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ABSTRACT 

In staphylococci, resistance to methicillin and to all β-lactam antibiotics is 

provided by the mecA gene, which encodes a penicillin-binding protein with low 

affinity to β-lactams (PBP2a). The mecA is carried by a mobile genetic element, the 

staphylococcal cassette chromosome mec (SCCmec), one of the most widely studied 

bacterial pathogenicity islands. SCCmec carries mecA and its regulators (the mec 

complex), as well as cassette chromosome recombinases encoded by ccr genes that 

form the ccr complex. These recombinases assure the mobility of the cassette. In 

addition, SCCmec cassettes carry joining regions (J regions) that link the orfX to the 

mec complex (J3); the mec complex to the ccr complex (J2) and the ccr complex to the 

end of the cassette (J1). The J regions can carry additional antibiotic resistance 

determinants, transposons, insertion sequences and plasmids. The SCCmec element 

always inserts at the same site in the bacterial chromosome, downstream orfX (which 

encodes a RNA methyltransferase), located 500 kb downstream the origin of 

replication. SCCmec is a very diverse element; so far eleven different types have been 

identified in Staphylococcus aureus and many more are probably carried by coagulase-

negative staphylococcal species. SCCmec is transferred horizontally among strains and 

species of Staphylococcus, through an unknown molecular mechanism.  

The crucial event leading to the emergence and dissemination of methicillin-

resistant S. aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE) 

was the acquisition of SCCmec in the genetic background of these bacteria, shortly 

after the introduction of methicillin in clinical practice. However little is known 

regarding the origin of this element. In this Thesis we aimed to contribute to the 

understanding of the origin and steps of assembly of SCCmec and to assess its impact 

in the emergence and evolution of MRSE as a nosocomial pathogen.  

Previous studies indicated that mecA has originated in the most primitive group 

of staphylococcal species, the phylogenetic sciuri group. The sciuri group comprises 

five species that are widespread in nature and only rarely colonize humans. 

Noteworthy, mecA homologues with different degrees of nucleotide identity with S. 

aureus mecA have been identified among three species of the sciuri group: 
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Staphylococcus sciuri (mecA1, 80%), Staphylococcus vitulinus (mecA2, 90%) and 

Staphylococcus fleurettii (mecA, 99%). In this Thesis we showed that the mecA 

homologues carried by these species have the same chromosomal location (the native 

location, 200 kb downstream orfX), suggesting that these native penicillin-binding 

proteins have evolved from a common ancestor, the most primordial one being 

mecA1. In addition, we studied the evolution of the mecA homologues towards the 

expression of resistance in their own native host, in species belonging to the sciuri 

group. We found that the development of resistance in the species of the sciuri group 

was achieved by distinct mechanisms: diversification of the promoter region of the 

gene, accumulation of single-nucleotide polymorphisms (SNPs) in the non-binding 

domain of mecA1-encoded PBP4, and adaptation of the genetic background. 

Moreover, we found that major diversification of mecA homologues begun during the 

introduction of β-lactam antibiotics, namely penicillin, in human clinical practice and in 

animal feeding as additives. We have also described, for the first time, the high 

frequency and diversity of ccr genes among S. sciuri isolates collected in different time 

periods, different hosts and different geographic locations; the results indicate that the 

ccr complex originated in S. sciuri. We suggest that the most primitive Staphylococcus 

species, S. sciuri, is the source of the mecA gene and the ccr complex, the building 

blocks of SCCmec.  

Besides focusing in ccr and mecA, we have also searched for elements carried in 

the J regions of SCCmec in order to understand the contribution of the three species of 

the sciuri group to the assembly of this element. Using whole-genome sequencing 

analysis, we propose for the first time, a model for the assembly of SCCmec. According 

to our data, the mec complex (mecR2-mecR1-mecI-mecA-IS431mec) in native location 

evolved in parallel with SCC in the orfX region. The mecR2 and genes within J2-J3 

regions originated in S. sciuri and evolved over phylogeny (S. sciuri-> S. vitulinus -> S. 

fleurettii), but the remaining regulators were only added in S. fleurettii. Once formed, 

the mec complex from S. fleurettii was mobilized to S. vitulinus, probably by 

recombination. The first SCC in S. sciuri was formed by the creation of direct/inverted 

repeats (DR/IR) around ccr genes and housekeeping genes resident within the orfX 

region. The final assembly step of SCCmec occurred in S. sciuri, wherein the ccr 
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complex and the adjacent J1 region located within a resident SCC element 

incorporated the mec complex with adjacent J2-J3 regions from S. vitulinus. Moreover, 

we showed that the very first SCCmec type was an ancestral of SCCmec III, a cassette 

that has spread to a large number of different staphylococcal species and is 

responsible for the emergence of the MRSA ST239-III clone, associated to one of the 

most important MRSA pandemics.  

Overall our data showed that S. sciuri, the most primitive staphylococcal 

species and also the most widespread in nature, was the origin of mecA, the ccr 

complex and of a primordial SCCmec element. Our studies reinforce the importance of 

animal-associated staphylococcal species as a source of antimicrobial resistance 

determinants and the use of antibiotics in treatment and animal feeding additives as 

the driving force for their emergence. We suggest that the detailed study of these 

primitive staphylococcal species could help to anticipate the emergence of other 

antibiotic resistance determinants. 

Our results have also shown that similarly to S. sciuri, other coagulase-negative 

staphylococci, were important players in the assembly of SCCmec. This was the case of 

S. epidermidis, which we established to be involved in the assembly of SCCmec IV. We 

studied a collection of S. epidermidis isolates obtained in Denmark in 1965, and found 

that a structure resembling SCCmec IV cassettes, a ψSCCmec-IV-like element (a SCC 

element lacking the ccr complex), was already carried by these early S. epidermidis. 

This structure did not contain a ccr complex and carried a mecA copy disrupted by an 

IS431 and thus did not provide resistance to β-lactams. In addition, early methicillin-

susceptible S. epidermidis, lacking mecA, carried in the orfX vicinity genes with high 

homology with genes that are part of SCCmec IV. Overall, the data provided in this 

Thesis, highly suggest that SCCmec IV emerged in S. epidermidis through a mechanism 

similar to that described for S. sciuri, wherein a resident SCC containing specific ccr 

complexes incorporated heterologous mec complexes. In addition, we unraveled a 

mechanism that can be used by early bacteria to accommodate mecA in the 

chromosome: the interruption of mecA coding frame by a copy of the insertion 

sequence IS431. This observation could correspond to a first step in the domestication 
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of mecA that allows for the necessary adaptation of the genome to the expression of 

resistance to β-lactam antibiotics. 

Besides being involved in the assembly of SCCmec IV, we showed that S. 

epidermidis were also active players in the diversification of SCCmec, when the contact 

with the hospital environment increased. Actually, when we compared S. epidermidis 

strains of the same genetic background collected in the community and the hospital in 

the same time period and geographic origin, we found that strains collected in the 

hospital environment presented a higher frequency and diversity of SCCmec than their 

community counterparts.  

The impact of the contact of S. epidermidis with the hospital environment in its 

development as a pathogen was further evidenced when we compared the genomes 

of the early S. epidermidis with contemporary isolates collected in Denmark. We found 

that the core genomes of highly virulent contemporary isolates were related with the 

ones found among early isolates, although the distribution of mobile genetic elements 

varied greatly between the two collections. Specifically, contemporary isolates carried 

insertion sequences and SCCmec in higher frequency and diversity, while prophages 

were more abundant in early genomes. Of note, we have also found that the number 

and frequency of biofilm-associated genes, like ica, aap, bap, sdrF and ACME-I, was 

higher among contemporary genomes. Taking our results together, we suggest that 

adaptation towards the hospital environment has favored the accumulation of genes 

involved in biofilm, β-lactam resistance and genome plasticity. Our findings allowed a 

better understanding of the molecular evolutionary pathways used by opportunistic 

nosocomial pathogens, like S. epidermidis, during adaptation to the hospital 

environment and might help to design new strategies for treatment and infection 

control of S. epidermidis. 

In conclusion, in this Thesis we were able to: 

i. Identify S. sciuri as the original source of the ccr complex and the mecA 

determinant; 
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ii. Identify the molecular mechanisms involved in the development of -

lactam resistance in primitive staphylococcal species; 

iii. Propose a model for SCCmec assembly, which occurred in the 

phylogenetic sciuri group; 

iv. Produce evidence that SCCmec IV originated in S. epidermidis; 

v. Establish that S. epidermidis adaptation to the hospital environment 

involved multiple mechanisms, namely acquisition and diversification of 

SCCmec, acquisition of insertion sequences, loss of phages and 

accumulation of genes involved in biofilm formation. 
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RESUMO 

No género Staphylococcus, a resistência à meticilina e a todos os antibióticos β-

lactâmicos é conferida pelo gene mecA, que codifica uma proteína envolvida na síntese 

da parede celular, denominada PBP2a (PBP de, penicillin-binding protein) com 

afinidade reduzida para os antibióticos β-lactâmicos. O gene mecA está incluído no 

elemento genético móvel SCCmec (de, staphylococcal cassette chromosome mec), 

considerado uma das mais importantes ilhas de patogenicidade bacterianas. O 

elemento SCCmec transporta o gene mecA e os seus reguladores (denominado 

complexo mec), bem como recombinases que asseguram a mobilidade da cassette, 

denominadas ccr (de, cassette chromosome recombinases) e que formam o complexo 

ccr. Adicionalmente, as cassettes SCCmec contém regiões de junção (joining ou regiões 

J) que ligam a orfX ao complexo mec (J3); o complexo mec e o complexo ccr (J2); e o ccr 

ao final da cassette (J1). As regiões de junção podem conter outros determinantes de 

resistência a antibióticos, inseridos em transposões, sequências de inserção e 

plasmídeos. O elemento SCCmec insere-se sempre no mesmo local cromosómico, a 

jusante do gene orfX (que codifica uma metiltransferase de RNA), localizado a 500 kb 

da origem de replicação. O SCCmec é um elemento genético extremamente diverso; 

existem onze tipos diferentes descritos em Staphylococcus aureus e numerosos tipos 

adicionais foram identificados em Staphylococcus coagulase-negativos. A transferência 

do SCCmec ocorre horizontalmente entre estirpes e espécies de Staphylococcus, por 

via de um mecanismo molecular ainda desconhecido. 

O acontecimento-chave que levou à emergência e disseminação de MRSA (de, 

methicillin-resistant Staphylococcus aureus) e de MRSE (de, methicillin-resistant 

Staphylococcus epidermidis), foi a aquisição do elemento SCCmec, que se pensa possa 

ter ocorrido imediatamente após a introdução da meticilina na prática clínica. 

Contudo, a origem deste elemento é ainda desconhecida. Neste Tese de 

Doutoramento, os nossos principais objectivos foram o estudo da origem e dos passos 

que levaram à construção do SCCmec e ainda a avaliação do seu impacto na 

emergência e evolução de S. epidermidis. 
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Vários estudos anteriores demonstraram  que a origem do gene mecA pode ser 

encontrada em  espécies mais primitivas do género Staphylococcus; estas espécies 

formam um grupo designado, grupo sciuri, que engloba espécies que estão 

disseminadas na natureza e que apenas raramente colonizam o ser humano. De notar, 

genes homólogos do mecA com diferentes graus de identidade nucleotídica foram 

identificados em diversas espécies dentro deste grupo, nomeadamente em 

Staphylococcus sciuri (mecA1, 80%), Staphylococcus vitulinus (mecA2, 90%) e 

Staphylococcus fleurettii (mecA, 99%).  

Nos nosso estudos verificámos que todos os genes homólogos de mecA destas 

espécies têm a mesma vizinhança genética e estão localizados no mesmo locus 

cromossómico (local nativo, 200 kb a jusante da orfX), o que sugere que evoluíram de 

um ancestral comum. O estudo da evolução dos genes homólogos do mecA no seu 

hospedeiro, em espécies pertencentes ao grupo filogenético sciuri permitiu-nos 

também descrever que a resistência nestas espécies emergiu através de diversos 

mecanismos: diversificação do promotor, acumulação de mutações pontuais no 

domínio non-binding das proteínas PBPs nativas (codificada pelos genes nativos 

homólogos do mecA) e adaptação do património genético. Verificámos também que o 

momento no qual ocorreu a maior diversificação do gene mecA1 em S. sciuri coincide 

com a introdução dos antibióticos β-lactâmicos como forma de tratamento de 

infecções bacterianas em humanos e como aditivos em rações para animais. 

Identificámos também, pela primeira vez, uma elevada frequência e diversidade de 

genes ccr numa colecção de isolados de S. sciuri obtidos em diferentes períodos, 

diversos hospedeiros e países distintos. Os resultados sugerem que a espécie 

estafilocócica mais primitiva, S. sciuri, foi não só a origem do gene mecA mas também 

do complexo ccr, que juntos constituem os dois elementos centrais do SCCmec.  

Para além de estabelecermos qual a origem dos principais elementos do 

SCCmec, complexo mec e complexo ccr, estudámos também a origem de elementos 

presentes nas regiões J do SCCmec e os passos evolutivos que levaram à construção do 

SCCmec. O estudo da sequência dos genomas de um grande número de isolados de S. 

sciuri, S. vitulinus e S. fleurettii permitiu desenhar um  modelo para a construção do 

SCCmec. De acordo com os nossos resultados, a construção do complexo mec no local 
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nativo ocorreu em paralelo com a construção de elementos SCC na região orfX. O gene 

mecR2 e genes pertencentes à região J2/J3 tiveram origem em S. sciuri evoluíram no 

local nativo ao longo da filogenia (S. sciuri-> S. vitulinus -> S. fleurettii), mas os 

restantes genes reguladores do mecA só foram adicionados ao complexo mec mais 

tarde na evolução filogenética, em S. fleurettii. Uma vez formado, o mec complex terá 

sido transferido para S. vitulinus onde recombinou com o mecA2 no local nativo. Por 

outro lado a construção do elemento SCC terá ocorrido na orfX através da criação de 

DR/IR (de, direct/inverted repeats) à volta de recombinases e genes housekeeping 

residentes nesta região (pertencentes à região J1). O passo final de construção do 

elemento SCCmec terá ocorrido em S. sciuri, onde o mec complex de S. vitulinus terá 

sido introduzido num elemento SCC já previamente formado. Os nossos dados 

indicaram, também, que o primeiro tipo SCCmec foi um elemento ancestral do SCCmec 

III, uma cassette que se disseminou num elevado número de espécies estafilocócicas 

diferentes e é responsável pela emergência do clone MRSA ST239-III, associado a uma 

das mais importantes pandemias mundiais de MRSA. 

Em resumo, os nossos dados revelaram que S. sciuri, a espécie estafilocócica 

mais primitiva e também a mais distribuída na natureza, foi a origem do mecA, do 

complexo ccr e de uma estrutura primordial do SCCmec. Os estudos presentes nesta 

Tese de Doutoramento, vêm reforçar a importância de espécies estafilócocicas 

associadas aos animais como fontes de genes de resistência a antibióticos, e o uso de 

antibióticos no tratamento de infecções bacterianas em humanos e como aditivos 

alimentares em rações, como causas da emergência desta resistência. O estudo 

detalhado destas espécies poderá ajudar a antecipar a ocorrência de emergência de 

resistência a outras classes de antibióticos. 

Os nossos resultados demonstraram também que, à semelhança de S. sciuri, 

outras espécies de Staphylococcus coagulase-negativos, estiveram envolvidas na 

construção de elementos SCCmec. Uma destas bactérias foi S. epidemidis, que 

verificámos ter contribuído para a construção do SCCmec IV. Em particular verificámos 

que uma estirpe arcaica de S. epidermidis obtida na Dinamarca em 1965, transportava 

um elemento muito semelhante ao SCCmec IV, denominada -SCCmec IV. Esta 

estrutura não contém o complexo ccr, e tem o mecA interrompido por uma sequência 
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de inserção (IS431), pelo que não confere resistência aos antibióticos -lactâmicos. 

Para além disso, verificou-se que outros isolados de S. epidermidis recolhidos na 

mesma data e local geográfico continham, na região da orfX, genes com elevada 

homologia com genes pertencentes à cassete SCCmec IV. Em conclusão, os nossos 

dados demonstraram que o SCCmec IV surgiu em S. epidermidis, provavelmente por 

um mecanismo semelhante àquele descrito para S. sciuri, onde um elemento SCC 

residente terá incorporado o mec complex. Adicionalmente, identificou-se um 

mecanismo que poderá ter sido utilizado pelos isolados de S. epidermidis de 1965 para 

acomodar o gene mecA no seu cromossoma: a interrupção do mecA por uma cópia 

intacta da sequência de inserção IS431. Este fenómeno poderá corresponder a um 

passo intermédio de domesticação do mecA, que permitirá a adaptação do genoma à 

expressão da resistência aos antibióticos β-lactâmicos. 

Para além de estar envolvido na construção do SCCmec, os nossos estudos 

indicam que a espécie S. epidermidis contribuiu para a diversificação do SCCmec, 

principalmente no ambiente hospitalar. Na realidade, a comparação da estrutura 

populacional de isolados de S. epidermidis obtidos na comunidade e no hospital no 

mesmo período temporal e com a mesma origem geográfica demonstrou que as 

estirpes isoladas nos dois ambientes pertenciam à mesma linhagem genética. No 

entanto verificámos que quando isoladas nos hospitais as estirpes apresentaram uma 

maior frequência do SCCmec e um maior número de tipos diferentes de SCCmec. 

O impacto do hospital na adaptação, evolução e emergência de S. epidermidis 

como agente patogénico foi adicionalmente evidenciado quando comparámos os 

genomas dos isolados S. epidermidis obtidos em 1965 com o genoma de isolados S. 

epidermidis contemporâneos obtidos também na Dinamarca. Verificou-se que as 

estirpes arcaicas pertenciam à mesma linhagem genética que as estirpes 

contemporâneas; no entanto variavam quanto à distribuição de elementos genéticos 

móveis e conteúdo genético. Em particular, os isolados contemporâneos apresentaram 

maior frequência de sequências de inserção, maior frequência e diversidade de 

SCCmec, e menor conteúdo de profagos. Adicionalmente, verificou-se que os isolados 

contemporâneos continham um maior número e frequência de genes associados à 

formação de biofilme, nomeadamente os genes ica, aap, bap e sdrF, bem como uma 
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maior frequência do elemento ACME-I. Assim, os nossos dados sugerem que a 

adaptação de S. epidermidis ao hospital ocorreu através da acumulação de 

determinantes genéticos associados à formação de biofilme, resistência aos 

antibióticos β-lactâmicos e plasticidade genética.  

Em conclusão, os nossos estudos sugerem que o contacto de S. epidermidis 

com o ambiente hospitalar, favoreceu a emergência da resistência aos antibióticos -

lactâmicos, a acumulação de genes envolvidos na formação de biofilme e a sua 

plasticidade genética. Estes resultados contribuíram para o conhecimento das 

estratégias usadas por microorganismos oportunistas na sua adaptação ao ambiente 

hospitalar, o que poderá ajudar no desenho de estratégias de tratamento e controlo 

da infecção.  

Resumindo, nesta Tese de Doutoramento: 

i. Identificámos S. sciuri como a origem do complexo ccr e o determinante 

genético mecA; 

ii. Identificámos os mecanismos moleculares envolvidos na aquisição da 

resistência aos antibióticos β-lactâmicos nas espécies estafilocócicas 

mais primitivas; 

iii. Elaborámos um modelo para a construção do SCCmec, que ocorreu no 

grupo filogenético sciuri; 

iv. Produzimos evidências que suportam a origem do SCCmec IV em S. 

epidermidis; 

v. Estabelecemos que a adaptação de S. epidermidis ao ambiente 

hospitalar envolveu diversos mecanismos, nomeadamente, a aquisição 

e diversificação do SCCmec, a aquisição de sequências de inserção, 

perda de profagos e a acumulação de genes associados à formação de 

biofilmes. 
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THESIS OUTLINE 

This Thesis focuses on the origin and assembly of SCCmec, in particular: (i) the 

role of Staphylococcus sciuri as the origin of the methicillin resistance determinant 

mecA and the ccr complex; (ii) the assembly of a primordial SCCmec III structure in the 

phylogenetic sciuri group; (iii) the assembly of SCCmec IV in S. epidermidis; (iv) the 

impact of hospital contact in SCCmec and S. epidermidis evolution. 

In Chapter I, a general introduction providing background on the relevant 

literature regarding SCCmec origin, assembly and impact in the evolution of 

staphylococcal species, is provided. In addition, the gaps in the current knowledge that 

we aim to address with the results of this Thesis are highlighted.  

The findings and results of this Thesis are organized in two parts. In Part I, the 

role of the most primitive staphylococcal species in the origin of SCCmec is discussed. 

Part I comprises three chapters. Chapter II focuses on the evolution of the 

recombinases responsible for the mobilization of SCCmec (the ccr genes) and the role 

of S. sciuri in the construction of the first ccr complexes. In Chapter III the evolution of 

the ancestral form of the central element of methicillin resistance, mecA and the 

molecular mechanisms that led to the development of β-lactam resistance in primitive 

staphylococcal species are assessed. Finally, in Chapter IV, the role of S. sciuri and 

related species in the assembly of a primordial SCCmec is discussed in detail.  

Part II focuses on the impact of hospital contact in the evolution of S. 

epidermidis and SCCmec. In Chapter V, the study of a collection of S. epidermidis 

isolates obtained in the early antibiotic era sheds light on the evolutionary origin of 

MRSE and SCCmec IV and their comparison with contemporary isolates showed the 

impact of contact with hospital environment on the genetic content of S. epidermidis. 

In Chapter VI, the comparison of contemporary S. epidermidis isolates obtained in the 

hospital and in the community allowed to identify additional strategies developed by 

this species to adapt to the hospital environment.  

Finally, in Chapter VII, the results of this Thesis are discussed; a model for 

assembly of SCCmec, including several species of the phylogenetic sciuri group, is 
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presented. In addition, the role of the hospital environment in the evolution of SCCmec 

and S. epidermidis is discussed.  
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1. Staphylococcus in the clinical setting: a worldwide concern 

Since their discovery in the late 1800s (1), staphylococci, and particularly 

Staphylococcus aureus have been widely studied due to their importance in the clinical 

setting. Despite being primarily commensals, staphylococci can cause a wide range of 

infections that are often difficult to treat, due to their adaptive power to 

environmental stresses such as the ones in the hospital environment, and increased 

resistance to antimicrobials. Actually, the burden caused by staphylococcal infections 

is increasing worldwide (2), and recent advances in molecular typing techniques have 

revealed some of the secrets behind the success of these highly adaptable pathogens. 

In the following sections, the available literature on this subject is reviewed, with a 

focus on the opportunistic pathogen Staphylococcus epidermidis. 

 

1.1. The genus Staphylococcus and clinically relevant species 

The genus Staphylococcus is part of the family Staphylococcaceae, that belongs 

to the order Bacillales of the class Bacilli (3). Bacilli belong to the phylum Firmicutes, 

which comprises Gram-positive bacteria that typically have a low G+C DNA content 

(30-40%) (2). The genus Staphylococcus comprises 52 species and 28 subspecies (2, 4) 

and the bacteria belonging to Staphylococcus have a typical round shape (cocci) and 

agglomerate as “grape-like” clades (5). Phenotypically, these bacteria are non-motile 

and facultative anaerobes. They can be easily identified by their biochemical 

phenotypic properties: non-production of oxidase, production of catalase and 

tolerance to high concentrations of salt (6). Regarding their ability to produce 

coagulase the genus can be subdivided into two large groups, one comprising 38 

species that do not produce coagulase, so-called coagulase-negative staphylococci, 

CoNS (2) and 14 which produce coagulase, coagulase-positive staphylococci. 

Moreover, Staphylococcus cells are enveloped by a characteristic cell wall enriched in 

O-acetylated peptidoglycan. The peptidoglycan layer in Staphylococcus cell wall is 

highly crossed-linked, composed by linear glycan chains linked by short peptides, 

which together with teichoic acids, constitute the cell wall of Staphylococcus (7).  
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Recently, the genus Staphylococcus has been re-classified, due to the advances 

and availability of molecular data (in particular whole-genome sequencing data) that 

allowed the establishment of more accurate phylogenetic relationships. The 52 

Staphylococcus species have been organized into distinct cluster groups, which, 

together with their phenotypic and epidemiological characteristics, were divided into 

six groups of species (Auricularis, Hyicus-Intermedius, Epidermidis-Aureus, 

Saprophyticus, Simulans and Sciuri) (2, 8)(Figure 1).  

 

 

Figure 1. Maximum likelihood phylogram based on the nucleotide sequence of 16S ribosomal genes of 

46 staphylococcal species. The consensus phylogram was generated from 200 bootstrap replicates with five 

maximum likelihood search replicates per bootstrap. Adapted from (8). 
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The vast majority of the most clinically relevant species belong to the 

Epidermidis-Aureus group, such as Staphylococcus aureus, Staphylococcus epidermidis, 

Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus capitis and 

Staphylococcus lugdunensis. Other clinically relevant species, which are not so 

frequently recovered from clinical specimens, are part of the Saprophyticus group, 

such as Staphylococcus saprophyticus, Staphylococcus cohnii and Staphylococcus 

xylosus. The Auricularis group includes a single species, Staphylococcus auricularis that 

is found exclusively as a colonizer of the human external ear. The Simulans group 

comprises species that only transiently cause disease in humans, and are typically 

isolated from meat and food (2). Finally, the Hyicus-Intermedius and the Sciuri group 

includes species that are most frequently found colonizing animals and only rarely 

found colonizing or causing infections in humans (2). 

 

1.2. Molecular typing techniques and whole-genome sequencing analysis in 

Staphylococcus 

The molecular epidemiology of Staphylococcus has been extensively studied 

through the application of multiple molecular typing methods and, more recently, the 

analysis of whole-genome sequences (WGS) revealed Staphylococcus population 

structure with unprecedented resolution. The most commonly used molecular typing 

techniques, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing 

(MLST), as well as the recent advances in WGS analysis will be briefly reviewed in this 

section. 

 

1.2.1. Pulsed-field gel electrophoresis (PFGE) 

The separation of macrorestriction DNA fragments using PFGE was one of the 

first typing methods used to study the molecular epidemiology of Staphylococcus. In 

this technique, a restriction enzyme is used to digest the chromosomal bacterial DNA 

into a relatively low number (15 to 25) of fragments (9). These fragments are then 

separated in an agarose gel that is submitted to an electric field, which changes in 
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orientation, direction and intensity during the electrophoresis. The result is a DNA 

macrorestriction profile of fragments that are distributed according to their molecular 

weight (9). Since this profile corresponds to the complete genetic content of a strain, 

the variations observed between different PFGE patterns reflect genetic events that 

occurred recently, such as insertions, deletions and mutations occurring in the 

enzyme’s restriction site. Due to its high discriminatory power, this method has been 

previously considered as the “gold standard” technique to be used to study outbreaks 

(9, 10). The degree of relatedness among isolates as estimated by their 

macrorestriction patterns has been defined for S. aureus (11, 12) and S. epidermidis 

(13). In general, two isolates are considered to be closely related if the differences in 

their macrorestriction patterns are consistent with the occurrence of a single genetic 

event, which results in 2-3 band differences in the macrorestriction patterns (11). 

When the macrorestriction patterns presented by the isolates differ by 4-6 bands, then 

the isolates are considered to be possibly related and when more than 7 band 

differences are observed, the isolates are considered unrelated (11). This analysis has 

been classically performed by visual inspection of the band profiles but in recent years 

it has been replaced by automatic statistical analysis, using informatics tools, such as 

the program BioNumerics (Applied Maths, Kortrijk, Bélgica), that uses image analysis 

parameters. Briefly, the program allows the definition of tolerance and optimization 

values for the clustering of the patterns of bands obtained for each strain. The 

tolerance is the measurement of “movement” of each band, while the optimization 

limits the “movement” of each fingerprint as a whole. These parameters have been set 

for each species. For example, for S. epidermidis, it has been proposed the use of the 

Dice algorithm to determine the similarity between the restriction profiles, with 1.3% 

optimization and 0.8% tolerance; the profiles are then clustered with the unweighted 

pair group method with arithmetic mean (UPGMA) and profiles are considered to 

belong to the same PFGE type with a cut-off value of 79% of similarity between their 

band pattern (13). 
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1.2.2. Multilocus sequence typing (MLST) 

Multilocus sequence typing (MLST) relies on the sequencing of internal 

fragments of seven housekeeping genes, which are scattered along the chromosome. 

To each different allele in the population, a number is attributed and the resulting 

combination of numbers for the seven genes is called the allelic profile; a number is 

assigned to each unique allelic profile, which corresponds to the sequence type (ST). 

Since this method focus on housekeeping genes, it reflects the accumulation of genetic 

mutations that occur at a slow evolutionary rate, being appropriate to compare 

isolates collected in different geographic regions and time periods (14). MLST data is 

commonly analyzed with the eBURST algorithm (15), which is based on a simple model 

of evolution and diversification. It defines groups of STs related to one another, called 

the clonal complexes (CC) and its predicted founder (the ST that is most frequent and 

presents a higher number of related STs). The S. epidermidis MLST scheme present in 

the MLST database (www.mlst.net) (16) has been widely used to study the molecular 

epidemiology of this bacterium. For S. epidermidis, it has been defined that STs 

belonging to the same CC should share at least six alleles (out of seven) with another 

ST of the same group (17).  

 

1.2.3. Whole-genome sequence analysis  

 

1.2.3.1. Historical prespective 

Since its emergence in the market in 2005, the technology behind the first next-

generation sequencing (NGS) devices has evolved substantially, together with the 

broadening of its applications. Several NGS technologies emerged, based on different 

sequencing chemistries, such as the 454 sequencing technology, the Illumina 

technology, the Solid technology and the Ion torrent technology, providing a wide 

range of amplification strategies and having different number of Mb sequenced per 

run, of read length and of cost per run (Table 1). These technologies overcame the 

limitation of Sanger sequencing (developed in the 1970s)(18), that was the need to 
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amplify the number of target DNA fragments before sequencing, which was done 

usually by cloning into specific bacterial hosts (19).  

The very first NGS technology developed was 454 sequencing technology, that 

was released by 454 Life Sciences in 2005 (20), a company that was later acquired by 

Roche (Basel, Switzerland). The development of this technology was ground-breaking 

since it was based on a new DNA amplification method called the emulsion PCR (19) 

that consists in the shearing of the genome into DNA fragments which are then ligated 

to streptavidin beads. The beads are then captured into separate emulsion droplets, 

which act as individual amplification reactors (19). Each droplet is then transferred into 

a well of a microtiter plate and sequenced by pyrosequencing technology. The 

pyrosequencing technology is based on the measurement of the release of inorganic 

pyrophosphate by chemiluminescence upon incorporation of labeled dNTPs in the 

nascent DNA chain (21). This technology produces reads of around 300 bp and when it 

was introduced in the market, was very costly (Table 1). In addition, it has the 

disadvantage of producing a high number of sequencing errors. 

Shortly after the release of the first 454 apparatus, a new NGS technology was 

introduced in the market by Illumina (Hiseq, San Diego, USA). Briefly, the Illumina 

technology consists in shearing the genome into small single-stranded DNA fragments 

(the libraries). These are then attached to a flowcell and sequencing is achieved 

through solid-phase bridge amplification (19). During this process, one end of a single 

DNA molecule is attached to the flowcell using an adapter; the molecules subsequently 

bend over and hybridize to complementary adapters, thereby forming the template for 

the synthesis of their complementary strands (19). The templates are sequenced in a 

massively parallel fashion using the basic principles of Sanger sequencing (18). This 

technology produces short sequence reads (50-250 bp) (19) (Table 1) but due to its 

sequencing chemistry, it produces less sequencing errors than 454 technology. 

Furthermore, the cost of each run decreased dramatically due to the low cost of the 

reagents used in the sequencing reaction, which promoted the use of this technology, 

particularly for sequencing bacterial genomes. The development of a benchtop 

sequencer by Illumina, MiSeq, in 2011 has further increased the use of this NGS 

technology for the control of outbreaks and molecular epidemiology of pathogens, 
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namely staphylococcal species. In fact, for the two major staphylococcal pathogens S. 

aureus and S. epidermidis, 4369 and 106 whole-genome sequences have been 

deposited in the NCBI database by August 2015 (www.ncbi.nlm.nih.gov/), respectively, 

illustrating the growing interest in this high throughput technology. 

Several different NGS technologies were introduced in the market shortly after 

the release of Hiseq by Illumina (Table 1). Briefly, in the Solid technology (Applied 

Biosystems, ThermoFisher, Waltham, Massachusetts, United States) a library of DNA 

fragments linked to clonal beads is prepared by emulsion PCR. Then adapter primers 

hybridize to the template beads and a set of four fluorescently labeled di-base probes 

are added to the mixture, that compete for ligation to the sequencing primer. The 

sequencing is achieved after multiple cycles of ligation, detection and cleavage. On the 

other hand, the Ion Torrent technology (Life Technologies, ThermoFisher, Waltham, 

Massachusetts, United States) is based on the release of pyrophosphate and a 

positively charged hydrogen ion, when incorporation of dNTPs occurs into a nascent 

DNA strand. Briefly, the DNA polymerase is immobilized on a semiconductor chip that 

is then flooded with many copies of single-stranded DNA template and each of the 

four dNTPs, sequentially. If a certain dNTP is incorporated, the hydrogen ion is 

released and the pH of the solution changes, which is detected by the chip. Both of 

these technologies have been used to study bacterial genomes (19), but their low 

throughput power and elevated cost have not made them first choices to study small 

genomes. 

 

http://www.ncbi.nlm.nih.gov/


 

 

Table 1. Summary of the most used sequencing technologies and their main characteristics. Adapted from (19, 22, 23).  

Technology 

(Company) 
Year of development Approach Read length bp per run Cost per Mb (USD) 

Sanger sequencing 1975 

Synthesis in the 

presence of dye 

terminators 

Up to 900 bp 1 Mb $10000 

454 (Roche) 2005 
Pyrosequencing on solid 

support 
200-300 bp 80-120 Mb $1000 

Hiseq/Miseq (Illumina) 2006 

Sequencing by synthesis 

with reversible 

terminators 

30-40 bp 

150-250 bp 

500-800 Mb 

4-8 Gb 
$25-$120 

Solid (ThermoFisher) 2007 
Massively parallel 

sequencing by ligation 
35 bp 1-3 Gb $60 

Ion torrent 

(ThermoFisher) 
2010 

Sequencing by 

measurement of the H+ 

ions released during 

base incorporation 

200-400 bp 1-2 Gb $100-$600 

PacBio RS 

(Pacific Biosciences) 
2011 Single molecule real-

time sequencing 
10-60 kb 500 Mb-1 Gb $200 

Nanopore sequencing 

(Oxford Nanopore 

Technologies) 

2014 

Real-time nanopore 

sequencing by 

measurement of 

changes in ionic current 

produced by base 

incorporation 

5-6 kb Defined by the user $60 
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The principles and chemistry of each NGS technology are different but all of 

these technologies produce short reads. Therefore, the reads obtained produce highly 

fragmented assemblies and a closed genome is hard to achieve. To overcome this 

problem, third generation sequencing technologies have been introduced in the 

market, which produce longer reads. PacBio sequencing (Pacific Biosciences, San 

Francisco, USA) is a high throughput method that has been recently released, that 

produces sequencing reads by reading in real-time a continuous sequence from the 

molecular template. Briefly, a specialized cell, called the SMRT cell is used, that 

contains a single DNA polymerase molecule immobilized in each well. The libraries are 

prepared by shearing the DNA into double-stranded fragments (2-5 kb) and ligating 

hairpin adapters to each end of the fragments (http://www.pacificbiosciences.com/), 

thus creating a single-stranded end. The sequencing reads are obtained in real-time, by 

monitoring the incorporation of fluorescent-dyed nucleotides in the nascent DNA 

chain. This method allows obtaining long sequence reads (3-9 kb) (Table 1); the 

drawback is that it is prone to sequencing errors and it is still very costly (Table 1). 

