can be distinguished conceptually: landscape domestication and plant 

(or animal) population domestication [1]. Only the latter will be considered here because plant 

population domestication can now be examined with new genetic techniques, even though both sorts of 

domestication are of potential interest to historical ecology, since landscapes and the biota in them are 

profoundly affected, indeed molded by human actions. Additionally, these two kinds of domestication 

are intimately related because domesticated populations require some kind of landscape management, 

especially cultivation. Plant population domestication is a co-evolutionary process by which human 

selection on the phenotypes of promoted, managed or cultivated individual plants results in changes in 

the descendent population‘s phenotypes and genotypes that make them more useful to humans and 

better adapted to human management of the landscape [1]. The degree of change in populations can 

vary along a continuum from wild (the baseline, with no human-mediated change), through incipiently 

domesticated, to semi-domesticated, to domesticated. An incipiently domesticated population has gone 

through a founder event (defined as human selection of a small sample of the wild population and 

propagation of descendents from this sample; also called a bottleneck) that reduces its genotypic 

diversity and its phenotypic diversity varies only somewhat from the ancestral wild population in the 

traits selected by humans. A semi-domesticated population has gone through several sequential 

founder events that reduce further its genotypic diversity, but its phenotypic diversity is enhanced by 

accumulation of diverse alleles for traits selected by humans. Semi-domesticated populations tend to 
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have more ample geographic distributions than incipient domesticates, which may permit introgression 

with other wild, incipient or semi-domesticated populations of the same species; in turn, such 

introgression may offer additional alleles for selected traits, thus somewhat enhancing genetic 

diversity. The ample geographic distribution may include areas where wild populations do not exist, 

which reduces introgression of wild-type alleles and permits more rapid response to human selection. 

A domesticated population has been further selected for adaptation to human-modified landscapes, 

especially cultivated gardens and fields, and has lost its original ecological adaptations for survival 

without humans, especially its original dispersal mechanisms and survival capabilities [1]. Observe 

that domestication is a process that occurs at the population level, not the species level, so that it is 

incorrect to affirm that species X is a domesticate, unless all wild populations have become extinct, 

which is an uncommon occurrence; it is most generally correct to affirm that species X exhibits 

domesticated populations. Exceptions to this generalization exist, for example, when the end-result of 

the domestication process is a new species; a particular case of the latter is interspecific hybridization 

followed by chromosome doubling, resulting in the formation of allopolyploids [3], as in guaraná, 

discussed below. An aside is worth adding here: the term ―proto-domesticate‖ is often used, but protós 

is Greek for ―first‖, leading to definitions such as ‗original‘ and ‗primitive‘ (as in ―first order‖); since 

domestication is a process and the domesticated population is the result, the domesticate is not 

primitive, but derived. Hence, the term should be avoided. 

The degree of modification during domestication can be dramatic in many crops, including some 

tree crops, such as peach palm, where the difference in fruit size between the wild type and the most 

derived domesticated population is on the order of 2000% [4]. Several other Amazonian tree crops 

show considerable, although not as dramatic, modification due to domestication [5]. Given the long 

generations and typically outcrossing reproductive systems, these degrees of change suggest that 

domestication started quite early, perhaps at the beginning of the Holocene, rather than when 

production systems coalesced and became prominent 3,000 to 4,000 years before present (BP). The 

archaeological record, however, does not contain early records of Amazonian tree crops, although 

manioc and sweet potato were present between 8,000 and 6,000 BP in caves along the western Andean 

foothills of Peru [6], indicating that they were domesticated earlier. The earliest lowland tree crop, 

guava, was present in the same area before 5,000 BP [6]. The archaeological record of lowland South 

America east of the Andes is much less studied than the dry Pacific coast, western foothills and the 

highlands, where preservation is better, but is gradually gaining attention and patterns will become 

apparent as critical mass increases. 

Better ethnographic and historical information exists for more recent periods. The crops in 

Amazonia at conquest were distributed in numerous centers, regions and micro-centers of crop genetic 

diversity, located principally where Native Amazonian populations were most abundant [7], i.e., along 

the principal white water rivers, but also in the upper Negro River, which was and still is a major 

center of Amazonian ethnic and linguistic diversity. Some tree crops, such as Brazil nut, are quite 

long-lived (500 to 1,000 years), so that their pre-conquest distribution can be mapped from their 

modern distribution. Balée [8] used this type of information to estimate the proportion of the Amazon 

basin that had been modified by pre-conquest human activity (nearly 12%). Unfortunately, few species 

permit this type of analysis, but living plants can provide other information that permits inferences 
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about their origin, domestication and dispersal before and since European conquest. This information 

is in their DNA and is accessed with different molecular techniques. 

There are numerous types of molecular markers used in genetic analysis, each with advantages and 

disadvantages, as well as different information contents [9]. In plants, both nuclear DNA (diploid) and 

chloroplast DNA (haploid) offer important and somewhat different information, with nuclear DNA 

subject to rapid change via recombination and chloroplast DNA subject to less rapid change; the latter 

is generally maternally inherited, which makes it especially useful for some kinds of analyses, such as 

distinguishing seed dispersal from pollen dispersal. So called dominant markers are cheaply and easily 

generated, but are less informative because they do not distinguish between homozygotes and 

heterozygotes at a particular DNA locus; the primary marker cited here is Random Amplified 

Polymorphic DNA—RAPDs, which are generated principally from nuclear DNA. Co-dominant 

markers are often more expensive to generate, but are more informative because they distinguish 

homozygotes and heterozygotes; examples are protein polymorphisms, especially in enzymes, Simple 

Sequence Repeats—SSRs (also called microsatellites), and Restriction Fragment Length 

Polymorphisms—RFLPs; the latter two can be either nuclear or chloroplast. Direct sequencing of 

specific regions of DNA is becoming the most important strategy to study genetic variability as the 

cost falls continually; it is also the most informative. Sequence polymorphisms include insertions and 

deletions of base pairs or sections of DNA, as well as substitutions in nucleotide sequences, such as 

Single Nucleotide Polymorphisms—SNPs. Ideally molecular markers should be selectively neutral, 

that is they should not be under selective pressures so that they do not reflect different local 

adaptations to natural or human selection. 

New research with these molecular tools attempts to identify origins and possible dispersals via the 

patterns of genetic diversity in living populations of native Amazonian crops, a field of study known as 

phylogeography [9]. Phylogeography is the analysis of the geographic distribution of genetic variants, 

especially lineages of genes, which is generally due to dispersal of organisms (seed dispersal in plants) 

and thus provides insight into the history of a species. The same information permits inferences about 

the domestication process [10-12] and can even be used to estimate the approximate age of the founder 

events, although this has yet to be attempted with an Amazonian crop. This contribution reviews recent 

molecular studies of a set of native Amazonian crops, some important, others less so, and identifies 

emergent patterns that can be used to interpret crop domestication and dispersal before conquest. 

 

2. The Crops 

 

We will review the recent molecular genetic literature on only nine of the 83 native Amazonian 

crops, principally because the number of crops examined is still quite small. Manioc is the most 

important subsistence food crop domesticated in Amazonia and was one of the first studied with 

molecular techniques. Cacao is arguably as important, although chocolate lovers might place it first. 

Peach palm is the premier Neotropical tree fruit-crop and has recently been the focus of considerable 

research. The Capsicum peppers are certainly the most important Neotropical spices and at least one 

species appears to contain domesticated populations of Amazonian origin. Pineapple is often 

considered the queen of fruits and is certainly the most important fruit crop from Amazonia. Inga is a 

legume tree crop often called ice cream bean because of the edible aril around the large seeds; it is 
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currently an important agroforestry species, used principally for green manure and shade for other 

crops. Guaraná is a stimulant that is gaining worldwide popularity, although its principal use in Brazil 

is to flavor soft drinks. Brazil nut is the emblematic Amazonian tree, whose edible seed is recognized 

around the world. Cupuassu is a cacao relative whose pulp is used for making fruit juices and  

other products. 

Manioc, peach palm, Capsicum, pineapple, inga and guaraná all have domesticated populations, 

while cacao has semi-domesticated populations, and Brazil nut and cupuassu have incipiently 

domesticated populations [1]. Eight of the nine are outcrossing species, the exception being Capsicum, 

and two are generally vegetatively propagated (manioc and pineapple). The available information 

concerning these nine species is not uniform, as much remains to be done. Nonetheless, the 

information now available and reviewed here provides fascinating insights into the origin and 

domestication of native Amazonian crops, placing Amazonia squarely in the list of important centers 

of crop genetic diversity. 

 

2.1. Manioc 

 

Manioc (Manihot esculenta Crantz, Euphorbiaceae) is the most important food crop that originated 

in Amazonia and is grown throughout the tropics; it is the sixth major food crop produced globally. 