More recently, a third generation sequencing technology developed by Oxford 

Nanopore Technologies (Oxford, UK) has been introduced in the market (Table 1). This 

technology is incorporated in a small machine called MinION. Briefly, the technology is 

based in the measurement of changes in the electronic current as single molecules of 

DNA are passed through the DNA polymerase, immobilized in a biological nanopore. 

By using a hairpin adapter, each molecule is read twice and the resulting reads are 

long. Although it is suitable to assemble closed genomes, the error rate has been 

reported to be high (24). This technology is promising though, because of the low cost 

of sequencing a genome in comparison with PacBio sequencing (23)(Table 1). 

 

  

http://www.pacificbiosciences.com/
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1.2.3.2. Whole-genome sequencing analysis 

The limiting step of whole-genome sequencing (WGS) has been the low 

availability of user-friendly software to analyze the huge amounts of data produced by 

this technology. However, the recent application of WGS to the molecular 

epidemiology of bacteria, including Staphylococcus, is trending towards an increase, 

with the emergence of improved analysis methods and user-friendly software. The fast 

development of accessible informatics tools to analyze clinically relevant targets has 

allowed the application of WGS in clinical laboratories. 

 

1.2.3.2.1. Closed reference genome-based analysis  

The first reports that applied WGS to the study of Staphylococcus epidemiology 

used a method called single-nucleotide polymorphisms (SNP) analysis and was 

developed for S. aureus (25). This method involves aligning the reads produced by 

sequencing the genome of the isolate, with a fully sequenced and annotated reference 

genome. A phylogenetic reconstruction with this data is performed with appropriate 

algorithms, the end result being a SNP tree (25). This method has proven to be very 

useful to detect bacterial lineages, as well as SNP variation in the part of the genome 

that is shared between all isolates tested and the reference strain (25-28). However, 

interpretation of the results is not yet optimal, since the variation of the number and 

genetic location of SNPs among clonal lineages and even inside the same clonal lineage 

is not uniform. Therefore, an appropriate cut-off value for clonal relatedness in case of 

outbreaks is difficult to define and depends on the type of collection analyzed. Thus 

interpretation of the SNP tree should be done only locally, using appropriate 

epidemiological information (29). The recent advances in phylogeny reconstruction 

with a Bayesian inference, such as BEAST (30), that takes into consideration also the 

epidemiological data, are promising and have proven to be suitable to use in 

surveillance and epidemiological studies (31, 32).  
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1.2.3.2.2. De novo assembly 

An appropriate closed reference genome is not always available. Therefore, 

assembling the short reads into long contigs, in a reference-free manner, stimulated 

the interest of researchers and several algorithms have been developed for this 

purpose, such as VELVET (33). The so-called assembly de novo has been widely used in 

several epidemiological studies. The drawback of this method is the end result, which 

consists of hundreds of contigs with no overlapping genomic regions that represent 

different segments of the genome (22). To overcome this difficulty, alignment of the 

contigs, produced for each strain by VELVET, is achieved with powerful iteractive 

alignment algorithms, such as Mauve (34). Mauve can align a reasonable number of 

genomes, partitioned in hundreds of contigs, while accounting for rearrangements 

(22).  

Another useful approach to deal with the high number of genomic contigs of a 

given isolate is to perform a hybrid assembly, which consists in combining the reads 

obtained with Illumina (or other NGS technologies) with the reads obtained with 

PacBio sequencing (35) or nanopore sequencing reads (23) . In this approach, the 

hybrid assembly method allows for correction of sequencing errors produced with 

third generation sequencing technologies, since it incorporates the short reads 

obtained by NGS technologies (35). Powerful assemblers that allow error corrections, 

have been developed to work with reads from different technologies, such as SPAdes 

(36) and CELERA (37), among others. 

Finally, a commonly used strategy to analyze the high number of contigs 

produced by the de novo assembly is to perform a gene-by-gene analysis, or whole-

genome MLST (38). This “super MLST” utilizes the assembly de novo data and consists 

in extracting alleles of genes present in the predicted core genome of all strains (38, 

39). Following the rationale for MLST data, an allele number is assigned to each gene 

and an allelic profile is attributed to each strain. This strategy was first implemented in 

an open-source database system called the BIGSDB (bacterial isolate genome 

sequence database)(38). A similar approach has been recently described and 

incorporated in an automated program, called the SeqSphere (Ridom GmbH, 
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Germany). This method has proven to be valuable to infer epidemiological relatedness 

between isolates in outbreak situations (39). Another method consists on predicting 

the core genome of the strains, by selecting the genes that are present in all strains 

(22). An alignment can then be produced with the concatenated gene sequences of the 

predicted core genome, by using algorithms that have been widely used before for 

single gene alignments, such as CLUSTALW (40) and MUSCLE (41). Phylogenetic trees 

are then performed using the resulting alignment. This strategy has been recently used 

to study the core genomes of S. aureus and S. epidermidis (42).  

 

1.2.3.2.3. Downstream analysis 

The contigs obtained in the assembly de novo can be used for many objectives. 

Several tools have been developed to study draft genomes, particularly of bacterial 

origin. For instance, different algorithms and databases have been recently developed 

to rapidly detect antibiotic resistance genes, with the interest of aiding clinicians in the 

course of treatment of infectious diseases (43). Other databases and web-based 

servers have been developed, which identify virulence genes, plasmid genes, 

prophages and insertion sequences, among many other functional categories; 

examples are the antibiotic resistance genes online database ResFinder, https://www 

.cge.cbs.dtu.dk/services/ResFinder/, the insertion sequence online database ISFinder, 

https://www-is.biotoul.fr, among others. The great majority of these platforms work 

with the BLAST algorithm that identifies homologues of the genes in the contigs by 

comparing these with the ones deposited in a database. 

One useful and most used approach is functional annotation of genomes or 

genomic regions. In these cases, the annotation is usually confined to the protein-

coding sequences (CDS) present in contigs containing regions of interest of the 

genome. Briefly, the annotation process is usually based in programs that use ab initio 

algorithms trained on gene models from related species (for instance, AUGUSTUS (44)) 

or gene alignments (using for example tblastx) and databases (such as KEGG) that 

complement the predicted gene models (45). However, as the evidence available for 

some species is mostly incomplete and sometimes contradictory, this is a difficult task 

https://www-is.biotoul.fr/
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that often benefits from manual curation. A complete genome annotation represents a 

considerable effort and requires bioinformatic proficiency; furthermore, it strongly 

depends on the quality of the genome assembly. Only near-complete genomes 

interrupted only by small gaps will yield satisfactory results (45).  

 

1.3. The opportunistic pathogen Staphylococcus epidermidis  

 

1.3.1. Staphylococcus epidermidis as a commensal 

Staphylococcus epidermidis is mainly a commensal of the human skin, being 

one of the first bacteria that colonize the skin of newborns after birth (46). Its main 

niches are the humid areas of the human skin, such as the anterior nares, the axillae, 

the inginal and perineal areas, the toe webs and also the conjunctiva (2), where it 

forms populations of cells, which are often composed of multiple strains of this species 

(47). S. epidermidis can be also found colonizing the skin of non-human mammals, but 

this colonization is thought to be transient and of human origin (48, 49). Nevertheless, 

relatively high frequencies of carriage of S. epidermidis have been described, 

particularly in production animals in Europe (40%)(50). 

While colonizing, S. epidermidis cells are believed to adhere to the human skin 

(51). In fact, S. epidermidis genome is well equipped with genes for adhesion, such as 

adhesins (aae and sdrG, among many others, see below) (52). The role of S. 

epidermidis as part of the protection barrier provided by the skin is well documented. 

In fact, some studies suggest that S. epidermidis has an antagonistic effect against 

more virulent species, like S. aureus. One example of this is the inhibition of S. aureus 

by S. epidermidis through the excretion of the serine protease Esp; specifically, it has 

been found that purified Esp inhibits biofilm formation by S. aureus and destroys pre-

existing biofilms (53). Furthermore, it was shown that Esp enhances the susceptibility 

of S. aureus biofilms to immune system components. Other exoproteins produced by 

S. epidermidis that have antimicrobial activity against S. aureus are the PSMs (phenol-

soluble modulins, see below) (54, 55) (Figure 2). In addition, it has been showed that S. 



General Introduction 

Chapter I | 16  

epidermidis strains carrying specific alleles of the quorum-sensing system agr (one of 

the most important virulence regulons in staphylococci) inhibit the colonization of the 

skin of healthy volunteers by S. aureus strains carrying specific agr alleles, which 

suggests that cross-interference between agr alleles affects negatively the colonization 

of these bacteria of the same niche (56). Furthermore, S. epidermidis strains with the 

ability to produce bacteriocins have been also identified (57). In particular, 

epidermicidin produced by a S. epidermidis strain recovered from a human skin swab, 

was shown to have an inhibitory activity against S. aureus, other CNS species and 

enterococci (58) and a thiopeptide produced by S. epidermidis of avian origin, was 

reported to have activity against several different gram-positive pathogens (including 

S. aureus, enterococci, Clostridium difficile and others) (59). Finally, several studies 

have showed that S. epidermidis can interact with the human immune system. 

Specifically, the main component of S. epidermidis biofilms, PIA (polysaccharide 

intercellular adhesin, see below), is able to stimulate the immune system through 

binding to toll-like receptor 2 (TLR2) present in human cells (60) (Figure 2). PIA was 

found to be able to induce the production of pro-inflammatory cytokines via TLR2. S. 

epidermidis can also interact with antimicrobial peptides (AMPs). AMPs are small 

peptides that have antimicrobial activity and are part of the innate immune system. A 

study has showed that a PSM produced by S. epidermidis can boost the production of 

AMPs by the host, leading to an increased killing capacity of human neutrophils against 

pathogenic bacteria such as group A streptococci (55). Altogether, these data suggest 

that the presence of S. epidermidis in the human skin contributes to its homeostasis 

and prevents colonization by pathogenic species. 
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Figure 2. Phenotypic characteristics of Staphylococcus epidermidis that contribute to its mutualism with the human 

skin and/or its pathogenic potential, as well as the conditions of the nosocomial environment that prompt the 

change in S. epidermidis lifestyle. Adapted from (51, 61). 

 

1.3.2. Staphylococcus epidermidis as a pathogen 

S. epidermidis is also an important opportunistic pathogen, particularly once 

the skin barrier is compromised. The same characteristics that make S. epidermidis 

such a good colonizer and protector of its niche, can also turn it into a powerful 

pathogen (Figure 2). In particular, the capacity to form biofilm and the production of 

PSMs (see below) are important for both colonization and infection lifestyles of S. 

epidermidis (51). 

S. epidermidis is one of the most relevant pathogens in the hospital setting, 

being responsible for around 70% of native valve endocarditis, 50% of neonatal sepsis 

and 30-50% of infections associated with indwelling devices in hospitals worldwide (2, 

61). Most of the infections in the hospital environment are thought to be of 

endogenous origin, being caused by the strains that colonize the patient. However, 

transmission between the nose and hands of staff personnel and patients (62), 

healthcare clothing (63), medical equipament (64), and hospital surfaces (65) have also 

been observed.  
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S. epidermidis infections are usually associated with an extended hospitalization 

stay and therefore constitute an overall burden for patients and healthcare providers. 

In addition, with the increasing use of indwelling devices in modern medicine, the 

incidence of S. epidermidis infections has the tendency to increase. On the other hand, 

in the community, S. epidermidis infections are rare (<5%), but urinary tract infections, 

particularly in children, have been reported (66), as well as community-acquired native 

valve endocarditis (2). In addition, peritonitis associated to peritoneal dyalisis, 

considered to be a community-onset infection, increased from 7 to 19% in the last 

decade, in Germany (67). 

The treatment of S. epidermidis infections, often associated with biofilm 

formation, is further complicated by the high rates of resistance to multiple classes of 

antimicrobials that this pathogen exhibits, particularly in the hospital environment. 

One of the most successful classes of antibiotics for the treatment of S. epidermidis 

infections have been β-lactams, but emergence of resistance to these antibiotics has 

been hindering its use in clinical practice.  

Penicillin-resistant S. epidermidis has been reported in 1949 (68), shortly after 

the introduction of penicillin in the clinical practice. Methicillin, a semi-synthetic 

antibiotic resistant to the action of β-lactamase was introduced in the clinical practice 

in 1959, to overcome the problem of penicillin-resistant strains. Nonetheless, only two 

years after, the first methicillin resistant staphylococcal strain, a methicillin-resistant 

Staphylococcus aureus (MRSA) strain, emerged in the UK (69). In addition, by 1963, 

about 10 % of S. epidermidis isolates collected from infections in Denmark were 

resistant to methicillin (methicillin-resistant S. epidermidis, MRSE isolates) (70). In 

recent studies, 90% of S. epidermidis isolates in hospitalized patients are resistant to 

penicillin (71) and the oxacillin resistance reached 80% (2, 72). The inefficacy of β-

lactams in the treatment of nosocomial S. epidermidis infections is worrisome since 

other antibiotics are not so well tolerated, are more expensive, and frequently require 

intravenous administration (like for instance, the glycopeptide vancomycin).  

In addition to -lactams, resistance to ciprofloxacin, clindamycin, erythromycin, 

chloramphenicol, fusidic acid, fosfomycin, rifampin and tetracycline has been 
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described in S. epidermidis recovered from bloodstream and catheter-related 

infections worldwide (73, 74). The frequency of isolates exhibiting resistance to each of 

these antibiotics has been lower than 20% (2). More rarely observed, but already 

reported, is resistance to glycopeptides (75) and linezolid (76). In addition, a high 

increase on the frequency of multiple antibiotic resistant S. epidermidis has been 

observed in the last decade, from 30% to 60% in the USA (2, 74). This steady increase 

in the frequency of multidrug-resistant S. epidermidis is related with the increase of 

the use of antibiotics and invasive procedures in the hospital environment. 

 

1.3.3. Molecular epidemiology and population structure 

Several studies have focused on the molecular epidemiology of S. epidermidis 

recovered from the hospital environment. The great majority of these studies have 

used molecular tools and, more recently, whole-genome sequencing to elucidade the 

population structure of nosocomial S. epidermidis. 

One study where a representative collection comprising isolates from 17 

countries worldwide was characterized by MLST and eBURST analysis, showed that 

most of the sequence types identified among hospital-associated isolates analyzed 

(31%) belonged to a single clonal complex, CC2 (Figure 3) (17). CC2 was found to be 

highly diverse; isolates belonging to this CC show diverse PFGE types and a high 

number of different sequence types (39 STs) (17). The clonal lineage CC2 was 

firstdescribed as being composed of two different clusters; cluster I includes ST2 and 

related sequence types, while cluster II comprises all the other sequence types 

organized in subgroups, each with a subgroup founder (ST5, ST6, ST57, ST85 and ST89). 

In addition to the complex and diverse CC2, nine other clonal complexes were 

identified (CC1, CC2, CC11, CC21, CC23, CC33, CC42, CC49 and CC66) (17). CC2 isolates 

have been described to be particularly virulent and invasive, usually strong-biofilm 

producers (77) and to carry insertion sequences that allow for the efficient modulation 

of this phenotype (78). However, the genes underlying CC2 success have not yet been 

identified or confirmed in a large number of isolates or using genome-wide studies. 
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In a different study, S. epidermidis isolates with exactly the same PFGE 

macrorestriction pattern have been identified in different geographic regions, which 

indicate that S. epidermidis isolates are able to disseminate (79). On the other hand, 

using the nucleotide sequence of an internal fragment of the seven housekeeping 

MLST genes, it has been estimated that the recombination/mutation rate of S. 

epidermidis was 2.5:1 (17). Since S. epidermidis was found to have a high capacity of 

clonal dissemination associated to a high recombination rate, the authors suggested 

that the structure of S. epidermidis population is of the epidemic type where 

recombination is very frequent, and that epidemic clones would emerge only 

sporadically (17). In a recent report, the core genome of S. epidermidis has been 

studied in detail, including nosocomial and commensal isolates (42). In this study, a 

phylogenetic tree constructed using the results of the whole-genome MLST approach 

showed that the S. epidermidis population was clustered in three distinct clusters, A, B 

and C (Figure 3). Most of the hospital-associated isolates, belonging to CC2, fell into 

clusters A/C while the commensal isolates, which belonged in its majority to other 

minor clonal complexes, were included in cluster B (42). Recombination events were 

observed in a large number of genes between isolates belonging to the same cluster; 

specifically, an estimated 40% of the core genome genes showed evidence of 

homologous recombination in at least one lineage (42). Interestingly, annotation of 

these genes has revealed that the great majority seemed to be involved in adaptation 

to the hospital (metal toxicity resistance, cell wall and capsular synthesis, and 

antimicrobial resistance). Therefore, the authors suggested that S. epidermidis 

adaptation to the nosocomial environment was most probably achieved through 

recombination. 

 

 

 



 

 

 

Figure 3. Population structure of S. epidermidis. (A.) eBURST analysis of the sequence types (STs) deposited on the dabatase, July 2015 (www.mlst.net). For the sake of simplicity, only clonal 

complex 2 (CC2) is shown. The most prevalent STs are represented by a bigger font. Light green STs indicate probable ancestors (group founders) and dark green STs constitute subgroup 

founders. Blue STs correspond to STs that share the same background (CC) (B.). Alignment of the concatenated genes predicted to be part of the core genome (42). 
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At the beginning of the work presented in this Thesis, the population structure 

of S. epidermidis in the healthy community was poorly assessed. The few studies 

available at the time indicated that antimicrobial resistance was low and that the 

genetic background of the isolates presented a high genetic diversity (80, 81). In 

addition, cross-colonization of S. epidermidis isolates between individuals sharing the 

same households had been observed (82). However, it was not known whether strains 

colonizing individuals in the community were the same or different from those causing 

infections in the hospital. Moreover, a comprehensive study comparing the hospital-

associated and the community-associated S. epidermidis populations had not been 

performed. 
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1.3.4. Virulence genes 

S. epidermidis virulence and modes of infection have not been extensively 

studied. Whole genome sequencing of S. epidermidis show few virulence genes, such 

as genes encoding high molecular weight toxins or superantigens. However, S. 

epidermidis carries a large number of genes involved in biofilm formation, immune 

evasion, bacteriocins and exoproteases (51). These genes are thought to be associated 

with colonization, but due to the opportunistic character of S. epidermidis life style, 

they have also been considered as virulence factors (Table 2). 

 

Table 2. Staphylococcus epidermidis virulence factors. Adapted from (51, 73). 

Virulence factor Genetic determinant Function/mechanism 

Proteins and 

polysaccharides 
icaA, icaB, icaC, icaD, aap, bhp Biofilm formation 

Adhesins 
aae, atlE, bhp, ebp, embB, gehD, 

scaA, scab, sdrF, sdrG, tagF, ybiD 
Adherence to biomaterials/host proteins 

Capsule capA, capB, capC, capD Protection against phagocitose 

Toxins 
psmα, psmβ1, psmβ2, psmδ, psmε, 

hld 
Cytolitic activity 

Enzymes and 

proteases 

gehC, gehD, sspA, sspB, sspC, sepA, 

esp 

Host tissue destruction 

Colonization 

Bactericidals 

Biofilm formation 

 

Biofilm formation 

S. epidermidis infections are mainly associated with the use of indwelling 

devices primarily due to its ability to produce biofilm. Biofilms are composed by a 

cellular mass with the bacterial cells disposed in layers. Besides providing the cells 

protection against external aggressions, the biofilm cells present a low activity 

metabolic state, which limits the action of most antibiotics that act on live and 

metabolically active cells (51, 83, 84).  

The formation of a biofilm is a multifactorial process, which involves four 

different steps (Figure 4): initial attachment, cellular aggregation, maturation and 

detachment. In the initial attachment, the bacterial cells adhere to a surface, through 

the action of adhesins and specific autolysins (AtlE, Aae and SdrF/SdrG). Next, the 

cellular aggregation occurs, resulting in the formation of a multicellular structure, 
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mediated by teichoic acids, extracellular DNA and exopolyssacharides (51). On the step 

of maturation of the biofilm, proteases are thought to be involved, such as Esp, that 

have been described to inhibit the colonization by other species during biofilm 

maturation (53). In the detachment step, the last phase of the biofilm formation, some 

cells return to the planktonic lifestyle and eventually start a new biofilm elsewhere in 

the human host. This step is regulated by the agr system, a recognized regulator of 

virulence factors in Staphylococcus (51). Little is known regarding the proteins that are 

responsible for the development of this step, but proteases and phenol-soluble 

modulins (PSMS) might be involved (51, 85). 

 

 

Figure 4. Steps that lead to S. epidermidis biofilm formation and proteins thought to be involved (51). 

 

One of the most important molecules for biofilm formation in S. epidermidis is 

the exopolyssacharide called PIA (polysaccharide intercellular adhesion), a polymer of 

N-acetyl-glucosamine (PNAG). PIA is the main component of the extracellular matrix, 

allowing for the growth and providing stability to the biofilm. This polymer is encoded 

by the ica operon, composed by five genes (icaA, icaB, icaC, icaD e icaR). The icaA and 

icaD encode proteins involved in the production of N-acetyl-glucosamine; icaB is 

involved in the deacetylation of these monomers and icaC in their translocation. 

Finally, icaR encodes a repressor of the ica operon (84). An alternative regulatory 

system of this operon has been described, through the insertion/excision of the IS 

element IS256 on the icaC gene (86). In addition, irreversible switching from biofilm-
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positive to biofilm-negative phenotype has been observed, that has been suggested to 

occur through spontaneous deletion of the ica operon, caused by deregulation of the 

recA expression, a gene that has been implicated in recombination (87). 

The frequency of the ica operon is high among isolates associated with 

nosocomial infections (50-85%), particularly in isolates from catheter-associated 

infections (88), orthopedic transplants (89, 90) and bloodstream infections (91), which 

illustrates its clinical relevance. However, some reports describe the occurrence of 

infections caused by S. epidermidis isolates that did not carry the ica operon and for 

which the production of biofilm was mediated by the surface proteins Aap and Bap 

(51, 92), although these were rare. 

 

Phenol-soluble modulins (PSMs) 

The phenol-soluble modulins (PSMs) are small proteins, with an amphipathic α-

helix structure. PSMs can be of the α type, that have a neutral or positive net charge, 

and are usually small in size (20-25 aminoacids); or of the β-type, that have a negative 

net charge and are longer (43-45 aminoacids)(93). The psm genes are encoded either 

on the core genome or on mobile genetic elements (93). These small proteins were 

described to act upon the human immune system (51), through the induction of 

cytokines release by macrophages, thus promoting inflammation (94). Additionally, 

they can have cytolytic activity towards leukocytes (95). S. epidermidis can produce 

cytolytic PSMs such as PSMδ (96), but due to its mutualistic lifestyle, the greatest 

amounts of PSMs produced by S. epidermidis correspond to less aggressive PSMs such 

as PSMβ peptides (51), which have been described to be involved in the structuring of 

biofilm and detachment (85). 

 

The arginine catabolic mobile element (ACME)  

The arginine catabolic mobile element (ACME) was initially described in S. 

aureus strain USA300, isolated in the community (97). This element is composed by 

the arc operon, encoding genes involved in the metabolism of arginine and by the opp-
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3 operon, that encodes oligopeptide permeases (98). ACME is considered to be a ψSCC 

(pseudo-staphylococcal cassette chromosome, see below). An element similar, in 

structure and sequence, to S. aureus ACME, was identified in S. epidermidis strain 

ATCC12228 – ACME-I (99) and among hospital-associated S. epidermidis (51%), 

particularly in isolates belonging to the main clonal lineage, CC2 (100). Furthermore, 

the most frequent ACME allotype identified in hospital-associated S. epidermidis was 

very similar in the nucleotide sequence to the one carried by the S. aureus USA300 

strain (only 11 nucleotides of difference), which served as evidence to suggest that 

ACME was originated in S. epidermidis (97, 100).  

ACME is believed to confer to the staphylococcal isolates a higher capacity of 

dissemination and host colonization (100), being involved in the capacity of adaptation 

and competition of the isolates that carry it. In a rabbit model, S. aureus isolates 

carrying ACME-I had a higher capacity of survival and dissemination, than isogenic 

isolates with a deletion of ACME (98). The fact that ACME-I is carried in high frequency 

by the main clonal lineage of S. epidermidis, suggests that this element also 

contributes to a higher epidemicity in S. epidermidis (101). In fact, it has been 

demonstrated that S. epidermidis carrying ACME have a higher resistance to acidic 

environments, such as the human skin, during biofilm growth (102). This is partly due 

to the detoxification of polyamines by the speG enzyme, present on the ACME island, 

as demonstrated with studies with the S. aureus USA300 type strain in a murine model 

(103). 

 

Other virulence factors 

Other virulence factors carried by S. epidermidis include proteins that seem to 

be important for the colonization and proliferation of this pathogen in the host, 

namely adhesins, toxins and extracellular enzymes (Table 2). The adhesins, act mainly 

in the initial step of the biofilm formation, adhesion to surfaces (AtlE, AAe) and also 

host proteins (SdrF and SdrG).  
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The S. epidermidis genome also contains elements that allow the evasion of the 

human immune system. An example is the cap operon that encodes a capsule (CapA, a 

polymer of poly-γ-glutamic acid) that confers resistance to phagocytosis by 

macrophages (104). Another example is the study where the authors described that 

PIA protects S. epidermidis cells against the action of the hosts AMPs (105). 

Finally, the extracellular enzymes produced by S. epidermidis are still poorly 

studied, but they are thought to have a cytolytic activity in host tissues cells and a role 

in the degradation of fibrinogen and complement proteins. In addition, they might be 

involved in the maturation step of the biofilm (51). 

 

2. Methicillin resistance: a crucial event in the evolution of Staphylococcus 

In the last fifty years, epidemics of methicillin-resistant staphylococci (MRS), 

and particularly MRSA have been frequently reported in the nosocomial setting, with 

devastating outcomes for patients and hospitals (106). MRS are resistant to all 

antibiotics of the large class of β-lactams, which constitute one of the first lines of 

defense against staphylococcal infections. Furthermore, MRS often carries additional 

antibiotic resistance genes which further complicates the treatment of infections 

caused by these pathogens.  

The staphylococcal cassette chromosome mec (SCCmec), the central mobile 

element that carries the genetic determinant responsible for β-lactam resistance 

(mecA gene), and its impact in the epidemiology of staphylococci have been well 

studied. However, little is known regarding its origin or the steps leading to the 

construction of this mobile genetic element. In this chapter, the main findings 

regarding the origin and assembly of SCCmec are reviewed. 
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2.1. Mechanism of resistance  

Peptidoglycan synthesis in S. aureus, is carried out by four different membrane-

bound penicillin-binding proteins (native PBPs 1-4) that catalyse two key reactions of 

the final steps of cell wall assembly: formation of the linear glycan chains 

(transglycosilation) and formation of the peptide cross-bridges (transpeptidation) (7, 

107). The -lactam antibiotics are a class of antibiotics that derived from penicillin; 

they all have in its composition a -lactam ring. In the presence of -lactam antibiotics, 

the transpeptidase domain of native PBPs is inactivated, which impairs peptidoglycan 

cross-linking (107). These antibiotics acylate, irreversibly, the native PBPs which leads 

to the interruption of the cell wall synthesis and to bacterial death (7). 

The most clinically relevant genetic determinant responsible for methicillin 

resistance is the mecA gene. This gene encodes a 78 kDa high molecular mass 

penicillin-binding protein, called PBP2a (penicillin-binding protein 2a). PBP2a has two 

main domains: the non-binding domain and the transpeptidase domain, which 

contains the active site (108). Resistance is associated to the fact that PBP2a has low 

affinity for the -lactam ring (109). Contrarily to susceptible strains, in strains carrying 

PBP2a and in the presence of β-lactam antibiotics, the transpeptidase domain of 

PBP2a remains active, which along with the cooperative action of the transglicosylase 

domain of the native PBP2 assure the final assembly of the cell wall (107). Further 

insights into this mechanism of resistance have been obtained when the crystal 

structure of PBP2a was solved. Specifically, it was observed that a torsion of PBP2a, at 

the active site, was responsible for the low acylation rate by the -lactam ring (108).  
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2.2. The staphylococcal cassette chromosome mec (SCCmec) 

 

2.2.1. Historical perspective 

Only two years after the introduction of methicillin (a semi-synthetic -lactam 

antibiotic), in clinical practice, the first methicillin resistant staphylococcal strain, a 

MRSA, emerged in 1959 in the UK (69). Not much is known regarding the earliest MR-

coagulase-negative staphylococci (CoNS). The unique data available showed that 

approximately 10% of S. epidermidis isolates collected in hospitalized patients in 

Denmark in the early 60s were resistant to methicillin (70), but no studies on the 

genetic background of those strains were performed. The report of the earliest 

methicillin-resistant S. epidermidis (MRSE) strain described corresponds to MRSE 

isolated in 1973, in Canada, which carried SCCmec IV, one of the smallest SCCmec 

cassettes (110).  

 

2.2.2. Basic structure and diversity 

SCCmec is composed of two structural elements: the mec complex and the ccr 

complex (111). The mec complex includes mecA and its regulators, the repressor mecI 

and the inducer mecRI; the ccr complex encodes site-specific recombinases that assure 

the mobility of the cassette. So far, eleven different types of SCCmec ranging from 20 

to 70 kb have been described in S. aureus (111-114), that vary on the combination of 

the class of mec complex and the type of ccr that each cassette carries (111) (Figure 5).  

 



 

 

 

Figure 5. Schematic representation of the structural elements carried by the eleven SCCmec types (SCCmec I-XI) identified in S. aureus (Genbank accession numbers: SCCmec I, AB033763.2; 

SCCmec II, D86934; SCCmec III, AB037671; SCCmec IV,AB0631722; SCCmec V, AB121219; SCCmec VI, AF411935.3; SCCmec VII, AB373032; SCCmec VIII, FJ390057; SCCmec IX, AB505628.1; 

SCCmec X, AB505630; SCCmec XI, whole-genome sequencing data of the strain LGA251, FR821779.1). 
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The mec complex and the ccr complex are linked by three joining regions (J1-J3) 

that vary in size, according to the number of genes they carry. In these regions, most 

cassettes carry a combination of different insertion sequences, transposons, plasmid 

sequences, antibiotic resistance genes and heavy metal resistance genes.  

 

2.2.3. Transfer and mobility 

SCCmec is a mobile genetic element; its insertion in the chromosome occurs 

always at the same locus, downstream of an open reading frame, originally called orfX 

(109). The orfX (or rlmH) has been recently described to encode a RNA 

methyltransferase (115). Upon integration of SCCmec downstream the 3’ end of orfX, 

at the attachment site attB, 15 bp direct and/or inverse repeats (DR/IR) are created, 

that delimit the element in the chromosome (DR-left downstream orfX, attL; DR-right 

at the end of SCCmec, attR). When SCCmec is excised, an extrachromosomal circular 

intermediate is formed and the recognition sites attSCC are created in the 

chromosome and the intermediate circular form (109). These insertion/excision events 

are catalyzed by serine recombinases encoded by the cassette chromosome 

recombinases (ccr) genes that recognize these att recognition sites. 

SCCmec is carried by different strains and species, which suggests it is 

frequently transferred. Some studies suggest that SCCmec is probably transferred by 

phages, since encapsidation of the element and transduction to sensitive strains has 

been previously observed (116-118). Other authors have suggested that SCCmec could 

be transferred by natural transformation. Evidence for that come from the observation 

that natural competent S. aureus (induced by activation of SigH) could incorporate 

SCCmec and become methicillin resistant (119). Finally, an homologue of mecA has 

been found in a plasmid in Macrococcus caseolyticus, a species phyogenetically related 

to Staphylococcus, which might indicate that plasmids might also be a vehicle of 

transmission of this locus (120). However, this is still a matter of debate. Likely several 

mechanisms of transfer can be responsible for SCCmec dissemination. 
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2.2.4. The mec complex  

The mec complex is classified into classes, according to the structure and type 

of its composing elements. To date, six different classes of mec complex have been 

defined (A-E)(111)(www.sccmec.org) (Table 3). 

 

Table 3. Structure of each SCCmec type, as defined by the combination of the class of mec complex and the type of 

ccr. The main staphylococcal species for which the SCCmec type has been identified are also shown. 

SCCmec type mec complex ccr complex Staphylococcal species References 

I B 1 (A1B1) S. aureus, S. hominis (121, 122) 

II A 2 (A2B2) S. aureus, S.epidermidis (123, 124) 

III A 3 (A3B3) S. aureus, S.epidermidis (123, 124) 

IV B 2 (A2B2) S.epidermidis, S. aureus (110, 125) 

V C2 5 (C1) S. haemolyticus, S. aureus (126, 127) 

VI B 4 (A4B4) S. aureus (128) 

VII C1 5 (C1) S. aureus (129) 

VIII A 4 (A4B4) S. aureus, S. hominis (130, 131) 

IX C2 1 (A1B1) S. aureus (112) 

X C1 6 (A1B6) S. aureus (112) 

XI E 7 (A1B3) S. aureus, S. xylosus, S. sciuri (113, 132, 133) 

 

The mec complex A corresponds to a complete mec complex, with intact forms 

of the regulators mecI and mecRI. The expression of mecA is regulated by the repressor 

protein MecI (encoded by the mecI gene) and the inducer MecRI (encoded by the 

mecRI gene)(134). In addition, mec complex A carries an anti-repressor of mecA that 

has been described recently, called mecR2 (135), which interacts with MecI, leading to 

its proteolytic cleavage. The mec complex A also harbors the so-called hypervariable 

region (HVR), downstream mecA. The HVR region includes a truncated mvaS gene 

encoding the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) synthase, an intact 

ugpQ gene encoding glycerophosphoryl diester phosphodiesterase, and an intact 

maoC gene encoding the acyl dehydratase MaoC. Another region included in the HVR 

is the dru (direct repeat unit) locus (136), that is a variable region, composed of 

repeats of 40 bp in tandem. Upstream HVR, mec complex A (and all classes of mec 
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complex, with the exception of class E) carries a copy of IS431 (frequently called 

IS431mec). The mec complex A includes an ORF, located immediately downstream 

mecA that encodes a PSM. This ORF has been called psm-mec and has been associated 

with an enhanced toxicity ability of S. aureus, since it has been shown that has cytolytic 

activity against white and red human cells and was able to induce inflammation (137). 

This mec complex class is part of SCCmec types II, III and VIII (130, 138) (Figure 5). 

The elements present in mec complex A are not always present in the 

remaining classes of mec complex (139) (Table 4).  

 

Table 4. Structure of the classes of mec complex and the types of ccr complex described to date (August 2015) 

(www.sccmec.org).  

SCCmec structural element Structure 

mec complex  

A IS431-mecA-mecRI-mecI 

B IS431-mecA-ΔmecRI-IS1272 

C1 IS431-mecA-ΔmecRI-IS431 

C2 IS431-mecA-ΔmecRI-IS431* 

D IS431-mecA-ΔmecRI 

E blaZ-mecC-mecRILGA251-mecILGA251 

ccr complex  

Type 1 A1B1 

Type 2 A2B2 

Type 3 A3B3 

Type 4 A4B4 

Type 5 C1 

Type 6 A5B3 

Type 7 A1B6 

Type 8 A1B3 

*IS431 arranged in the opposite direction. 