The term manioc is derived from the Tupi word maniot, while the term cassava comes from the 

Arawak words cassavi or cazabi, meaning bread [13]. Although some modern cultivars derive from 

modern breeding efforts and market demand, manioc is mostly cultivated by traditional farmers with 

few or no inputs or mechanization. Nonetheless, manioc is extremely important to the food security of 

an enormous number of smallholders in tropical countries and is the main carbohydrate resource for 

about 800 million people. 

The origin of manioc as a crop has long been debated. The genus Manihot has 98 species distributed 

throughout the Neotropics from Mexico to northern Argentina [14]. Two centers of diversity are 

recognized: one in Brazil with about 80 species; one in Mexico with 17 species. A taxonomic 

classification based only on phenotypic variation is unreliable because of considerable trait overlap. 

For a long time, manioc was considered a cultigen (without a wild conspecific ancestral population) 

and was thought to have originated from a series of introgression events among wild species [14]. 

Based on phenotypic similarities, M. aesculifolia, which occurs in Mesoamerica, was thought to be one 

of these wild relatives [14]. Later, another Mesoamerican species, M. carthaginensis, was proposed as 

a wild relative [15,16]. Early studies with molecular markers did not clearly resolve the phylogeny of 

the genus [17,18]. However, they did identify a clear separation between the Mesoamerican and South 

American lineages, and found that cultivated manioc always grouped with South American species, 

suggesting that the crop was domesticated in South America. The great phenotypic variation and the 

low-resolution phylogenies also suggest that the genus Manihot experienced a recent period of  

super-diversification. 

The taxonomy of Manihot was elucidated in the mid-1990s. Based on phenotypic traits, Allem [19] 

proposed that manioc consists of three subspecies: Manihot esculenta ssp. esculenta (cultivated form), 

M. esculenta ssp. flabellifolia (the closest wild relative) and M. esculenta ssp. peruviana (probably not 

involved in manioc domestication). Together with Manihot pruinosa, these form the primary gene pool 
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of manioc. Allem also speculated that manioc was domesticated somewhere on the Central Brazilian 

Plateau, the main center of diversity in South America, where 53 Manihot species occur. 

Three different molecular markers [sequencing of the nuclear gene glyceraldehyde 3-phosphate 

dehydrogenese (G3pdh), SNPs and SSRs] were used to evaluate the relationships among cultivated 

varieties of manioc and wild populations of M. esculenta ssp. flabellifolia and M. pruinosa. It was 

determined that the latter species does not contribute to the gene pool of cultivated manioc and that the 

genetic variability found in cultivated manioc is a subset of the genetic variability found in the 

populations of M. esculenta ssp. flabellifolia that occur in southwestern Amazonia [2,20,21]. Recently 

Léotard et al. [22] used the G3pdh gene to examine cultivated manioc, a wider geographic sample of 

M. esculenta ssp. flabellifolia and other potentially hybridizing Manihot species, and validated Olsen 

and Schaal‘s results [2,20,21], strongly suggesting that manioc was domesticated only once from M. 

esculenta ssp. flabellifolia populations occurring in northern Mato Grosso, Rondônia and Acre states, 

in Brazil, and adjacent areas of northern Bolivia. Domestication must have started before 8,000 BP, as 

that is the earliest date reported from the Zana and Ñanchoc valleys of coastal Peru [6]. 

The domestication of manioc resulted in significant changes in M. esculenta ssp. flabellifolia, the 

most important being the development of tuber roots capable of storing large amounts of 

carbohydrates. After its initial domestication, different selective pressures gave rise to two major 

groups of varieties: ―sweet‖ manioc and ―bitter‖ manioc [23,24]. This separation is based on the 

cyanogenic potential of the roots, which accumulate linamarin and lotaustralin, substances that are 

hydrolyzed to cyanide when the root cortex tissues are damaged. Sweet varieties have low amounts of 

cyanogenic glycosides (<50 ppm fresh weight) and can be safely consumed with simple processing 

(cooking or sometimes even raw). On the other hand, bitter varieties have large amounts of cyanogenic 

glycosides (>50 ppm fresh weight) and demand considerable detoxification and processing before 

consumption in the form of flour (farinha, farine), flat breads (beiju), cassava bread or fermented 

drinks. Although this classification is dichotomist, continuous variation among manioc varieties and 

related wild species is observed, suggesting that sweet and bitter manioc are the outcome of 

independent selections from an ancestor with intermediate toxicity [25]. 

In contrast to what is observed in most domesticated crops, there is strong selection for manioc 

varieties with high toxicity, especially in Amazonia where the majority of varieties are bitter. Some 

studies identify a tendency for higher yield in bitter varieties than in sweet ones, which may be due to 

the greater pest and pathogen resistance of bitter manioc varieties [26,27]. In Tukanoan settlements in 

northwestern Amazonia the selection of varieties appears to be due mainly to the foods that can be 

prepared from them and bitter manioc can be used to prepare more kinds of food [28]. 

In general, bitter manioc cultivation is associated with the courses of the major Amazonian rivers, 

as well as the coastal areas of South America, where population densities were highest before 

conquest. On the other hand, sweet manioc is the main crop throughout the headwaters of these same 

rivers in western Amazonia, including the whole length of the Ucayali and Marañon Rivers in Peru, 

the southern periphery and up into Mesoamerica. It is also commonly grown on a minor scale where 

bitter manioc is the major crop [25]. These patterns may be due to the costs and benefits of toxicity, 

with greater benefits of toxicity for large sedentary populations with semi-permanent fields, because 

these attract greater pest and pathogen pressure, and with greater costs for small, more mobile 
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populations [25]. While these ideas may explain pre-conquest distributions, it is not clear if they 

explain current distributions of bitter and sweet. 

Although ease of vegetative propagation is another outcome of domestication, manioc has not lost 

its capacity for sexual reproduction, which plays a very important role in the evolutionary dynamics of 

the crop. Once produced, seeds become part of the soil seed bank, and seedlings sprout among the 

vegetatively propagated varieties in the plots [25,29-31]. Many smallholders let these volunteers grow, 

either unconsciously or consciously [32,33]. At the time of harvest, they decide if a given volunteer is 

worth including among the plants that will be vegetatively propagated [25,32,34,35]. If so, 

smallholders can either incorporate the seedlings into an existing variety or use them to establish a new 

variety [25,29,31,36,37]. Genetic analyses confirmed seedling incorporation by detecting high 

polymorphism in local varieties [24,31,36,38], and by demonstrating that local varieties are polyclonal, 

with one predominant clone and a set of morphologically similar plants that are genetically  

different [30,34,39]. 

 

2.2. Cacao 

 

Cacao (Theobroma cacao L., Malvaceae) is native to Amazonia, but is generally believed to have 

been domesticated in Mesoamerica [40], since this is the only region in which evidence of cultivation 

existed at the time of European conquest [41]. The name Theobroma, or ―food of the gods,‖ was 

coined by Linnaeus to honor the Aztecan belief in the divine origin of cacao, although he might not 

have chosen it if he had experimented with the Aztecan beverage made with a mixture of fermented 

and ground cacao seeds, maize and Capsicum peppers. The specific name cacao and the term 

chocolate are corruptions from Nahuatl, the Aztec language. The chocolate that we are all familiar 

with is a European invention, made with vanilla and sugar, and much easier to accept as a ―food of the 

gods‖ than that made with maize and chili peppers. Although the Maya have been credited with its 

domestication, the name for cacao can be reconstructed in proto-Zapotecan, a language spoken in 

southern Mexico by about 3,350 BP, while proto-Mayan is dated to about 2,400 BP [42], strongly 

supporting a much earlier dispersal. 

Until recently there were three hypotheses about the relationships among cultivated cacao in 

Mesoamerica and wild cacao in Amazonia [40]: a south to north dispersal; a north to south dispersal; 

and in situ development of types with no early dispersal. These hypotheses attempt to explain the 

differences between the Criollo types (subsp. cacao; [43]) found from northwestern South America to 

Mesoamerica and the Forastero types (subsp. sphaerocarpum) found in Amazonia and northeastern 

South America, while accepting the observation that cacao grows wild from southern Mexico to the 

southern edges of Amazonia. However, cacao survives easily in appropriate humid forest ecosystems 

when abandoned, which led Clement [1] to classify it as a crop with semi-domesticated populations, 

rather than with fully domesticated populations. 

Using two co-dominant markers (RFLPs and SSRs), and controlling sample origin very carefully to 

distinguish between materials that were less likely to have been genetically contaminated by the last 

five centuries of germplasm exchange, Motamayor & Lanaud [44] show clearly that Criollo types are 

derived from South America, as had been hypothesized by Cheesman [45], who identified the center of 

origin in the upper Napo, Putumayo and Caquetá River basins adjacent to the Ecuadorian and 
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Colombian Andes. Motamayor and Lanaud suggest that northwestern Venezuela may be important 

because there are very early reports of a chocolate-like beverage called chorote, religious use and 

extraction of seed fat all based on genetically Criollo type cacao. These early reports should be 

interpreted with caution, however, as they may already reflect European influences [41], rather than 

purely native developments, and no archaeological records of cacao exist in the region [44]. There are 

also no reports of cultivation in this area until much later [41]. 

One of the major implications of this study is that Cuatrecasas‘ [43] classification of two subspecies 

is incorrect [44], which also raises questions about the usefulness of the Criollo-Forastero dichotomy, 

even though numerous molecular genetic analyses have identified clear differences between these 

types (references in [44,46]). These conclusions led to a search for a new intraspecific classification 

that would be useful for plant breeders [46]. With a very large data set (1,241 plants; 96 SSR), the 

Structure program [47] was used to identify genetic groups with no a priori hypotheses, which also 

allowed identification of genebank errors and their elimination [46]. 

Instead of the two traditional groups (Criollo and Forastero) and their hybrid (Trinitario), ten 

genetically different clusters are strongly supported by Structure and various other analyses [46]. The 

greatest diversity is found in western Amazonia (7 groups, including Nacional). Three groups are 

especially important to our discussion: Criollo, Nacional and Amelonado. These groups have been 

classified as traditional cultivars [46], which suggests some degree of domestication. The Criollo 

traditional cultivar is found in northwestern Ecuador, northwestern Venezuela (around Maracaibo), 

northern and western Colombia, and throughout Central America to southern Mexico, including the 

Maya heartland. The Nacional is a western Ecuadorian cultivar, with close affinity to several 

populations in extreme northern Amazonian Peru and the Curaray group in Amazonian Ecuador. The 

Criollo, Nacional and Curaray groups occupy one major branch of the Neighbor Joining dendrogram, 

suggesting an Ecuadorian Amazonian origin for both traditional cultivars. The Amelonado occurs in 

the lower Amazon basin and has less morphological variation than other Amazonian cacaos, especially 

with respect to fruit characteristics [40]. The Amelonado groups with the French Guiana group, 

suggesting a possible eastern Amazonian origin for this traditional cultivar. Close scrutiny of the 

molecular information shows that these three traditional cultivars have low numbers of private alleles 

(alleles that occur in only one group), while the western Amazonian groups generally have high 

numbers, with one or two exceptions that may be due to sampling [46]. One way to explain these low 

numbers is that they represent the genetic bottlenecks that accompany continued selection by humans, 

which is never doubted for Criollos.  

Note also that the Criollo and Amelonado traditional cultivars are at the northwestern and eastern 

extremes of cacao distribution in the Americas. The discussion of Criollos has always included  

human-mediated dispersal, although clear records of cultivation appear only in the northern half of its 

range, from Costa Rica to Mexico [41]. The early chronicles from eastern Amazonia do not report 

cultivation. However, Patiño [41] cites Jacques Huber [48], who refers to the lack of cacao east of 

Obidos and Santarém and west of Marajó Island. Patiño [41, p. 351] concludes that the cacao in 

eastern Pará is probably the result of ―ancient cultivation.‖ Ethnographic observations in French 

Guiana also suggest that cacao has long been cultivated in the region by native peoples [49]. While 

both Huber‘s and Barrau‘s observations are much too late to offer assurance that cacao was cultivated 

before conquest, the relative uniformity of Amelonado fruits and the low number of private alleles 
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suggest that this traditional cultivar may have been at least incipiently domesticated in  

eastern Amazonia. 

It is appropriate to ask why only Criollos are generally considered to be at least semi-domesticated, 

whereas even the traditional cultivars Nacional and Amelonado are not. It may be that cacao 

researchers have been blinded by the name ―food of the gods.‖ In other words, if Native Americans did 

not make chocolate, then they did not domesticate cacao. Considering that numerous other Amazonian 

fruits with sweet juicy pulps contain domesticated populations [1], such as abiu (Pouteria caimito), 

biribá (Rollinia mucosa), mapati (Pourouma cecropiifolia), sapota (Quararibea cordata), it is possible 

that cacao could have been selected initially for its pulp. In fact, this is probably the only way to get 

cacao from Amazonian Ecuador (the Curaray group) over the Andes into western Ecuador (the 

Nacional traditional cultivar), then up the Colombian Pacific and around to Maracaibo, before or 

simultaneously going north into Panama and Costa Rica. Remember that there were no reports of 

cultivation in any of these areas, nor any reports of chocolate, except the chorote in  

northwestern Venezuela.  

Any sweet fruit can be fermented to obtain a mildly alcoholic beverage. Recent chemical 

archaeology shows that several types of pottery vessels found in Honduras, part of the Mayan  

heart-land, contain theobromine, a chemical compound found in Theobroma spp. The earlier vessels 

have shapes that suggest they were used to serve a fermented beverage, while the later vessels have 

shapes characteristic of those used with frothed chocolate [50]. Interestingly, the earlier vessels date  

to 3500 BP, in close agreement with the appearance of the word for cacao in proto-Zapotecan  

by 3350 BP [42]. The authors suggest that the first uses for cacao in Mesoamerica were similar to 

those in South America—the sweet pulp around the seed was consumed directly or fermented—and 

only later did the fermented seed itself become an additional part of the beverage, finally becoming the 

―food of the gods.‖ While there are no reports of the cacao pulp beverage in South America, numerous 

other fermented beverages made from sweet or starchy fruits and roots are mentioned [41].  

For domestication to occur, there must be human selection and propagation, both of which can be 

either intentional or unconscious [1,51]. Most domestication events were surely initially unconscious 

and cacao is an ideal example of how this might have occurred. Some variation in fruit pulp sweetness 

and juiciness exists in any natural cacao population, and humans who collected cacao to suck on the 

pulp would soon learn which trees offered the best fruit. These trees would be preferred for harvesting 

a sack of fruit to take back to camp or along a trek into another river basin. At camp, discarded seeds 

would germinate immediately and grow to reproductive age if environmental conditions were 

appropriate; if they germinated and grew in dump heaps they would even be less dependent on 

environmental conditions because of extra nutrients and light [52]. These new populations around 

camps would be more homogeneous than the source populations, but would certainly contain 

progenies from numerous seed trees, allowing for crossing among selected types, which in turn would 

yield sweeter and juicier pulps in the next generation. If this occurred in Amazonian Ecuador or in 

French Guiana, cacao could be rapidly dispersed over the Andes or into the estuary of the Amazon 

River, respectively, without any cultivation, but with selection and propagation. Further genetic 

analysis can certainly shed more light on this hypothesis. 
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2.3. Peach Palm 

 

The peach palm (Bactris gasipaes Kunth, Arecaceae) is the only Neotropical palm with 

domesticated populations [4]. It may have been selected initially for its wood, preferred for tool 

making, and later for its abundant oily fruits, and finally for starchiness in the fruits, making them 

good for fermentation [53]. Peach palm is currently an agribusiness for its hearts-of-palm. The species 

presents considerable morphological and genetic variability in its wild and cultivated populations, due 

to adaptation to different environments and different stages of domestication, respectively. Thousands 

of years of domestication have resulted in landraces, each of which has common morphological, 

chemical and productive characteristics due to a common genetic origin [54]. These landraces are 

widely distributed in the humid Neotropics, especially Amazonia. 

Throughout the 20th century, peach palm was considered a cultigen, with no wild conspecific 

ancestor. The revision of Bactris [55] gathered all cultivated populations of peach palm into var. 

gasipaes and all wild populations (previously identified as species) into var. chichagui (H. Karsten) 

Henderson. Within var. chichagui three types were proposed, with little description of their fruits and 

without detailing their distributions, which was done later by others [56] (Figure 1). Nonetheless, this 

revision now permits phylogenetic hypotheses that can be tested with genetic tools. 

Figure 1. Distribution of the three wild types of Bactris gasiapes var. chichagui [56]. 

 

 

There is considerable speculation about the origin of the founder event(s) that lead to domesticated 

peach palm populations, with three hypotheses currently under consideration: (1) a single 

domestication event in southwestern Amazonia [57], with some morphological [58] and molecular 

(RAPDs, a dominant marker; [59]) evidence, and the occurrence of two wild types (1,3); (2) a single 

domestication event in northwestern South America, with archaeological coincidences [60] and the 

occurrence of a wild type (3); and (3) multiple domestication events in the distribution of two wild 

types (1,3), with coincidences in common SSR allele frequencies between var. chichagui and var. 

gasipaes in some localities [61,62]. Determining the correct hypothesis will require analysis of the 

landrace complex and its relationships with the various populations of the three wild types, a complex 

task given introgression between domesticated and wild populations [63]. 
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Some of the landraces have been characterized morphologically and mapped [64]. The 

identification and classification of Amazonian landraces was based on morphometric characterization 

and multivariate analyses using a descriptor list designed for in situ and ex situ use. A hierarchical 

classification based on fruit size was proposed [64], with microcarpa landraces having small  

fruit (<20 g; Pará, Juruá and Tembe), mesocarpa landraces having intermediate sized fruits (20–70 g; 

Pampa Hermosa, Tigre, Pastaza, Solimões, Inirida, Cauca, Tuira, Utilis, Guatuso and Rama), and 

macrocarpa landraces having large fruits (>70 g; Putumayo and Vaupés) (Figure 2). The size of the 

fruit reflects the degree of modification due to human selection during the domestication of peach  

palm [57]. 