 

http://www.sccmec.org/
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The mec complex B comprises a deletion of mecRI; in this class of mec complex, 

mecRI is interrupted by a copy of IS1272 (111, 140). SCCmec types I, IV and VI all carry 

mec complex B (128, 138, 141). The mec complex C also carries deletion of mecRI but, 

in this case, interrupted by IS431. This class of mec complex carries therefore two 

copies of IS431 (IS431 and IS431mec). In mec complex C1, the two copies of IS431 are 

arranged in the same direction of transcription, while in mec complex C2, the two 

copies are in opposite directions. The mec complex C1 is part of SCCmec types VII and 

X (112, 129), and mec complex C2 is part of SCCmec types V and IX (112, 127). The mec 

complex D is the smallest class of mec complex: it contains only a small part of mecRI 

truncated, but with a deletion of IS elements downstream mecRI. It has not been 

associated to any SCCmec type, but it has been found sporadically in the orfX region of 

CoNS isolates, inside delimited SCCmec elements (140). Finally, the recently described 

mec complex E, which is part of SCCmec XI (113), carries the mec homologue mecC and 

intact forms of its regulators mecILGA251 and mecRILGA251, as well as a copy of blaZLGA251 

upstream mecC.  

 

2.2.5. The ccr complex 

The ccr complex comprises the ccr genes, which encode site and orientation 

specific recombinases of the invertase-resolvase family (109), and surrounding ORFs of 

unknown function. Three different ccr genes have been described in S. aureus, ccrA, 

ccrB and ccrC, that share nucleotide sequence similarities below 50% (111). Two 

distinct groups of ccr complexes have been described: ccrAB, which includes ccrA and 

ccrB genes, which are usually found adjacent to each other, and ccrC. In addition, 

sequence polymorphisms in these genes have been identified, that led to the 

definition of different allotypes of ccrA and ccrB genes. In general, the ccrA and ccrB 

genes belonging to the same allotype have over 85% of nucleotide sequence identity 

(111). For each allotype of ccrA and ccrB, several different alleles have been identified 

(142). The ccrC genes are more conserved, but several different alleles of this gene 

have also been described. To date, eight different ccr complexes have been identified, 

that vary in the combination of ccr allotypes (www.sccmec.org). The most 

http://www.sccmec.org/
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disseminated ccr complexes are ccr complex 1 (A1B1), present in SCCmec types I and IX 

(112, 138); ccr complex 2 (A2B2), part of SCCmec types II and IV (138, 141); ccr 

complex 4 (A4B4), present in SCCmec types VI and VIII (128, 130) and finally ccr 

complex 5 (ccrC1) which is part of SCCmec types V and VII (127, 129) (Tables 3 and 4). 

Both ccrA and ccrB genes are required for the precise excision and integration 

of SCCmec in the chromosome (109). Several studies have been performed with the 

aim of assessing the functionality of the Ccr proteins. Data gathered so far suggests 

that while CcrB binds DNA, the physical interaction between CcrA and CcrB, in a 

precise ratio, is required for attB site-specific recognition and SCCmec chromosomal 

insertion (143). The integration of SCCmec in the chromosome is dependent on the 

recognition of sequences flanking the att site and by the presence of more than one 

att site on either the chromosome or the integration sequences (144). In addition, it 

has already been demonstrated that CcrC can also promote the precise excision of 

SCCmec V (127).  

The origin of the ccr complex is not clear, but homologues of these genes have 

been identified in other gram-positive bacteria. In Enterococcus species (Enterococcus 

faecium, Enterococcus durans, Enterococcus hirae, Enterococcus casseliflavus and 

Enterococcus gallinarum), homologues of ccrA and ccrB genes share less than 40% of 

nucleotide sequence identity with S. aureus ccrA and ccrB (145). However, the 

chromosomal location of these genes or their functionality has not been assessed. A 

different set of ccrA and ccrB homologues has been identified in Macrococcus 

caseolyticus, in a SCCmec-like structure, that shared less than 52% of sequence identity 

with S. aureus ccrAB genes (146). In this species, these homologues were able to excise 

the SCCmec-like element from the chromosome of M. caseolyticus and, like in S. 

aureus, give rise to a circular intermediate (146).  
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2.2.6. SCC elements and pseudo SCC 

SCC elements not carrying the mec complex but carrying other genes relevant 

for staphylococcal survival, competition and virulence have been described. They have 

been called SCC non-mec or simply SCC, since they carry a ccr complex, also insert at 

the orfX 3’ end and are flanked by DR/IR at the chromosome. These SCC elements 

(Table 5) can carry heavy metal resistance genes, like SCCmer, that carries the mer 

operon (encoding resistance to mercury) and the cad operon (encoding resistance to 

cadmium) (147); capsule genes, like SCCcap (148); or even cell-wall synthesis genes, 

such as pbp and tagF (SCCpbp4) (149). Frequently, two or more SCC – named  

composite elements - are inserted in tandem, downstream orfX. An example is the 

composite element widely disseminated in the pandemic MRSA Brazilian clone and in 

some nosocomial S. epidermidis isolates, SCCmec III-SCCmercury (17, 147).  

Other structures, the so-called ψSCC, have been identified inserted in the orfX 

region and flanked by DR/IR. However these structures do not have the ccr complex 

and therefore theoretically they cannot be mobilized by themselves, but can be 

mobilized by adjacent SCC. Different ψSCC structures have been described in 

Staphylococcus (Table 5). One of the most epidemiologically relevant ψSCC element is 

the arginine catabolic mobile element (ACME)(98), which is usually found downstream 

SCCmec IV, which together constitute a composite element (98).  
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Table 5. Examples of SCC and ψSCC structures identified in staphylococci. Only the species where the element was 

first identified is showed. 

SCC ccr Other structural elements Species Reference 

SCCmer ccrC Tn554, pI258 S. aureus (147) 

SCC-CI ccrAB2 mer, cad operons S. epidermidis (149) 

SCCpbp4 ccrAB4 tagF, pbp4 S. epidermidis (149) 

SCC12263 ccrAB1 M.Stsl modification methylase S. hominis (150) 

SCCh1435 ccrC ars operon S. haemolyticus (151) 

SCCcap1 ccrC cap operon S. aureus (148) 

SCC15305cap ccrC cap, hsd operon S. saprophyticus (152) 

SCC15305RM ccrAB repA, DNA methylase S. saprophyticus (152) 

SCCMSSA476 ccrAB1 hsd operon S. aureus (27) 

SCCSH32 ccrA5B3 hsd, DNA helicase S. haemolyticus (153) 

ψSCC ccr Other structural elements Species Reference 

ACME-I - arcA, opp3 S. aureus (98) 

ACME-II - arcA S. epidermidis (101) 

ACME-III - opp3 S. epidermidis (101) 

ψSCCmec SH32 - mecA S. haemolyticus (153) 

ψSCCmec WCH1 - mecA S. haemolyticus (154) 

ψSCC19A - ars, cad, copB operons S. haemolyticus (155) 

CC6082 - hsdM S. aureus (156) 
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2.2.7. Joining regions (J regions)  

Three joining regions are part of all SCCmec types: J1, spanning the region 

between the DR-right and the ccr complex; J2, which includes the region between ccr 

and the mec complex; and J3, that includes the region between the mec complex and 

the DR-left, downstream orfX (Figure 5). These regions are very diverse in the number 

and type of genes that they carry, but most correspond to genes conferring resistance 

to non--lactam antibiotics and to heavy metals.  In each SCCmec type a large number 

of ORFs encoding hypothetical proteins of unknown function is also present in these 

regions,. In addition, genes encoding lipases or exported proteins have also been 

identified in the regions J1-J3 (113, 130). 

The combination of mecA, encoding resistance to -lactam antibiotics and 

genes encoding resistance to other classes of antimicrobials, as well as to heavy 

metals, has been associated with the success of MRS in the clinical setting. Specifically, 

some of the most successful hospital-associated MRSA and MRSE genetic backgrounds 

carry the SCCmec cassettes II and III (123, 124), which are the ones that carry the 

highest number of genes encoding resistance to antimicrobials and heavy metals. 

SCCmec type II carries the transposon Tn554 in the J2 region, conferring resistance to 

erythromycin and spectinomycin and the plasmid pUB110 in the J3 region, which 

confers resistance to kanamycin. SCCmec type III carries the transposon ψTn554 in the 

J2 region, which confers resistance to cadmium and the plasmid pT181 in the J3 region, 

conferring resistance to tetracycline. Besides these elements, downstream SCCmec III, 

SCCmercury is usually found, that carries pI258 (that encodes resistance to mercury) 

and Tn554 (138) (Figure 5).  

The recently described SCCmec types IX, X and XI, mostly associated with 

colonization and infection in livestock and farm animals, carry a large number of genes 

encoding heavy metal resistance in their J regions (112, 113). Specifically, the J1 region 

of type IX SCCmec contains a cadDX operon, encoding resistance to cadmium, a copB 

gene, which encodes resistance to copper and two arsenate resistance operons, 

arsRBC and arsDARBC. SCCmec X contains a cadDX operon, a copB gene, and an arsRBC 

operon in the J1 region and an arsRBC operon in the J3 region (112). Finally, SCCmec XI 
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contains an arsRBC operon in the J1 region (113) (Figure 5). Heavy metals and β-

lactams are widely used in agricultural productions as growth promoters which is 

believed to be the driving force for the dissemination of these SCCmec types among 

staphylococci from livestock (112, 157, 158). 

 

2.2.8. SCCmec typing 

SCCmec typing schemes have been extensively developed and used due to the 

epidemiological relevance of this mobile genetic element in Staphylococcus. The 

identification of the SCCmec type has been useful for clone definition (13, 159) and 

have been crucial for the study of outbreaks, particularly those associated to MRSA.  

SCCmec typing is based in the amplification of multiple loci that are 

characteristic of each type using polymerase chain reaction (PCR). Several approaches 

have been developed, targeting only the mec complex and the ccr complex (125, 127), 

or also targeting the J regions (160-164). For some SCCmec types, like SCCmec IV, 

typing schemes that allow the discrimination of subtypes have been also developed 

(165). In addition, a strategy based on the amplification and sequencing of an internal 

fragment of ccrB has also been developed with the objective of identifying 

simultaneously the SCCmec type carried by clinical isolates and the phylogenetic 

relationships between them (166). 

However, with the recent description of new SCCmec types, these schemes are 

no longer updated. Furtheremore, with the advent of low-cost whole-genome 

sequencing, SCCmec typing will probably be performed by analysis of WGS data. 
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2.2.9. SCCmec distribution in staphylococci: CoNS as the origin of specific SCCmec 

types 

Eleven SCCmec types have been identified in S. aureus collected from different 

environments (types I-VIII are mostly carried by human isolates; while types IX-XI have 

been mostly associated to animal isolates). The genetic diversity of SCCmec carried by 

CoNS appears to be much higher than in S. aureus. Actually, CoNS can carry in addition 

to all the SCCmec types described in S. aureus also new combinations of mec complex 

and ccr complex (124, 131, 167, 168). In spite of this diversity, the frequency of each 

SCCmec type appears to be species-specific, particularly in human-associated species. 

In S. epidermidis, the most frequent SCCmec type found is SCCmec IV (79, 110, 124), in 

S. haemolyticus is SCCmec V (126, 167) and in S. hominis are SCCmec IA (a combination 

of mec complex A with ccrAB1) and VIII (122, 131). Interestingly, methicillin-susceptible 

isolates of these same species were found to carry the ccr allotypes characteristic of 

each one of these SCCmec types: ccrAB2 seems to be the most frequent ccr type 

among MS-S. epidermidis (Rolo and Miragaia, unpublished), ccrC in MS-S. haemolyticus 

(167) and ccrAB1/ccrAB4 in MS-S. hominis (131). These data suggests that S. 

epidermidis, S. haemolyticus and S. hominis might have played a role in the assembly of 

SCCmec IV, SCCmec V and SCCmec I/VIII, respectively. Examples of additional elements 

carried by SCCmec elements that have probably originated in these CoNS include: the 

insertion sequences IS1272 and ISSha1 from S. haemolyticus, that are part of mec 

complex B (138) and SCCmec X (112), respectively; and hypothetical proteins from S. 

epidermidis which are found within SCCmec VIII (130). 

In addition, different associations of genetic background and SCCmec type are 

usually found among MR-CoNS, indicating that its acquisition is frequent (17). In fact, 

in a study where a large collection of S. epidermidis isolates obtained from inpatients 

in hospitals worldwide has shown that S. epidermidis has acquired SCCmec at least 56 

times, and the great majority of these acquisitions occurred preferentially within the 

main genetic lineage CC2 (17). CoNS and particularly S. epidermidis constitute 

therefore a reservoir of specific SCCmec elements, particularly in the hospital 

environment. 
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2.3. The mec homologues in animal-related species: the origin of mecA 

The rapid emergence of methicillin resistance among staphylococci, shortly 

after the introduction of methicillin in the clinical practice, has raised the hypothesis 

that by then mecA already existed in the staphylococcal population. Several studies 

have addressed the search for the origin of mecA and different mec homologues, with 

diverse nucleotide sequence identities with mecA, have been identified in the most 

primitive staphylococcal species, which colonize wild and domesticated mammals 

(169) (Figure 6). However, the role of each mec homologue in the evolutionary history 

of mecA has remained elusive. 

 

 

Figure 6. Maximum likelihood phylogenetic tree of mec homologues. The numbers at the tree branches are 

percentage bootstrap values indicating the confidence levels. The bar length indicates the number of substitutions 

per site (bar, 20 per 100 sites)(169). 
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2.3.1. Staphylococcus sciuri mecA1 

The first mec homologue identified was mecA1, in Staphylococcus sciuri. This 

species is the most widespread staphylococcal species in nature; it has been isolated 

from the skin of virtually every mammal, but rarely in humans (170). Phylogenetic 

analysis of the 16S rRNA and other genes has shown that S. sciuri belongs to the most 

primitive group of staphylococcal species, the so-called sciuri group (8) and DNA-DNA 

hybridization profiles and biochemical properties showed that S. sciuri was composed 

of three subspecies: S. sciuri sciuri, S. sciuri rodentius and S. sciuri carnaticus (171). 

In a study where a large representative collection of S. sciuri isolates were 

screened for the presence of mecA by dot-blot hybridization, it was found that mecA1 

was ubiquitous in this species (172). Moreover, a recent study, where the sequencing 

of the vicinity of mecA1 was performed for one isolate of each S. sciuri subspecies, 

showed that mecA1 in the S. sciuri, is flanked upstream by the mva locus (mevalonate 

metabolism), and downstream, by the xyl operon (only in S. sciuri carnaticus) (173). 

Due to its ubiquity and given the fact that mecA1 was flanked in the chromosome by 

housekeeping genes that participate in metabolism, mecA1 was suggested also to be a 

housekeeping gene (173).  

The mecA1 gene shares 80% nucleotide sequence identity with MRSA mecA 

(174) and encodes a penicillin-binding protein, that was called PBP4 (82% aminoacid 

sequence identity with PBP2a) (175). The identity of PBP4 domains with those of S. 

aureus PBP2a was different: while the transpeptidase domain was highly conserved 

(96% nucleotide sequence identity; 91% aminoacid sequence identity), the non-

binding domain was more diverse (80% nucleotide sequence identity; 68% aminoacid 

sequence identity)(174).  

Like mecA-encoded PBP2a, PBP4 was found to have low affinity to -lactams 

(175). Despite the fact that the cell wall composition of S. sciuri and S. aureus is 

different (175), when introduced into a methicillin-susceptiple S. aureus genetic 

background which is known to be able to express resistance (COL-S), PBP4 was able to 

produce a cell wall similar to the one of S. aureus. Moreover, it was able to fully 

replace the physiological functions of the native PBP2a in a S. aureus in the presence of 
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antibiotic (176) and to confer -lactam resistance to the recipient strain (176). 

Altogether, these findings strongly suggest that mecA1 is the evolutionary precursor of 

mecA. 

In spite of the low affinity of PBP4 for -lactams, the great majority of natural S. 

sciuri isolates are susceptible to -lactams (172); however, methicillin-resistant S. sciuri 

strains have been described. Molecular characterization of resistant strains has 

revealed that the resistant phenotype can be achieved with one of two different 

mechanisms: the strains can either carry a copy of mecA in their genome, besides 

mecA1 (172) or have alterations in the promoter of mecA1 that lead to overproduction 

of the mecA1-encoded PBP4 (177). These alterations are associated to the insertion of 

IS256 or accumulation of SNPs in the mecA1 promoter region that can lead to a higher 

rate of transcription (177). However, how frequently this type of events occur in the 

natural S. sciuri population, is not known. 

 

2.3.2. Staphylococcus vitulinus mecA2 

A second mec homologue (mecA2) was identified in another species belonging 

to the sciuri phylogenetic group that is called Staphylococcus vitulinus, which like S. 

sciuri colonizes mainly animals, like cattle and horses (8, 170). The mecA2, has 90% 

nucleotide/aminoacid sequence identity with MRSA mecA, and was first identified in S. 

vitulinus strains recovered from horses in Switzerland (178). The sequencing of mecA2 

vicinity in one S. vitulinus strain, showed that like mecA1, mecA2 was flanked in the 

chromosome by the mva and xyl operons (173). In addition, similarly to mecA1 in its 

native host, mecA2-carrying S. vitulinus were found to be susceptible to -lactams 

(173, 178). As no further studies regarding mecA2 are available, the role of this mec 

homologue in the evolutionary history of mecA and its distribution in S. vitulinus 

population are still unknown. 
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2.3.3. Staphylococcus fleurettii mecA 

A third mec homologue has been identified in another species of the 

phylogenetic sciuri group, (173), Staphylococcus fleurettii, which is mostly recovered 

from horses, pigs and cows (170, 179). Contrarily to S. sciuri and S. vitulinus, S. fleurettii 

was found to carry a mecA form that is almost identical (99-100% nucleotide identity) 

to that of MRSA mecA. Moreover, like in S. aureus SCCmec, in this species mecA was 

found to be together with its regulators, mecRI and mecI and the hypervariable (HVR) 

region was located upstream mec complex (173). However, this mec complex is not 

ubiquitous in S. fleurettii, since strains with deletion of this locus have been identified 

(173). 

Sequencing of the vicinity of mecA in S. fleurettii has revealed that, as in the 

case of mecA2 in S. vitulinus and mecA1 loci in S. sciuri carnaticus strains, the mva and 

xyl operons were located in the vicinity of the mec gene (173). The topology of the 

phylogenetic tree regarding the sequence analysis of the mvaS gene, part of the mva 

operon, located upstream the mec homologues in S. sciuri, S. vitulinus and S. fleurettii, 

was the same as the one obtained for the nucleotide sequence of the mec homologues 

(173). This finding suggests that mvaS evolved with the mec homologue, indicating 

that mecA in S. fleurettii was inherited by vertical transmission and not recently 

acquired. 

As opposed to what was found for mecA1 in S. sciuri and mecA2 in S. vitulinus, 

mecA-carrying S. fleurettii are -lactam resistant (173). Moreover, since it carries other 

elements found in the same relative position as the ones found in SCCmec (mecRI, 

mecI and the HVR region), it was suggested that S. fleurettii was the last donor of mec 

complex A to an assembled SCC in another species, which probably gave rise to 

SCCmec (173). However, evidence to support this hypothesis was never produced. 
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2.3.4. Staphylococcus lentus  

Another species of sciuri group include Staphylococcus lentus which has been 

recovered from different domestic animals, such as sheeps, horses and poultry (170). 

The few reports available indicate that S. lentus methicillin resistant strains also carry 

mec complex A (180, 181). In another study, a PCR screening failed to identify mecA or 

mec homologues among a collection of S. lentus; in addition, the phylogenetic analysis 

of the mvaS gene indicated that it was unrelated with mvaS gene from the other 

members of the sciuri group (173). Therefore, the authors suggested that the archaic 

mec gene might have been carried by the ancestral of S. sciuri, S. fleurettii and S. 

vitulinus, but not S. lentus (173).  

 

2.3.5. Other mec homologues (mecB, mecC) 

In recent years, mec homologues with lower nucleotide identity with MRSA 

mecA were identified, in Macrococcus caseolyticus and in staphylococcal species most 

frequently isolated from non-human mammals. Macrococccus caseolyticus is a species 

of the genus Macrococcus, the genus more phylogenetically related with the 

Staphylococcus genus (182). It is frequently isolated from raw meat and milk and, 

unlike Staphylococcus, was never isolated from human samples (183). 

The mecA homologue identified in M. caseolyticus (183) had only 62% 

nucleotide sequence identity and 51% aminoacid sequence identity with MRSA mecA 

and therefore was called mecB (169). It was found along with homologues of its 

regulators mecRI and mecI (53% aminoacid sequence identity and 64% aminoacid 

sequence identity, respectively, with the ones carried by the prototype MRSA strain 

N315), as well as the penicillinase-encoded blaZ gene (183). M. caseolyticus strains 

mecB-carrying were resistant to -lactams; introduction of mecB in a susceptible S. 

aureus genetic background was able to provide a resistance phenotype, confirming 

that mecB should encode a PBP with low-affinity to -lactams (183). Noteworthy, in M. 

caseolyticus, mecB and its regulatory locus have been found in a plasmid (183), in a 

transposon integrated at the orfX region (120) and in SCCmec (146); in SCCmecB, 
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homologues of ccrA and ccrB genes, sharing less than 52% of nucleotide sequence 

identity with MRSA ccrAB, were also identified (146). These ccrAB homologues were 

able to properly excise SCCmecB from the chromosome (146). The findings suggest 

that in M. caseolyticus, mecB is exclusively part of the mobilome and not of the core 

chromosome. 

A third mec homologue, called mecC, has been recently identified, which 

shared 69% nucleotide sequence identity and 63% aminoacid sequence identity with 

MRSA mecA (169). The mecC was firstly identified in S. aureus strains collected from 

dairy cattle (113, 114), but since then it has been identified among several genetic 

backgrounds of S. aureus collected in a wide range of domestic and wild animals (184), 

as well as humans (185, 186). A retrospective study identified mecC in S. aureus 

isolates collected in Denmark as early as 1975 (113). Nonetheless, its prevalence 

nowadays is still low, comparing with the frequency of mecA-carrying S. aureus isolates 

(184).  

Similarly to mecB, homologues of the regulators mecRI and mecI (with 45% of 

aminoacid sequence identity and 60% of aminoacid sequence identity, respectively, 

with the ones carried by the prototype MRSA strain N315), as well as blaZ, were found 

in close vicinity to mecC (113). These elements were located in the orfX region and 

inside a SCCmec element (Figure 5). This element was named SCCmec XI and mecC and 

its regulators were considered to be a new mec complex, called mec complex E (113). 

Like mecA1 and mecB, mecC conferred low-level resistance in its native host, but when 

introduced in a S. aureus genetic background was able to provide high level resistance 

and was able to participate in the cell wall synthesis, as PBP2a (187).  

Besides being found in S. aureus, mecC has been also identified in isolates of 

the sciuri phylogenetic clade, such as S. sciuri carnaticus (133) and the recently 

described species Staphylococcus stepanovicii (188), and also in the poultry associated 

species Staphylococcus xylosus (132). 
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3. The missing links in SCCmec assembly and its impact in Staphylococcus evolution  

To date, different mec homologues have been described, particularly in strains 

originated in animals, such as mecA1 in S. sciuri (172), mecA2 in S. vitulinus (178), mecA 

in S. fleurettii (173), mecB in M. caseolyticus (183) and mecC in livestock-associated S. 

aureus (113, 114). Several evidences suggest that the S. sciuri mecA1 corresponds to 

an ancestral form of mecA (172, 175-177). However, the evolutionary history of mecA 

has never been addressed in a comprehensive way and evolutionary links between 

these mecA homologues are still poorly understood. Moreover, the steps that led to 

the assembly of the mobile genetic element that received mecA are still elusive.  

On the other hand, the impact of SCCmec in the evolution of staphylococcal 

species, in particular CoNS species such as S. epidermidis, had not yet been addressed. 

The earliest MRSE strain described carried SCCmec IV and was isolated in 1973, in 

Canada (110). Despite being reported in Denmark in the early 60s (70), early MRSE 

have never been characterized. Therefore, it is still unclear when SCCmec was acquired 

by S. epidermidis. Furthermore, it has been described that the main hospital-

associated S. epidermidis clonal lineage, CC2, has acquired SCCmec several times (17); 

nevertheless, the role of nosocomial S. epidermidis in SCCmec evolution and 

conversely, the role of SCCmec in S. epidermidis adaptation to the hospital 

environment has never been addressed. 

In this thesis we aim to understand the role of each species of the sciuri 

phylogenetic group in the origin and evolution of SCCmec and its impact in the 

evolution and adaptation of staphylococcal species, in particular S. epidermidis. 
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ABSTRACT 

Objectives: Previous studies produced evidence that mecA, the determinant of β-

lactam resistance in methicillin resistant Staphylococcus aureus (MRSA), may have 

originated in the most primitive and widespread animal commensal species - 

Staphylococcus sciuri. But how the mecA homologue (mecA1/pbpD) was captured from 

S. sciuri into the staphylococcal cassette chromosome mec (SCCmec) has remained 

unclear. 

 

Methods: To understand the role of S. sciuri in the assembly of SCCmec, we screened 

118 methicillin-susceptible (MS) S. sciuri isolates for SCCmec central elements - ccr and 

mec complex (ccrAB, ccrC, mecA, mecI, mecRI), by dot-blot. In addition, isolates were 

typed by PFGE and the chromosomal proximity of SCCmec elements was determined 

by Southern hybridization. ccr typing was performed by nucleotide sequencing. 

 

Results: ccrAB were identified in 35% of the isolates (n=41) represented by 24 PFGE 

types, but ccrC was not found. None of the isolates carried mecA or its regulators, but 

all isolates carried mecA1/pbpD. In the majority of isolates, ccr and mecA1 were 

located near orfX, the SCCmec integration site. Moreover in 31% (13) of the ccrAB-

carrying strains, ccrAB, mecA1 and orfX co-localized in the chromosome. The 

nucleotide sequence of ccrA/ccrB was highly diverse, including ccr genes closely 

related (80 -97%) to those found in MRSA. 

 

Conclusions: Our results suggest that S. sciuri was a natural recipient and a rich 

reservoir of ccr for the assembly of SCCmec. The chromosomal location of mecA1, near 

orfX, the recognition site of ccr, was probably crucial for its mobilization out of S. sciuri 

species into SCCmec.  
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INTRODUCTION 

Resistance to methicillin and to the entire class of β-lactam antibiotics is 

associated with the acquisition of the exogenous mecA gene, which encodes an “extra” 

penicillin-binding protein (PBP2a) with low affinity for β-lactams. All S. sciuri strains – 

including fully susceptible isolates – were shown to carry a mecA homologue 

(mecA1/pbpD), coding for penicillin-binding protein 4 (PBP4) of S. sciuri (172, 175). 

When transduced into S. aureus, mecA1/pbpD was able to reconstruct the methicillin 

resistance phenotype, conferring high level, homogeneous and broad spectrum β-

lactam resistance; the activity of mecA1/pbpD was controlled by mecA regulators 

(mecI, mecRI) and it was able to participate in cell wall biosynthesis, producing a 

peptidoglycan typical of S. aureus – providing additional evidence that the S. sciuri 

mecA1/pbpD is the evolutionary precursor of mecA (176, 189).   

The methicillin resistance determinant is carried by the mobile element 

staphylococcal cassette chromosome mec (SCCmec), which promoted its spread on a 

global scale (109). SCCmec is composed of two central elements: the mec complex that 

carries either intact or truncated forms of the regulators (mecI/mecRI), and the ccr 

complex, which encodes recombinases responsible for the mobility of the cassette. 

The recombinases encoded by the ccr genes catalyze the precise insertion/excision of 

the cassette at the 5’ end of orfX gene. (109) The orfX located near the oriC genes 

encodes for a SPOUT methyltransferase (190). So far as many as eleven different types 

of SCCmec have been described in S. aureus (111-114) that vary in the combination of 

class of mec complex and ccr allotypes as well as in the composition of the junction 

regions (111). However, the evolutionary steps in the assembly of this complex 

structure are not known. 

Data gathered so far indicate that species of the S. sciuri group (a primordial 

phylogenetic clade), like S. sciuri, Staphylococcus fleurettii and Staphylococcus vitulinus 

were possibly involved in this process. Several different structural elements of SCCmec 

were found in these species, independently of SCCmec. This the case for pls, ccrAB 

(191), Tn554 (180) and part of the hyper-variable region (HVR) (192), in S. sciuri; and 

mecA regulators (mecI and mecR1) in S. fleurettii (173). Additionally, distant 
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homologues of SCCmec structural elements were also found outside the genus 

Staphylococcus, in Macrococcus and Enterococcus (ccrAB) (120, 145). However it is still 

not clear how all these findings can be put together to reconstruct the evolutionary 

history of the primordial SCCmec.  

In this study we further explored the contribution of S. sciuri to the evolution of 

SCCmec. We demonstrate that ccr are frequent and highly diverse in methicillin 

susceptible S. sciuri. Moreover, we found that the original location of mecA1/pbpD is in 

the vicinity of the integration site of ccr genes in S. sciuri chromosome, which is within 

the orfX region. 



ccr frequency and diversity in S. sciuri 

Chapter II| 56  

METHODS 

Bacterial collection and isolation: a representative collection of 118 mecA1-positive, 

methicillin susceptible S. sciuri isolates, that were negative for the S. aureus mecA 

gene, were selected in order to assemble a collection the most diverse as possible in 

terms of host range (28 different animal and humans), isolation period (1972-2010), 

demographic and epidemiological data (Supplementary Table S1). Identification at the 

species level was performed by 16S RNA ribotyping (171) and API-Staph (Biomerieux, 

France). 

 

DNA preparation: DNA was extracted with the isothiocyanate/guanidine method, as 

previously described (124). Probes for ccrAB2, ccrC, mecA1/pbpD, mecI and mecRI 

(membrane-spanning domain) were amplified by PCR as described before (192) 

(Supplementary Table S2) and purified using DNA clean & concentrator kit (ZYMO 

Research, Irvine, USA), according with the instructions of the manufacturer. For the 

preparation of orfX probe, the PCR reaction conditions were the following: 1x Gotaq 

buffer (Promega, Wisconsin, USA), 200 µM dNTPS (Bioron, Ludigshafen, Germany), 15 

Mm MgCl2 (Promega, Wisconsin, USA), 0.4 µM each primer, 1.25 U of Gotaq enzyme 

(Promega, Wisconsin, USA) and 1 µg DNA; initial denaturation at 94°C for 1 minute, 

followed by 30 cycles (94°C 1 min, 50°C 1 min, 72°C 1 min) and final extension at 72°C 

for 10 minutes. The DNA was purified as specified above. The following control strains 

were used as a source for the preparation of probes: S. aureus N315 (ccrAB2, mecI, 

mecRI) (193), S. aureus WIS (ccrC) (127) and S. sciuri K11 (mecA1/pbpD, orfX) (172). 

 

Assessment of methicillin susceptibility: all isolates were screened for phenotypic 

resistance to oxacillin with Etest (Oxoid, Cambridge, United Kingdom), following the 

Clinical and Laboratory Standards Institute (CLSI) criteria (194). In addition, all isolates 

were screened for the presence of mecA and mecA1 by PCR with specific primers 

(Supplementary Table S2). The PCR reaction conditions were the following: 1x Gotaq 

buffer (Promega, Wisconsin, USA), 200 µM dNTPS (Bioron, Ludigshafen, Germany), 15 

Mm MgCl2 (Promega, Wisconsin, USA), 0.4 µM each primer, 1.25 U of Gotaq enzyme 

(Promega, Wisconsin, USA) and 1 µg DNA; initial denaturation at 94°C for 1 minute, 
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followed by 30 cycles (94°C 1 min, 50°C 1 min, 72°C 1 min) and final extension at 72°C 

for 10 minutes. Isolates were considered to be susceptible to oxacillin if the MIC to 

oxacillin was < 2 µg/ml and in addition did not carry mecA, as proposed by CLSI criteria 

(194). 

 

Screening for SCCmec structural elements: dot blot hybridization was performed as 

described before (172). Briefly, total DNA was fixed in nitrocellulose membranes and 

sequentially hybridized with specific probes for ccrAB2, ccrC, mecI and mecRI using 1:1 

and 1:10 dilutions. Labeling and detection of probes was performed with the ECL 

Labeling and Detection system as suggested by the manufacturer (GE Healthcare 

Lifesciences, Little Chalfont, UK). The following controls were used: S. aureus COL 

(ccrAB1),(52) S. aureus N315 (ccrAB2),(193) S. aureus ANS46 (ccrAB3),(142) S. aureus 

HDE288 (ccrAB4),(128) S. aureus WIS (ccrC),(127) S. sciuri K3 (mecA, mecA1/pbpD, 

ccrAB3)(172) and S. sciuri K11 (mecA1/pbpD)(172). 

 

Assessment of genetic backgrounds: the isolates that were positive for the presence 

of SCCmec structural elements by dot-blot hybridization were further characterized for 

their genetic background by analysis of SmaI macrorestriction patterns of 

chromosomal DNA obtained after pulsed-field gel electrophoresis. Agarose plugs with 

embedded DNA (DNA disks) were prepared as previously described (195) and 

restricted with SmaI (20U/disk) following the instructions of the manufacturer (New 

England Biolabs, Beverley, USA). Analysis of the macrorestriction patterns was 

achieved with Bionumerics software (Applied Maths, Saint-Martens-Latem, Belgium). 

Dendrograms were generated with the Dice algorithm (1.1% optimization and 1.3 

tolerance), using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

method and PFGE types were defined with 75% similarity between clusters. Each 

different PFGE type was designated by a different capital letter. ApaI restriction and 

running conditions were exactly the same as those used with SmaI enzyme.  

 

ccr typing: for strains carrying ccr gene homologs by dot-blot, the presence of ccrA, 

ccrB and ccrC was confirmed by PCR as previously described  (Supplementary Table S2) 

(125, 127). In addition, ccrA and ccrB were typed by sequencing an internal fragment 
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obtained by PCR, as described before (142). Resulting sequences were aligned and 

compared with the ccrA and ccrB sequences available on www.ncbi.nlm.nih.gov/ and 

www.ccrbtyping.net. Alignment of the sequences was performed with ClustalW 

algorithm and phylogenetic analysis was performed with Neighbour-Joining method, 

using MEGA5 software (196).  

The ccrA and ccrB were considered to belong to the same ccr allotype when the 

sequences obtained shared more than 85% of nucleotide identity (111). The ccr genes 

were considered to be non-typeable when no amplification product by PCR or multiple 

superimposed peaks in sequencing reads were repeatedly obtained. The following 

controls were used for ccr screening by PCR: S. aureus COL (ccrAB1) (52) and WIS 

(ccrC)(127). 

 

Identification of chromosomal location of SCC structural elements: the chromosomal 

location of SCCmec structural elements was analyzed by Southern blotting of the rare 

cutting enzymes SmaI and ApaI (50U/DNA disk) restriction fragments with probes for 

ccrAB2, orfX and mecA1/pbpD, using ECL Labeling and Detection system as suggested 

by the manufacturer (GE Healthcare Lifesciences, Little Chalfont, UK). The following 

controls were used for Southern blotting: S. aureus COL (ccrAB1)(52), S. aureus HU25 

(ccrAB3, ccrC)(142), Staphylococcus epidermidis RP62A (ccrAB2)(52), S. epidermidis 

ATCC12228 (ccrAB2, ccrAB4) (99), S. sciuri K1 (mecA1/pbpD, orfX)(172), S. sciuri K3 

(mecA, mecA1/pbpD, ccrAB3, orfX)(172) and S. sciuri K11 (mecA1/pbpD, orfX)(172). 
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RESULTS 

The ccr genes are frequent among methicillin-susceptible S. sciuri strains 

In order to understand how common the central elements of SCCmec were in S. 

sciuri, we analyzed 118 isolates that did not carry S. aureus mecA, but carried the 

native mec homologue mecA1. Although all isolates had a MIC equal or superior to the 

limit of resistance defined for CoNS (between 0.5-2 µg/mL), since they did not carry 

the mecA, they were all considered to be susceptible, as suggested by the CLSI 

guidelines. All the isolates were screened for the presence of genes within the mec 

complex (mecI, mecRI) and the ccr complex (ccrAB and ccrC) by dot-blot hybridization 

and PCR. Although we did not find any strain carrying mecI or mecRI, we found that 

35% of S. sciuri strains (n=41) analyzed carried ccr genes (Figure 1A).  

 

 

Figure 1. Detection of ccr and its location on the chromosome of S. sciuri. A. Dot blot hybridization of total DNA with 

a ccrAB/ccrC probe. A1-A12, B1-B9 – positive control strains (S. aureus COL, ccrAB1; S. aureus N315,ccrAB2; S. 

aureus ANS46, ccrAB3; S. aureus WIS, ccrC; S. aureus HDE288, ccrAB4; S. sciuri K3, ccrAB3; S. sciuri K11, ccrAB 

negative control), 1:10, 1:100 total DNA dilutions in rows; remaining dots – S. sciuri isolates, 1:10 total DNA 

dilutions. B. SmaI macrorestriction patterns of S. sciuri isolates separated by PFGE. Control strains are also shown: 1, 

30 – Lambda ladder; 2, 29 -RP62A; 22-COL; 23-N315; 24-HU25; 25-ATCC12228; 26-K1; 27-K3; 28-K11. C. Southern 

hybridization of the SmaI PFGE DNA restriction fragments obtained in B with specific probes: ccrAB2 (C1), orfX (C2) 

and pbpD (C3). Asterisks indicate the cases in which SmaI hybridization bands with pbpD, orfX and ccrAB2 probes 

were the same. 
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Moreover, we observed that the ccr-carrying strains belonged to 24 different 

PFGE types; were isolated from different hosts (28 wild and domestic animals and 

humans), during different time periods (1972 to 2010) and have originated in distant 

geographic areas (Czech Republic, Sweden, Portugal, USA and the former Yugoslavia) 

(Supplementary Table S3). In addition, the same ccr type was found associated to two 

or more PFGE types (Supplementary Table S3 and Figure 2). 

 

The ccrAB allotypes of S. sciuri are similar to those carried by MRSA strains 

To understand the relatedness of the S. sciuri ccr genes to ccr genes carried by 

contemporary methicillin-resistant S. aureus (MRSA) strains, we studied the ccr genes 

identified in the 41 ccr-positive strains using PCR and sequencing.  

All S. sciuri ccr genes belonged to allotypes A and B; no strains carrying ccrC 

were found. S. sciuri strains carried three main ccrA types that accounted for more 

than half of the strains (52%) analyzed: ccrA5 (11 isolates, 26%), ccrA1 (six isolates, 

14%) and a new ccr type related with ccrA2 (80 % nucleotide sequence identity, five 

isolates, 12%) (Supplementary Table S4). The alleles ccrA1 and ccrA2 are usually 

associated to SCCmec types I and II/IV. Among the remaining strains we identified 

several new ccrA allotypes that shared between 61-78% sequence identity with 

contemporary ccrA1-A5 types (n=19); and strains (n=4) carrying non-typeable ccrA  

(Supplementary Table S3 and Figure 3A).   

 

 

 

 



 

 

 

Figure 2. Phylogenetic relationship of the ccr-positive S. sciuri strains based on the analysis of SmaI-restricted chromosomes separated by pulsed-field gel electrophoresis. The dendrogram was 

performed with the Dice algorithm (1.1% optimization and 1.3 tolerance), using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) method; PFGE types were defined with 

75% similarity between clusters. In addition, PFGE type, % similarity in each node of the dendrogram, ccrAB type and epidemiological data are also shown for each ccr-positive isolate. ccrAB 

types were considered new when either ccrA or ccrB alleles were new.  
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Strain

Node 

index (%)

SmaI-PFGE 

type ccrAB type Host Geographic origin

Year of 

isolation

K162 73 Y A5B13 Bottlenose dolphin USA 1992

K20 73 N A5B13 Bottlenose dolphin USA 1992

K148 70 P NT Bottlenose dolphin USA 1992

K21 64.5 L A5B5 Pilot whale USA 1993

K164 95.6 M A5B13 Bottlenose dolphin USA 1992

K165 95.6 M New ccrA type 1/B13 Hairy-footed hamster USA 1992

KLO56 93.3 M New ccrA type 1/B13 Opossum USA 1972

K156 79.9 M NT Beef tongue USA 1992

HA4 84 O A5B9 Snake Czech Republic 2002

K113 84 O New ccrA type 3/B9 Norway rat USA 1992

HSM805 76 B A5B13 Human Portugal 2010

K52 76 B A5B13 European red squirrel USA 1992

SS24 92.8 G A1B1 Human Portugal 1997

SS3 92.8 G NT Human Portugal 1996

SS23 85.7 G A1B13 Human Portugal 1997

K69 81.5 G NT Human USA 1986

HA22 76.8 G New ccrA type 3/B9 Snake Czech Republic 2002

K141 70.6 H New ccrA type 3/B9 California mouse USA 1992

SS18 93 I NT Human Portugal 1996

SS27 93 I NT Human Portugal 1998

01/02 70.9 J NT Barn environment Czech Republic 2002

K29 93 Q New ccrA type 3/B13 Norway rat USA 1992

SS34 93 Q New ccrA type 1/B5/7 Human Portugal 1996

CCM4743 85.8 Q New ccrA type 1/B5/7 Human Sweden 2002

K27 71.7 R A1B13 Norway rat USA 1992

CNCTC M62/89 64 V New ccrA type 1/B5/7 Cattle Czech Republic 2002

K171 74 T New ccrA type 2/B5/7 Opossum USA 1972

K83 74 S NT Human Czech Republic 1992

K125 69.6 X A5B13 Cotton rat USA 1992

K30 69.6 U A5B13 Jersey cattle heifer USA 1992

11/01 90.9 C New ccrA type 1/B13 Human Czech Republic 2002

CCUG38359 90.9 C New ccrA type 1/B13 Human Sweden 2002

12/01 72.7 D New ccrA type 1/B5/7 Human Czech Republic 2002

2485/IV/01 72.7 D NT Human Czech Republic 2002

CCUG37410 69.7 K New ccrA type 3/B9 Human Sweden 2002

17/01 91.6 E New ccrA type 1/B13 Human Czech Republic 2002

CNCTC M32/86 91.6 E A5B13 Pig skin Czech Republic 2002

JUG4 87.1 E New ccrA type 2/B13 Dog Yugoslavia 2002

JUG9 78.4 F New ccrA type 2/B13 Dog Yugoslavia 2002

KRU5 75 A A5B13 Turkey Czech Republic 2002

KU2 75 A New ccrA type 2/B13 Chicken Czech Republic 2002
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Figure 3. Phylogenetic trees constructed from ccrA (A) or ccrB (B) nucleotide sequences. Alleles carried by S. sciuri 

isolates and prototype strains (in bold) are shown. Alignments of the sequences were performed with ClustalW 

algorithm and dendrograms were predicted based on nucleotide percent identity with the Neighbour-joining 

method, using MEGA5 software
 (196)

. Allotypes were defined considering a cut-off of 85% identity (111). 

 

Regarding ccrB, the great majority of strains carried ccrB13 (n=19, 45%) and 

ccrB5/B7 (n=9, 21%). The remaining isolates carried either ccrB9 (n=5) or ccrB1 (n=2) 

(Supplementary Tables S3, S4 and Figure 3B). The ccrB13 was never found associated 

to any SCCmec type, but ccrB1 was found associated to SCCmec type I and ccrB5 and 

B7 had 85-86.6% nucleotide sequence identity with S. aureus ccrB3, which was 

previously found associated to SCCmec type III. 

Only one of the five combinations of ccrA and ccrB types found in S. sciuri 

isolates analyzed in this study was previously seen in MRSA. This corresponds to 

ccrA1B1 complex found in the SCCmec type I. The remaining ccr complexes were new, 

 CCUG38359

11/01

CNCTC M62/89

K29

SS34

K165

17/01

KLO56

2485/IV/01

12/01

JUG4

K171

K52

KU2

JUG9

S. aureus N315 ccrA2

CCM4743

K113

HA22

K141

CCUG37410

HA4

K164

HSM805

K162

K156

KRU5

K20

K125

S. aureus

ANS46 ccrA3

K21

K30

S. cohnii ccrA5

CNCTCM32/86

K27

S. aureus COL ccrA1

SS27

SS18

S. sciuri ccrA7

Macrococcus caseolyticus ccrA

Enterococcus faecium ccrA

0.1

SS24

SS23

01/02

S. aureus HDE288 ccrA4

ccrA1

ccrA5

ccrA3

ccrA5

New ccrA type 3 

(80% ccrA2)

New ccrA type 1

New ccrA type 2

(A)

 K125

Macrococcus caseolyticus ccrB

Enterococcus faecium ccrB

K148

K162

HSM805

K27

KLO56

K20

JUG4

K52

JUG9

17/01

KU2

KRU5

SS23

CNCTCM32/86

CCM4743

S. cohnii ccrB13 allele 1300

K165

K164

K30

S. aureus ANS46

ccrB3 allele 300

12/01

S. aureus N315 ccrB2 allele 200

K21

S. lugdunensis ccrB5 allele 500

CNCTCM62/89

S. pseudointermedius ccrB7 allele 700

SS34

K29

11/01

CCUG38359

K83

K171

K141

CCUG37410

K113

HA4

HA22

S. aureus HDE288 ccrB4 allele

600
S. aureus COL ccrB1 allele

100SS3

SS24

0.2

S. saprophyticus ccrB9 allele 900

ccrB13

ccrB3

ccrB7

ccrB5/B7

ccrB9

ccrB1

(B)
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and included new combinations of previously described ccrA and ccrB types (A1B13, 

A5B13, A5B5 and A5B9); the new ccrA types (n=19 isolates); and non-typeable ccr 

types (n=9 isolates). In addition, we observed that none of the ccr complexes found 

here were restricted to a unique PFGE type (Supplementary Table S3). 

 

mecA1/pbpD, ccrAB and orfX co-localize in the S. sciuri chromosome 

 In order to find out if ccrAB of S. sciuri was also located in the orfX (like in other 

staphylococcal species), we sequentially hybridized the SmaI macrorestriction 

fragments of S. sciuri isolates with probes for ccrAB2 and orfX. We found that for the 

great majority of isolates (34, 83%), ccr and orfX hybridized in the same SmaI fragment, 

ranging from 75 to 400 kb, suggesting that the ccr of S. sciuri also recognizes the orfX 

region as the site for integration and excision from the chromosome (Supplementary 

Table S3 and Figure 1B, 1C).  

Although mecA1/pbpD was suggested to be the origin of the methicillin 

resistance determinant mecA, its location in the chromosome was never explored. To 

test this, we hybridized sequentially the SmaI macrorestriction PFGE fragments with 

probes for mecA1/pbpD and orfX. In addition, we sequentially hybridized also ApaI 

macrorestriction PFGE fragments, to discard the possibility of the existence of a SmaI 

cutting site between mecA1/pbpD and orfX. We found that in the majority of the 

isolates tested (76%), mecA1/pbpD and orfX co-localized in the same SmaI (n=14, SmaI 

fragments 200-400 kb) or ApaI (n=17, ApaI fragments 300-400 kb; data not shown) 

fragments (Supplementary Table S3 and Figure 1B and 1C). These results indicate that 

the location of mecA1/pbpD on the S. sciuri chromosome is in the vicinity of orfX.  

To understand how close the mecA precursor (mecA1/pbpD) was to ccr, the 

proximity of these elements was assessed using Southern hybridization of SmaI 

restriction fragments using specific probes. We found that in 31% of the ccrAB carrying 

strains, ccrAB, orfX and mecA1/pbpD co-localized in the same SmaI fragment (200-400 

kb) indicating that all three genes are in the vicinity of one another in the chromosome 

(Supplementary Table S3 and Figure 1B and 1C).  
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DISCUSSION 

It was previously proposed that S. sciuri mecA1/pbpD was the evolutionary 

precursor of the methicillin-resistance determinant mecA, (172, 174-176) but the steps 

that lead to the introduction of this native gene into a mobile genetic element 

remained unknown. In this study we provided further evidences of the key role of S. 

sciuri in the assembly of the core structural elements of SCCmec.  

The extremely high frequency of ccr in susceptible S. sciuri, represents the 

highest described so far in any methicillin-susceptible staphylococci (not carrying the S. 

aureus mecA) (197, 198). These recombinases were found widely distributed in the S. 

sciuri population analyzed, including several different PFGE types, originating in 

different hosts, and distant geographic regions as well as periods of isolation. These 

results demonstrate the wide distribution of ccr in the S. sciuri population and the 

existence of multiple independent acquisitions of these genes by S. sciuri, suggesting 

either a high rate of ccr acquisition or a high recombination occurring at the ccr 

chromosomal locus. Furthermore, such high frequency and wide distribution imply 

that this species might have been the most natural ccr recipient among staphylococci. 

The S. sciuri ccrAB genes could have been imported or be descendents of the distant 

ccr homologues found in M. caseolyticus and Enterococcus (120, 145). 

Besides being widely distributed in S. sciuri, the ccrAB found in this species 

were highly diverse, including relatives of ccrA and ccrB allotypes described in MRSA, 

but also different ccrA and ccrB combinations. This high diversity in the ccr locus and 

the occurrence of several new combinations of ccrA and ccrB is in contrast to what was 

observed before for other methicillin-susceptible coagulase negative staphylococcal 

(CoNS) species, such as S. epidermidis, Staphylococcus haemolyticus and 

Staphylococcus hominis, which appear to carry only specific ccr allotypes and specific 

ccrAB combinations. (17, 197-199). This level of genetic diversity suggests that ccrAB 

may have been present in S. sciuri for a long time and this species might have been the 

source of all ccr allotypes presently carried by SCCmec in other staphylococci. The 

reasons for S. sciuri being so receptive to such a different array of ccr genes are not 

known, but might be related to its ubiquitous nature in the environment or to a non-
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identified specificity of its epidemiology, associated to an enhanced ability to acquire 

and maintain mobile genetic elements or to an increased recombination rate. 

In particular, the high level of identity found between S. sciuri ccrA1 (87%) and 

ccrB1 (97%) with those ccr genes found in SCCmec type I, suggests that S. sciuri could 

have been the source for the assembly of ccrA1B1 carried by SCCmec type I of the 

historically early strains of MRSA (52, 200). Moreover, ccrA1B1 was the unique ccrAB 

combination that was observed both in S. sciuri and MRSA. Similarly, S. sciuri may also 

have been the origin of ccrA3B3, since close homologues of these allotypes and 

combination of these allotypes (ccrA5, ccrB5, ccrB7) were also frequently found in this 

species. Interestingly, the ccrA3B3 complex is part of SCCmec type III, which is the most 

frequently found SCCmec type in methicillin-resistant S. sciuri (201). However, since ccr 

from S. sciuri were not 100% identical to those found within SCCmec, we cannot 

exclude the existence of intermediate ccr structures between the two. 

We found that the nucleotide sequence of ccrA and ccrB genes found in S. sciuri 

was similar to those of SCCmec carried by contemporary MRSA strains. In addition the 

location of these genes in the chromosome was near orfX. According to our data orfX is 

also the location of the mecA1/pbpD gene on the S. sciuri chromosome, in the majority 

of the isolates tested (76%). In the remaining 24% of the isolates the hybridization of 

ccr and orfX with different SmaI/ApaI fragments could be explained by the presence of 

a SmaI cutting site between ccr and orfX. However we cannot exclude that ccr might 

be located in other region of the chromosome in these particular strains. 

The location of mecA1/pbpD, near orfX, is unique. In species such as S. aureus, 

S. haemolyticus, S. epidermidis and S. saprophyticus, pbp genes are scattered 

throughout the genome (http://www.ncbi.nlm.nih.gov) and are far away from the orfX 

region, except for the mecA gene that encodes PBP2A. Moreover, we found a high 

variability in the orfX region as illustrated by the variation in the size of SmaI-orfX 

hybridizing fragments, like was previously observed for S. epidermidis (124), suggesting 

the frequent insertion and excision of elements in this site. The recent finding in S. 

sciuri of a hybrid SCCmec-SCC structure carrying the recently described mecC, near 

orfX, evidences well the level of recombination occurring in the region (133).  These 

data suggests that the original location of mecA1/pbpD near orfX, a hot spot for 

http://www.ncbi.nlm.nih.gov/
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variation in staphylococci, was probably important for its assembly into SCCmec in S. 

sciuri.  

Altogether our results allow us to propose that S. sciuri may have been the 

species in which “the capture” of mecA1/pbpD by a SCC-like element might have 

occurred. Studies are being conducted, including the parallel analysis of orfX vicinity 

and spontaneous excision of putative SCCmec elements in S. sciuri and other species of 

the S. sciuri group (S. fleurettii, S. vitulinus) that we hope will help to identify the 

species in which the assembly of a primordial mobile SCCmec structure could have 

occurred. 

In conclusion, we showed that the chromosomal location of mecA1/pbpD in S. 

sciuri was probably critical for its integration into the SCCmec. Moreover, we provided 

evidence that suggest that S. sciuri might have contributed not only with the mecA 

precursor but also with ccr genes for the assembly of SCCmec. 

  



ccr frequency and diversity in S. sciuri 

Chapter II | 67  

ACKNOWLEDGMENTS 

The authors would like to thank Dr. Alexander Tomasz for helpful discussions 

and for critical reading of the manuscript. We wish to acknowledge Drs. Wesley Kloos, 

Oto Melter, Ivo Sedlácek, Petr Jezek, Petr Petras, Srdjan Stepanović, José Melo-

Cristino, Gabriel Olim and Alberto Pereira for providing the S. sciuri strains used in this 

study. In addition, we would like to acknowledge Isabel Couto for extensive 

characterization of part of the strains that were studied. Finally, we thank Keichii 

Hiramatsu and Teruyo Ito for the control strains N315 and WIS and the Network on 

Antimicrobial Resistance in Staphylococcus aureus (NARSA) for strain MW2. 

 

FUNDING 

This study was supported by projects Ref. PTDC/BIA-EVF/117507/2010 from 

Fundação para a Ciência e Tecnologia and European Society of Clinical Microbiology 

and Infectious Diseases (ESCMID) Research Grants 2010. Additionally, we also 

acknowledge support from FCT (Portugal) through grant # PEst-OE/EQB/LA0004/2011 

(ITQB). J. Rolo was supported by fellowship SFRH /BD/ 72675 / 2010 from Fundação 

para a Tecnologia, Portugal. 

 

TRANSPARENCY DECLARATION 

None to declare. 

 

http://www.ijaaonline.com/article/S0924-8579(08)00468-8/abstract


 

 

SUPPLEMENTARY DATA 

 

Supplementary Table S1: Epidemiological and molecular characteristics of the 118 Staphylococcus sciuri isolates studied. When applicable, bibliographic reference of the isolates is cited. 

Strain Animal/Human 

origin 

Geographic 

origin 

Date of 

isolation 

Reference Oxacillin 

MIC 

(µg/ml) 

PCR 

mecA 

Dot 

blot 

(ccr) 

Dot 

blot 
(mecI)  

Dot blot 
(mecRI) 

SmaI-ccr 

(kb) 

SmaI-

pbpD (kb) 

SmaI-

orfx 

(kb) 

ApaI-

pbpD (kb) 

ApaI-orfX 

(kb) 

SmaI-

PFGE 

type 

ccrAB 

type 

SS3 Human Portugal 1996 (202) 1 - + - - 150 kb > 400 kb 150 kb no 

digestion 

no 

digestion 
G NT 

SS5 Human Portugal 1996 (202) 1 - + - - - > 400 kb 100 kb nd nd nd nd 

SS16 Human Portugal 1996 (202) 0,75 - - - - - 2 bands; > 

400, 150 

kb 

> 400 kb nd nd nd nd 

SS18 Human Portugal 1996 (202) 0,75 - + - - 2 bands; 

80, 100 

kb 

>400 kb 100 kb 2 bands; > 

400 kb ** 

200 kb I NT 

SS23 Human Portugal 1997 (202) 1 - + - - 100 kb >400 kb 100 kb > 400 kb > 400 kb G A1B13 

SS24 Human Portugal 1997 (202) 0,75 - + - - 100 kb > 400 kb 100 kb > 400 kb > 400 kb G A1B1 

SS27 Human Portugal 1998 (202) 0,75 - + - - 2 bands; 

80, 100 

kb 

> 400 kb 100 kb 2 bands; > 

400 kb ** 

200 kb I NT 

SS34 Human Portugal 1996 (202) 0,75 - + - - < 50 kb 150 kb 100 kb > 400 kb 300 kb Q New 

CCUG37410 Human Sweden 2002 This study 0,75 - + - - 125 kb > 400 kb 125 kb no 

digestion 

no 

digestion 
K New 

03/00 Human Czech Republic 2002 This study 1 - - - - nd nd nd nd nd nd nd 

Jug14 Human Yugoslavia 2002 This study 1 - + - - - > 400 kb > 400 kb nd nd nd nd 

Jug2 Dog Yugoslavia 2002 This study 0,75 - - - - nd nd nd nd nd nd nd 

Jug3 Dog Yugoslavia 2002 This study 0,75 - + - - - > 400 kb > 400 kb nd nd nd nd 

Jug4 Dog Yugoslavia 2002 This study 0,38 - + - - > 400 kb > 400 kb > 400 kb 2 bands; 

>400, 300 

kb 

150 kb E New 

Jug5 Dog Yugoslavia 2002 This study 0,5 - - - - nd nd nd nd nd nd nd 

Jug9 Dog Yugoslavia 2002 This study 0,75 - + - - > 400 kb  2 bands; > 

400, 400 

kb  

 400 kb  2 bands; > 

400 kb ** 

2 bands; > 

400 kb ** 
F New 

Jug21 Dog Yugoslavia 2002 This study 1 - - - - nd nd nd nd nd nd nd 

Jug22 Dog Yugoslavia 2002 This study 1 - - - - nd nd nd nd nd nd nd 

Jug23 Dog Yugoslavia 2002 This study 1 - - - - nd nd nd nd nd nd nd 



 

 

Strain Animal/Human 

origin 

Geographic 

origin 

Date of 

isolation 

Reference Oxacillin 

MIC 

(µg/ml) 

PCR 

mecA 

Dot 

blot 

(ccr) 

Dot 

blot 
(mecI)  

Dot blot 
(mecRI) 

SmaI-ccr 

(kb) 

SmaI-

pbpD (kb) 

SmaI-

orfx 

(kb) 

ApaI-

pbpD (kb) 

ApaI-orfX 

(kb) 

SmaI-

PFGE 

type 

ccrAB 

type 

K41 Patas monkey USA 1976 (172) 0,75 - - - - nd nd nd nd nd nd nd 

K45 Squirrel Panama 1976 (172) 1 - - - - nd nd nd nd nd nd nd 

K46 Howler monkey Panama 1976 (172) 0,5 - - - - nd nd nd nd nd nd nd 

K52 European red 

squirrel 

USA 1992 (172) 0,5 - + - - 150 kb 2 bands; > 

400 kb ** 

150 kb > 400 kb > 400 kb B A5B13 

K77 Neonatal ward Mozambique 1992 (172) 0,5 - - - - nd nd nd nd nd nd nd 

K81 Howler monkey Panama 1976 (172) 1 - - - - nd nd nd nd nd nd nd 

K113 Norway rat USA 1992 (172) 1 - + - - 125 kb > 400 kb 125 kb > 400 kb > 400 kb O New 

K122 Howler monkey Panama 1976 (172) 1 - - - - nd nd nd nd nd nd nd 

K138 Howler monkey Panama 1976 (172) 0,75 - - - - nd nd nd nd nd nd nd 

HSM805 Human Portugal 2010 This study 0,75 - + - - > 400 kb > 400 kb > 400 kb > 400 kb > 400 kb B A5B13 

Jug15 Human Yugoslavia 2002 This study 1 - - - - nd nd nd nd nd nd nd 

KU2 Chicken Czech Republic 2002 (172) 0,75 - + - - 100 kb 50 kb 150 kb 2 bands; > 

400 kb ** 

2 bands; > 

400 kb ** 
A New 

KU12 Chicken Czech Republic 2002 (172) 1 - - - - nd nd nd nd nd nd nd 

HA3 Snake Czech Republic 2002 This study 1,5 - - - - nd nd nd nd nd nd nd 

HA4 Snake Czech Republic 2002 This study 1,5 - + - - > 400 kb > 400 kb > 400 kb > 400 kb > 400 kb O A5B9 

HA11 Snake Czech Republic 2002 This study 1 - - - - nd nd nd nd nd nd nd 

KRU5 Turkey Czech Republic 2002 (172) 0,5 - + - - > 400 kb > 400 kb > 400 kb 2 bands; > 

400 kb ** 

> 400 kb A A5B13 

KRU6 Turkey Czech Republic 2002 (172) 0,5 - - - - nd nd 125 kb nd nd nd nd 

HA17 Snake Czech Republic 2002 This study 1 - - - - nd nd nd nd nd nd nd 

HA22 Snake Czech Republic 2002 This study 1 - + - - 125 kb > 400 kb 125 kb > 400 kb > 400 kb G New 

HA14 Snake Czech Republic 2002 This study 1 - - - - nd nd nd nd nd nd nd 

HAD12 Snake Czech Republic 2002 This study 1 - - - - nd nd nd nd nd nd nd 

HAD28 Snake Czech Republic 2002 This study 1,5 - - - - nd nd nd nd nd nd nd 

K30 Jersey cattle heifer USA 1992 (172) 1,5 - + - - 200 kb > 400 kb 200 kb > 400 kb > 400 kb U A5B13 

K31 Jersey cattle calf USA 1992 (172) 0,5 - - - - - > 400 kb > 400 kb nd nd nd nd 

K32 Jersey cattle calf USA 1992 (172) 0,75 - - - - - > 400 kb > 400 kb nd nd nd nd 

K33 Jersey cattle heifer USA 1992 (172) 0,75 - - - - - > 400 kb > 400 kb nd nd nd nd 

K61 Pilot whale USA 1992 (172) 1,5 - + - - - > 400 kb 175 kb nd nd nd nd 

K116 Beef lips USA 1992 (172) 0,75 - + - - - > 400 kb > 400 kb nd nd nd nd 



 

 

Strain Animal/Human 

origin 

Geographic 

origin 

Date of 

isolation 

Reference Oxacillin 

MIC 

(µg/ml) 

PCR 

mecA 

Dot 

blot 

(ccr) 

Dot 

blot 
(mecI)  

Dot blot 
(mecRI) 

SmaI-ccr 

(kb) 

SmaI-

pbpD (kb) 

SmaI-

orfx 

(kb) 

ApaI-

pbpD (kb) 

ApaI-orfX 

(kb) 

SmaI-

PFGE 

type 

ccrAB 

type 

K163 Holstein cow USA 1992 (172) 0,75 - + - - - > 400 kb 150 kb nd nd nd nd 

K10 European red 

squirrel 

USA 1992 (172) 0,75 - + - - - 150 kb 100 kb nd nd nd nd 

CCM4743 Human Sweden 2002 This study 1,5 - + - - 175 kb 100 kb 175 kb 2 bands; > 

400 kb ** 

> 400 kb Q New 

2485/IV/01 Human Czech Republic 2002 This study 1 - + - - 300 kb 2 bands; > 

400, 350 

kb 

300 kb 2 bands; > 

400 kb ** 

> 400 kb D NT 

12/01 Human Czech Republic 2002 This study 0,75 - + - - 300 kb 2 bands; > 

400, 350 

kb 

300 kb 2 bands; > 

400 kb ** 

> 400 kb D New 

CNCTC 

M62/89 

Cattle Czech Republic 2002 This study 0,75 - + - - 2 bands; 

50, 75 kb 

2 bands; > 

400, 100 

kb 

75 kb 2 bands; > 

400 kb ** 

> 400 kb V New 

K27 Norway rat USA 1992 (172) 0,75 - + - - 250 kb 2 bands; 

250, 150 

kb 

250 kb 200 kb 350 kb R A1B13 

K29 Norway rat USA 1992 (172) 0,75 - + - - < 50 kb 2 bands; 

250, 150 

kb 

100 kb 200 kb 300 kb Q New 

K83 Human Czech Republic 1992 (172) 0,75 - + - - 250 kb 250 kb 100 kb > 400 kb > 400 kb S NT 

K125 Cotton rat USA 1992 (172) 1 - + - - 150 kb 200 kb 150 kb 2 bands; > 

400 kb ** 

> 400 kb X A5B13 

K5 Neonatal ward Mozambique 1992 (172) 2 - + - - - 150 kb 100 kb nd nd nd nd 

01/02 Barn environment Czech Republic 2002 This study 1 - + - - 2 bands; 

100, 125 

kb 

400 kb 100 kb 2 bands; > 

400 kb ** 

200 kb J NT 

04/00 Human Czech Republic 2002 This study 0,75 - + - - - > 400 kb > 400 kb nd nd nd nd 

05/00 Human Czech Republic 2002 This study 1 - + - - - > 400 kb > 400 kb nd nd nd nd 

06/00 Human Czech Republic 2002 This study 1 - + - - - 2 bands; 

150, 300 

kb 

150 kb nd nd nd nd 

07/00 Human Czech Republic 2002 This study 0,75 - + - - - > 400 kb > 400 kb nd nd nd nd 

11/01 Human Czech Republic 2002 This study 0,5 - + - - 200 kb 2 bands; > 

400, 200 

kb 

125 kb > 400 kb > 400 kb C New 

15/01 Human Czech Republic 2002 This study 0,75 - - - - nd nd nd nd nd nd nd 

17/01 Human Czech Republic 2002 This study 0,38 - + - - > 400 kb > 400 kb > 400 kb 2 bands; > 

400, 250 

kb 

150 kb E New 

CCUG38359 Human Sweden 2002 This study 0,75 - + - - 200 kb 2 bands; > 

400, 200 

kb 

125 kb > 400 kb > 400 kb C New 



 

 

Strain Animal/Human 

origin 

Geographic 

origin 

Date of 

isolation 

Reference Oxacillin 

MIC 

(µg/ml) 

PCR 

mecA 

Dot 

blot 

(ccr) 

Dot 

blot 
(mecI)  

Dot blot 
(mecRI) 

SmaI-ccr 

(kb) 

SmaI-

pbpD (kb) 

SmaI-

orfx 

(kb) 

ApaI-

pbpD (kb) 

ApaI-orfX 

(kb) 

SmaI-

PFGE 

type 

ccrAB 

type 

CNCTC 

M32/86 

Pig skin Czech Republic 2002 This study 1 - + - - 150 kb 2 bands; 

>400, 400 

kb 

150 kb 2 bands; > 

400, 250 

kb 

200 kb E A5B13 

CNCTC 

M59/89 

Domestic fowl Czech Republic 2002 This study 0,75 - - - - nd nd nd nd nd nd nd 

CNCTC 

M60/89 

Cattle Czech Republic 2002 This study 1 - - - - nd nd nd nd nd nd nd 

CNCTC 

M61/89 

Cattle Czech Republic 2002 This study 0,75 - + - - - > 400 kb > 400 kb nd nd nd nd 

K105 Human USA 1971 (172) 1 - - - - nd nd nd nd nd nd nd 

K12 Arabian horse USA 1992 (172) 1 - - - - nd nd nd nd nd nd nd 

K13 Eastern grey 

squirrel 

USA 1992 (172) 0,5 - - - - nd nd nd nd nd nd nd 

K132 Howler monkey Panama 1976 (172) 0,5 - - - - nd nd nd nd nd nd nd 

K139 Holstein cow USA 1992 (172) 1 - - - - nd nd nd nd nd nd nd 

K14 Eastern harvest 

mouse 

USA 1992 (172) 0,75 - - - - nd nd nd nd nd nd nd 

K140 Opossum USA 1972 (172) 1 - - - - nd nd nd nd nd nd nd 

K141 California mouse USA 1992 (172) 1 - + - - 250 kb > 400 kb 250 kb > 400 kb > 400 kb H New 

K142 Horse USA 1992 (172) 1 - - - - nd nd nd nd nd nd nd 

K143 Racoon USA 1972 (172) 1 - - - - nd nd nd nd nd nd nd 

K144 Jersey calf USA 1992 (172) 1 - - - - nd nd nd nd nd nd nd 

K147 Jersey calf USA 1992 (172) 0,5 - - - - nd nd nd nd nd nd nd 

K148 Bottlenose dolphin USA 1992 (172) 0,38 - + - - 2 bands; 

> 400, 

150 kb 

> 400 kb 150 kb 2 bands; > 

400, 300 

kb 

300 kb P NT 

K149 Eastern grey 

squirrel 

USA 1972 (172) 0,75 - - - - nd nd nd nd nd nd nd 

K150 Pilot whale USA 1992 (172) 1 - - - - nd nd nd nd nd nd nd 

K152 Holstein cow USA 1992 (172) 1 - - - - nd nd nd nd nd nd nd 

K154 Norway rat USA 1992 (172) 1,5 - - - - nd nd nd nd nd nd nd 

K155 Pilot whale USA 1992 (172) 1,5 - - - - nd nd nd nd nd nd nd 

K156 Beef tongue USA 1992 (172) 0,75 - + - - 2 bands; 

> 400, 

125 kb 

> 400 kb 125 kb > 400 kb 100 kb M NT 

K16 Jersey calf USA 1992 (172) 0,75 - - - - nd nd nd nd nd nd nd 

K161 Opossum USA 1972 (172) 0,75 - - - - nd nd nd nd nd nd nd 



 

 

Strain Animal/Human 

origin 

Geographic 

origin 

Date of 

isolation 

Reference Oxacillin 

MIC 

(µg/ml) 

PCR 

mecA 

Dot 

blot 

(ccr) 

Dot 

blot 
(mecI)  

Dot blot 
(mecRI) 

SmaI-ccr 

(kb) 

SmaI-

pbpD (kb) 

SmaI-

orfx 

(kb) 

ApaI-

pbpD (kb) 

ApaI-orfX 

(kb) 

SmaI-

PFGE 

type 

ccrAB 

type 

K162 Bottlenose dolphin USA 1992 (172) 1 - + - - 100 kb > 400 kb 100 kb > 400 kb > 400 kb Y A5B13 

K164 Bottlenose dolphin USA 1992 (172) 1 - + - - >400 kb > 400 kb >400 kb 2 bands; > 

400 kb ** 

> 400 kb M A5B13 

K165 Hairy-footed 

hamster 

USA 1992 (172) 0,75 - + - - >400 kb > 400 kb >400 kb > 400 kb > 400 kb M New 

K167 Beef tongue USA 1992 (172) 0,75 - + - - - > 400 kb >400 kb nd nd nd nd 

K170 Bottlenose dolphin USA 1992 (172) 1 - - - - nd nd nd nd nd nd nd 

K171 Opossum USA 1972 (172) 0,5 - + - - 50 kb 150 kb 100 kb > 400 kb > 400 kb T New 

K172 Jersey calf USA 1992 (172) 0,75 - - - - nd nd nd nd nd nd nd 

K173 Eastern grey 

squirrel 

USA 1972 (172) 0,75 - - - - nd nd nd nd nd nd nd 

K174 Opossum USA 1972 (172) 0,75 - + - - - 2 bands; 

350, 200 

kb 

150 kb nd nd nd nd 

K175 Bottlenose dolphin USA 1992 (172) 0,75 - - - - nd nd nd nd nd nd nd 

K18 Beef lips USA 1992 (172) 1 - - - - nd nd nd nd nd nd nd 

K2 Beef tongue USA 1992 (172) 1 - - - - nd nd nd nd nd nd nd 

K20 Bottlenose dolphin USA 1992 (172) 1 - + - - 200 kb > 400 kb 200 kb > 400 kb > 400 kb N A5B13 

K21 Pilot whale USA 1993 (172) 0,5 - + - - > 400 kb > 400 kb > 400 kb > 400 kb > 400 kb L A5B5 

K22 Morgan horse USA 1992 (172) 1,5 - - - - - > 400 kb 200 kb nd nd nd nd 

K23 Red kangaroo USA 1992 (172) 0,75 - - - - - > 400 kb > 400 kb nd nd nd nd 

K24 Morgan horse USA 1992 (172) 0,75 - - - - - > 400 kb 150 kb nd nd nd nd 

K25 Prairie vole USA 1992 (172) 0,5 - - - - - > 400 kb > 400 kb nd nd nd nd 

K51 Human USA 1971 (172) 1,5 - - - - nd nd nd nd nd nd nd 

K69 Human USA 1986 (172) 1 - + - - 200 kb 400 kb 200 kb > 400 kb > 400 kb G NT 

KLO56 Opossum USA 1972 (172) 0,75 - + - - > 400 kb >400 kb > 400 kb > 400 kb 150 kb M New 

KLO58 Squirrel monkey USA 1972 (172) 0,75 - - - - - >400 kb 200 kb nd nd nd nd 

KLO59 Domestic dog USA 1972 (172) 2 - - - - - >400 kb 150 kb nd nd nd nd 

KLO63 Eastern grey 

squirrel 

USA 1972 (172) 1 - - - - - >400 kb > 400 kb nd nd nd nd 

KLO64 Southern flying 

squirrel 

USA 1972 (172) 2 - - - - - >400 kb 150 kb nd nd nd nd 

+, positive; -, negative; nd, not determined; **, two bands with a very similar fragment size hybridized.  
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Table S2. Sequence and predicted amplicon size (bp) of the primers used in this study. In addition, the locations of 

the primers in the gene are indicated. The bibliographic source is also shown. 