Figure 2. Geographical distribution of landraces of Bactris gasipaes var. gasipaes:  

1. Rama, 2. Utilis (including Guatuso and Tuira), 3. Cauca, 4. Tembé, 5. Juruá, 6. Pará, 7. 

Pampa Hermosa, 8. Tigre, 9. Pastaza, 10. Inirida, 11. Putumayo (including Solimões), 12. 

Vaupés [after Rodrigues et al. [59], with modifications]. 

 

Several genetic studies have been conducted over the last decade to understand the great genetic 

variability within and among landraces. The first study used isoenzymes (co-dominant markers) and 

found that the Pará landrace of eastern Amazonia grouped with the Tembé population of northern 

Bolivia (once designated Guilielma insignis Martius [55]), while the other landraces grouped on 

another branch of the dendrogram [65]. The authors proposed geneflow along the Madeira River to 

account for this grouping, as well as geneflow through western Amazonia to Central America. 

Dominant RAPD markers have been used extensively by the Brazilian group to validate many of 

the landraces in the genebank. One study concluded that the Pará, Putumayo, Pampa Hermosa and 

Utilis landraces are valid, while there is only one landrace in Central America rather than three and the 

Solimões landrace is part of the Putumayo landrace in western Amazonia [59]. This study also 

observed that the Utilis landrace had lower polymorphism and heterozygosity than the Amazonian 

landraces. The dendrogram using Nei‘s [66] genetic distances grouped the Pará landrace with a sample 

of var. chichagui type 1 from Acre, Brazil, and the Putumayo, Pampa Hermosa and Utilis landraces, 

with a sample of var. chichagui type 3 from western Amazonas, Brazil, in the other group. Their 

dendrogram was very similar to that of Rojas Vargas et al. [65], although with more landraces and 

populations. They proposed the most parsimonious hypothesis: a single domestication event in 

southwestern Amazonia, with two dispersals, one to the northeast and another to the northwest. A 
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second study used the same RAPD markers, the same landraces, as well as samples of the Juruá, Cauca 

and Vaupés landraces, and samples of var. chichagui type 1 from the Xingu River, Brazil, and type 2 

from the Magdalena River, Colombia [67]. This study confirmed the previous validation [59] and the 

separation of the Pará landrace from the others, as well as validating the Juruá landrace and eliminating 

the two wild populations as parents of domestication events. A third study with the same markers, 

landraces and additional populations [68] revalidated the landrace complex, confirmed the Pará 

landrace as having affinities with the upper Madeira River, and further confirmed the Western 

Amazonian complex as separate from the southeastern complex. The third study also designed a core 

collection within the Brazilian genebank to stimulate further morphological characterization, permit 

duplication and facilitate future analysis of the phylogeography and phylogenetics of Bactris gasipaes. 

During the last decade, numerous microsatellite primers were developed and tested [69-71]. Four of 

the first set were used to examine relationships among seven wild and eleven cultivated  

populations [62]. They detected considerable introgression among adjacent wild and cultivated 

populations, as expected following the study in Ecuador [63]. Unfortunately, they did not analyze the 

cultivated and wild populations separately, and created a Neighbor Joining dendrogram from Nei‘s 

minimum genetic distance, which they interpreted as showing three domestication events, even though 

the dendrogram‘s topology was not much different from the first RAPD study [59]. They also 

excluded the Pampa Hermosa landrace from the final dendrogram, although it was part of their 

preliminary study [72], which found a topology even more similar to the first RAPD study. Although 

quite intriguing, the small number of microsatellites does not permit much precision. 

After a decade of study, the origin of the cultivated peach palm is still speculative, principally 

because of the numbers and types of markers used. A new study [73] with 17 microsatellite loci 

examined the phylogeography of the landrace complex represented in the newly created core  

collection [68], which has 40 accessions. This phylogeographic analysis used the Structure program to 

revalidate landraces and Nei‘s [66] genetic distance to create a Neighbor Joining dendrogram, which 

was quite similar to the first and subsequent RAPD dendrograms [59,67,68], as well as the  

first microsatellite dendrogram [72]. Relationships with two var. chichagui types suggest  

considerable introgression. 

Universal chloroplast DNA sequences [74] are now being used to determine the phylogenetic 

relationships among cultivated and wild populations in the core collection, as well as the closely 

related B. riparia and the more distantly related B. simplicifrons, both used as outgroups. Because the 

chloroplast genome is generally maternally inherited, these sequences should identify one or a few 

haplotypes within the landrace complex, one or two of which may also occur in var. chichagui, which 

would pinpoint the wild populations involved in the domestication of the landraces, as was done with 

manioc [20]. The first results using these cpDNA sequences showed that one of the cultivated 

landraces, Pará, has chloroplast haplotypes different from the other cultivated and wild populations 

(Cristo-Araújo et al., Unpublished), suggesting that peach palm was domesticated more than once, as 

hypothesized by Mora Urpí [61], although southwestern Amazonia still seems to be the primary region 

of origin, as hypothesized by Rodrigues et al. [59]. 
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2.4. Capsicum Peppers 

 

The genus Capsicum (Solanaceae) undoubtedly originated in the Americas [75], although one 

species is named C. chinense, suggesting an Asian origin; in fact, C. chinense is the most Amazonian 

of the Capsicum peppers [76,77]. The earliest record of pepper use is from archaeological excavations 

in the Valley of Tehuacán, Mexico, and date from about 8,500 BP [78]. Starch derived from chili 

peppers and preserved on artifacts from seven archaeological sites ranging from the Bahamas to 

Andean South America appeared by 6,000 BP [79]. The peppers were present from the north of Chile 

and Argentina to northern Mexico and the southern United States at the time of European  

conquest [76,77]. Today they are distributed worldwide and grown for use as spices, vegetables, 

ornamental plants and medicine, in temperate and tropical areas [76]. 

Several criteria are used to determine more precisely where a domesticated population originated 

and in which directions it was dispersed: The crop must have been domesticated somewhere in the 

range of its wild relatives, the center of diversity may indicate the center of domestication of the crop, 

and archaeological, historical and linguistic data can provide evidence [80,81]. The prehistoric 

dispersals of wild peppers were probably due to birds before humans became important dispersal 

agents [82]. Different species of Capsicum were domesticated independently in several regions of the 

Americas [10,83]. Three regions are considered to have been independent areas of Capsicum 

domestication: Mesoamerica, the Andean region and the tropical lowlands of South America [10]. In 

each area of origin, one or more species was brought into domestication, perhaps intentionally, perhaps 

not, and they were then dispersed to different areas where they continued to be selected, resulting in 

distinct morphological types. Domestication resulted in changes, especially in the fruits. The fruits of 

the wild types are small, erect, red and deciduous, while fruits of domesticates are larger, often 

pendent, not deciduous and varied in color. Domestication also resulted in changes in reproduction and 

the level of pungency [76,77,83,84]. 

Currently, Capsicum includes about 25 wild species and 5 species with domesticated populations: 

Capsicum annuum, C. frutescens, C. chinense, C. baccatum and C. pubescens. The C. annuum- 

chinense-frutescens complex may have arisen from a widely distributed complex of closely related 

wild and weedy species [85]. In an attempt to resolve this question, the chloroplast atpB-rbcL 

noncoding spacer region was used to examine the phylogeny of Capsicum, using 11 Capsicum species 

and seven outgroups [86]. The annuum group consists of C. annuum, C. chinense, C. frutescens, and  

C. galapagoense, without clear morphological unity but with strong support from isozymes. Only the 

wild progenitor of C. annuum is known: C. annuum var. aviculare. Without identification of the wild 

progenitor, identification of the center of origin of a domesticated population is extremely  

difficult [80]. 

The center of diversity of Capsicum is in South America, with most species in Brazil and Bolivia. 

Studies in cytogenetics, molecular genetics, archaeology and biogeography established probable 

centers of origin of each domesticated species [80]. The center of origin of the economically most 

important C. annuum (chili, jalapeño, cayenne) is in Mesoamerica, more precisely in upland  

central-eastern Mexico [87], confirmed by molecular analysis. The centers of origin of the other 

domesticated lowland species are not yet clear, but it is believed that Amazonia is the center for C. 

chinense (cumari, murupi, habanero, biquinho), where its variability is greatest, and Amazonia may be 
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the center for C. frutescens (cayenne, tabasco) [78], although Mesoamerica is also a candidate given 

abundant morphological diversity [10]. Remains of a reputed C. chinense were found at Guitarrero 

Cave, in the western Andean foothills of northern Peru and dated as earlier than 9000 BP, while C. 

frutescens only appears in the same region (Huaca Prieta) at about 3,500 BP [6]. Recently, an 

apparently wild sample of C. chinense was found in Roraima, Brazil [88], offering the possibility of a 

more precise origin for this species, but a wild population of C. frutescens has not yet been found in 

Amazonia or Mesoamerica. Subsequently, both species were distributed from the Amazonian lowlands 

to southeastern Brazil, Central America and the West Indies [76,89], but the famous habanero arrived 

in Mexico only after the conquest, which explains its name, as Habana is the current capital of Cuba, 

where the Taíno people, of the Arawakan language family, had introduced it before European 

conquest. Southwestern Amazonia, more precisely the lower Andean valleys of Bolivia, is considered 

the center of origin for C. baccatum (girl's finger, chili or ají) and its distribution was less extensive 

before European conquest [9,82,89]. The earliest archaeological remains of C. baccatum are from 

Huaca Prieta and Punta Grande, in the western Andean foothills of Peru, dated to before 4,000 BP [6]. 