Gene Primers (5´-3´) Location of the 

primers  

(gene size), bp 

Amplicon 

size, bp 

Source 

ccrAB c: ATCTATTTCAAAAATGAACCA 1288 (ccrA, 1350) 560 (125) 

c: ATTGCCTTGATAATAGCCITCT 475 (ccrB, 1629) 560 (125) 

ccrAB2 2:TAAAGGCATCAATGCACAAACACT 915 (ccrA, 1350) 1000 (125) 

c: ATTGCCTTGATAATAGCCITCT 475 (ccrB, 1629) 1000 (125) 

ccrC F: CGTCTATTACAAGATGTTAAGGATAAT 190 (1676) 520 (125) 

R:CCTTTATAGACTGGATTATTCAAAATAT 710 (1676) 520 (125) 

ccrA ccrAF1: YCCWAAYTAYTGTGGYCGTGT 642 (1350) 296 (142) 

ccrAR1: TKYTKGTGCRTTKATNCCT 938 (1350) 296 (142) 

ccrB ccrBF1: CGWYTRGCWMGWAAYACHTC 340 (1629) 496 (142) 

ccrBR1: CTTTTCGWCKYTTWTCRYTCC 836 (1629) 496 (142) 

mecA MRSA GL F: TATGAGATAGGCATCGTTCC 505 (2007) 334 This study 

MRSA GL R: TTACCAATAACTGCATCATC 839 (2007) 334 This study 

mecI mI3: CAAAAGGACTGGACTGGAGTCCAAA  115 (372) 180 (125) 

mI4: CAAGTGAATTGAAACCGCCT 295 (372) 180 (125) 

mecRI 

(MS 

domain) 

mecR3: GTCTCCACGTTAATTCCATT  133 (1758) 310 (125) 

mecR4:GTCGTTCATTAAGATATGACG 443 (1758) 310 (125) 

orfX orfX-F1: CGCTTAGGTGCATATACAAAGAC 76 (480) 369 This study 

orfX- R1: ACGCACTATCACATTGTTCC 445 (480) 369 This study 

pbpD SAMECA165: CGATAATGGTGAAGTAGA 162 (2001) 1308 (174) 

SAMECA1482: TATATCTTCACCAACACC 1470 (2001) 1308 (174) 

 

 

 



 

 

Table S3 - ccr types and SmaI hybridization fragments found in isolates of each PFGE type. Epidemiological data is also shown. 

PFGE type 

(No 

isolates) 

Year of 

isolation 

Geographic 

origin  

Animal/Human 

source 

ccrAB types Hybridization fragment, kb (number of isolates) 

SmaI-ccr   SmaI-mecA1/ApaI-

mecA1 

SmaI-

orfX/ApaI-orfX 

A (2) 2002 Czech Republic Chicken, turkey New ccrA type 2/B13 100 (1) 50/>400 (1) 150/>400 (1) 

A5B13 >400 (1) >400/>400 (1) 400/>400 (1) 

B (2) 1992,2010 USA, Portugal European red 

squirrel, human 

A5B13 150 (1) >400/>400 (1) 150/>400 (1) 

A5B13 >400 (1) >400/>400 (1) >400/>400 (1) 

C (2) 2002 Czech Republic, 

Sweden 

Human New ccrA type 1/B13 200 (2) >400, 200/>400 (2) 125/>400 (2) 

D (2) 2002 Czech Republic Human NT, New ccrA type 1/B5/B7 300 (2) 350/>400 (2) 300/>400 (2) 

E (3) 2002 Czech Republic, 

Yugoslavia 

Pig, human, dog New ccrA type 2/B13 >400 (1) >400/>400 (1) >400/150 (1) 

New ccrA type 1/B13 >400 (1) >400/>400,250 (1) >400/150 (1) 

A5B13 150 (1) >400/>400,250 (1) 150/200 (1) 

F (1) 2002 Yugoslavia Dog New ccrA type 2/B13 >400 (1) > 400,400/>400 (1) 400/>400 (1) 

G (5) 1986, 

1996, 

1997, 

2002 

Portugal, Czech 

Republic, USA 

Human, snake A1B13, A1B13 100 (2) > 400/>400 (2) 100/>400 (2) 

NT 200 (1) 400/>400 (1) 400/>400 (1) 

NT 150 (1) >400/* (1) 150/*(1) 

New ccrA type 3/B9 125 (1) >400/>400 (1) 125/>400 (1) 

H (1) 1992 USA California mouse New ccrA type 3/B9 250 (1) >400/>400 (1) 250/>400 (1) 

I (2) 1996,1998 Portugal Human NT 80,100 (2) >400/>400 (2) 100/200 (2) 

J (1) 2002 Czech Republic Barn environment NT 100,125 (1) 400/> 400 (1) 100/200 (1) 

K (1) 2002 Sweden Human New ccrA type 3/B9 125 (1) >400 /* (1) 125/*(1) 

L (1) 1993 USA Pilot whale A5B5 >400 (1) >400/>400 (1) >400/>400 (1) 

M (4) 1972, 

1992 

USA Bottlenose dolphin, 

hairy-footed 

hamster, opossum, 

beef tongue 

A5B13, New ccrA 

type 1/B13 

>400 (2) >400/>400 (2) >400/>400 (2) 

New ccrA type 1/B13 >400 (1) >400/>400 (1) >400/150 (1) 

NT >400,125 (1) >400/>400 (1) 125/200 (1) 



 

 

PFGE type 

(No 

isolates) 

Year of 

isolation 

Geographic 

origin  

Animal/Human 

source 

ccrAB types Hybridization fragment, kb (number of isolates) 

SmaI-ccr   SmaI-mecA1/ApaI-

mecA1 

SmaI-

orfX/ApaI-orfX 

N (1) 1992 USA Bottlenose dolphin A5B13 200 (1) >400/>400 (1) 200/>400 (1) 

O (2) 1992, 

2002 

Czech Republic, 

USA 

Norway rat, snake New ccrA type 3/B9 125 (1) >400/>400 (1) 125/>400 (1) 

A5B9 >400 (1) >400/>400 (1) >400/>400 (1) 

P (1) 1992 USA Bottlenose dolphin NT >400, 150 (1) >400/>400, 300 (1) 150/300 (1) 

Q (3) 1992, 

1996, 

2002 

Portugal, 

Sweden, USA 

Human, Norway rat New ccrA type 1/B5/7 175 (1) 100 />400 (1) 175/>400 (1) 

New ccrA type 1/B5/7 <50 (1) 150/>400 (1) 100/300 (1) 

New ccrA type 3/B13 <50 (1) 250,150/200 (1) 100/300 (1) 

R (1) 1992 USA Norway rat A1B13 250 (1) 250/200 (1) 250/350 (1) 

S (1) 1992 Czech Republic Human NT 250 (1) 250/>400 (1) 100/>400 (1) 

T (1) 1972 USA Opossum New ccrA type 2/B5/7 50 (1) 150/>400 (1) 100/>400 (1) 

U (1) 2002 Czech Republic Cattle A5B13 50,75 (1) >400,100/>400 (1) 75/>400 (1) 

V (1) 1992 USA Jersey cattle heifer New ccrA type 1/B5/7 200 (1) >400/>400 (1) 200/>400 (1) 

X (1) 1992 USA Cotton rat A5B13 150 (1) 200/>400 (1) 150/>400 (1) 

Y (1) 1992 USA Bottlenose dolphin A5B13 100 (1) >400/>400 (1) 100/>400 (1) 

* no digestion was obtained; NT: non-typable; ccr types were considered new when its sequence had < 85% homology with known ccr types. 



 

 

Table S4. Highest nucleotide identities (%) between ccr allotype carried by S. sciuri and ccr allotypes carried by prototype S. aureus or coagulase-negative staphylococci (CoNS) strains. Ten S. 

sciuri strains carried non-typable ccrA (4) or ccrB (6) alleles. A representative sequence of each cluster defined by the phylogenetic tree (Figures 3 and 4) was used in the analysis. 

Allotype 

(no strains) 

Similarity with known ccr types SCCmec/SCC* Reference 

% identity Species/Strain 

ccrA5 (11) 94 % ccrA5 S. cohnii/WC28 ccrA5B3/mec complex A (168) 

New ccrA type 1 (11) 82 % ccrA5 S. cohnii/WC28 ccrA5B3/mec complex A (168) 

ccrA1 (6) 87% ccrA1 S. aureus/COL SCCmec I www.sccmec.org 

New ccrA type 3 (5) 80 % ccrA2 S. aureus/N315 SCCmec II/IV www.sccmec.org 

New ccrA type 2 (4) 74 % ccrA5 S. cohnii/WC28 ccrA5B3/mec complex A (168) 

ccrB13 (19) 90 % ccrB13 S. cohnii/M10F1 MR; non-typable www.ccrbtyping.net 

ccrB5/B7 (8) 98% ccrB7 S. pseudointermedius/KM241 Not available www.ccrbtyping.net 

93% ccrB5 S. lugdunensis/S22S5 Not available www.ccrbtyping.net 

ccrB9 (5) 99% ccrB9 S. saprophyticus/TSU33 Not available www.ccrbtyping.net 

ccrB1 (2) 97% ccrB1 S. aureus/COL SCCmec I www.sccmec.org 

ccrB7 (1) 91% ccrB7 S. pseudointermedius/KM241 Not available www.ccrbtyping.net 
*SCCmec types or SCC elements previously described carrying the ccr types with the highest % identity with each ccr type found in S. sciuri. When a SCCmec was non-typeable, the 

combination of type of ccr complex and the class of mec complex is shown, when available; MR – methicillin-resistan 

 

 

http://www.sccmec.org/
http://www.sccmec.org/
http://www.sccmec.org/
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ABSTRACT 

The most epidemiologically important mechanism of antibiotic resistance in 

staphylococci is associated with mecA – an acquired gene which encodes an extra 

penicillin-binding protein (PBP2a) with low affinity to all β-lactam antibiotics. In this 

study we aim to understand the evolutionary steps linking mecA precursors, identified 

in species of Staphylococcus sciuri group - the most primitive staphylococci - to the β-

lactam resistance gene mecA and the resistant phenotype. 

For this purpose, we sequenced the genome of 106 isolates of S. sciuri, S. 

vitulinus and S. fleurettii and determined their β-lactam susceptibility profiles. Single-

nucleotide polymorphisms (SNP) analysis of core genome was performed to assess 

isolates genetic relatedness and detailed phylogenetic analysis of the mecA 

homologues was achieved through nucleotide/aminoacid sequence analysis. In 

addition, the predicted structure of mecA homologue-encoded PBPs of β-lactam 

susceptible and resistant strains were compared. 

We showed for the first time that β-lactam resistance emerged several times 

and by different mechanisms during evolution of the most primitive staphylococcal 

species. The development of resistance involved different strategies including 

structural diversification of native PBPs in the non-binding domain, changes in the 

mecA homologues promoter and adaptation of the genetic background of the bacteria. 

Moreover, our data suggests that jump to the human host and antibiotic exposure 

were the forces driving evolution towards a resistance phenotype.  

These results highlighted the numerous resources available to bacteria to adapt 

to antibiotic pressure. Moreover, the molecular strategies associated to β-lactam 

resistance revealed here could help to predict the emergence of new antimicrobial 

resistance genes. 
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INTRODUCTION 

The most important antibiotic resistance mechanism in staphylococci is 

associated with the mecA gene, which forms the basis of resistance to the large class 

of β-lactam antibiotics. The mecA gene is not native to Staphylococcus aureus and 

other pathogenic staphylococci; it is transferred horizontally among staphylococcal 

strains, in a complex cassette called staphylococcal cassette chromosome mecA 

(SCCmec) (109), which inserts always at the same locus in the chromosome, 

downstream orfX (which encodes a RNA methyltransferase) (109, 115). Several studies 

have demonstrated that acquisition of mecA confers a competitive advantage in the 

nosocomial, community and veterinary settings (203, 204). In particular, introduction 

of the mecA determinant into the S. aureus genome, has led to the emergence of 

methicillin-resistant S. aureus (MRSA), driving one of the most important pandemics 

worldwide (204). 

The mecA determinant encodes an extra penicillin-binding protein (PBP2a) that 

has low affinity for β-lactams (7). The expression of resistance is achieved by a slow 

rate of acylation of PBP2a as well as a low affinity of the enzyme for β-lactams (205). 

Structural studies have revealed that the poor acylation rate that PBP2a presents when 

in contact with β-lactams is due to a distorted active site (108). Distortion is thought to 

be achieved by the flexibility of the non-binding domain and regions surrounding the 

active site groove in the transpeptidase domain (composed by the residues Ser403, 

Lys406, Tyr446, Ser462, Asn464, Ser598 and Thr600)(108). Furthermore, it was found 

that the position of Ser403 is crucial for a nucleophilic attack of the β-lactam ring, 

which leads to acylation of the protein (108). The displacement of Ser403 residue is 

therefore a critical key feature of PBP2a.  

The first MRSA isolates were identified in the UK among clinical isolates in 

1961, shortly after the introduction of methicillin into clinical practice (200, 206). Early 

MRSA were found to present a heterogeneous profile of resistance to β-lactams (121). 

Further studies have revealed that mutations in genes associated with the cell division 

as well as central metabolism influence the expression of β-lactam resistance and the 

resulting phenotype (the so-called auxiliary genes) (207). In addition, expression of 
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homogeneous high level resistance has been associated with the activation of the 

bacterial stringent response, provoked by mutations in the relA system (208, 209) and 

related regulons and genes (210). These findings evidence the important role of the 

genetic background in the expression of β-lactam resistance in S. aureus. 

The rapid emergence of such an efficient resistance mechanism raised the 

hypothesis that mecA was already present in one of the numerous staphylococcal 

species prior to the introduction of the antibiotic. In fact, an homologue named 

mecA1, with 80% nucleotide identity to mecA has been identified in the primitive 

coagulase-negative Staphylococcus sciuri, where this gene was found to be ubiquitous 

(172). Several lines of evidence suggested that mecA1 was the mecA precursor. While 

mecA1 does not confer resistance to β-lactams in S. sciuri, there are reports of β-

lactam resistant strains that have alterations in the promoter region of this gene (177). 

When introduced – in the laboratory - into a S. aureus genetic background, mecA1 was 

able to confer β-lactam resistance and produce a protein with properties resembling 

that of MRSA PBP2a (176, 189). Additional mecA homologues have also been identified 

in related species. In particular, in Staphylococcus vitulinus, a mecA homologue with 

90% nucleotide identity with MRSA mecA has been identified (mecA2)(178). 

Additionally, the mecA along with its regulators, mecI and mecRI has been identified in 

a small number of Staphylococcus fleurettii isolates (173).  

Despite the importance of mecA in the epidemiology of antibiotic resistant 

staphylococci, the evolutionary history of this gene has remained unclear. The purpose 

of the study described here was to shed light on evolutionary steps linking the several 

native mecA homologues identified in primitive coagulase negative staphylococci to 

the β-lactam resistance gene mecA and the resistant phenotype. This knowledge could 

serve as a model for the evolution of other antibiotic resistance genes and could help 

to predict the emergence of new antibiotic resistance determinants. 
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METHODS 

Bacterial strain collection: a collection of 106 staphylococcal isolates, comprising 76 S. 

sciuri, 18 S. vitulinus and 12 S. fleurettii was assembled. Regarding S. sciuri, 28 isolates 

were obtained from humans, while the remaining 45 isolates were recovered from 

both wild and domesticated mammals (supplementary table S1). Isolates were 

collected in different countries (Czech Republic, Denmark, Portugal, Switzerland, 

Sweden, former Yoguslavia, Mozambique, Panama and USA) over a large sampling 

period-1972-2012. S. vitulinus and S. fleurettii isolates were collected from horses and 

bovine mastitis milk samples, in Denmark, Switzerland and the Netherlands, in 2004, 

2005 and 2010. S. sciuri isolates were identified at the species level by 16S RNA 

ribotyping and API-Staph (Biomerieux, France). S. fleurettii and S. vitulinus were 

identified at the species level by 16S sequencing. 

 

β-lactam susceptibility: was assessed by oxacillin Etest (Biomérieux, France). The 

breakpoint for defining susceptibility isolate was evaluated as suggested by EUCAST 

(www.eucast.org): isolates were considered susceptible when MIC < 3 µg/ml. 

Population analysis profiles (PAPs) for oxacillin were determined for representative 

isolates (28/60 S. sciuri exclusively carrying mecA1, 23/37 isolates carrying mecA, 9/9 

isolates carrying mecA2) as previously described (211). The PAP results of S. sciuri 

isolates have already been published (172, 202).  

 

Whole-genome sequencing and de novo assembly: DNA was extracted with the 

phenol/chlorophorm extraction method (S. sciuri) and the Qiagen DNEasy Blood & 

Tissue Kit (S. vitulinus and S. fleurettii) (Qiagen, Limburg, The Netherlands). The 

sequencing was performed in a HiSeq with an estimated coverage of 40x. The reads 

were assembled de novo using VELVET (33).  

 

Reference genome S. fleurettii 402567: DNA of a S. fleurettii 402567 was prepared by 

phenol/chlorophorm extraction and was sequenced using a PacBio RS apparatus. De 

http://www.eucast.org/
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novo assembly was performed using HGAP 3 

(https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP-in-SMRT-

Analysis).  

A reference genome was produced by combining Illumina and PacBio 

sequencing data for a single strain, S. fleurettii isolate 402567. PacBio reads were 

combined with Illumina reads obtained for each isolate in CLC Genomics Workbench, 

using the Genome Finishing module. The resulting contigs were ordered using 

Staphylococcus xylosus closed genome (average nucleotide identity with S. sciuri, 78.01 

%; S. vitulinus, 77.12%; and S. fleurettii, 78.54%). Estimated gaps were closed by 

mapping Illumina data of remaining S. fleurettii strains to the contigs. The resulting 

closed genome was annotated with RAST (http://rast.nmpdr.org/).  

 

Estimation of S. sciuri strain-to-strain phylogenies: The reference genome S. fleurettii 

402567 was used to perform a SNP analysis of the predicted core genome of S. sciuri 

isolates. SNP analysis was performed using Stampy (version 1.0.11) where reads were 

mapped to the reference genome. SNP calling was performed using SAMtools (version 

0.1.12) and Neighbor Joining (NJ) analysis was used to assess the phylogeny. Trees 

were drawn in FigTree (http://tree.bio.ed.ac.uk/software/figtree/).   

 

Phylogenetic analysis of mecA homologues: nucleotide sequences of mecA 

homologues and two core-associated genes (aroE and gyrB) were identified by BLAST 

analysis and were extracted from the sequence of the contigs. Alignments with the 

entire gene or regions corresponding to specific domains were performed with 

ClustalW. Phylogenetic trees were constructed with a neighbor-joining algorithm. To 

estimate the rates of evolution of mecA homologues, BEAST was used (30). The 

parameters were set as described by Gray et al (212). We used the Bayesian 

framework implemented in the BEAST software package under the general time 

reversible nucleotide substitution model. The molecular clock was calibrated under a 

strict molecular clock (which assumes the same evolutionary rates for all branches in 



Development of β-lactam resistance in primitive staphyloccci 

Chapter III| 84  

the tree), with the constant population size coalescent prior. The Markov chain Monte 

Carlo (MCMC) analysis was run up to 107 generations. Results were visualized in Tracer 

v.1.5, and proper mixing of the MCMC was assessed by calculating the effective 

sampling size (ESS) for each parameter. All ESS values were >200. The maximum clade 

credibility (MCC) tree, which is the tree with the largest product of posterior clade 

probabilities, was selected from the posterior tree distribution using the program 

TreeAnnotator (available as part of the BEAST package). Final trees were annotated 

with FigTree (http://tree.bio.ed.ac.uk/software/figtree/). The BEAST analysis was 

performed for all mec homologues sequences and for the sequences belonging to each 

mec gene separately. 

 

Estimation of recombination/mutation rates: RDP4 (213) was used to predict which 

part of the mecA homologues sequences were under recombination. The 

recombination/mutation rate of mecA1 was estimated with this program. The 

sequence of two S. sciuri core-associated genes (aroE and gyrB) were also used for 

comparison.  

 

Modelling of protein structure: the structure of representative proteins encoded by 

the meA homologues was predicted using ModWeb 

(https://modbase.compbio.ucsf.edu/modweb/) (214). The predicted structure 

encoded by one mecA allele, one mecA2 allele and six mecA1 alleles (representing 

each major clade of the phylogenetic tree, 0.015 distance cut off) were obtained. 

Alignments of the structures modeled with PBP2a were produced in PyMol (The 

PyMOL Molecular Graphics System, Version 1.5.0.3 Schrödinger, LLC) and visually 

inspected for relevant alterations of the protein structure.  

 

Assessment of genetic diversity: The degree of genetic diversity of the different mecA 

homologues was assessed by the Simpson’s index of diversity (SID)(215), using a 

http://tree.bio.ed.ac.uk/software/figtree/
https://modbase.compbio.ucsf.edu/modweb/
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confidence interval of 95%. The online tool available at 

http://darwin.phyloviz.net/ComparingPartitions/ was used.  

 

Data deposition: the reference genome obtained was deposited in NCBI database and 

raw reads in ENA. 

 

  

http://darwin.phyloviz.net/ComparingPartitions/
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RESULTS 

The mecA homologues were ubiquitous in S. sciuri, S. vitulinus and S. fleurettii 

In order to understand the distribution and chromosomal location of mecA 

homologues in S. sciuri, S. vitulinus and S. fleurettii, we identified mecA homologues in 

the contigs obtained for the 106 strains with BLAST analysis. We observed that all 

strains carried at least one copy of mecA homologues in their chromosome, although 

their location could vary. These could be found either in the native location (200 kb 

from orfX) or in the orfX, the SCCmec insertion site. We confirmed that mecA1 was 

ubiquitous in S. sciuri (172) and mecA was carried by all twelve S. fleurettii isolates 

(173) in the native location. S. vitulinus was different from the other species in the fact 

that the mecA homologue carried in the native location varied. Half of the strains (n=9) 

carried mecA2 as previously reported (178) and the remaining strains either carried 

mecA (n=6) or did not carry any mecA homologue in this region (n=3). The mecA was 

the only mecA homologue that was found near the orfX inside complete SCCmec 

elements (data not shown). This was observed in 16 S. sciuri isolates carrying mecA1 in 

the native location and in the three S. vitulinus that did not carry any mecA homologue 

in the native location.  

 

High genetic diversity in mecA1 contrasts with conservation of mecA2 and mecA 

To assess the level of genetic diversity in mecA homologues, we aligned all 

mecA1, mecA and mecA2  sequences identified in our study (Supplementary Figure 

1A). The mecA1 was extremely diverse, including a total of 44 different alleles 

(Simpson’s Index of Diversity (SID) = 97.2%, CI= 95.7%-98.7%) that varied between 93-

100% in nucleotide identities (Supplementary Figure 1B). In contrast, mecA2 and mecA 

were very conserved. The mecA had ten different alleles (SID=70.4%, CI=60.5%-80.2%), 

varying from 99.75 to 100% in nucleotide identity and S. vitulinus showed only two 

alleles (SID=21.6%, CI=9.7%-33.6%) that were 99.95% identical (Supplementary Table 

1).  
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To further understand if the mecA1 genetic diversity was associated to the 

diversity of S. sciuri genetic backgrounds or if it was a result of a faster evolutionary 

rate, we compared the SID observed for this gene with SID of two other S. sciuri 

housekeeping genes scattered in the chromosome, aroE and gyrB. The SID of both 

housekeeping genes in S. sciuri was similar between gyrB (34 alleles, SID=91%, CI= 

86.1%-96.1%) and aroE (31 alleles, SID=92.7%, CI= 89.1%-96.4%), but lower than that 

obtained for mecA1 (SID=97.2%, CI= 95.7%-98.7%). This difference was even clearer 

when the sequence of aminoacids was predicted and compared. While the SID of 

mecA1-encoded PBP4 was still high, 96.2% (40 different aminoacid sequences, CI= 

94.5%-97.9%), the ones obtained for gyrB-encoded DNA gyrase subunit B and aroE-

encoded Shikimate 5-dehydrogenase were lower (8 different aminoacid sequences, 

SID=75.3%, CI= 70.1%-80.6% and 22 different aminoacid sequences, SID=88.6%, CI= 

83.6%-93.6%, respectively). This result suggests that mecA1 is accumulating single-

nucleotide polymorphisms (SNPs) and non-synonymous mutations faster than other S. 

sciuri housekeeping genes. 

 

Non-synonymous mutations were mainly observed in the non-binding domain of S. 

sciuri PBP4 

The protein encoded by mecA, PBP2a, is a protein of 668 aminoacids containing 

two domains: the non-binding domain (NB, 163 aminoacids), which is located in the 

positions 147-309 of the protein and the transpeptidase domain (TP, 314 aminoacids), 

corresponding to the positions 345-658 of the protein. The TP domain is the one 

responsible for the full expression of β-lactam resistance in methicillin-resistant 

staphylococcal isolates carrying PBP2a (108). Like in PBP2a, also in PBP4 of S. sciuri, the 

protein encoded by mecA1, these two domains were identified when a BLASTP analysis 

was performed. The NB domain corresponded to positions 146-308 of PBP4 and the TP 

domain was identified in positions 343-656 of PBP4. To understand if differences in 

aminoacid sequence observed in mecA1 occurred in NB or TP regions, both regions 

were aligned for all strains. In addition, the corresponding nucleotide sequence was 

extracted from the WGS data and aligned. The NB domain corresponded to 489 
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nucleotides (mecA1 pos 436-924; mecA pos 439-927; mecA2 pos 439-927) and the TP 

domain corresponded to 942 nucleotides (mecA1 pos 1027-1968; mecA pos 1033-

1974; mecA2 1033-1974). 

A close inspection of the alignments showed that the nucleotide sequence of 

the NB domain of mecA1-encoded PBP4 had 165/489 (34%) SNPs and the TP domain 

had 123/942 (13%) SNPs. Moreover, when a similar analysis was performed for the 

aminoacid sequence of PBP4, we found that the NB domain accumulated many more 

substitutions (59/163, 36%) than the TP domain (26/314, 8%). The results indicate that 

most of the SNPs observed in the NB domain corresponded to non-synonymous 

mutations, while those observed in the TP domain were synonymous.  

The number of SNPs and aminoacid substitutions was much lower for 

mecA/mecA2 and corresponding PBPs than that found in mecA1. The mecA NB 

nucleotide sequence showed only 8/489 SNPs (1.6%) and 3/163 aminoacid 

substitutions (1.8%) while the TP domain showed 20/942 SNPs (2.11%) and 7/314 

(2.22%) aminoacid substitutions. Regarding mecA2-encoded domains they were very 

conserved: no SNPs were observed in the NB domain and a single SNP was observed in 

the TP domain (0.1%), resulting in a single aminoacid change (0.31%). 

 

Evidences for the occurrence of recombination in S. sciuri mecA1  

In order to understand the mechanism associated to genetic diversification of 

mecA homologues, allele numbers were assigned to each NB and TP domain 

nucleotide sequence, for each gene.  A total of 25 alleles in NB domain of mecA1 and 

32 alleles in the TP domain were identified. The mecA showed only 6 NB alleles and 6 

TP alleles and mecA2 had a single NB allele and two TP alleles. Strikingly, we observed 

that there were cases where the same NB allele could be found in combination with 

different TP alleles or the other way around. This phenomenon was observed both in 

mecA and mecA1, but was more evident in mecA1 in which a larger number of 

different combinations were observed (Supplementary Table 1). This result led us to 
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hypothesize that recombination between the two domains might be frequent in S. 

sciuri.  

To further test this hypothesis, we used a pairwise scanning approach, using 

the RDP4 program. Briefly, the program identifies portions of the gene under 

recombination by aligning different portions of the gene individually, with the aid of a 

maximum-likelihood tree. A ClustalW alignment of all mecA1, mecA2 and mecA alleles 

was used to verify the occurrence of recombination events. The analysis was also 

performed separately for all genes. We found that there were no estimated 

recombination events between the three mecA homologues (data not shown). The 

mecA and mecA2 alleles also showed no recombination events within each gene 

individually. On the other hand, in the mecA1-carrying S. sciuri population, we found 

the occurrence of five different recombination events (Supplementary Figure 1C). 

Three of these events were predicted to have occurred in the N-terminal encoding 

region of the gene, one in the NB domain of the gene and one in the TP domain. RDP 

estimated that the average recombination rate/site was 0.0049 and the average 

mutation rate/site was 0.03191. Taken together, the average site 

recombination/mutation rate observed in mecA1 gene was 0.15:1. Moreover, we 

observed that recombinant mecA1 alelles were distributed among 46 isolates, 

representing 60.5% of the S. sciuri population.  

To understand if recombination was specific of mecA1 or if it was otherwise a 

frequent event occurring in S. sciuri, we searched for the occurrence of recombination 

events in the two core-associated S. sciuri genes, gyrB and aroE. We found a single 

recombination event among gyrB alleles and no recombinant events were detected in 

aroE alleles (data not shown). The gyrB like mecA1 is located near the oriC, suggesting 

that recombination events might be favored during DNA replication in this region of 

the chromosome.  
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Different levels of β-lactam resistance are associated to specific mecA homologues 

To assess if diversity in mecA homologues could have impact on the 

susceptibility to β-lactams we determined susceptibility to oxacillin for all isolates of S. 

sciuri, S. fleurettii and S. vitulinus, by Etest. In addition, susceptibility to oxacillin was 

evaluated by population analysis profiles in a representative collection that included 

28/60 isolates carrying mecA1 only; 23/37 carrying mecA; 9/9 carrying mecA2. Current 

MIC breakpoints were defined only for clinically significant Staphylococcus species. 

Since these cannot be directly applied to the staphylococcal species analyzed in this 

study, we decided to determine MIC breakpoints for the S. sciuri group of species. The 

MIC breakpoints for oxacillin were defined for this set of species by Etest as suggested 

by EUCAST. The MIC values obtained by Etest were compared for resistant strains 

carrying mecA and susceptible strains carrying mecA homologues mecA1 and mecA2. 

The breakpoint for resistance was set at 3 µg/ml oxacillin and strains were considered 

resistant if they presented a MIC to oxacillin >3 µg/ml either by Etest or population 

analysis profiles (MIC presented by more than 90% of the population).  

The great majority of S. sciuri strains carrying mecA1 only (54/60) had an MIC to 

oxacillin that was lower than 3 µg/ml. The remaining six strains had a MIC >3 µg/ml or 

exactly 3 µg/ml: K4, K5, K7, Jug17, SS37 and SS41. Jug17 was the exclusive mecA 

negative strain carrying mecA1 allele 4. The resistant strains K4, K5, K7, SS37 and SS41 

shared the same mecA1, allele 17. Overall, there was a consistency between the 

mecA1 allele carried by S. sciuri and the MIC of the isolates (Supplementary Table 1), in 

the absence of mecA. The 16 S. sciuri strains that carried mecA in addition to mecA1 

had MIC values, ranging from 16 to >256 µg/ml (Table 1).  

Population analysis profiles of resistance to oxacillin of two mecA-positive 

isolates confirmed that these isolates were heterogeneously resistant, being able to 

survive up to 800 µg/ml of oxacillin (Figure 1A). We performed oxacillin population 

analysis profiles for 24 additional mecA-negative isolates that were susceptible to 

oxacillin by Etest. The great majority of these isolates produced heterogeneous 

profiles, with MIC lower than 3 µg/ml, but half of the isolates (11 out of 24) could grow 

up to 6-100 µg/ml (Figure 1A). 
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Table 1. Main characteristics of β-lactam resistant strains. 

Strain MIC µg/ml 

(eTest/PAP) 

Mechanism of 

resistance 

Phylogenetic group Date of 

isolation 

mec allele (date of 

emergence in population) 

Recombinant 

mec allele 

M1234 >256 SCCmec S. sciuri new 2 2009 mecA 9 (2002) + 

M692 96 SCCmec S. sciuri new 2 2007 mecA 9 (2002) + 

M2590 >256 SCCmec S. sciuri new 2 2012 mecA 9 (2002) + 

M2276 >256 SCCmec S. sciuri new 2 2011 mecA 9 (2002) + 

D573 >256 SCCmec S. sciuri new 2 2007 mecA 9 (2002) + 

M1653 >256 SCCmec S. sciuri new 2 2010 mecA 9 (2002) + 

CH17 >256 SCCmec S. sciuri new 2 2010 mecA 8 (1982) + 

CH18 >256 SCCmec S. sciuri new 2 2010 mecA 8 (1982) + 

M2710 >256 SCCmec S. sciuri new 2 2012 mecA 7 (1977) + 

HSM851 16 SCCmec S. sciuri new 2 2010 mecA 7 (1977) + 

Jug17 >256 Altered PBP4 S. sciuri new 2 2002 mecA1 4 (1982) + 

K3 >256 SCCmec S. sciuri rodentius 1992 mecA 10 (1967) + 

K4 >256 Alterations in 

mecA1 promoter 

S. sciuri rodentius 1992 mecA1 17 (1982) + 

K5 25 Alterations in 

mecA1 promoter 

S. sciuri rodentius 1992 mecA1 17 (1982) + 

K7 >256 Genetic 

background? 

S. sciuri rodentius 1992 mecA1 17 (1982) + 

SS37 25 Alterations in 

mecA1 promoter 

S. sciuri rodentius 1996 mecA1 17 (1982) + 

SS41 3 Alterations in 

mecA1 promoter 

S. sciuri rodentius 1996 mecA1 17 (1982) + 

CH16 24 SCCmec S. sciuri rodentius 2010 mecA 7 (1977) + 

K6 >256 SCCmec S. sciuri rodentius 1992 mecA 7 (1977) - 

M1640 96 SCCmec S. sciuri sciuri 2010 mecA 7 (1977) - 

Jug1 >256 SCCmec S. sciuri new 1 2002 mecA 7 (1977) + 

M1886 64 SCCmec S. sciuri new 1 2011 mecA 7 (1977) - 

CH5 >256 Genetic 

background? 

S. vitulinus 2005 mecA 4 (1987) - 

CH15 >256 Alterations in 

mecA2 promoter 

S. vitulinus 2004 mecA2 2 (1972) - 

CH19 8 mecA native 

location 

S. fleurettii 2010 mecA 1 (1962) - 

CH20 6 mecA native 

location 

S. fleurettii 2010 mecA 3 (1982) - 

CH21 4 mecA native 

location 

S. fleurettii 2010 mecA 2 (1992) - 

CH23 4 mecA native 

location 

S. fleurettii 2010 mecA 2 (1992) - 

CH24 >256 mecA native 

location 

S. fleurettii 2010 mecA 2 (1992) - 

CH25 4 mecA native 

location 

S. fleurettii 2010 mecA 6 (1972) - 

CH26 >256 mecA native 

location 

S. fleurettii 2010 mecA 2 (1992) - 

CH27 4 mecA native 

location 

S. fleurettii 2010 mecA 2 (1992) - 

CH29 4 mecA native 

location 

S. fleurettii 2010 mecA 2 (1992) - 

402567 >256 mecA native 

location 

S. fleurettii 2004 mecA 5 (1982) - 
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In S. vitulinus, the level of resistance to oxacillin was similar, irrespective of the 

fact that strains carried mecA or mecA2. The great majority of strains carrying the 

mecA2 (8/9) were susceptible having MIC values ranging from 0.1 to 3 µg/ml. The level 

of β-lactam resistance was the same for strains carrying mecA2 allele 1 (n=2) and 

mecA2 allele 2 (n=7). The only exception was a single strain, CH15, that carried mecA2 

allele 2, and had an MIC >400 µg/ml and a homogeneous resistant profile to oxacillin 

(Figure 1B). The S. vitulinus strains carrying mecA in the native location instead of 

mecA2 (9 isolates) carried the mecA allele 4. Almost all these isolates presented a 

susceptible phenotype with MICs ranging from 0.2-1.5 µg/ml but had a heterogeneous 

profile in which cells could grow up to 100-400 µg/ml in PAPs (Figure 1B). The only 

exception was strain CH2, with MIC of 4 µg/ml and an heterogeneous profile and strain 

CH5 with a MIC of 400 µg/ml and a homogeneous profile. The three S. vitulinus isolates 

carrying mecA in SCCmec (CH1, H91 and CH3), carried mecA allele 7 and showed 

similar levels of resistance as those observed for isolates carrying mecA in the native 

location. Strains H91 and CH1 presented an Etest MIC of 2 and 1 µg/ml, respectively 

and had subpopulations capable of growing up to 200 to 400 µg/ml of oxacillin. Strain 

CH3 had a even more susceptible phenotype with MIC of 0.1 µg/ml and 

subpopulations that grew up to 0.4 µg/ml of oxacillin (Figure 1B). 

In S. fleurettii the great majority of isolates were resistant to oxacillin with Etest 

MIC of 4->256 µg/ml. Five different mecA alleles were identified among the isolates; 

the great majority of isolates carried mecA allele 2 (8/12 isolates). Oxacillin population 

analysis profiles of these S. fleurettii isolates showed that almost all strains were 

heteroresistant and could grow up to 25-400 µg/ml (Figure 1C). The only exceptions 

were two strains, CH22 and CH28 (MIC=1 µ/ml) that could grow only up to 6 µg/ml and 

0.75 µg/ml, respectively. Both these strains carried mecA allele 2; therefore, in this 

case there was not a direct correlation between their increased susceptibility to 

oxacillin and the mecA allele that these strains carried. 
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Figure 1. Oxacillin susceptibility population analysis profiles (PAPs) for representative S. sciuri (A)(172, 202), S. 

vitulinus (B) and S. fleurettii (C). 
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Phenotypic resistance to oxacillin is associated to mutations in the mecA homologues 

promoter  

Mutations in the mecA1 promoter of S. sciuri strains SS37 and SS41, namely the 

insertion of IS256 and a single-nucleotide polymorphism (SNP), respectively, were 

previously suggested to be associated to a resistant phenotype (177). To further 

investigate the role of the mecA homologues promoter in the expression of β-lactam 

resistance in the population of S. sciuri group of species, we analyzed and compared 

the promoter region of isolates expressing resistance.  

The S. sciuri strains carrying only mecA1 and that showed phenotypic resistance 

to oxacillin were strains Jug17, K4, K5 and K7 (besides SS37 and SS41 that were already 

published, (177)). Our phylogenetic analysis (see below) has revealed that K4, K5 and 

K7 strains belong to the S. sciuri subspecies S. sciuri rodentius. We compared the 

sequence of the mecA1 promoter in these strains with the sequence of methicillin 

susceptible type strain S. sciuri rodentius K3w (177). In strains K4 and K5 we found 

similar alterations to the promoter as the ones identified in strain SS41. We were able 

to identify the same -10 sequence and a very similar -35 sequence that differed from 

SS41 in a single nucleotide, corresponding to a change from thymine to cytosine. On 

the other hand, the promoter of mecA1 of strain K7 had no alterations when 

compared to the promoter of mecA1 in the susceptible strain K3w. Strain Jug17 

belonged to a new phylogenetic group of S. sciuri (group 2, see below). We compared 

the promoter of this strain with a susceptible strain, SS16, that belonged to the same 

phylogenetic group and we found that the promoter region of the gene was very 

conserved between both strains (no alterations). 

To understand if like in S. sciuri alterations in the promoter could be 

responsible for a resistant phenotype in S. vitulinus, we aligned the nucleotide 

sequence 200 bp upstream mecA2 in two strains carrying the same allele but being 

either susceptible (CH10) or resistant to β-lactams (CH15). The single difference found 

was that the ribosome binding site (RBS) sequence, GGGAGGG, was located 

immediately upstream mecA2 in strain CH15, in position -3, while in strain CH10 and 

remaining mecA2-carrying S. vitulinus strains, this sequence was located in position -6.  
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To further assess the impact of the promoter in the expression of oxacillin 

resistance in S. vitulinus, we compared the promoter of high-level homogeneously 

resistant CH5, a strain carrying mecA in the native locus, with the promoter of low-

level heterogeneously resistant H91, that carried mecA in SCCmec. Analysis of the 

region located upstream mecA (200 bp) of strain CH5 showed the occurrence of two 

SNPs, in comparison with strain H91: in position -19, a change from a thymine to a 

cytosine and in position -97, a change from a thymine to guanidine. Nonetheless, the -

10 sequence TATACT and the -35 sequence TTGACA were conserved between the two 

strains. These results suggest that CH5 increased homogeneous resistance to oxacillin 

might be related with alterations in the genetic background. 

In S. fleurettii, we compared the promoter of strain 402567, expressing high 

level resistance with those of strains having low level resistance (CH22) or susceptible 

strains (CH28).  Interestingly, we found that CH28 had a deletion of 16 bp in position -

29 upstream mecA that may correspond to a deletion of the -10 sequence of the 

promoter (TATACT), which might explain its susceptible profile. On the other hand, 

strain CH22, had no SNPs in a 200 bp nucleotide sequence located upstream mecA 

when compared with the oxacillin-resistant strain 402567; we suggest that the 

increased susceptibility to oxacillin of CH22 strain might be related with alterations in 

the genetic background. 

 

The structure of the active site in mecA homologue-encoded PBPs is associated to β-

lactams susceptibility level 

The finding of a high diversity in the nucleotide and aminoacid sequence of 

mecA homologues associated to the variability in susceptibility to β-lactams, led as to 

hypothesize that alterations in the structure of mecA homologues with impact in 

protein activity could explain different levels of β-lactam resistance. To test this 

hypothesis we predicted the structure of the proteins encoded by mecA homologues 

(mecA allele 5, mecA2 allele 2, mecA1 allele 4, mecA1 allele 17, mecA1 allele 21, mecA1 

allele 22, mecA1 allele 25 and mecA1 allele 42) using ModWeb 

(https://modbase.compbio.ucsf.edu/modweb/). Modeller has identified that the 

https://modbase.compbio.ucsf.edu/modweb/
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overall predicted structure was either 100% similar to PPB2a, PDB code 1MWU (mecA 

allele 5), 90% similar (mecA2 allele 2) or 82% similar (mecA1 alleles). 

The alignment of each structure predicted by Modeller with PBP2a in Pymol 

and the visual inspection of the protein active center showed that  the protein 

encoded by mecA allele 5, carried by S. fleurettii had the exact same residues as S. 

aureus PBP2a. Although these residues were not in the exact same position, their 

orientation was the same (Figure 2A), suggesting that the acylation rate of these two 

proteins would be similar. Accordingly, the S. fleurettii isolates carrying this allele 

showed a high MIC to oxacillin, like is observed for strains carrying PBP2a 

(Supplementary Table 1).  

In what respects to the protein encoded by S. vitulinus, mecA2 allele 2, which is 

associated to susceptibility to β-lactams in almost all strains, it had two residues that 

were in positions different from those found in PBP2a: Ser403 and Thr600 (Figure 2B). 

In particular, Thr600 was not located in a β-sheet like is the case in PBP2a. These two 

differences might be enough to expose Ser403 to the β-lactam ring, leading to an 

acylation of the protein and to the susceptible phenotype observed. The only strain 

carrying mecA2 allele 2 that was resistant to β-lactams (CH15) had an alteration in the 

promoter of the protein.  

Finally, we studied in detail the active center of proteins encoded by mecA1 

(Ser401, Lys404, Tyr444, Ser460, Asn464, Ser596 and Thr598). The protein encoded by 

mecA1 allele 42, represented by the S. carnaticus type strain K11 (171), that has a 

susceptible phenotype to β-lactams, had two residues, Ser596 and Thr598, that were 

in positions that were completely different from those found in PBP2a (Figure 2C). 

Modeller predicted that unlike PBP2a these two residues were not in a β-sheet 

conformation. The position of these residues, which surround the active site groove, 

was more relaxed, suggesting that the access to Ser401 is facilitated, which could 

explain the susceptible phenotype observed. The structures predicted for the 

remaining mecA1 alleles analyzed were similar to the one described for strain K11, 

having the same position of the residues and structure of the active site. The only 

exception were the S. sciuri strains Jug17, HSM851 and M2710, carrying allele 4 (Figure 
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2D), in which Thr598 was much closer to Tyr444, thus “closing” the active site groove 

and putatively protecting Ser401 from interacting with the β-lactam ring. The low rate 

of acylation that should be provided by this distinctive structure might explain the high 

resistance to β-lactams observed in these particular strains.  

 

 

Figure 2. Alignment of the active centre of PBP2a (highlighted in cyan blue) and representative PBPs putatively 

encoded by mecA homologues. The structure of the PBP was predicted by Modeller and the alignment was 

produced in Pymol. A. 402567 mecA allele 5/PBP2a. B. CH10 mecA allele 2/PBP2a. C. K11 mecA1 allele 42/PBP2a.1. 

D. JUG17 mecA1 allele 4/PBP2a. Ser401/Ser403. 2. Lys404/Lys406. 3. Tyr444/Tyr446. 4. Ser460/Ser462. 5. 

Asn464/Asn466. 6. Ser596/Ser598. 7. Thr598/Thr600.  
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The majority of mutations conferring β-lactam resistance have emerged in the 

beginning of the antibiotic era  

We investigated the evolutionary rate of each mecA homologue, using BEAST. 

The MCC tree using a strict molecular clock has shown that the most recent common 

ancestor of all mecA homologues alleles was estimated to have emerged in 1947, 

seven years after the introduction of penicillin into clinical practice, and that two 

different clades split in 1952 (Figure 3A). One of these clades originated mecA1 and the 

other originated mecA2 and mecA. According to our results, the first mecA allele 

emerged in 1962, in S. fleurettii. On the other hand, the first mecA allele carried by 

SCCmec emerged in the S. sciuri rodentius type strain, K3 (171) in 1967 and the first 

mecA2 allele emerged in a S. vitulinus strain around 1957 (Figure 3B). 

Regarding the strains that expressed β-lactam resistance, we found that the 

strains were clustered along the tree. The majority of the resistant S. sciuri strains 

clustered in clade 1 (Figure 3A). In particular, the majority of β-lactam resistant strains 

that were mecA negative clustered in subclade 2 of clade 1 (five strains, asterisk in 

Figure 3A). Jug17 clustered in subclade 1 of clade 1 (asterisk in Figure 3A). These two 

subclades emerged in 1962. Our data indicates that alterations leading to β-lactam 

resistance, either by altering the promoter of mecA1 or the structure of PBP4, was 

achieved around the same time in an evolutionary prespective (Figure 3B). 

 



 

 

 

 

Figure 3A. Evolutionary history of mecA homologues alleles. Phylogenetic reconstruction of mecA homologues with BEAST.*clades that cluster the great majority of S. sciuri β-lactam resistant isolates.  
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Figure 3B. Evolutionary history of mecA homologues alleles. Schematic representation of the emergence of the different mecA homologues. 
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β-lactam resistance was associated mainly to humans and specific phylogenetic 

clades 

To investigate how mecA homologues providing β-lactam resistance evolved 

with phylogeny, we performed a SNP analysis with the predicted core genome of all 

isolates and reconstructed a phylogenetic tree based on the number of SNP 

differences (data not shown). Three well-defined phylogenetic groups were identified 

corresponding to each of the three species; there was an average of 150000 SNPs 

difference between the predicted core genomes of the three species (data not shown). 

In addition, we performed a SNP analysis of the predicted core genome of isolates 

belonging to each species independently, using S. fleurettii 402567 as a reference 

(Supplementary Figures 2A-C). The core genomes of S. fleurettii and S. vitulinus were 

more similar with each other (average 3000-9000 SNPs and S. vitulinus 4000-7000 

SNPs difference, respectively); on the other hand, S. sciuri core genomes clustered in 

five different phylogenetic groups (average of 15000 SNPs difference).  

Each strain of S. fleurettii belonged to a specific phylogenetic clade (average 

3000-9000 SNPs difference) and we found no correlation between the distribution of 

mecA alleles and phylogeny. The susceptible strains CH22 and CH28 belonged to 

specific phylogenetic clades that differed from the remaining strains 2830-4454 SNPs 

(Supplementary Figure 2A). 

Regarding S. vitulinus, we found that mecA2-carrying strains were slightly more 

related to each other (average 4010 SNPs) than to genetic backgrounds that carried 

mecA in the native locus (average 6098 SNPs). There was no correlation between the 

distribution of mecA2 alleles, mecA alleles carried in the native locus and SCCmec and 

the genetic background of the strains. In addition, the strains carrying SCCmec seemed 

unrelated to each other, suggesting that SCCmec was acquired independently by these 

strains. Moreover, we observed that β-lactam resistant strains belonged to specific 

phylogenetic clades, unrelated with the remaining strains and with each other 

(Supplementary Figure 2B). 

In our analysis of S. sciuri genetic backgrounds, we included type strains, 

representative of the three subspecies of S. sciuri: K1 (S. sciuri sciuri), K3 (S. sciuri 
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rodentius) and K11 (S. sciuri carnaticus) that belonged to three distinct groups, that we 

considered to be the different subspecies. Based on the SNP difference, we found that 

18 strains belonged to S. sciuri sciuri subspecies, 14 strains to S. sciuri rodentius 

subspecies and 11 strains to S. sciuri carnaticus subspecies. The remaining strains were 

considered to belong to two new S. sciuri subgroups (three strains in group 1 and 30 

strains in group 2), putatively new subspecies (Supplementary Figure 2C). 

Moreover, we found that, overall, each mecA1 allele was specific of each clade 

and that genetic diversity within each clade was different. In particular, we discovered 

that the group in which the genetic diversity of mecA1 was higher was the S. sciuri new 

subspecies group 2 (SID=90.6%; CI:83.8-97.3%), followed by the isolates belonging to S. 

sciuri sciuri group (SID=83.9%; CI:71.2-96.6%). The remaining phylogenetic subgroups 

had much lower genetic diversities (SID), including 68% in S. sciuri rodentius (CI:52.7-

83.4%), 57.2% in S. sciuri carnaticus (CI:39-75.5%)) and 19.3 % in the ancestral S. sciuri 

subgroup 1 (CI:0.3-38.3%). Interestingly, the phylogenetic groups in which the SID of 

mecA1 alleles was higher were also the ones that clustered a higher number of isolates 

collected from humans (S. sciuri sciuri, 89%; S. sciuri new subgroup 2, 77%).  

Regarding the distribution of S. sciuri β-lactam resistant isolates, we found that 

isolates in which resistance was associated to the presence of mecA within SCCmec 

were distributed along all phylogenetic clades, with the exception of S. sciuri 

carnaticus clade (Table 1). Moreover, the great majority of isolates were collected 

from humans (Table 1). In addition, we found that isolates that carried mecA1 alleles 

that were able to confer β-lactam resistance most often clustered in a phylogenetic 

branch belonging to the S. sciuri rodentius phylogenetic clade. These isolates were very 

related with each other; their core genomes had less than 100 SNPs difference. 

Interestingly, all these isolates carried alterations in the promoter of mecA1 (Table 1).  

Overall, these results suggest that resistant isolates of the phylogenetic sciuri 

group belonged to specific phylogenetic clades. We observed that in S. vitulinus and S. 

sciuri, each phylogenetic clade appears to have developed a different mechanism of β-

lactam resistance (Table 1). In particular, we found that specific S. vitulinus 

phylogenetic clades acquired SCCmec, accumulated differences in the genetic 
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background or in the promoter of mecA2. Specifically, in S. sciuri, acquisition of 

SCCmec as well as alterations in the structure of PBP4 were mostly associated with 

strains belonging to the S. sciuri subspecies group 2, and alterations in the promoter of 

mecA1 was exclusively observed among S. sciuri rodentius strains. While the few S. 

vitulinus strains that were β-lactam resistance were isolated from livestock, we found 

that most of the β-lactam resistant S. sciuri strains were isolated from humans. 
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DISCUSSION 

The mechanism of resistance to antibiotics mediated by mecA in 

Staphylococcus is one of the most efficient mechanisms of resistance to antibiotics in 

bacteria, providing resistance to all members of the large class of β-lactams. Several 

studies have showed that the mecA precursor was a native gene (mecA1) not providing 

resistance in Staphylococcus sciuri, the most primitive staphylococcal species (172, 

176). However, the evolutionary steps leading to β-lactam resistance have remained 

unclear. In this study, we showed for the first time that β-lactam resistance emerged 

several times and by different mechanisms during evolution of the most primitive 

staphylococcal species, belonging to the sciuri group. Moreover, we propose that 

antibiotic use in humans was the force driving evolution towards a resistant 

phenotype.  

We found that the first evolutionary stages leading to β-lactam resistance 

occurred in S. sciuri mecA1. This included the diversification of mecA1 sequence 

through mutation and recombination, which sporadically gave rise to non-synonymous 

substitutions mainly in the non-binding domain of the mecA1-encoded PBP4 that have 

impact in protein structure. Structural alterations were mainly in the position of 

residues that are part of the active site groove which we suggest to influence the 

access of the substrate to the active site Ser401. This could have impact in the activity 

of the protein when performing its native function in cell wall synthesis. However, our 

results showed that structural changes could have also been a strategy to decrease 

susceptibility to β-lactams, since many of structural alterations in the NB domain of the 

protein had a parallel alteration in the phenotypic resistance to β-lactams.  

Overall, susceptibility to β-lactams, observed in the majority of mecA1 and also 

in mecA2 alleles encoded proteins, was associated to a NB domain wherein the 

residues Ser596 and Thr598 were located outside a β-sheet giving rise to a non-

distorted active site that allows acylation by the β-lactam ring. On the other hand, 

resistance to β-lactams was associated to mecA1 alleles encoded proteins that contain 

a distorted active site wherein, like in PBP2a, the access of the substrate to active site 

is hindered. Although the TP domain has been described to be the crucial domain for 
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PBPs activity (108), our results point towards a fundamental role of the NB domain for 

its full performance. The diversification of the NB domain was mainly observed in S. 

sciuri and more rarely observed in S. fleurettii and S. vitulinus.  

Interestingly, we found that besides diversification of mecA1, the most 

primitive group of staphylococcal species appear to have used alternative mechanisms 

for the generation of β-lactam resistance. In particular, we observed that alterations in 

the promoter of mecA homologues were also frequently associated to changes in 

phenotypic susceptibility to β-lactams among this group of staphylococcal species. The 

association of changes in the promoter with an increased mecA1 expression and a 

resultant resistant phenotype was a phenomenon previously observed in a few strains 

of S. sciuri (177). In this study we confirmed that these type of events probably 

occurred in a relatively high frequency in the overall S. sciuri population and also in 

other species of the S. sciuri group, like in S. vitulinus and S. fleurettii. Alterations 

included mainly deletions around the RBS site and alterations in -10 and -35 regions. 

This type of alterations occurred more frequently in specific S. sciuri subspecies like S. 

sciuri rodentius, suggesting that this subspecies might have been subjected to higher or 

different antibiotic pressures than other subspecies or that this species is more 

adapted to express resistance. 

Actually, our results also illustrated that like in S. aureus (207, 210, 216) 

another factor that seems to be important for the expression of β-lactam resistance in 

this primitive group of staphylococcal species is the genetic background. We have 

found S. vitulinus (mecA allele 4) and S. fleurettii (mecA allele 2) isolates carrying the 

same mecA allele that showed different levels of β-lactam resistance. The effect of the 

genetic background is also well evidenced when the phenotypic resistance to β-

lactams was compared in strains of S. vitulinus and S. fleurettii isolates carrying mecA 

in the native location in which mecA regulators are also present: while in S. vitulinus, 

isolates were almost all fully susceptible to β-lactams, S. fleurettii were almost all 

resistant. The low-level of β-lactam resistance when compared to S. fleurettii is 

probably due to the fact that S. vitulinus genetic background is not fully adapted to 

express resistance. Genes involved in general metabolism were previously described to 

be important for the full expression of resistance in S. aureus, suggesting an interplay 
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between the overall metabolism and β-lactam resistance (216). The same 

phenomenon probably occurs in S. fleurettii and S. vitulinus, wherein the metabolism 

appears to be more favourable to the full expression of resistance in S. fleurettii. 

The greatest degree of genetic diversity in S. sciuri mecA1 was observed in 

isolates of human origin. This result seems to imply that adaptation to humans might 

have been a driving force to the generation of diversity in the mecA1 sequence and to 

the emergence of resistance to β-lactams. The exact human factors that have 

contributed to mecA1 diversification are not known. However, we can speculate that 

the host jump from animals to humans might be itself the event prompting diversity in 

mecA1, as a means of survival. Actually, extensive diversification was not observed in 

mecA homologues from S. fleurettii or S. vitulinus, which contrarily to S. sciuri, were 

never described in human infection or colonization (170). On the other hand, antibiotic 

pressure, specifically of penicillin, might have also had a role in mecA1 diversification, 

since according to our Bayesian analysis, the time the diversification of mecA1 begun 

(1947-1957) coincides with the beginning of the massive use of penicillin in hospitals 

(106). 

Overall our data suggests that the first evolutionary steps leading to β-lactam 

resistance in Staphylococcus occurred in the most primitive staphylococcal species 

occurred when they jumped into the human host and were subjected to β-lactam 

pressure. The development of resistance involved different strategies that evolved in a 

concerted way which included structural diversification of a native PBP, changes in the 

mecA homologues promoter and adaptation of the genetic background of the bacteria. 

These results highlight the importance of new human colonizing bacterial species as 

reservoirs of antibiotic resistance genes and emphasize the diverse resources available 

to bacteria to adapt to new environmental conditions.  
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SUPPLEMENTARY DATA 

 

Supplementary Table 1. Epidemiological information of all strains studied. The distribution of the different mecA homologue alleles in the population of isolates studied is also shown. Phylogenetic group (S. 

sciuri sciuri, S. sciuri rodentius, S, sciuri carnaticus, S. sciuri new subspecies group 1, S. sciuri new subspecies group 2, S. vitulinus, S. fleurettii), origin of the strains and oxacillin MIC are also shown. β-lactam 

resistant strains are highlighted in bold. NB: non-binding domain: TP: transpeptidase domain.  

 

Strain Phylogenetic group mec homologues 

allele 

NB allele TP allele MIC 

(µg/ml) 

Year of 

isolation 

Origin Geographic 

location 

JUG1 S. sciuri new 1 mecA1 16/mecA 7 mecA1 11/ mecA 2 mecA1 30/ mecA 2 >256 2002 Domestic dog Czech Republic 

M1886 S. sciuri new 1 mecA1 43/mecA 7 mecA1 18/ mecA 14 mecA1 7/ mecA 2 64 2011 Human Denmark 

K22 S. sciuri new 1 mecA1 44 19 13 1.5 1992 Morgan horse USA 

CH17 S. sciuri new 2 mecA1 7/mecA 8 mecA1 14/ mecA 2 mecA1 32/ mecA 3 >256 2004 Horse Switzerland 

CH18 S. sciuri new 2 mecA1 7/mecA 8 mecA1 14/ mecA 2 mecA1 32/ mecA 3 >256 2005 Horse Switzerland 

D573 S. sciuri new 2 mecA1 6/mecA 9 mecA1 14/ mecA 4 mecA1 31/ mecA 2 >256 2007 Human Denmark 

HSM805 S. sciuri new 2 mecA1 7 14 32 0.75 2010 Human Portugal 

HSM851 S. sciuri new 2 mecA1 4/mecA 7 mecA1 12/ mecA 2 mecA1 24/ mecA 2 16 2010 Human Portugal 

JUG17 S. sciuri new 2 mecA1 4 12 24 >256 2002 Human Yugoslavia 

JUG2 S. sciuri new 2 mecA1 15 10 29 0.75 2002 Domestic dog Yoguslavia 

K132 S. sciuri new 2 mecA1 5 13 24 0.5 1976 Howler monkey Panama 

K141 S. sciuri new 2 mecA1 8 15 24 1 1992 California mouse USA 

K148 S. sciuri new 2 mecA1 3 14 25 0.38 1992 Bottlenose dolphin USA 

K2 S. sciuri new 2 mecA1 8 15 24 1 1992 Beef tongue USA 

K20 S. sciuri new 2 mecA1 13 15 24 1 1992 Bottlenose dolphin USA 

K24 S. sciuri new 2 mecA1 2 14 24 0.75 1992 Morgan horse USA 

K51 S. sciuri new 2 mecA1 8 15 24 1.5 1971 Human USA 

K61 S. sciuri new 2 mecA1 14 15 28 1.5 1992 Pilot whale USA 

K69 S. sciuri new 2 mecA1 9 16 24 1 1986 Human USA 

KLO59 S. sciuri new 2 mecA1 10 15 24 2 1972 Domestic dog USA 

M1234 S. sciuri new 2 mecA1 6/mecA 9 mecA1 14/ mecA 4 mecA1 31/ mecA 2 >256 2009 Human Denmark 

M1653 S. sciuri new 2 mecA1 6/mecA 9 mecA1 14/ mecA 4 mecA1 31/ mecA 2 >256 2010 Human Denmark 

M2276 S. sciuri new 2 mecA1 6/mecA 9 mecA1 14/ mecA 4 mecA1 31/ mecA 2 >256 2011 Human Denmark 

M2590 S. sciuri new 2 mecA1 6/mecA 9 mecA1 14/ mecA 4 mecA1 31/ mecA 2 >256 2012 Human Denmark 

M2710 S. sciuri new 2 mecA1 4/mecA 7 mecA1 12/ mecA 2 mecA1 24/ mecA 2 >256 2012 Human Denmark 

M692 S. sciuri new 2 mecA1 6/mecA 9 mecA1 14/ mecA 4 mecA1 31/ mecA 2 96 2007 Human Denmark 



 

  

Strain Phylogenetic group mec homologues 

allele 

NB allele TP allele MIC 

(µg/ml) 

Year of 

isolation 

Origin Geographic 

location 

SS16 S. sciuri new 2 mecA1 1 14 24 0.75 1996 Human Portugal 

SS18 S. sciuri new 2 mecA1 12 15 26 0.75 1996 Human Portugal 

SS23 S. sciuri new 2 mecA1 11 15 27 1 1997 Human Portugal 

SS24 S. sciuri new 2 mecA1 6 14 31 0.75 1997 Human Portugal 

SS27 S. sciuri new 2 mecA1 12 15 26 0.75 1998 Human Portugal 

SS3 S. sciuri new 2 mecA1 6 14 31 1 1996 Human Portugal 

SS5 S. sciuri new 2 mecA1 8 15 24 1 1996 Human Portugal 

11/01 S. sciuri carnaticus mecA1 22 3 21 0.5 2002 Human Czech Republic 

CCUG38359 S. sciuri carnaticus mecA1 23 2 21 0.75 2002 Human Sweden 

K11 S. sciuri carnaticus mecA1 42 17 15 0.75 1990 Veal leg USA 

K116 S. sciuri carnaticus mecA1 41 17 15 0.75 1992 Beef lips USA 

K12 S. sciuri carnaticus mecA1 41 17 15 1 1992 Arabian horse USA 

K16 S. sciuri carnaticus mecA1 41 17 15 0.75 1992 Jersey calf USA 

K163 S. sciuri carnaticus mecA1 24 4 23 0.75 1992 Holstein cow USA 

K30 S. sciuri carnaticus mecA1 25 5 22 1.5 1992 Jersey cattle heifer USA 

K31 S. sciuri carnaticus mecA1 41 17 15 0.5 1992 Jersey cattle calf USA 

K32 S. sciuri carnaticus mecA1 41 17 15 0.75 1992 Jersey cattle calf USA 

K33 S. sciuri carnaticus mecA1 41 17 15 0.75 1992 Jersey cattle heifer USA 

CH16 S. sciuri rodentius mecA1 19/mecA 7 mecA1 7/ mecA 2 mecA1 17/ mecA 2 24 2004 Horse Switzerland 

K10 S. sciuri rodentius mecA1 20 6 19 0.75 1992 European red squirrel USA 

K125 S. sciuri rodentius mecA1 18 8 16 1 1992 Cotton rat USA 

K27 S. sciuri rodentius mecA1 18 8 16 0.75 1992 Norway rat USA 

K29 S. sciuri rodentius mecA1 20 6 19 0.75 1992 Norway rat USA 

K3 S. sciuri rodentius mecA1 17/mecA 10 mecA1 6/ mecA 3 mecA1 18/ mecA 1 >256 1992 Neonatal ward Mozambique 

K4 S. sciuri rodentius mecA1 17 6 18 >256 1992 Human Mozambique 

K5 S. sciuri rodentius mecA1 17 6 18 25 1992 Human Mozambique 

K6 S. sciuri rodentius mecA1 42/mecA 7 mecA1 17/ mecA 2 mecA1 15/ mecA 2 >256 1992 Human Mozambique 

K7 S. sciuri rodentius mecA1 17 6 18 >256 1992 Human Mozambique 

K83 S. sciuri rodentius mecA1 21 9 20 0.75 1992 Human Czech Republic 

SS34 S. sciuri rodentius mecA1 20 6 19 0.75 1996 Human Portugal 

SS37 S. sciuri rodentius mecA1 17 6 18 25 1996 Human Portugal 

SS41 S. sciuri rodentius mecA1 17 6 18 3 1996 Human Portugal 

K1 S. sciuri sciuri mecA1 36 25 7 2 1972 Eastern grey squirrel USA 

K105 S. sciuri sciuri mecA1 34 20 12 1 1971 Human USA 

K13 S. sciuri sciuri mecA1 27 20 5 0.5 1992 Eastern grey squirrel USA 

K139 S. sciuri sciuri mecA1 40 21 10 1 1992 Holstein cow USA 

K14 S. sciuri sciuri mecA1 39 20 11 0.75 1992 Eastern harvest mouse USA 

K140 S. sciuri sciuri mecA1 28 20 4 1 1972 Opossum USA 



 

 

Strain Phylogenetic group mec homologues 

allele 

NB allele TP allele MIC 

(µg/ml) 

Year of 

isolation 

Origin Geographic 

location 

K142 S. sciuri sciuri mecA1 35 24 7 1 1992 Horse USA 

K143 S. sciuri sciuri mecA1 35 24 7 1 1972 Racoon USA 

K144 S. sciuri sciuri mecA1 33 20 9 1 1992 Jersey calf USA 

K149 S. sciuri sciuri mecA1 31 1 2 0.75 1972 Eastern grey squirrel USA 

K21 S. sciuri sciuri mecA1 32 22 9 0.5 1993 Pilot whale USA 

K23 S. sciuri sciuri mecA1 35 24 7 0.75 1992 Red kangaroo USA 

K25 S. sciuri sciuri mecA1 29 23 3 0.5 1992 Prairie vole USA 

KLO56 S. sciuri sciuri mecA1 38 20 8 0.75 1972 Opossum USA 

KLO58 S. sciuri sciuri mecA1 26 20 6 0.75 1972 Squirrel monkey USA? 

KLO63 S. sciuri sciuri mecA1 37 24 7 1 1972 Eastern grey squirrel USA 

KLO64 S. sciuri sciuri mecA1 30 20 1 2 1972 Southern flying squirrel USA 

M1640 S. sciuri sciuri mecA1 37/mecA 7 mecA1 24/ mecA 2 mecA1 7/ mecA 2 96 2010 Human Denmark 

H39 S. vitulinus mecA 4 5 4 0.75 2005 Horse Denmark 

H91 S. vitulinus mecA 7 2 2 2 2005 Horse Denmark 

401946 S. vitulinus mecA 4 5 4 2 2004 Horse The Netherlands 

CH1 S. vitulinus mecA 7 2 2 1 2005 Horse Switzerland 

CH2 S. vitulinus mecA 4 5 4 4 2004 Horse Switzerland 

CH3 S. vitulinus mecA 7 2 2 0.75 2005 Horse Switzerland 

CH4 S. vitulinus mecA 4 5 4 0.75 2004 Horse Switzerland 

CH5 S. vitulinus mecA 4 5 4 >256 2005 Horse Switzerland 

CH6 S. vitulinus mecA 4 5 4 1.5 2004 Horse Switzerland 

CH7 S. vitulinus mecA2 1 1 1 0.75 2004 Horse Switzerland 

CH8 S. vitulinus mecA2 2 1 2 0.19 2005 Horse Switzerland 

CH9 S. vitulinus mecA2 2 1 2 0.5 2004 Horse Switzerland 

CH10 S. vitulinus mecA2 2 1 2 0.5 2004 Horse Switzerland 

CH11 S. vitulinus mecA2 1 1 1 0.5 2005 Horse Switzerland 

CH12 S. vitulinus mecA2 2 1 2 0.5 2004 Horse Switzerland 

CH13 S. vitulinus mecA2 2 1 2 0.1 2004 Horse Switzerland 

CH14 S. vitulinus mecA2 2 1 2 0.5 2005 Horse Switzerland 

CH15 S. vitulinus mecA2 2 1 2 >256 2004 Horse Switzerland 

402567 S. fleurettii mecA 5 6 4 >256 2004 Horse The Netherlands 

CH19 S. fleurettii mecA 1 1 6 8 2009 Horse Switzerland 

CH20 S. fleurettii mecA 3 5 5 6 2009 Horse Switzerland 

CH21 S. fleurettii mecA 2 5 4 4 2010 Horse Switzerland 

CH22 S. fleurettii mecA 2 5 4 1 2010 Horse Switzerland 

CH23 S. fleurettii mecA 2 5 4 4 2010 Horse Switzerland 

CH24 S. fleurettii mecA 2 5 4 >256 2009 Horse Switzerland 

CH25 S. fleurettii mecA 6 5 2 4 2010 Horse Switzerland 



 

  

Strain Phylogenetic group mec homologues 

allele 

NB allele TP allele MIC 

(µg/ml) 

Year of 

isolation 

Origin Geographic 

location 

CH26 S. fleurettii mecA 2 5 4 >256 2010 Horse Switzerland 

CH27 S. fleurettii mecA 2 4 4 4 2010 Horse Switzerland 

CH28 S. fleurettii mecA 2 5 4 1 2010 Horse Switzerland 

CH29 S. fleurettii mecA 2 5 4 4 2010 Horse Switzerland 



 

 

 

 

 

Supplementary Figure 1A. Phylogenetic analysis of the mecA homologues nucleotide sequence. The sequences of each mec homologue gene was extracted from the de novo assembly contigs and aligned with 

ClustalW. The tree was performed with UPGMA method, under the Jukes-Cantor substitution model, with a bootstrap of 100 replicates. The unrooted tree is shown.  
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Supplementary Figure 1B. Phylogenetic analysis of the mecA1 alleles. nucleotide sequence. The nucleotide sequence of each mecA1 allele was extracted from the de novo assembly contigs and aligned with 

ClustalW. The tree was performed with UPGMA method, under the Jukes-Cantor substitution model, with a bootstrap of 100 replicates. The strain ID, followed by the mecA1 allele number is shown.  
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Supplementary Figure 1C. Identification of recombination events among mecA1 alleles. The recombinant parts of mecA1 alleles are clustered 

apart from the remaining portion of the allele. In addition, a colour code is applied to identity the putative major parents that were involved in 

the recombination events.  
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Supplementary Figure 2. Phylogenetic analysis of the core genome of isolates belonging to the sciuri group. Unrooted phylogenetic tree based 

on the number of SNP differences found among the predicted core genome of the strains. The reference genome used was S. fleurettii 402567. 