 

2.5. Pineapple 

 

At the time of European conquest, the pineapple (Ananas comosus var. comosus (L.) Merr., 

Bromeliaceae) was cultivated in all the Neotropical lowlands, from Mesoamerica and the Antilles 

southward to Paraguay and the humid valleys along the Pacific coast of Peru, and specific cultivars had 

been developed for the Andean hillsides, where they are still important in Colombia, Venezuela and 

Peru. Its Latin name is derived from the word nana and its derivatives, such as nanas, ananas, or 

nanaí, which are widely distributed in most languages of South America and the Antilles. Europeans 

first learned of this fruit when Columbus arrived on the island of Guadeloupe in 1493. By the end of 

the 16th century the pineapple was pantropical and its development as a first-rank world fruit crop has 

been based on pre-Conquest Native American cultivars [90,91]. 

Wild forms of A. comosus are found in all the Neotropical lowlands east of the Andes, from the 

northern shores of South America to southern Brazil and Paraguay, with the exception of the 

floodplains of the Amazon and Solimões Rivers and their southern tributaries, where seasonal floods 

limit natural dispersal [90,92]. More morphological, physiological and genetic variation is observed 

north of the Amazon River, with two wild botanical varieties, A. comosus var. parguazensis and  

A. comosus var. ananassoides, while only the latter occurs south of the Amazon. A. comosus var. 

parguazensis is distributed in the basins of the Orinoco River (the variety name derives from the 

Parguaza tributary) and the upper Negro River. Similar morphotypes occur in the Guianas, but they 

developed from a different genetic background [93]. Compared to var. ananassoides, var. 

parguazensis is restricted to more humid and shadier habitats, due to its lower water use  

efficiency [94]. A. comosus var. ananassoides prefers xerophytic edaphoclimatic conditions, thriving 

on sand dunes and campinas, rocks and inselbergs, although it may also be found in denser forest. 

North of the Amazon, it displays much greater morphological and genetic variation than in the south. 

In particular, many northern clones exhibit appreciable growth of the syncarp after anthesis, resulting 

in larger and fleshier fruit, while south of the Amazon the fruits are always small and very fibrous, and 
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the plants show ecological specialization, being restricted to open dry habitats, from arid savannahs to 

cerrados [94,95]. 

The distribution of morphological diversity within A. comosus suggests that the species originated 

in the north [96]. The south is the region of origin of another species, the yvira or nana caçaba (A. 

macrodontes Morren), not found in the north. This tetraploid lacks a fruit crown and reproduces 

vegetatively by stolons, forming relatively large stands. Its habitat is the understorey of the humid 

Atlantic Forest of coastal Brazil and the Parana-Paraguay drainage in southern Brazil, Paraguay and 

northern Argentina. It was exploited for fiber by the natives [97], but shows no sign of domestication. 

Based on a revision of morphological [95], biochemical [98] and genetic diversity [99], Coppens 

d‘Eeckenbrugge et al. [90] and Coppens d‘Eeckenbrugge and Leal [100] proposed that the north, and 

more specifically the Guiana shield, is also where the pineapple was domesticated. Coppens 

d‘Eeckenbrugge and Duval [92] refined this hypothesis to take into account recent data on chloroplast 

DNA variation [93]. The eastern part of the Guiana shield contains considerable phenotypic and 

genetic diversity, including wild phenotypes with relatively large and fleshy fruits that would have 

attracted foragers, primitive cultivars and a wide range of large-fruited cultivars. The practice of 

picking clones in the wild and transferring them to home gardens is still common in eastern Guiana, 

and many primitive cultivars can survive under secondary forest canopy. This long-term exchange 

between wild and cultivated populations is confirmed by genetic studies: all four chloroplast 

haplotypes identified in cultivated materials are present in the wild var. ananassoides, supporting the 

hypothesis that the domesticated var. comosus was derived from var. ananassoides through selection 

among those clones with markedly larger syncarps [93]. 

The domestication syndrome shows both human selection and correlated responses. Greater fruit 

size resulted from selection for larger individual fruits (pineapple ―eyes‖) and an increase in their 

number, which also changed their phyllotaxy. A larger number of wider, and generally shorter, leaves 

provide energy, and a stouter and longer stem allows greater starch storage capacity during the 

vegetative phase. The latter has been extended by reduced susceptibility to natural flowering induction. 

Seed production has been reduced through the combination of lower sexual fertility and stronger  

self-incompatibility [101]. 

Coppens d‘Eeckenbrugge and Duval [92] proposed that var. comosus diversified dramatically in 

western Amazonia, especially in the northwestern center of crop diversity [1] and along the lower 

Negro River; in both areas a great diversity of advanced cultivars was developed in the absence of wild 

forms [95]. The peoples of western Amazonia demonstrated brilliant horticultural and plant-breeding 

skills, as this region is also an important center of domestication and diversification for many other 

fruits [1,5]. There, pineapple is still a major fruit crop for peoples like the Tikunas [95] and the 

Huitotos [102], who maintain a wide diversity of cultivars, and it ranks among the primary culturally 

defined keystone species for peoples like the Letuama. This type of keystone species is one whose 

existence and symbolic value are essential to the stability of a cultural group over time [103]. 

The widespread distribution of the pineapple in the Americas at the time of the European conquest, 

the diversity and quality of the cultivars, not surpassed after one century of modern, intensive 

breeding, the diversity of uses, the economic and cultural importance of the crop, all point to a very 

ancient domestication. However, archaeological findings are rather late: 3,200 to 2,800 BP in the 

valleys of the arid Peruvian Coast [6]; and 2,200 to 1,300 BP from the Tehuacán Valley caves 



Diversity 2010, 2             

 
87 

(Mexico) [104]. The glottochronology of pineapple in Ancient Mesoamerica suggests that the crop was 

significant by 2,500 BP [42]. Thus, domesticated pineapple was traded and adopted as an important 

fruit crop on a continental scale more than 3,000 BP. Given the rarity of sexual reproduction in A. 

comosus var. comosus, the development of tradable cultivars was necessarily a long and slow process, 

certainly counted in millennia. Thus, a likely time frame for the divergence between wild and 

cultivated pineapple lies between 6,000 and 10,000 BP. 

Other domestication processes must be considered in A. comosus, as there are two other cultivated 

botanical varieties in the species. The most important is the curagua (A. comosus var. erectifolius [L.B. 

Smith] Coppens and Leal) developed as a fiber crop via selection from A. comosus var. ananassoides. 

It was commonly cultivated north of the Amazon and Solimões rivers, as well as in the Antilles in  

pre-Columbian times. Its characteristic dense, erect and smooth foliage are the likely result of selection 

for an abundance of long easily-extractable fibers. Genetic affinity of the curagua with different 

lineages of var. ananassoides indicates multiple and independent domestication events [93,99]. Their 

antiquity is probably variable, as some clones have reduced fruit production, while others are 

remarkably fertile. 

The domestication process for A. comosus var. bracteatus, also cultivated for its fiber in  

Paraguay [97], may have simply consisted of the direct vegetative propagation of rare interspecific 

hybrids, as this botanical variety has very limited variability. It is native to southern South America 

and shares nuclear markers with the yvira, indicating ancestral interspecific introgression with this 

species. Furthermore, the chloroplast haplotype of the rarest form is very similar to that of A. 

macrodontes [93]. 

The genus Ananas is ideal for domestication studies, with multiple processes in time and space, and 

specialization related to the major uses as a food or as a source of fibers. Selection for fruit 

characteristics took place where the diversity and quality of spontaneous materials allowed it. The fruit 

quality induced the crop‘s dispersal, which in turn induced further diversification and environmental 

specialization. The development of extremely derived cultivars, in terms of both fruit size and quality, 

and more particularly the secondary diversification in western Amazonia, despite the lower fertility of 

advanced cultivars, inevitably raises the question of the capacity of native breeders to exploit sexual 

recombination, because germination is not easy and seedlings are fragile and grow slowly. The pattern 

is different for the production of fiber. The domestication process, involving fewer morphological 

changes, was probably more straightforward for curagua, and could be repeated more easily in time 

and space, on different lineages of the wild forms. The curagua was widely dispersed, although not so 

widely as the fruit cultivars, possibly because curagua is not transported/exchanged unintentionally 

with its propagules, while fruits travel with their crown, and because of competition among 

domesticated lineages, especially south of the Amazon where large wild stands of A. macrodontes or 

subspontaneous stands of A. comosus var. bracteatus offered more economical sources. 