A. S. fleurettii. B. S. vitulinus. C. S. sciuri. 
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ABSTRACT 

Several lines of evidence indicate that the most primitive staphylococcal 

species, the Staphylococcus sciuri group, were involved in the first stages of evolution 

of SCCmec – the genetic element carrying the β-lactam resistance gene mecA. 

However, many steps are still missing from this evolutionary history. In particular, it is 

not known how mecA was incorporated into the mobile element SCC prior to 

dissemination among Staphylococcus aureus and other pathogenic staphylococcal 

species.  

To gain insights into the possible contribution of several species of the 

Staphylococcus sciuri group to the assembly of SCCmec, we sequenced the genomes of 

106 isolates, comprising S. sciuri (n=76), Staphylococcus vitulinus (n=18) and 

Staphylococcus fleurettii (n=12) from animal and human sources, and characterized the 

native location of mecA and the SCC insertion site using a variety of comparative 

genomic approaches. Moreover, we performed a SNP analysis of the genomes, in 

order to understand SCCmec evolution in relation to phylogeny. 

We found that each of three species of the S. sciuri group contributed to the 

evolution of SCCmec: S. vitulinus and S. fleurettii to the assembly of the mec complex, 

and S. sciuri most likely provided the mobile element in which mecA was later 

incorporated. We hypothesize that an ancestral SCCmec III cassette (an element 

carried by one of the most epidemic methicillin-resistant S. aureus clones), originated 

in S. sciuri possibly by a recombination event in a human host or a human-created 

environment and later was transferred to S. aureus. 

 

IMPORTANCE 

Pathogenicity islands like SCCmec can alter in critical ways the invasive 

potential of bacteria. However, steps in the assembly of such mosaic structures are not 

well understood. In this study we aimed to identify key evolutionary events in the 

construction of SCCmec, an element that had a huge impact on the virulence and 

resistance potential of Staphylococcus aureus. The study described here provides 
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evidence that the assembly of SCCmec occurred in parallel with the evolution of 

phylogeny and involved several different species within the genera. Our data suggest 

that primitive prokaryotic species frequent in wild animals may represent gene pools 

for the construction of pathogenicity islands that have major impact on human health 

if they are transferred into bacteria capable of colonizing humans. 
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INTRODUCTION 

The most important mechanism of resistance to β-lactam antibiotics is 

associated with the mecA gene which encodes an extra penicillin-binding protein, 

called PBP2a, that has low affinity to virtually all β-lactam antibiotics (217). The mecA 

gene is carried on a structurally complex mobile genetic element called staphylococcal 

cassette chromosome mec (SCCmec) that can also transport determinants of 

resistance to other antimicrobials, virulence determinants and other genes important 

for bacterial survival in stress conditions (109). Thus in a single event of genetic 

acquisition, SCCmec can turn susceptible staphylococci into virulent multidrug-

resistant pathogens, well adapted to thrive in an infection situation, particularly in the 

hospital environment. The advantage for bacteria to carry this element is indicated by 

the wide distribution of SCCmec among both nosocomial and community 

staphylococcal populations (106). Dissemination of SCCmec among Staphylococcus 

aureus strains constitutes a real public health threat worldwide (218) due to the 

associated complications in treatment and disease outcome.  

SCCmec has a modular structure: it is composed of two essential elements, the 

mec complex – composed of mecA and its regulators (mecR1 and mecI) – and the ccr 

complex –containing cassette chromosome recombinase (ccr) genes that assure the 

mobility of the cassette (109, 111). SCCmec may also carry insertion sequences (IS), 

transposons and plasmids, as well as housekeeping genes inside the so-called joining 

regions (J1-J3). SCCmec inserts at a specific site on the chromosome, downstream of 

orfX (109) (recently re-named rlmH), which encodes an rRNA methyltransferase (115). 

The insertion of SCCmec at orfX creates direct (DR) or inverted (IR)repeats, which form 

the boundaries of the element (109). 

Several lines of evidence suggest that SCCmec evolution occurred in the most 

primitive group of Staphylococcus species, the Staphylococcus sciuri group. Previous 

studies showed that mecA1, a ubiquitous gene in S. sciuri with 80% nucleotide identity 

to S. aureus mecA, was the most probable evolutionary precursor of mecA (172, 174). 

Follow-up studies showed that, mecA1 was able to express resistance and to 

participate in the cell-wall biosynthesis pathway, just like PBP2a (176, 189), when 
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introduced into a S. aureus genetic background. Moreover, other homologues closer to 

mecA than mecA1, along evolutionary lines were also identified in other species of the 

S. sciuri group, namely mecA2 (90% identity) in S. vitulinus and mecA (99% identity) in 

S. fleurettii, suggesting a vertical evolution of the gene along phylogeny (173, 178). In 

contrast to S. sciuri and S. vitulinus, mecA was flanked by the regulators mecR1 and 

mecI in S. fleurettii, leading to the hypothesis that the mec complex was first 

assembled in this species (173). Among the other species of the S. sciuri group, 

Staphylococcus lentus has been the least studied, and no information at all is available 

regarding the distribution of SCCmec elements in Staphylococcus stepanoviccii.  

A recent study investigating the distribution of ccr genes among S. sciuri 

showed that the frequency of ccr in methicillin-susceptible S. sciuri was much higher 

(35%) than that described for other coagulase-negative staphylococci (CoNS) (219). 

Moreover, the most frequent ccr allotypes corresponded to homologues of ccrA3B3, 

although homologues of all other ccr allotypes were also identified (219). This suggests 

that S. sciuri – besides being the original source of the mecA determinant – may also 

have been the donor of the ccr complex for the assembly of SCCmec.   

Studies on SCCmec evolution performed so far, suggest an important role of the 

S. sciuri group but those studies were base only on a limited number of isolates and 

provided scattered evidence on the evolution, diversification and assembly of SCCmec.  

In this study we provide missing links in the evolution of SCCmec through the study of 

a large and diverse collection of isolates belonging to the S. sciuri group using whole 

genome sequencing. 
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METHODS 

Bacterial collection. A collection of 106 staphylococcal isolates, comprising 76 S. sciuri, 

18 S. vitulinus and 12 S. fleurettii was assembled. In S. sciuri, 29 isolates were obtained 

from humans, and the remaining 47 were recovered from wild and domestic mammals 

(Supplementary Table S1). The isolates originated from nine different countries (Czech 

Republic, Denmark, Portugal, Switzerland, Sweden, former Yugoslavia, Mozambique, 

Panama and USA) during the period 1972-2012. S. vitulinus and S. fleurettii isolates 

were collected from horses and bovine mastitis milk samples, in Denmark, Switzerland 

and the Netherlands, in 2004, 2005 and 2010. The S. sciuri isolates were identified at 

the species level by 16S RNA ribotyping and API-Staph (Biomerieux, France). S. 

fleurettii and S. vitulinus were identified at the species level by sequencing of 16S rRNA 

or sodA and Maldi-tof analysis (Microflex LT, Bruker Daltonics GmbH, Bremen) (178, 

220, 221). Species identification was confirmed by phylogenetic analysis of the 

sequence of the tuf gene (222) in the sequencing data produced in this study. 

 

DNA preparation and whole-genome sequencing: S. sciuri DNA samples were 

prepared using a phenol-chlorophorm extraction protocol. S. fleurettii and S. vitulinus 

DNA was prepared with DNeasy Blood & Tissue Kit (Qiagen, Limburg, The 

Netherlands). Sequencing libraries were prepared by sonic fragmentation and adapter 

ligation and then sequenced on the Illumina HiSeq 2000/2500 platform, producing 

paired 100 bp reads. The reads were assembled de novo using VELVET (33). In addition, 

strain S. fleurettii 402567 was also sequenced using a PacBio RS apparatus and de novo 

assembly was performed using HGAP 3 

(https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/HGAP-in-SMRT-

Analysis). 

 

Assessment of genetic relatedness between isolates: PacBio reads were combined 

with Illumina reads obtained for S. fleurettii isolate 402567 in CLC Genomics 

Workbench (Qiagen, Limburg, The Netherlands), using the Genome Finishing module. 

http://www.qiagen.com/products/catalog/sample-technologies/dna-sample-technologies/genomic-dna/dneasy-blood-and-tissue-kit
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Resulting contigs were ordered using Staphylococcus xylosus which is the species most 

closely related to S. fleurettii that had a closed genome (NCBI accession number 

CP007208.1; average nucleotide identity with S. sciuri, 78%; S. vitulinus, 77.1%; and S. 

fleurettii, 78.5%). Gaps were closed by mapping Illumina data of the remaining S. 

fleurettii strains to the contigs. The resulting closed genome was annotated with RAST 

(http://rast.nmpdr.org/). In brief, we found that the S. fleurettii 402567 genome was 

2.58 Mbp in length, with 31.7% G+C content and 2498 coding sequences, comprising 

1931 putative genes and 567 pseudogenes. The S. fleurettii 402567 closed genome was 

used as a reference to identify single nucleotide polymorphisms (SNPs) in the draft 

genomes of each subset of strains belonging to a single species, including S. fleurettii, 

S. vitulinus and S. sciuri, as well as within the entire collection of samples. Reads were 

mapped to the reference using Stampy (version 1.0.11) and variants were called using 

SAMtools (version 0.1.12). Phylogenies were reconstructed using neighbor-joining and 

drawn in FigTree (http://tree.bio.ed.ac.uk/software/figtree/).   

 

BLAST and phylogenetic analysis. The contigs obtained in the VELVET de novo 

assembly were used to assess the presence of several genes of interest, which were 

detected using BLAST with a 70% nucleotide identity threshold. Sequences of genes 

found within SCCmec III or published gene sequences of S. sciuri, S. fleurettii and S. 

vitulinus from NCBI (http://www.ncbi.nlm.nih.gov/) and (173) were used as reference. 

The nucleotide sequences of specific genes identified by BLAST analysis were extracted 

from the sequence of the contigs and then aligned using ClustalW. Phylogenetic trees 

were constructed using neighbor-joining. In addition, the phylogeny of SCC and 

SCCmec elements was produced by aligning the sequence of these elements with 

Mauve (34). 

 

Manual annotation. The entire contig containing orfX was annotated for a group of 

randomly chosen strains (17 S. sciuri, 4 S. fleurettii and 5 S. vitulinus isolates). The orfX 

was identified by BLAST analysis as described above. The remaining ORFs of the contig 

were identified using GeneMark-hmm (http://exon.gatech.edu/GeneMark/) and 

http://www.ncbi.nlm.nih.gov/
http://exon.gatech.edu/GeneMark/
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annotated with BLAST using the NCBI non-redundant database, with a minimum match 

threshold of 70% across at least 30% of the gene; ccr types were assigned as previously 

suggested (111). 

 

Comparative genomic analysis. The contigs corresponding to SCC and/or SCCmec 

cassettes containing regions of high identity in nucleotide sequence (>80%) and 

content were compared using WEBACT (http://www.webact.org/WebACT/home).   

 

Statistical analysis. Statistical significance of differences between proportions was 

evaluated by the Chi-square (χ2) test using a confidence interval of 95%.  

 

Data deposition. The reference genome obtained was deposited in NCBI database and 

raw reads in ENA. 

 

Rational for the development of the SCCmec assembly model. For the construction of 

the model we considered that the origin of one gene or block of genes would be the 

species in which the most ancestral form of the gene would be found, the synteny is 

more conserved and the frequency and genetic diversity is the highest. On the other 

hand, the order of occurrence of events was recognized by the level of homology with 

that of genes present in SCCmec III as well as by the presence of intermediate forms of 

a gene or specific structures in a single phylogenetic defined group, like a species or 

sub-species, which is also observed in their descendants and not observed in their 

ancestors. Also, when a similar structure would be found in different phylogenetic 

defined groups this would suggest the occurrence of horizontal gene transfer (HGT) 

between them.  

 

  

http://www.webact.org/WebACT/home
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RESULTS AND DISCUSSION 

Studies performed so far, suggest an important role of the S. sciuri group in 

SCCmec assembly, but when, where and how the different assembly steps occurred is 

still elusive. In this study we aim to demonstrate the role of different species within 

the S. sciuri group to the construction of the cassette. In particular we were interested 

in understanding how the mecA homologue present in S. sciuri evolved to be part of 

mec complex, how the mobile genetic elements SCC were created and how was mec 

complex incorporated into these elements and became mobile. To address these 

questions we sequenced the genome of 106 isolates belonging to S. sciuri, S. vitulinus 

and S. fleurettii, all species belonging to the S. sciuri group, collected in different time 

periods, geographic regions and from both humans and animals and analyzed the orfX 

region and the region in the vicinity of mecA homologues.  

To identify proofs to the origin and subsequent evolutionary steps of the 

different pieces within the SCCmec mosaic structure we looked for the distribution of 

structural elements of SCCmec type III, the most frequent in species of the S. sciuri 

group, using BLAST analysis. Also, we compared the synteny of these structural 

elements with those of S. aureus SCCmec III and examined their relatedness using 

phylogenetic analysis. Finally, to identify blocks of homology between SCC elements in 

different species we compared the complete SCC elements using alignment tools and 

iterative phylogenetic analysis.  

 

Evolution of mecA and flanking genes in the native location  

The location of the native mecA homologues was identified in all isolates by 

confirming the presence of genes previously shown to be in the vicinity of mecA1 in S. 

sciuri, mecA2 in S. vitulinus and mecA in S. fleurettii (173). We found that the native 

location of mecA homologues was approximately 200 kb downstream of orfX in the 

three species analyzed. The location of this PBP gene was the closest to orfX, when 

compared to other native PBP genes in S. sciuri and other staphylococcal genomes 

(http://www.ncbi.nlm.nih.gov/)(25, 27, 52, 126). This location near orfX and oriC may 

have been important for integration of the mec complex into the SCC elements by 

http://www.ncbi.nlm.nih.gov/
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recombination. On the other hand, the integration into a site near oriC may have 

increased the mecA gene dosage, providing a potential selective advantage via 

increased resistance to β-lactams, as previously observed when a strong mecA1 

promotor was formed in S. sciuri through the insertion of IS256 (177). 

We also observed that the mecA homologues were always flanked by the same 

genes in the native location, as previously described (173). This included psm-mec, a 

gene implicated in S. aureus virulence, and located immediately upstream of mecA 

homologues (137) and ugpQ, which is located downstream of mecA homologues. 

Interestingly, these genes are exactly the same as those that are flanking mecA in 

contemporary SCCmec types carried by MRSA (138). However, the level of homology 

of psm-mec and ugpQ from MRSA with those from the S. sciuri group, varied according 

to the species analyzed. The most similar psm-mec and upgQ to those of MRSA were 

found in the vicinity of S. fleurettii and S. vitulinus mecA (98.55% and 99.87-100%, 

respectively), followed by those found in the vicinity of S. vitulinus mecA2 (97%; 

86.56%) and in the vicinity of S. sciuri mecA1 (91-94%; 75-85%) (Table 1). 

Although most strains contained at least one copy of a mecA homologue in the 

native location, their identities and frequencies differed in the three species analyzed. 

The mecA1 was ubiquitous in S. sciuri and mecA in S. fleurettii. Although ubiquity of 

mecA1 was previously described in S. sciuri (172), the ubiquity of mecA in S. fleurettii is 

in contradiction with previous studies, where a much smaller collection of isolates was 

analyzed (173). In contrast, in S. vitulinus the type of mecA homologue found in the 

native location varied from strain to strain. Half (9/18) of the S. vitulinus strains carried 

mecA2 (178), but in six S. vitulinus strains we identified a mecA homologue with 99% 

identity to that of the S. aureus mecA. The remaining three S. vitulinus strains had no 

mecA homologue at the native location (Table 1), but instead carried mecA near the 

orfX, that was 100% identical to mecA of MRSA.   

In addition to mecA1, we found that 16 out of the total 76 S. sciuri strains also 

carried MRSA mecA in the orfX region. Moreover, the mecA homologue most similar to 

that of MRSA strains was the mecA from S. sciuri and S. vitulinus located at the orfX 

(100% nucleotide identity), followed by S. fleurettii and S. vitulinus mecA (99% 
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nucleotide identity), S. vitulinus mecA2 (94%) and S. sciuri mecA1 (80%), all located at 

the native location. 

When psm-mec, upgQ and mecA homologues from the three species were 

compared to MRSA in a phylogenetic tree (where S. sciuri is the most divergent and S. 

fleuretti the most similar to MRSA), the hierarchy observed was comparable to that 

obtained for other housekeeping genes located far away from the native location, and 

was similar to the phylogenetic hierarchy obtained when housekeeping genes from the 

different species were used to construct a phylogenetic tree (data not shown). 

Therefore, the comparison of mecA homologues and its neighboring genes to the ones 

carried by SCCmec reflected the phylogeny of the species in an evolutionary 

perspective (Table 1).  

Altogether, these results suggest that the first steps in the evolution of the β-

lactam resistance determinant were the evolution of S. sciuri mecA1 and its 

neighboring genes into mecA2 and neighbouring gene alleles in S. vitulinus followed by 

evolution into mecA and neighbouring genes in S. fleurettii, which are almost identical 

to those in MRSA. The finding of S. vitulinus strains with similar mecA and adjacent 

genes with the ones carried by S. fleurettii suggest that after vertical evolution, mecA 

was probably acquired by S. vitulinus from S. fleurettii by HGT.   

 

 



 

 

Table 1. Frequency (%) of the genes homologous to genes carried by SCCmec elements found in S. sciuri, S. vitulinus and S. fleuretti not containing SCCmec at the orfX. The nucleotide sequence identity found 

between these homologues and the ones carried by contemporary SCCmec III is also showed. 

 

 S. sciuri S. vitulinus S. fleurettii 

SCCmec element Frequency  

(%) 

Homology 

(%) 

Frequency 

(%) 

Homology 

(%) 

Frequency 

(%) 

Homology 

(%) 

J3 region       

ugpQ (J3) 100 75-85 100 87-100 100 99-100 

maoC (J3) 63 100 100 100 100 100 

pre (J3) 5 64 60 65 17 63 

polypeptide B (J3) 2 63 20 99 17 99 

mec complex       

IS431 47 99 80 99 92 99 

IS1272 3 63 40 66 25 63 

mecA1 100 80 - - - - 

mecA2 - - 50 90 - - 

mecA - - 40 99-100 100 97-99 

mecR1/mecI - - 40 99/92-99 100 99/92 

mecR2 23 78 100 99 100 99 

J2 region       

psm-mec (J2) 100 91-94 100 97-99 100 98-99 

Rhodanese-domain containing protein 

(J2) 

48 77 40 100 100 99 

Metallo-βlactamase family protein (J2) 47 78 40 99 100 99 

ccr complex        

ccr 38 72-100 13 72-77 8 83 

multiple ccr 10 - - - - - 

J1 region       

Hypothetical proteins (J1) 38 90-100 11 90-100 17 90-100 
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The assembly of mec complex occurred in a step-wise manner along phylogeny  

We found that the mecA regulators (mecI and mecR1) in their native locations 

were always associated with mecA in both S. fleurettii and S. vitulinus, but were never 

found near to mecA1 and mecA2. Whereas the native mecR1 gene carried by S. 

fleurettii and S. vitulinus was 99.6% identical to the mecR1 in SCCmec, the nearby mecI 

gene had a lower identity (92.5%), attributable to a 24 nucleotide difference and 

alternate STOP codon that lengthened the ORF from 345 to 372 bp. We suggest that 

the ancestral mecI gene was longer in length and a deletion of 24 nucleotides occurred 

during evolution, giving rise to the contemporary mecI gene that is found in all SCCmec 

types containing mec complex A (111). 

We also searched the native location for the presence of the recently described 

regulatory gene mecR2, which encodes an anti-repressor of mecA, and is also part of 

mec complex A (135). All S. vitulinus and S. fleurettii strains carried mecR2, 99% 

identical to MRSA mecR2, near to the mecA homologue in the native location (S. 

vitulinus, mecA/mecA2; S. fleurettii, mecA). In contrast, in S. sciuri, we found that only 

14 isolates out of 76 (18.42%) carried a mecR2 homologue in the vicinity of mecA1 (14 

isolates) in the native location. These 14 strains were epidemiologically unrelated, 

since they were collected from different hosts (including wild animals, production 

animals and humans), different geographic origins and time periods. The S. sciuri 

mecR2 homologue had only 77.56% of nucleotide sequence identity with MRSA 

mecR2. This gene may correspond to the ancestral mecR2 and may be involved in the 

regulation of mecA1 expression in S. sciuri.  

Another element, which is part of the mec complex and is usually located 

downstream mecA, is the IS431 element. We observed that this element was absent 

from the close vicinity of mecA homologues in the native locus (data not shown). In 

contrast, IS431 was found in the close vicinity of mecA when it was located in the orfX 

region within a SCCmec element, in S. sciuri and S. vitulinus. In addition, IS431 was 

found with high frequency in all genomes, particularly in S. fleurettii genomes (Table 

1), but not in the vicinity of mecA (data not shown).  
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These observations suggest that the addition of regulators to a basic mecA gene 

cluster may have occurred in a step-wise manner: mecR2 was the first gene to be 

added in S. sciuri at the native location near mecA1. Although only present in a small 

fraction of the current S. sciuri population this gene arrangement seems to have been 

maintained during evolution of the species and to have become ubiquitous in S. 

fleurettii and S. vitulinus. Addition of mecR1 and mecI only occurred later, after the 

evolution of the ancestral mecA1 into mecA was complete. The IS431 element was 

probably only added to mecA and regulators, after it was mobilized into SCCmec or 

during mobilization, since it was not observed at the native location. 

 

The ccr complex is common in S. sciuri and is most similar to ccrA3B3 of SCCmec III 

We found that the frequency of ccr genes was much higher in S. sciuri (55%) 

than in S. vitulinus (28%) and S. fleurettii (8%) (Table 1). Furthermore, while only ccrA 

and ccrB were identified in S. fleurettii and S. vitulinus, a more diverse pool of ccr 

genes was observed in S. sciuri, including ccrC, 3%, and a new ccr type (75% nucleotide 

identity to ccrC), 14%, in addition to ccrA and ccrB. Moreover, S. sciuri was the only 

species where multiple ccr genes were detected in some isolates (10%).  

The great majority (70%) of the ccrA and ccrB allotypes identified in S. sciuri, S. 

fleurettii and S. vitulinus were similar to ccrA3, ccrA5, ccrB3 and ccrB5 (83-100% 

nucleotide identity). These ccr allotypes are highly related to ccrA3B3 carried by 

SCCmec III (ccrA3, 85% nucleotide identity with ccrA5; ccrB3, 83% nucleotide identity 

to ccrB5), as previously observed (219). The types of ccr complex were diverse and 

were represented by different combinations. The most frequent ccr complex types 

observed were ccrA3B5 (27%), ccrA5B5 (24%) and ccrA5B3 (13%). The ccrA3B5 was 

observed in S. sciuri and S. vitulinus, while ccr types ccrA5B5 and ccrA5B3 were 

observed exclusively in S. sciuri. In addition, ccrA1B1, ccrA1B3 and ccrA1B5 were 

exclusively observed in S. sciuri and with low frequency (2% each). The remaining ccr 

types were new, corresponding to combinations of the new ccrA and ccrB allotypes 

identified. 
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In S. sciuri we found the most ancestral alleles of ccrA and ccrB (Supplementary 

Table S2), as well as the combination of ccrA and ccrB genes that were the most closely 

related to ccrA3B3 that has disseminated into SCCmec types carried by MRSA. In 

addition, the fact that the frequency and diversity of ccr genes and complexes is much 

higher in S. sciuri than in S. vitulinus and S. fleurettii suggests that S. sciuri was the most 

probable donor of the ccr complex to form a primordial SCCmec. 

On the other hand, the high frequency of ccr genes, which have a high degree 

of similarity with the ccrA3B3 complex in all species of the S. sciuri group supports the 

hypothesis that SCC elements were transferred within the different species of the S. 

sciuri group and that SCCmec III could have been the first cassette to be assembled. 

 

The SCCmec J1 region originated in S. sciuri and the J2/J3 regions in S. fleuretti and S. 

vitulinus 

Besides the two essential elements – the mec complex and the ccr complex – 

SCCmec also contains three joining regions (J1-J3), the organization of which within the 

element may be represented as orfX-J3-mec-J2-ccr-J1-DR.   

The J1 region of SCCmec III (linking ccr and DR) is composed of six different 

genes encoding hypothetical proteins. We found that at least one, but often two or 

more, of these genes was present in higher frequency in S. sciuri (38%), than in S. 

vitulinus (11%) and S. fleurettii (17%). The similarity of nucleotide sequence of the 

genes carried by strains belonging to the sciuri group and the genes carried by SCCmec 

III was high (90-100%). Particularly in S. sciuri, two, three or even six of the genes were 

found, in the same orientation and synteny as in SCCmec III of MRSA. Annotation of 

the vicinity of these genes in all species showed that they were always located in the 

orfX region, and some of them were located inside SCC elements (Supplementary 

Table S2). These observations suggest that S. sciuri was the most likely donor of the J1 

region for the assembly of a primordial SCCmec.  

The SCCmec III J2 genes (linking mec and ccr) were in general more frequent 

among S. fleurettii and S. vitulinus (carrying mecA) and less frequent in S. sciuri. In 
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particular, genes encoding a rhodanese-domain-containing protein and a protein of 

the metallo-β-lactamase family, located in the distant vicinity of mec complex in 

SCCmec, were found in all three species analyzed. In S. fleurettii, they were ubiquitous 

(100%), and in S. vitulinus they were only present in isolates carrying the mec complex 

(40%) (Table 1). In these species, these genes were located in the vicinity of mec 

complex, in the native location (S. fleurettii and six S. vitulinus strains) or in the orfX 

region (three S. vitulinus strains). However, in S. sciuri, these elements were present 

either in the vicinity of mecA1 in the native location or in the vicinity of the mec 

complex near orfX (Table 1). When in the native location in the three species, these 

genes were upstream of psm-mec, in the same orientation and synteny as the ones 

carried by SCCmec. In addition, the nucleotide identity of the genes found in S. sciuri 

and the ones carried in SCCmec was lower, when compared to genes carried by S. 

fleuretttii and S. vitulinus (Table 1).  

Finally, we observed that genes found in J3, namely genes encoding 

hypothetical proteins (pre and polypeptide B, located upstream of the hypervariable 

region) were more frequent in S. fleurettii (pre, 17% and polypeptide B, 17%) and S. 

vitulinus (pre, 60% and polypeptide B, 20%) but rare in S. sciuri (5-6% and 2%, 

respectively) (Table 1). We observed that both genes were always present in the same 

orientation and synteny as the ones carried by SCCmec. However, it was not possible 

to assess their position relative to the position of mecA homologues, since mecA, pre 

and polypeptide B genes were always in different contigs in strains carrying these 

genes. Similarly maoC, a gene that is part of the hypervariable region located in the J3 

region was located upstream of the mecA homologue in the native location in these 

three species, with different frequencies (S. fleurettii and S. vitulinus, 100%; S. sciuri, 

63%). 

These results suggest that the SCCmec J3 region probably originated in S. 

vitulinus and S. fleuretttii. However, the genes encoding the rhodanese domain-

containing protein and the metallo-β-lactamase family protein of the J2 region, which 

is located in the vicinity of mec complex, were probably already present in S. sciuri, and 

evolved in a manner consistent with the phylogeny and were then mobilized together 

with the mec complex and the more distant J3 regions to form an SCC element.  
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S. sciuri SCC non-mec elements carry housekeeping genes and are similar to MRSA 

SCCmec 

SCC structures, bounded by DR or IR, were observed in all three species. 

However, the frequency and diversity of such structures was higher in S. sciuri than in 

the other two species. A total of eight different structures were found in the 26 

isolates analyzed. In Supplementary Table S2 there is a detailed description of the 

variety of SCC non-mec elements found in each of the species. 

SCC elements carried by S. sciuri had in common the presence of genes that 

confer resistance to metals and, most unexpectedly, genes that are usually associated 

with housekeeping functions in different staphylococcal species. In S. sciuri strains 

11/01 and CCUG38359, a SCC non-mec element of 54 Kb (SCC11/01) carrying ccrA5B5 

was identified. This SCC was composed of several elements associated with SCCmec, 

such as a type I restriction/modification system; a cadmium-resistance operon; IS431; 

and several genes encoding various hypothetical proteins (Supplementary Table S2). 

The nucleotide sequence of these genes were most similar (40-100%) to hypothetical 

proteins present in SCCmec III, SCCmec IVa, SCCmec IX and SCCmec XI, and non-typable 

SCCmec cassettes carried by S. haemolyticus, S. xylosus and S. pseudintermedius. 

Moreover, this element contained ORFs that were similar to genes found in the same 

region, in ccr-negative strains. In particular, in the ccr-negative strain K22, genes 

encoding these exact same proteins (100% nucleotide sequence identity) were present 

14 kb downstream orfX (Supplementary Table S3). Furthermore, immediately 

upstream of the DR, this SCC contained genes encoding proteins that are present 

elsewhere in the core genome of other staphylococcal species. These genes participate 

in bacterial central metabolism (encoding glycosyltransferases, oxidases, alcohol 

dehydrogenases, photolyases, general stress proteins).  

The remaining SCC non-mec elements identified in S. sciuri were diverse. Strain 

K116 carried a 36 kb SCC (SCCK116) that contained a ccr gene with 75% nucleotide 

identity with ccrC. Similarly to SCC11/01, this SCC element carried the cad operon and 

staphylococcal housekeeping genes. Some of these housekeeping genes were similar 

to those found inside SCC11/01 (e.g. genes encoding oxidases, dehydrogenases, 
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photolyases) but some were different (genes encoding epimerases). Strain SS27 

carried a composite SCC element, formed by two SCCs: a 45 kb SCC and a 15 kb SCC 

(both carrying ccrA1B3, Supplementary Table S2) (SCC-CISS27). The larger SCC element 

(SCCSS27I) carried a plasmid with an intact rep gene as well as genes conferring 

resistance to copper, cadmium and arsenic. The smaller SCC carried a quinone 

reductase, as well as the cad operon and housekeeping genes, similarly to those found 

in SCCK116 (Supplementary Table S2). These SCC elements also carried genes found 

inside SCCmec cassettes, such as genes encoding hypothetical proteins (61-98% 

nucleotide identity) present in several SCCmec cassettes (SCCmec II, III, IV, V, IX, X and 

XI). In addition, SCC SS27I also carried a rhodanese-domain containing protein and a 

metallo-β-lactamase family protein typical of the J2 region of SCCmec III 

(Supplementary Table S2). 

In S. vitulinus and S. fleurettii, the SCC elements found were different from the 

ones identified in S. sciuri. They contained new types of ccr and mainly hypothetical 

proteins, some of which had homology with ORFs that are present in SCCmec from 

MRSA. However, in contrast to what was described for S. sciuri, housekeeping genes 

were not found inside S. vitulinus or S. fleurettii SCC elements. S. vitulinus 401946 

carried a 20 kb SCC (SCC401946), with a new ccr type (ccr type 6, Supplementary Table 

S2). This SCC also carried genes encoding hypothetical proteins identified in SCCmec 

types V and IX, as well as a type I restriction -modification system. In addition, we also 

found predicted ORFs that had no significant hits in the BLAST server. S. vitulinus CH10 

carried an 11 kb SCC (SCCCH10), which contained a new ccr type (ccr type 7, 

Supplementary Table S2) and genes encoding hypothetical proteins identified in 

SCCmec types IX and XI, as well as predicted ORFs with no significant hits in the BLAST 

server. S. fleurettii 402567 carried a 18 kb SCC composed of genes encoding 

hypothetical proteins. Besides the ccr genes, which corresponded to new types, the 

predicted ORFs showed no significant hits in the BLAST server. 

Overall, our data showed that SCC structures carried by S. sciuri are more 

similar to the ones seen in contemporary SCCmec types, considering both nucleotide 

sequence identity and synteny. In addition, only S. sciuri SCC elements carried 

housekeeping genes. The frequent inclusion of housekeeping genes inside SCC 
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elements illustrates the level of genomic re-arrangement that occurs in the orfX region 

of S. sciuri.  

 

orfX region of S. sciuri ccr-negative strains contains genes that are inside SCC non-

mec and  SCCmec  

To further explore the possibility that SCC elements may be assembled from 

housekeeping genes located near orfX – we characterized the orfX region of 12 strains 

not carrying any SCC element or ccr complex (seven S. sciuri, three S. fleurettii, and two 

S. vitulinus). We found that this region was different in strains belonging to different 

species.  

Downstream orfX, ccr-negative S. sciuri strains contained mostly genes 

associated with central metabolism; nevertheless, this region was very diverse with 

respect to gene content among the strains. This result might indicate that this region 

of the chromosome frequently undergoes recombination and that genes are being 

shuffled between strains, due to a high frequency of insertion/excision events. The 

genes found were not always present or there were insertions of other genes. 

Examples of the genes carried by these strains are listed in Supplementary Table S3 

(genes encoding oxidoreductases, serine proteases, alcohol dehydrogenases, 

epimerases, isomerases, methyltransferases). A comparison of genes found in this 

region in ccr-negative strains (Supplementary Table S3) and genes found inside SCC 

and SCCmec carried by S. sciuri (Supplementary Table S2) revealed that some of these 

genes (with more than 90% nucleotide sequence identity) are found among both 

structures, in the same order and synteny: genes encoding glycosyltransferases, 

epimerases, dehydrogenases and oxidases. In addition, in ccr-negative strains, genes 

encoding resistance to cadmium and arsenic were also identified; and these genes 

were also identified among SCC structures carried by S. sciuri. 

In some ccr-negative S. sciuri strains, structural elements typically found inside 

SCCmec could also be identified despite the absence of ccr genes in this region of the 

chromosome. Strains K10, K31 and KLO63 contained genes encoding hypothetical 

proteins that have been associated with the J1 region of SCCmec types IV, V and IX. In 
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addition, strain K31 carried a truncated DNA restriction modification system 

(hsdRhsdM) that has been found exclusively in SCCmec V. 

The fact that housekeeping genes found in ccr-negative strains are similar in 

sequence and synteny to those found in SCC and SCCmec elements in S. sciuri suggests 

that a primordial SCCmec could have been assembled in this species. Moreover, these 

observations also suggest that the location of genes near orfX was important for their 

inclusion in a SCC element. Given the fact that the native mec location is only 200 Kb 

apart from orfX, it is tempting to speculate that a similar type of phenomenon may 

explain the insertion of mec complex into the SCC element. However, we cannot 

discard the alternative hypothesis, namely that genes found in ccr-negative strains 

near the orfX are remnants of an SCC that was left in this region after imprecise 

excision of SCC elements. 

The orfX region of ccr-negative S. vitulinus strains was also diverse, but not as 

much as in S. sciuri strains. Immediately downstream orfX, three ORFs of unknown 

function were identified among all S. vitulinus strains. In addition, genes encoding 

proteins that probably participate in central metabolism were also identified, such as 

ATPases, DNA methylases, glycosyltransferases and acetyltransferases. These genes 

were not identified in all S. vitulinus strains. In contrast, the orfX region of S. fleurettii 

ccr-negative strains was found to be highly conserved, being mainly composed of 

genes encoding proteins involved in the central metabolism: synthetases and 

dehydrogenases. In contrast to the results obtained for S. sciuri, the SCC non-mec 

elements identified among S. vitulinus and S. fleurettii strains did not carry any of the 

genes identified in the orfX region of ccr-negative strains. 