 

2.6. Inga 

 

The genus Inga includes around 300 species throughout the Neotropics [105] and a history of use 

by American peoples for at least eight thousand years, mainly for their edible fruits [106]. In 

Amazonia, Inga edulis Mart. (hereafter simply inga) is certainly most important. This is a diploid 
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legume, predominantly outcrossing and pollinated by small birds, flying insects and bats [107]. It is 

cultivated for its fruits and wood in indigenous and traditional communities throughout Amazonia, and 

is considered a priority in many communities of Peruvian Amazonia [108-110]. The history of 

cultivation of this species is not registered, but morphological studies show that humans have selected 

inga for a considerable period of time, creating several semi-domesticated populations [1,5,105]. Trees 

planted in the Peruvian Amazon bear some of the largest pods observed anywhere, and pods under 

cultivation are much longer and thicker than those in wild populations [105]. Due to these traits, inga 

has become a model species to evaluate the efficiency of agroforestry systems for the maintenance of 

genetic resources, as well as for identifying possible origins and bottlenecks associated  

with domestication. 

Hollingsworth et al. [111] used five SSR loci to evaluate the maintenance of the genetic diversity in 

five planted and five natural populations in the Peruvian Amazon. They found less variation in the 

planted populations compared with the natural [mean corrected allelic richness of 31.3 (planted)  

and 39.3 (natural), p = 0,009], exactly what is expected in domesticated plant populations [112]. 

Although lower levels of allelic variation occur in planted populations than in the natural populations, 

the former still contain on average 80% of the existing allelic diversity found in wild populations. The 

mean values of expected heterozygosity (0.65 planted versus 0.67 natural) indicate that they have not 

experienced extreme bottlenecks, possibly due to high tree density and the size of the planted 

populations, and the contribution of pollen and seeds of adjacent plantations and neighboring  

wild populations. 

Nuclear SSRs and chloroplast DNA were used to evaluate the origin of five pairs of planted and 

wild populations in the Peruvian Amazon, with the intention of determining whether these were 

derived from local wild populations [113]. The cultivated populations did not have local origin. 

Nuclear and chloroplast diversity were lower in the planted populations, ~80% and ~70% of the 

natural populations, respectively, similar to the earlier study [111]. 

The genetic analyses confirm that inga has domesticated populations, although they do not confirm 

its degree of domestication, which was suggested to be semi-domesticated [1]. A broad 

phylogeographic study is needed to understand inga domestication better and to identify the probable 

origin of the domesticated populations. 

 

2.7. Guaraná 

 

Guaraná (Paullinia cupana Kunth var. sorbilis [Mart.] Ducke, Sapindaceae) was domesticated in 

the region between the lower Tapajós and lower Madeira Rivers in Central Brazilian Amazonia by the 

Sateré-Maué, a people of the Tupi language stock [114]. The first European to mention guaraná was 

the Jesuit João Felipe Bettendorff [115] in 1669, who observed that the Sateré-Maué were the original 

cultivators of the vine; he did not mention any other ethnic groups cultivating guaraná. The 

Mundurucu, another Tupi language group, occupy the area immediately south of the Sateré-Maué and 

do not cultivate guaraná traditionally [116]. Guaraná is important in Sateré-Maué mythology because 

of its relation with their origin. 

As recounted by the Sateré-Maué to the Brazilian ethnographer Nunes Pereira [117] in 1939, the 

genesis of guaraná involves rivalries between two brothers and their sister, Onhiamuaçabê. The 
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brothers did not want anyone to marry their sister because she knew all the plants, and which of them 

were good for curing. She was also the owner of an enchanted place called Noçoquem, where she had 

planted a Brazil nut tree. One day, a small snake took a fancy to her, so he released a perfume along a 

trail used by Onhiamuaçabê. She liked the scent a lot. So the snake went further up the trail and 

touched her lightly on the leg as she passed by. She was immobilized so the snake took advantage of 

her and she was impregnated. The brothers were furious. 

Onhiamuaçabê gave birth to a beautiful boy, and when the boy was old enough, she took him to the 

enchanted place to eat Brazil nuts. An agouti noticed someone had made a fire at the base of the Brazil 

nut tree to roast nuts and he reported what he had seen to the brothers. They had guards posted at the 

enchanted place, and when the boy came the next day to eat some more nuts they decapitated him. His 

mother heard his cries of anguish, but it was too late. By the time she reached the enchanted place, he 

was dead. She plucked out the boy's left eye and planted it. But the plant that germinated was no good; 

it was false guaraná. She then plucked out the right eye and planted it; this grew into true guaraná. She 

spoke out aloud, as if the child was still alive: ―You, my son, will be the greatest force of Nature; you 

will do good for all men; you will be great; you will free men from some sicknesses and cure them of 

others‖. And out of the buried corpse of the boy arose the first Sateré-Maué. 

The meaning of this myth recently became remarkably clearer. The sorbilis variety of guaraná 

grown by the Sateré-Maué is a high level polyploid, with 210 chromosomes rather than the standard 24 

for the genus; the numbers and morphology of the chromosomes suggest the combination of a 

tetraploid and an hexaploid [118], that may be from different genera [114]. In essence, this myth 

captures the guaraná domestication event, which occurred when the mythological woman recognized 

that a special type of guaraná had become available to her, as distinct from the more common and less 

useful false guaraná, and that it should be planted for the benefit of future generations. True guaraná is 

remarkably different from the false guaranás (other Paullinia spp) that grow wild in the Sateré-Maué 

territory, so much so that any observer can readily distinguish the two morphologically by the larger 

fruit and seeds, and the brightly colored fruit case of true guaraná. Sexually reproducing polyploids 

commonly show remarkable morphological variability [3,119], which has been observed in  

guaraná [114,120], and may have different ecological adaptations [119], which have also been 

observed in guaraná, since it is well adapted to indigenous agroecosystems and does not survive long 

in second growth forests. 

When might the domestication event have occurred? Food production systems became more 

important than foraging after about 4,000 years ago [121]. This time frame corresponds to the 

expansion of the Tupi language trunk [122], which started from what is now Rondônia in southwestern 

Amazonia. The Sateré-Maué may have arrived in their current location about 2,000 years ago, which 

provides a reasonable maximum age for the domestication event mentioned in the myth, although a 

Sateré-Maué elder thinks that it may have been only 600 years ago [123]. Considering that other Tupi 

groups in the vicinity do not consider guaraná to be as important as it is to the Sateré-Maué, it seems 

probable that the domestication event occurred after the arrival of the Sateré-Maué in the present 

location. Supporting evidence for a possibly later domestication is the lack of molecular genetic 

variability observed in the sorbilis variety among samples collected in three areas of Central 

Amazonia, including Maués [120], the municipality in which the Sataré-Maué live. In this study, 

Sousa used 16 RAPD primers to generate 150 markers (mean 9.4 markers per primer; minimum five; 
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maximum 13), which is reasonable for a diploid (for example, Rodrigues et al. [59] generated 14.1 

markers per primer in peach palm). For a high level polyploid to exhibit a diploid range of bands, there 

must not have been mutation in the primer sequences since the polyploid event, again suggesting that it 

is recent. The study examined 75 clones obtained from Maués (47), Iranduba (6) and Manaus (22), and 

used the Dice similarity coefficient to examine the genetic relationships among these clones. The Dice 

similarity dendrogram showed most clones to be closely related (90% of the possible combinations had 

similarities greater than 0.6) and there was no geographic structuring. The lack of geographic structure 

suggests a recent dispersal from Maués, which is in agreement with colonial period reports that 

initially only the Sateré-Maué cultivated guaraná [116] and again suggests a very recent origin. 

 

2.8. Brazil Nut 

 

The Brazil nut (Bertholletia excelsa Bonpl., Lecythidaceae) is Amazonia‘s most important 

extractive product, contributing to the livelihood and food security of thousands of families in the 

interior of the region [124]. Brazil nut occurs as both scattered trees in upland forests and as 

anthropogenic stands, called castanhais [8,125]. Müller et al. [126] hypothesized that Brazil nut‘s 

current distribution is largely due to human dispersal, which is strongly supported by the distribution 

of castanhais and the lack of old growth Brazil nut in some areas, such as part of the municipality of 

Manaus [127] and much of the Juruá River basin [128]. Along the Purus River, in southern Amazonia, 

several populations have quite large seeds, suggesting incipient domestication [1]. 

Brazil nut‘s most important modern non-human seed dispersal agents are thought to be  

agoutis [125], small forest rodents, which are the only animals known to open the Brazil nut fruit. The 

choice of dispersal agents allows the elaboration of two hypotheses about Brazil nut‘s population 

structure in Amazonia, as each agent has clearly different dispersal abilities. (1) If agoutis were and are 

the most important dispersal agents, Brazil nut should show a fine-grained population structure, with 

numerous sub-populations along the interfluvials as well as through the headwaters. (2) If humans 

were (and are) the primary dispersal agents, Brazil nut should show a relative lack of population 

structure, because humans have only acted within the last 10,000 years or so, which is recent in terms 

of Brazil nut generations. 

Ongoing work by the group led by Maristerra Lemes and Rogério Gribel, at the Instituto Nacional 

de Pesquisas da Amazônia, has found compelling molecular genetic evidence in support of humans as 

the primary dispersal agents of Brazil nut in Amazonia [129,130]. Preliminary analysis of eight widely 

separated populations (maximum separation 2800 km) with various chloroplast markers showed a 

startling lack of genetic structure. Based on chloroplast SSRs, 94% of genetic variation was found 

within populations, while only 6% was found among populations, which contrasts with among 

population variation of 10–15% in tropical tree species not propagated by humans and examined at 

similarly large scales (references in [131]). Several chloroplast sequences were invariable across the 

entire data set. 

Two previous studies provide somewhat similar evidence. Buckley et al. [132] used several 

isoenzymes to examine genetic variation within and between two populations. They found only 3.75% 

of the genetic variation between the populations, which were less widely dispersed than the 

populations used by Lemes and Gribel‘s group. Kanashiro et al. [133] used 47 RAPD markers to 
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assess variation in five widely distributed populations, and used Shannon‘s H diversity index to 

estimate RAPD phenotypic diversity and to partition this within and among the populations. They 

found 31.3% of the variation among populations, considerably higher than the other studies. It is not 

clear why this among population measure is so different, but it may be due to the RAPD markers 

(which are less informative) and the Shannon index. 

The sum of these studies suggests that humans distributed Brazil nut widely during the Holocene, 

strongly supporting Müller et al.‘s [126] hypothesis. The anomalies in Brazil nut‘s modern distribution 

also support this hypothesis, since only human preferences can explain the absence of the species in 

some areas. None of these studies, however, provide any information on Brazil nut‘s origin. Scott  

Mori [134] hypothesized that Brazil nut may have originated in southeastern Amazonia. Only much 

more intensive population sampling and genetic analysis will permit the confirmation of this 

hypothesis or the elaboration of a new one. 

 

2.9. Cupuassu 

 

The cupuassu [Theobroma grandiflorum (Willd. ex. Spreng.) Schum., Malvaceae] is currently one 

of the most important native fruits in Amazonia, with about 35,000 ha of orchards planted over the last 

three decades [135]. Fruits in homegardens and orchards tend to be much larger than those collected 

from the forest in its reputed center of origin in southern and southeastern Pará [136], which led 

Clement [1] to suggest that numerous populations were incipiently domesticated before European 

conquest. A recent molecular genetic analysis [137] suggests that this may not be the case. 

In the mid-1700s, Padre João Daniel [138] affirmed that cupuassu was not cultivated by native 

peoples or colonists, and suggested that its cultivation would be worthwhile. In the pre-Amazonian 

part of Maranhão, however, Balée [139] observed cultivation of cupuassu in Ka‘apor homegardens, 

within the reputed center of origin of the species, although it is not known if cupuassu is a traditional 

crop among the Ka‘apor. In the mid-1900s, Adolfo Ducke [140] (1946) commented that cupuassu was 

rare in western Amazonia, although it was then being dispersed along the main rivers. In fact, most 

cupuassu in the markets of Pará was derived from extractivism until the 1970s [135]. These somewhat 

conflicting observations suggest the need to reevaluate cupuassu‘s incipient domestication. Molecular 

evidence will help with this task, although only one study has been conducted to date [137]. 

Alves et al. [137] used 21 SSR loci to examine three natural populations from cupuassu‘s reputed 

center of origin in Pará (Novo Ipixuna, Tucuruí, both Pará, and pre-Amazonian Maranhão), as well as 

three germplasm collections created separately over the last 30 years and maintained at different 

Embrapa stations (Amapá, Pará, Amazonas), and one extensive sample from farmers‘ orchards within 

the center of origin (Tomé-Açu, Pará). The genetic parameters estimated for these materials contained 

surprising patterns, with considerably less within-population diversity (70%) than expected (80–90% is 

common in tropical trees [131]) and considerably more among-population diversity (30%), and high 

levels of inbreeding (f = 0.192) within the three natural populations. Genetic distances among the 

natural populations and the farmers‘ orchards in the center of origin were considerable (Nei‘s [66] 

unbiased genetic distances varied from 0.198 to 0.234). This high among-population divergence may 

be partially due to cupuassu‘s pollinators (small bees and flies) and modern seed dispersal agents 

(small rodents), which minimize gene flow among populations, allowing genetic drift to enhance 
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divergence among inbred populations. The magnitudes of these genetic parameters may be a recent 

phenomenon, however, as cupuassu may have been dispersed by now-extinct Pleistocene  

megafauna [141], whose larger size may have permitted greater dispersal distances. 

In contrast to these natural populations, the three germplasm collections were significantly more 

homogeneous (Nei‘s [66] distances of 0.012 to 0.033 among them), suggesting little genetic 

divergence over enormous distances (Amapá to western Amazonas along the Amazon and Solimões 

Rivers). The three collections are based upon different collection expeditions, with the Amapá and 

Amazonas collections containing principally state-sourced germplasm, while the Pará collection 

contains both state-sourced germplasm and samples from the Solimões River; there is little replication 

among the collections. The germplasm collections also had more alleles per population, fewer private 

alleles, and similar observed heterozygosities. This set of information suggests considerable gene flow 

over large distances, now mediated by human dispersal. Curiously, neither the Pará nor the Amapá 

germplasm collections had close genetic relationships with the natural populations (Nei‘s [66] 

distances of 0.350 to 0.376), suggesting that a different set of natural populations were the source of 

the cupuassu distributed along the main rivers during the colonial and modern periods. 

This molecular analysis and the conflicting information about cupuassu‘s history call into question 

cupuassu‘s classification as a species with incipiently domesticated populations [1], but are not 

sufficient to reclassify it as wild. As cupuassu‘s importance increases in modern Brazilian Amazonia, 

new germplasm collections are planned that will hopefully permit future analyses to determine 

cupuassu‘s status as a native domesticate. 

 

3. Patterns of Diversity 

 

Although the number of species with molecular genetic analyses is still small, some patterns are 

congruent with previous thinking about the origin, domestication and dispersal of native Amazonian 

crops. The first important pattern is the antiquity of several important Amazonian domesticates, such 

as manioc (more than 8,000 BP), Capsicum (more than 6,000 BP), pineapple (possibly more  

than 6,000 BP) and, perhaps, peach palm (possibly as early as 10,000 BP). The first two have 

archaeological support from coastal Peru, while the latter two are projections based on morphological 

differences among wild and fully domesticated populations. No estimates of the dates of the primary 

domestication event with genetic coalescence analysis have been presented to date, but this type of 

analysis will certainly be attempted within the next decade. 

Although these dates are quite old, they are more recent than the initial peopling of Amazonia, 

which occurred before 11,200 BP when the Pedra Pintada site was occupied in Central Amazonia, in 

what is now Monte Alegre, Pará [142]. These early occupants were broad-spectrum foragers, who may 

have begun domestication of the landscape near the site [143], but who did not possess any plant 

populations with signs of domestication. Somewhat later (7,100 BP) and on the other side of the 

Amazon River at Taperinha, near Santarém, Pará, settled villages appeared, based on exploitation of 

fluvial resources and forest foraging, as well as the first pottery in the Americas [144]. Some of the 

pottery suggests the presence of food production, but no evidence of domesticated plants exists [143]. 

Again, we can assume that landscape domestication was certainly underway. The lack of domesticated 
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crops in settings where dump heaps were certainly becoming home gardens [145] is curious, as at least 

manioc was already being dispersed from its origin in southwestern Amazonia.  

This leads to a second important pattern: the relation between antiquity and origin. All but one of 

the species examined originated in the periphery of Amazonia (Figure 3), rather than along the major 

white water rivers where pre-conquest population densities were greatest. The exception is guaraná, a 

very recently domesticated crop, although cupuassu may be a similar case. The most important crops 

with domesticated populations are also the oldest, and all come from the periphery: manioc, pineapple, 

Capsicum, peach palm, tobacco, perhaps sweet potato. The importance of the periphery has been 

highlighted previously [121], with emphasis on extreme northwestern Amazonia and the adjacent 

Llanos of the Orinoco River basin, the Guiana shield and southwestern Amazonia, especially the 

Llanos de Mojos, in Bolivia. Work on Amazonian fruits permits the addition of numerous species with 

domesticated populations to the list, as well as several semi- and incipiently domesticated  

populations [1,146], without changing the emphasis on the periphery, although this region has now 

been expanded to include the Andean foothills and immediately adjacent lowlands in western 

Amazonia and some of southeastern Amazonia (Figure 3). 

Figure 3. Confirmed and hypothetical origins of some native Amazonian crops. The 

confirmed origins are (from north to south): pineapple, cubiu (Solanum sessiliflorum), 

cacao, assai (Euterpe oleracea), guaraná, manioc, coca (Erythroxylum coca), tobacco 

(Nicotiana tabacum), peanut (Arachis hypogaea). The hypothetical origins are: genipap 

(Genipa americana), leren (Calathea allouia), sweet potato (Ipomoea batatas), cocoyam 

(Xanthosoma sagittifolium), yam (Dioscorea trifida), murupi pepper (Capsicum chinense), 

mapati (Pourouma cecropiifolia), abiu (Pouteria caimito), bacuri (Platonia insignis), inga 

(Inga edulis), cashew (Anacardium occidentale), sapota (Quararibea cordata), cupuassu, 

biriba (Rollinia mucosa), guava (Psidium guajava), Brazil nut, peach palm, cocoyam, 

annato (Bixa orellana), malagueta pepper (Capsicum frutescens). Note that there is 

continued uncertainty about Mesoamerican origins for guava and malagueta pepper. 

 

 

Whether the peripheral origin of the earliest domesticated populations is due to the plants 

themselves or to human activity is an interesting question. During the terminal Pleistocene, when 

humans were already in Amazonia, much of western Amazonia is thought to have been forested, while 
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large parts of central and eastern Amazonia were open forest that was quite different from current open 

forests [147-149]. The drier areas along the northern and southern peripheries probably expanded 

further into the basin than they do currently. The crops that were domesticated early, e.g., manioc, 

peach palm, pineapple, probably Capsicum, originated in these open ecosystems, some of which 

remain in place, others of which have been transformed into more humid forest as this expanded 

during the Holocene. Some of the difficulties in identifying origins may be due to forest expansion 

during the Holocene, although better geographic sampling may resolve many of these difficulties. 

Root and tuber crops generally originated in seasonally dry open ecosystems, where they fill their 

starchy storage organs before the dry season, making them attractive to hunter-gatherers during the dry 

season [121]. This also makes them well adapted to human modified niches in the landscape, such as 

dump heaps that later became home gardens [145] and incipient horticultural systems. Manioc was 

also selected for growth in anthropogenic soils (terra preta de índio), some of which also originated as 

dump heaps [150], and floodplain soils [33], although most landraces are well adapted to nutrient poor 

upland soils. It is probable that the other root and tuber crops also had some varieties adapted to 

floodplain soils, but they may have been lost in the post-conquest wave of genetic erosion that 

accompanied population decline [1]. 

The humid periphery in western Amazonia appears to be home to numerous fruit crops and different 

adaptations might be expected. Some, like cacao, survive well in humid forest under-stories, whereas 

others, like inga, have adapted well to open horticultural systems. Many of those that have not yet been 

subjects of genetic analysis appear to have originally adapted to successional ecotones, as they do not 

survive long when the second growth forest grows enough to shade them out. The exception is sapota, 

which is a canopy emergent when mature. 

As highlighted above, however, early occupation of central Amazonia did not include domesticates, 

even though the ecosystems around Pedra Pintada and Taperinha were probably relatively more open 

at the time than currently, and landscapes within them were probably being domesticated. It is possible 

that sufficient natural resources were available so that the home gardens were such a small fraction of 

subsistence that they are difficult to find in the archaeological record. In contrast, in the headwaters of 

the same rivers in the periphery, less abundant aquatic resources may have increased the importance of 

home gardens. In fact, the earliest terra preta de índio is also in the periphery, along the Jamarí River, 

in the upper Madeira River basin [151]. Rindos [51] and Tudge [152] hypothesize that foragers who 

also practiced plant domestication would be more successful than those who did not, and it  

was from the southwestern periphery that two language diasporas occurred: Tupi-Guaraní and  

Arawak-Maipuran [122]. The southern and southwestern periphery eventually was the stage for the 

development of complex societies as well [153], but a detailed search is still required for signs of in 

situ crop domestication, with Caryocar brasiliense mentioned as a possible candidate. 

A pattern whose explanation is less clear is why certain crops were widely dispersed and others not. 

Crops with good adaptation to environmental variation, e.g., manioc, were widely dispersed quite 

rapidly, appearing in the archaeological record of the Pacific coast of Peru by 8,000 BP or earlier [6] 

and southern Mesoamerica by 5,600 BP at the latest [154]. Those with early adaptation to human 

disturbance, e.g., Capsicum, were certainly excellent camp followers, although it is difficult to 

determine which peppers appear first on the coast of Peru, since only the genus is mentioned for the 

earliest records [6]. 
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It is probable that ethnic preferences determined dispersal patterns. For example, peach palm‘s 

double dispersal of smaller oilier fruits down the Madeira River and along the Amazon River, and 

larger starchier fruits down the Ucayali River, throughout western Amazonia, along the Pacific coast 

of Ecuador and Colombia, and into Central America, but not the Caribbean islands, may be related to 

the Tupi and Arawak dispersals, respectively [53], even though these dispersals are much later than the 

initial domestication events. The absence of Brazil nut in the Juruá River basin is another example.  

Genetic evidence also sheds light on dispersal patterns. When a domesticate was important and 

taken into cultivation early, generally clear genetic structuring occurs among populations, such as the 

landraces of peach palm. When the crop was important, early and also annual, numerous varieties were 

developed and spread locally, but less regional structuring is evident, as seen in manioc, although 

superimposed on the bitter-sweet distinction, and in Capsicum and pineapple. When the crop is an 

incipient domesticate or became important only recently, no clear genetic structuring occurs, as in 

Brazil nut, cupuassu and guaraná. 

What is quite clear, however, is that the major pre-conquest population centers concentrated crop 

genetic resources to guarantee their subsistence and trade (Figure 4). The major centers and regions of 

diversity are along the major white water rivers and in northwestern Amazonia, where ethnic diversity 

is extremely high [7]. The minor centers are all related to areas where pre-conquest populations 

transformed the landscape with earthworks of various types [7]. It may also be appropriate to consider 

the upper Xingu River a minor center, given the intensity of landscape domestication, complex social 

structure, and possible incipient domestication of local fruit trees, such as Caryocar brasiliense [155]. 

The fact that the majority of Amazonia is not included in these concentrations does not imply that crop 

genetic resources were absent, but that they had not been concentrated to the same degree, principally 

because human population densities were lower. 

Figure 4. Centers, regions and minor centers of crop genetic resources diversity at the time 

of European conquest (modified from [7]). Centers of diversity: 1―western Amazonia; 

2―central Amazonia. Minor centers: 3―Marajo Island; 4―Llanos de Mojos; 5―middle 

Orinoco River. Regions of diversity: 6―Solimões River; 7―upper Negro River; 

8―Madeira River. 

 

 

The contrast between the presumed origins of native Amazonian crops in the periphery (Figure 3) 

and their concentration in the centers of pre-conquest population density (Figure 4) is dramatic. 
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Clearly, centers of origin and centers of diversity are not equivalent concepts, as Nikolai I.  

Vavilov [156] understood, although many students of crop genetic resources throughout the 20th 

century claimed otherwise. Because crop domestication began thousands of years before food 

production systems became important [51,121], it is not at all surprising to see a dramatic contrast such 

as that in Amazonia. As the archaeology of Amazonia becomes better understood [153] and as the 

number of species studied with genetic and phylogeographic methods expands, we will certainly be 

able to clarify the patterns mentioned here and perhaps identify others. 

 

4. Conclusions 

 

The available information concerning the origin and domestication of manioc (Manihot esculenta), 

pineapple (Ananas comosus), peach palm (Bactris gasipaes) and guaraná (Paullinia cupana) is 

reasonably solid, while that of cacao (Theobroma cacao) requires rethinking presuppositions about 

what domestication means in that crop. The information available for hot peppers (Capsicum spp.), 

inga (Inga edulis), Brazil nut (Bertholletia excelsa) and cupuassu (Theobroma grandiflorum) is 

growing and provides substantial clues as to their origins and domestication. Emergent patterns include 

the relationship among domestication, antiquity, origin in the periphery, ample pre-Columbian 

dispersal and clear phylogeographic population structure, which often corresponds to phenotypic 

entities recognized by cultivators, i.e., landraces (or groups of landraces), e.g., manioc, pineapple, 

peach palm and, perhaps, Capsicum peppers. Another pattern is the relationship among crops with 

incipiently domesticated populations, or very recently domesticated populations, rapid pre- or  

post-Columbian dispersal and lack of phylogeographic population structure, e.g., Brazil nut, cupuassu 

and guaraná. Cacao represents the special case of an Amazonian species possibly brought into 

domestication in Mesoamerica, but close scrutiny of molecular data suggests that there may also be 

incipiently domesticated populations in Amazonia. Additional molecular genetic analyses on these and 

other species will allow better examination of these processes and will enable us to relate them to other 

historical ecological patterns in Amazonia. 
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