 

SCCmec elements carried by S. sciuri are similar but not identical to SCCmec III of 

MRSA 

SCCmec was identified in S. sciuri (16 isolates) and S. vitulinus (three isolates), 

but was absent from all S. fleurettii isolates. A total of four different SCCmec structures 

were found. Three of these structures were related to SCCmec III (“SCCmec III-like 
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structures A, B and C”) and one to SCCmec type VII – based on the sequence of the 

genes, their position and structure.  

A comparison of the sequence of SCCmec III-like elements found in the S. sciuri 

group to the SCCmec III of MRSA with WEBACT (www.webact.org) has revealed that 

the J2 region, the mec complex and the ccr complex (approximately 25 kb) were 

almost exactly the same between the structures in the S. sciuri group and the SCCmec 

III of MRSA. The structure more closely related to SCCmec III and also the most 

frequent one was “SCCmec III-like A” (Figure 1). Structure A was found in seven S. sciuri 

isolates (K3, M1640, M1886, JUG1, CH16, CH17 and CH18) and three S. vitulinus 

isolates (H91, CH1 and CH3). This structure (63 kb) was very similar to SCCmec III, 

mainly in the J2 region, containing the same genes encoding hypothetical proteins, the 

Tn554 transposase and the cadmium resistance operon, besides the mec complex A. 

The J3 region was very small, encompassing only the HVR region located upstream the 

mec complex A, which contrasts with SCCmec III J3 region that carries in addition the 

plasmid pT181 that contains genes conferring resistance to tetracycline (138). The J1 

region was the most divergent between “SCCmec III-like A” structure and SCCmec III. 

Although some genes encoding hypothetical proteins within this region were common 

between the two elements, “SCCmec III-like A” contained a more “ancient” ccr 

complex (219) (ccrA3B5 instead of ccrA3B3), and also four additional ORFs identified as 

a glycosyltransferase, a peptidase, a transcriptional regulator and a surface protein, 

which were absent from MRSA SCCmec III. 

When we compared “SCCmec III-like A” structures with SCC elements identified 

in our collection we found several regions of homology between the two. In particular, 

in case of genes that were part of the J1 region of the “SCCmec III-like A” element, such 

as the gene encoding a glycosyltransferase, the same genes were also identified in the 

J1 region of SCC11/01 (Figure 1). Another example is the ccrA3B5 that is common to 

“SCCmec III–like A” and several S. sciuri SCC elements. In Figure 2 there is a tree that 

resulted from iterative phylogenetic analysis where the level of relatedness between 

SCCmec and SCC elements can be deduced (34) (Figure 2). While the “SCCmec III-like 

A” structure appears to correspond to a primordial form of contemporary SCCmec III, 

the “SCCmec VII-like” and the “SCCmec III-like B” structures seemed more related to 

http://www.webact.org/
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contemporary SCCmec types. Interestingly, according to this analysis, “SCCmec III-like 

A and C” structures, that were present in 63% (12 out of 19) of all strains carrying 

SCCmec, were highly related with SCC carried by S. sciuri.  

These results further support the hypothesis that “SCCmec III-like A” structures 

could have originated in S. sciuri, possibly by recombination of the mec complex from 

S. fleurettii or S. vitulinus with an SCC carried by this species. Moreover, the evolution 

into contemporary SCCmec III probably occurred afterwards and involved mainly a 

recombination in the J1 region and acquisition of plasmids in the J3 region. 



 

 

 

 

Figure 1. Comparison of regions of homology (highest BLAST score, shown in red) between the most frequent “SCCmec III-like structure A” found in S. sciuri and S. vitulinus with SCCmec III 

carried by MRSA, and “SCC non-mec carried by S. sciuri”, using the platform ACT (www.webact.org). A schematic representation of the annotated genes is shown. The core genes are shown 

in pink while the genes associated with SCCmec are shown in yellow. The ccrAB and mecI/mecR1/mecA genes are highlighted in blue. The orfX gene is shown in green. Additional genes which 

are usually found among staphylococcal mobile genetic elements are depicted in grey (encoding for instance heavy-metal resistance associated genes and plasmid sequences). 

SCC SS27 I

SCCmec III

SCCmec III-like structure A

SCC 11/01
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Figure 2. Reconstruction of SCCmec and SCC phylogeny with Mauve. S. sciuri: 11/01; HSM851 (partial SCCmec 

cassette), K6, K116, M1640, M2590 (partial SCCmec cassette), SS27. S. vitulinus: CH10, 401946; S. fleurettii: 402567. 

 

SCCmec elements are identified in several S. sciuri genetic backgrounds 

The SNP phylogenetic analysis of the genome of all isolates (Supplementary 

Figure 1A) showed that the S. sciuri, S. vitulinus and S. fleurettii were separated into 

three distinct clusters and had an average of 150000 SNPs difference between their 

genomes. On the other hand, the SNP analysis of the genome of isolates belonging to 

each species independently (Supplementary Figures 1B-D), showed that in S. fleurettii, 

the genomes had a range of 3000-9000 SNPs difference and in S. vitulinus, the 

genomes had a range of 4000-7000 SNPs difference. In S. sciuri there was a high 

diversity of genetic backgrounds, which is in accordance with the fact that this species 

is the most primitive and most widely distributed in nature. Five distinct phylogenetic 

groups that differed from each other by more than 15000 SNPs were defined. In this 

analysis we included the S. sciuri subspecies type strains, K1 (S. sciuri sciuri), K3 (S. 

sciuri rodentius) and K11 (S. sciuri carnaticus). The genomes of these strains clustered 

separately, and therefore we suggest that these clusters correspond to the three S. 

sciuri subspecies previously described (171). In Supplementary Figure 1B the S. sciuri 
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sciuri is depicted as group 2; S. sciuri rodentius as group 4 and S. sciuri carnaticus as 

group 5. However, we found two additional phylogenetic clusters that probably 

correspond to two additional S. sciuri subspecies (groups 1 and 3).  

The S. sciuri “new subspecies group 3” was the most represented in our 

collection, including 30 isolates, followed by S. sciuri sciuri (n=18); S. sciuri rodentius 

(n=14), S. sciuri carnaticus (n=11), and S. sciuri “new subspecies group 1” (n=3). The S. 

sciuri “new subspecies group 3” isolates were mainly of human origin; S. sciuri sciuri 

and S. sciuri carnaticus isolates were mostly collected from animals (both wild and 

production animals); and S. sciuri rodentius and S. sciuri “new subspecies group 1” 

isolates were evenly collected from humans and animals. Overall, groups 1-3 were the 

groups in which diversity in terms of SNP differences was lower (20-7000 SNPs). In 

groups 4 and 5, the diversity was much higher (100-18000 SNPs).  

The frequency of SCCmec and SCC was different among the five groups 

identified. Specifically, we found that the overall frequency of SCCmec and SCC 

elements was very high in the “new subspecies group 3” of S. sciuri and S. sciuri 

rodentius (69 and 71%, respectively), and low in S. sciuri sciuri (16.5%). In contrast, S. 

sciuri carnaticus carried exclusively SCC cassettes in a high frequency (45%) and two 

out of three of the new S. sciuri subspecies 1 isolates carried SCCmec elements (67%, 2 

out of 3 isolates). Of note, the three subspecies where SCCmec was more frequent 

(groups 1 and 3, and S. sciuri rodentius) contained isolates most of which were 

collected from humans (64-77%). Conversely, the phylogenetic groups that comprised 

isolates with a lower frequency of SCCmec (S. sciuri sciuri and S. sciuri carnaticus) were 

mostly collected from animals (82-89%). The difference between these proportions 

was statistically significant (p<0.05). 

The high proportion and distribution of SCCmec and SCC elements in diverse S. 

sciuri genetic backgrounds as well as the high proportion of SCCmec in the most 

primitive S. sciuri cluster suggest that SCCmec was probably assembled in S. sciuri a 

long time ago, which may have been before the use of antibiotics in clinical practice. 

Being S. sciuri widely distributed in nature, it is possible that it has been exposed to β-
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lactam antibiotics produced by co-colonizing microrganisms in the natural 

environment, which may have been the driving force for the assembly of SCCmec.  

In S. vitulinus, we did not observe the formation of very defined clusters. 

However, we found that the genetic backgrounds that carried mecA2 in the native 

location were more closely related to each other (average 4010 SNPs) than to genetic 

backgrounds that carried mecA in the native locus (average 6098 SNPs). We propose 

that an ancestral mecA2 background might have favored the replacement of the 

mecA2 locus by mec complex A, which evolved divergently, giving rise to two distinct 

genetic backgrounds. Regarding the acquisition of SCC elements these appear to have 

occurred several times during S. vitulinus evolution and were independent of genetic 

background. Actually, the two SCCs found among S. vitulinus were acquired both in the 

genetic background of strains carrying mecA2 and also in those carrying mecA. In 

contrast, SCCmec elements were preferentially acquired by strains of the genetic 

background carrying mecA2.  

 As to the case of S. fleurettii: there was a single genetic background that 

had a higher number of SNP difference, in comparison to the remaining genetic 

backgrounds (CH21, 8177 SNPs; remaining genetic backgrounds, average 4955 SNPs). 

In addition, this strain was collected in the same country (Switzerland) and during the 

same time period.  

Despite a relative high number of isolates included in this study compared to 

previous studies about the S. sciuri group, the greatest limitation of this study is that 

the interpretation of the results is limited to the collection of isolates that we were 

able to put together.  
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CONCLUSIONS 

Our results suggest that SCCmec was assembled long time ago, before 

introduction of ß-lactam antibiotics into clinical practice. The assembly occurred 

through several steps involving at least three species of the S. sciuri group (Figure 3) 

Our data suggest that the first step in SCCmec assembly was the evolution of 

mecA1 in its native location together with its flanking genes psm-mec and upgQ. The 

second step of evolution was the addition of mec regulators. The mecR2 was first 

acquired by some S. sciuri strains and then maintained through phylogeny in S. 

vitulinus and S. fleurettii. The mecA has probably first emerged in S. fleurettii (BEAST 

analysis of mecA homologues, unpublished data). The addition of mecI and mecR1 

occurred probably in this same species through recombination between mecA and 

adjacent regions with the β-lactamase locus, usually associated with plasmids. The 

amino acid identities among genes present in these two loci and the similar orientation 

and arrangement of the genes suggests an evolutionary link between mecA and blaZ 

(223). In addition, it has been demonstrated that the repressor blaI can also regulate 

the expression of mecA (224-226). In subsequent steps of evolution the mec complex 

from S. fleurettii may have been then incorporated into the S. vitulinus native location, 

by recombination with the mecA2 locus. We propose that the last donor of mec 

complex A and neighbouring regions to an assembled SCC element might have been S. 

vitulinus, since this was the only species where mec complex and neighbouring genes 

seemed to have been deleted from the native location.  

The evolution of SCC elements occurred in parallel with the evolution of the 

native mec locus. The SCC elements most probably originated in S. sciuri and were built 

from housekeeping genes located in the orfX region. The integration of mec complex 

and neighbouring genes from S. vitulinus into a SCC element probably occurred in S. 

sciuri, since this is the only species where the same housekeeping genes were found 

both in SCC and SCCmec structures. However, the mechanism that mobilized mec 

complex from S. vitulinus to an SCC in S. sciuri is not known. 
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Figure 3. Proposed model for the assembly of the first SCCmec structure. The SCC originated in the S. sciuri 

chromosome and insertion/excision events catalyzed by the recombinases encoded by ccr were frequent events. On 

the other hand, mecA1 and adjacent regions psm-mec and ugpQ in native locus located 200 kb from orfX evolved 

over phylogeny giving rise to mecA2 and mecA and descendant psm-mec and ugpQ genes in S. vitulinus and S. 

fleurettii, respectively. In S. fleurettii, the native locus containing mecA might have evolved into a regulatory system 

like mec complex A through recombination with the β-lactamase regulatory locus. This locus would then be 

incorporated in S. vitulinus chromosome by recombination with the native mecA2 locus. The mec complex A, which 

would have been donated by S. vitulinus, would be integrated in an assembled SCC structure carried by S. sciuri, 

giving rise to a primordial SCCmec structure related to SCCmec III identified in contemporary MRSA clones.  
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In S. sciuri an ancestral structure of SCCmec III that we refer to as “SCCmec III-

like A”, was the most frequent SCCmec structure found. Our results suggest that: 1) 

“SCCmec III-like A” was the first SCCmec cassette, that probably emerged in S. sciuri 

and 2) SCCmec III may have been the first contemporary SCCmec type that emerged. In 

fact, a recent study that focused on the evolution of the pandemic MRSA clone ST239-

III, carrying SCCmec III, has suggested that this clone has emerged in the 1960s, in 

Europe (31). Therefore, one can speculate that SCCmec III was probably already 

circulating among the staphylococcal population around that time or even before. 

Our findings highlight the role of primitive staphylococcal species in the origin 

of complex pathogenicity islands such as SCCmec that once acquired can increase in a 

dramatic way the pathogenic and resistance potential of human colonizing bacteria 

such as S. aureus. 
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SUPPLEMENTARY DATA 

 

Supplementary Table S1. Epidemiological data of all isolates characterized in this study by whole-genome sequencing. Phylogenetic group 1: 

ancestral S. sciuri background; phylogenetic group 2: S. sciuri sciuri; phylogenetic group 3: S. sciuri new subspecies; phylogenetic group 4: S. 

sciuri rodentius; phylogenetic group 5: S. sciuri carnaticum. 

Strain Species (S. sciuri 

phylogenetic group) 

MIC 

(µg/ml) 

Year of 

isolation 

Origin Geographic 

location 

Source or 

Reference 

402567 S. fleurettii >256 2004 Horse The Netherlands E. van 

Duijkeren 

CH19 S. fleurettii 8 2010 Bovine mastitis milk Switzerland (221) 

CH20 S. fleurettii 6 2010 Bovine mastitis milk Switzerland (221) 

CH21 S. fleurettii 4 2010 Bovine mastitis milk Switzerland (221) 

CH22 S. fleurettii 1 2010 Bovine mastitis milk Switzerland (221) 

CH23 S. fleurettii 4 2010 Bovine mastitis milk Switzerland (221) 

CH24 S. fleurettii >256 2010 Bovine mastitis milk Switzerland (221) 

CH25 S. fleurettii 4 2010 Bovine mastitis milk Switzerland (221) 

CH26 S. fleurettii >256 2010 Bovine mastitis milk Switzerland (221) 

CH27 S. fleurettii 2 2010 Bovine mastitis milk Switzerland (221) 

CH28 S. fleurettii 1 2010 Bovine mastitis milk Switzerland (221) 

CH29 S. fleurettii 4 2010 Bovine mastitis milk Switzerland (221) 

JUG1 S. sciuri (1) >256 2002 Domestic dog Czech Republic  I. Sedlácek 

K22 S. sciuri (1) 1.5 1992 Morgan Horse USA (172) 

M1886 S. sciuri (1) 64 2011 Human Denmark Hvidovre 

Hospital 

K1 S. sciuri (2) 0.75 1972 Eastern grey squirrel USA (172) 

K105 S. sciuri (2) 1 1971 Human USA (172) 

K13 S. sciuri (2) 0.5 1992 Eastern grey squirrel USA (172) 

K139 S. sciuri (2) 1 1992 Holstein cow USA (172) 

K14 S. sciuri (2) 0.75 1992 Eastern harvest mouse USA (172) 

K140 S. sciuri (2) 1 1972 Opossum USA (172) 

K142 S. sciuri (2) 1 1992 Horse USA (172) 

K143 S. sciuri (2) 1 1972 Racoon USA (172) 

K144 S. sciuri (2) 1 1992 Jersey calf USA (172) 

K149 S. sciuri (2) 0.75 1972 Eastern grey squirrel USA (172) 

K21 S. sciuri (2) 0.5 1993 Pilot whale USA (172) 

K23 S. sciuri (2) 0.75 1992 Red kangaroo USA (172) 

K25 S. sciuri (2) 0.5 1992 Prairie vole USA (172) 

KLO56 S. sciuri (2) 0.75 1972 Opossum USA (172) 

KLO58 S. sciuri (2) 0.75 1972 Squirrel monkey USA (172) 

KLO63 S. sciuri (2) 1 1972 Eastern grey squirrel USA (172) 

KLO64 S. sciuri (2) 2 1972 Southern flying squirrel USA (172) 

CH17 S. sciuri (3) >256 2004 Horse Switzerland (178) 

CH18 S. sciuri (3) >256 2005 Horse Switzerland (178) 

D573 S. sciuri (3) >256 2007 Human Denmark Hvidovre 

Hospital 

HSM805 S. sciuri (3) 0.75 2010 Human Portugal J. Melo-

Cristino 

HSM851 S. sciuri (3) 16 2010 Human Portugal J. Melo-

Cristino 

JUG17 S. sciuri (3) >256 2002 Human Yugoslavia  I. Sedlácek 

JUG2 S. sciuri (3) 0.75 2002 Domestic dog Yoguslavia  I. Sedlácek 

K132 S. sciuri (3) 0.5 1976 Howler monkey Panama (172) 

K141 S. sciuri (3) 1 1992 California mouse USA (172) 

K148 S. sciuri (3) 0.38 1992 Bottlenose dolphin USA (172) 

K2 S. sciuri (3) 1 1992 Beef tongue USA (172) 

K20 S. sciuri (3) 1 1992 Bottlenose dolphin USA (172) 

http://www.ncbi.nlm.nih.gov/pubmed?term=Sedl%C3%A1cek%20I%5BAuthor%5D&cauthor=true&cauthor_uid=16166694
http://www.ncbi.nlm.nih.gov/pubmed?term=Sedl%C3%A1cek%20I%5BAuthor%5D&cauthor=true&cauthor_uid=16166694
http://www.ncbi.nlm.nih.gov/pubmed?term=Sedl%C3%A1cek%20I%5BAuthor%5D&cauthor=true&cauthor_uid=16166694
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Strain Species (S. sciuri 

phylogenetic group) 

MIC 

(µg/ml) 

Year of 

isolation 

Origin Geographic 

location 

Source or 

Reference 

K24 S. sciuri (3) 0.75 1992 Morgan Horse USA (172) 

K51 S. sciuri (3) 1.5 1971 Human USA (172) 

K61 S. sciuri (3) 1.5 1992 Pilot whale USA (172) 

K69 S. sciuri (3) 1 1986 Human USA (172) 

KLO59 S. sciuri (3) 2 1972 Domestic dog USA (172) 

M1234 S. sciuri (3) >256 2009 Human Denmark Hvidovre 

Hospital 

M1640 S. sciuri (3) 96 2010 Human Denmark Hvidovre 

Hospital 

M1653 S. sciuri (3) >256 2010 Human Denmark Hvidovre 

Hospital 

M2276 S. sciuri (3) >256 2011 Human Denmark Hvidovre 

Hospital 

M2590 S. sciuri (3) >256 2012 Human Denmark Hvidovre 

Hospital 

M2710 S. sciuri (3) >256 2012 Human Denmark Hvidovre 

Hospital 

M692 S. sciuri (3) 96 2007 Human Denmark Hvidovre 

Hospital 

SS16 S. sciuri (3) 0.75 1996 Human Portugal (202) 

SS18 S. sciuri (3) 0.75 1996 Human Portugal (202) 

SS23 S. sciuri (3) 1 1997 Human Portugal (202) 

SS24 S. sciuri (3) 0.75 1997 Human Portugal (202) 

SS27 S. sciuri (3) 0.75 1998 Human Portugal (202) 

SS3 S. sciuri (3) 1 1996 Human Portugal (202) 

SS5 S. sciuri (3) 1 1996 Human Portugal (202) 

K3 S. sciuri (4) >256 1992 Neonatal ward Mozambique (172) 

CH16 S. sciuri (4) 24 2004 Horse Switzerland (178) 

K10 S. sciuri (4) 0.75 1992 European red squirrel USA (172) 

K125 S. sciuri (4) 1 1992 Cotton rat USA (172) 

K27 S. sciuri (4) 0.75 1992 Norway rat USA (172) 

K29 S. sciuri (4) 0.75 1992 Norway rat USA (172) 

K4 S. sciuri (4) >256 1992 Human Mozambique (172) 

K5 S. sciuri (4) 2 1992 Human Mozambique (172) 

K6 S. sciuri (4) >256 1992 Human Mozambique (172) 

K7 S. sciuri (4) >256 1992 Human Mozambique (172) 

K83 S. sciuri (4) 0.75 1992 Human Czech Republic (172) 

SS34 S. sciuri (4) 0.75 1996 Human Portugal (202) 

SS37 S. sciuri (4) 25 1996 Human Portugal (202) 

SS41 S. sciuri (4) 3 1996 Human Portugal (202) 

11/01 S. sciuri (5) 0.5 2002 Human Czech Republic O. Melter 

CCUG38359 S. sciuri (5) 0.75 2002 Human Czech Republic O. Melter 

K11 S. sciuri (5) 0.75 1990 Veal leg USA (172) 

K116 S. sciuri (5) 0.75 1992 Beef lips USA (172) 

K12 S. sciuri (5) 1 1992 Arabian Horse USA (172) 

K16 S. sciuri (5) 0.75 1992 Jersey calf USA (172) 

K163 S. sciuri (5) 0.75 1992 Holstein cow USA (172) 

K30 S. sciuri (5) 1.5 1992 Jersey cattle heifer USA (172) 

K31 S. sciuri (5) 0.5 1992 Jersey cattle calf USA (172) 

K32 S. sciuri (5) 0.75 1992 Jersey cattle calf USA (172) 

K33 S. sciuri (5) 0.75 1992 Jersey cattle heifer USA (172) 

H39 S. vitulinus 0.75 2005 Horse Denmark L. Guardabassi 

P. Damborg 

H91 S. vitulinus 2 2005 Horse Denmark L. Guardabassi 

P. Damborg 

401946 S. vitulinus 2 2004 Horse The Netherlands E. van 

Duijkeren 

CH1 S. vitulinus 1 2005 Horse Switzerland (178) 

CH2 S. vitulinus 4 2004 Horse Switzerland (178) 
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Strain Species (S. sciuri 

phylogenetic group) 

MIC 

(µg/ml) 

Year of 

isolation 

Origin Geographic 

location 

Source or 

Reference 

CH3 S. vitulinus 0.75 2005 Horse Switzerland (178) 

CH4 S. vitulinus 0.75 2004 Horse Switzerland (178) 

CH5 S. vitulinus >256 2005 Horse Switzerland (178) 

CH6 S. vitulinus 1.5 2004 Horse Switzerland (178) 

CH7 S. vitulinus 0.75 2004 Horse Switzerland (178) 

CH8 S. vitulinus 0.19 2005 Horse Switzerland (178) 

CH9 S. vitulinus 0.5 2004 Horse Switzerland (178) 

CH10 S. vitulinus 0.5 2004 Horse Switzerland (178) 

CH11 S. vitulinus 0.5 2005 Horse Switzerland (178) 

CH12 S. vitulinus 0.5 2004 Horse Switzerland (178) 

CH13 S. vitulinus 0.1 2004 Horse Switzerland (178) 

CH14 S. vitulinus 0.5 2005 Horse Switzerland (178) 

CH15 S. vitulinus >256 2004 Horse Switzerland (178) 

 



 

 

 Supplementary Table S2. Content of SCC and SCCmec elements found among S. sciuri, S. vitulinus and S. fleurettii. Only the elements flanked by DR and/or IR repeats are listed on the table.  

 

Strain 

(species) 
Element (bp) Direct repeats (DR) or inverse repeats (IR) Gene/protein* Position in contig 

11/01 

(S. sciuri) 

SCC 11/01 

(53848) 
GGGGAAGCGTATCATAAATGATGCGGTTTTTT Threonine dehydrogenase 47225-48262 

   Type I restriction modification enzyme 48946-51738 

   Type I restriction modification methyltransferase 51850-53406 

   Type I restriction modification S subunit 53755-54669 

   Hypothetical protein 1: 47.6% KF234240 (SCCmec IVa – J1) 54754-55527 

   ORF 55532-56110 

   Transcriptional regulator 56407-57099 

   Ferroxidase 57116-57667 

   Copper chaperone 57669-57905 

   Cadmium-transporting ATPase 57969-59819 

   ORF 60127-60252 

   cadC 60591-60959 

   Cadmium-transporting ATPase 60952-63135 

   cadD 63233-63460 

   Hypothetical protein 2: 96.62% CP006838 (SCCmec III – J2) 63478-63684 

   Hypothetical protein 3: 66.9% CP006838 (SCCmec III – J2) 63686-64090 

   repB 64320-65000 

   Hypothetical protein 4: 76.92% HF569115 (SCCmec IVa+ccrAB1 – J3) 65126-65629 

   Hypothetical protein 5: 68.69% AB505628 (SCCmec IX – J3) 65645-65953 

   Hypothetical protein 6: 90.69% AB505628 (SCCmec IX – J3) 66038-66391 

   ccrB5 66861-68489 

   ccrA5 68510-69859 

   Hypothetical protein 7: 78.56% AB705452 (SCCmec IX – J2) 70038-71828 

   Hypothetical protein 8: 93.36% AB505628 (SCCmec IX – J2) 71954-73384 

   ATPase 74084-75607 

   copaA – truncrated 75629-76147 

   Putative lipoprotein 76165-76710 



 

 

Strain 

(species) 
Element (bp) Direct repeats (DR) or inverse repeats (IR) Gene/protein* Position in contig 

   ORF 77190-77651 

   arsC 78815-79021 

   Metallo-βlactamase family protein-truncrated 81553-81814 

   IS257 transposase 88244-88759 

   IS431 transposase 88719-88919 

   Acyltransferase precursor 91722-92195 

   Oxidase 92196-93692 

   Glycosyltransferase 93753-94796 

   Dehydrosqualene synthase 94852-95733 

   Dehydrosqualene desaturase 95730-97235 

   General stress protein 26 97284-97709 

   Deoxyribodipyrimidine photolyase 97893-99275 

   Hypothetical protein 10: 58.69% HE993884 (SCCmec mecC S. xylosus - J1) 99525-99965 

K6 (S. sciuri) 
SCC K6 

(15937) 
ATGATGCGGTTTTTT Hypothetical protein 1: 78.81% CP006630 (SCCmec V – J1) 152605-153912 

   Hypothetical protein 2: 90.29% CP006838 (SCCmec III – J1) 154412-155461 

   ORF 155593-155883 

   Putative helicase 155883-157676 

   ccrA5 157854-159206 

   ccrB new type 2: 72% ccrB1 159223-160854 

   Hypothetical protein 3: 95.19% CP006838 (SCCmec III – J2) 161749-162060 

   Hypothetical protein 4: 99.8% AB505628 (SCCmec IX – J3) 162081-162584 

   Plasmid replication initiation protein 162786-163745 

   DNA modification methylase 163595-167209 

   Conserved domain protein 167299-168210 

K6 (S. sciuri) 
SCC K6 

(10930) 
AAAACCGCATCATTT Permease 168506-168886 

   ORF 168962-169546 

   Mobile element protein 170153-171040 

   TPR domain protein in aerotolerance operon 171224-173869 

   ORF 174071-174214 



 

 

Strain 

(species) 
Element (bp) Direct repeats (DR) or inverse repeats (IR) Gene/protein* Position in contig 

   Hypothetical protein 1: 54.97% CP006838 (SCCmec III – J3) 174287-174838 

   Hypothetical protein 2: 80.65% HE980450 (SCCmec III – J3) 174842-175822 

   ORF 176033-176935 

   ORF 177041-177358 

   Hypothetical protein 3: 65.17% AB373032 (SCCmec 5C1 – J1) 177847-179250 

K6 (S. sciuri) 

SCCmec III-

like structure 

B (43815) 

GATGCGGTTTTTT Arsenic resistance operon repressor 179490-179804 

   ORF 179758-180168 

   Arsenic efflux pump 180722-181144 

   Arsenate reductase 181162-181563 

   Transcriptional regulator 181689-181991 

   chrA 182142-183164 

   Polysulfide binding protein 183357-184691 

   Disulfide bond regulator 184722-185789 

   Transcriptional regulator 185927-186187 

   Putative transmembrane protein 186208-186942 

   Abortive phage resistance protein 187360-188163 

   Abi-alpha protein 188176-189339 

   ORF 189449-190987 

   ORF 191190-191426 

   ORF 191428-193215 

   Hypothetical protein 1: 72.76% AB705452 (SCCmec IX – J2) 193305-193583 

   ccrA3 193772-195118 

   ccrB5 195139-196767 

   Hypothetical protein 2: 100% JQ412578 (SCCmec II – J2) 197238-197588 

   Hypothetical protein 3: 99.68% JQ412578 (SCCmec II – J2) 197673-197984 

   Hypothetical protein 4: 100% JQ412578 (SCCmec II – J2) 198003-198524 

   Hypothetical protein 5: 99.52% CP006838 (SCCmec III – J2) 198526-198732 

   DNA repair protein RadC 198725-199048 

   Mobile element protein 199243-201135 



 

 

Strain 

(species) 
Element (bp) Direct repeats (DR) or inverse repeats (IR) Gene/protein* Position in contig 

   Mobile element protein 201142-201303 

   Mobile element protein 201298-202620 

   Mercuric ion reductase 202862-204502 

   Mercuric resistance operon regulatory protein 204527-204919 

   Cadmium efflux system accessory protein 205631-205996 

   Cadmium transporting ATPase 205989-208403 

   Cadmium resistance protein 208484-209101 

   Hypothetical protein 1: 60.32% CP006838 (SCCmec III – J2) 209369-209998 

   Hypothetical protein 2: 100% CP006838 (SCCmec III – J2) 210013-210273 

   Disulfide bond regulator 210409-211473 

   Zn-dependent hydroacylglutathione hydrolase 211503-212444 

   Polysulfide binding protein 212535-212840 

   Transcriptional regulator 212954-214102 

   mecI 214575-214946 

   mecR1 214946-216703 

   mecA 216803-218809 

   maoC 218855-219283 

   ugpQ 219380-220123 

   hmg-coA 221040-221207 

   Mobile element protein 221465-222139 

   Hypothetical protein 3: 100% FN433596 (SCCmec III – J3) 222271-222513 

M1640 (S. 

sciuri) 

SCCmec III-

like structure 

A (62689) 

TTAATGATGCGGTTTTT CadD 41887-42516 

   Hypothetical protein 1: 96.4% AB505630 (SCCmec X-J1) 43277-43942 

   putative peptidase 43964-44647 

   putative transcriptional regulator 44725-45072 

   putative glycosyltransferase 45581-47197 

   putative surface protein 47339-50968 

   Hypothetical protein 2: 98.48% CP006838 (SCCmec III-J1) 52344-53393 

   Hypothetical protein 3: 90.57% CP006838 (SCCmec III-J1) 53497-53814 



 

 

Strain 

(species) 
Element (bp) Direct repeats (DR) or inverse repeats (IR) Gene/protein* Position in contig 

   Hypothetical protein 4: 100% CP006838 (SCCmec III-J1) 53814-55601 

   ORF 55628-55966 

   ccrA3 56141-57505 

   ccrB5 57526-59154 

   ORF 59625-59975 

   Hypothetical protein 5: 78.79% CP006838 (SCCmec III-J2) 59976-60371 

   Hypothetical protein 6: 100% CP006838 (SCCmec III-J2) 60390-60911 

   Hypothetical protein 7: 43.85% CP006838 (SCCmec III-J2) 61084-61428 

   Tnp 61630-63522 

   tnp for Tn554 63529-63906 

   cadC 64144-64509 

   cadA 64493-66916 

   CadD 66955-67614 

   Hypothetical protein 8: 38.18% CP006838 (SCCmec III-J2) 67832-68353 

   Rhodanese-domain containing protein 68922-69986 

   Β-lactamase domain containing protein 70019-70957 

   Hypothetical protein 8: 100% CP006838 (SCCmec III-J1) 71048-71353 

   mecR2 71467-72615 

   mecI 73088-73459 

   mecR1 73459-75198 

   mecA 75313-77322 

   Hypothetical protein 9: 42.40% AB872255 (SCCmec IV-J3) 77315-77698 

   ugpQ 77893-78636 

   Tnp 79978-80652 

   Hypothetical protein 10: 96.32% AB872255 (SCCmec IV-J3) 81338-82642 

K116 

(S. sciuri) 

SCC K116 

(35661) 
AGTTTTATTTGTGATATGCTT Photolyase-truncrated 17118-17730 

   ABC transporter permease 18548-19597 

   ORF 19609-20224 

   General stress protein 26 21135-21428 

   Dehydrosqualene desaturase 21480-22985 



 

 

Strain 

(species) 
Element (bp) Direct repeats (DR) or inverse repeats (IR) Gene/protein* Position in contig 

   Dehydrosqualene synthase 22982-23863 

   Glycosyltransferase 23919-24962 

   Oxidase 25023-26519 

   Acyltransferase precursor 26520-26993 

   ORF 26998-27498 

   ORF 28140-29534 

   adhC/alcohol dehydrogenase 30512-31663 

   ORF 31845-32360 

   Threonine dehydrogenase 32544-33581 

   chrA 33690-34852 

   Tnp 36633-37496 

   Tnp 37460-38011 

   cadX 38208-38630 

   cadD 38648-39265 

   NAD dependent epimerase/dehydrogenase 40058-40495 

   NAD dependent epimerase 40479-40724 

   Hypothetical protein 1: 91.19% CP006838 (SCCmec III-J2) 41545-42057 

   Hypothetical protein 2: 98.08% CP006838 (SCCmec III-J2) 42077-42388 

   Hypothetical protein 3: 89.74% JQ412578 (SCCmec II-J2) 42473-42823 

   75% ccrC 42928-44604 

   Hypothetical protein 4: 79.68% AB781449 (SCCmec V-J2) 44830-46473 

   Hypothetical protein 5: 73.17% AB781449 (SCCmec V-J2) 46473-46841 

SS27 

(SCC-CI SS27) 

(S. sciuri) 

SCC SS27 I 

(41603) 
TATCATAAATGATGCGGTTTTTT Type II methyltransferase 907-1737 

   ORF 1724-4489 

   ORF 4673-5038 

   Hypothetical protein 1: 77.02% CP006838 (SCCmec III-J2) 5097-5492 

   Hypothetical protein 2: 89.95% AB505630 (SCCmec X-J2) 5493-5846 

   ccrB3 6318-7946 

   ccrA1 7967-9319 



 

 

Strain 

(species) 
Element (bp) Direct repeats (DR) or inverse repeats (IR) Gene/protein* Position in contig 

   ORF 9875-11713 

   ORF 12103-13641 

   rep 13751-14914 

   ORF 14928-15722 

   Transmembrane protein 16119-16874 

   ORF 16147-16542 

   Rhodanese-domain containing protein 17272-18339 

   Metallo-β lactamase family protein 18368-19702 

   DNA-invertase 19873-20454 

   Tnp 20710-21879 

   ATP-binding domain 21872-22687 

   sin recombinase 22821-23426 

   ORF 23487-23831 

   Copper ATPase 24325-26430 

   Multicopper oxidase 26445-27878 

   Lipoprotein ACME 27898-28440 

   cadD 28933-29547 

   Tnp 29658-30461 

   cadA 30877-33294 

   cadC 33287-33655 

   Arsenate reductase 34295-34690 

   Arsenic efflux pump protein 34708-36000 

   ArsR 36000-36314 

   Putative dehydrogenase 36311-37975 

   Arsenical pump-driving ATPase 37975-39738 

   Trans regulator of arsenic operon 39704-40093 

   Arsenical resistance repressor 40572-40892 

   Putative membrane protein 40975-41862 

SS27 

(SCC-CI SS27) 

(S. sciuri) 

SCC SS27 II 

(15334) 
AAAACCGCATCACTATATGATAAGC ORF 42715-44439 



 

 

Strain 

(species) 
Element (bp) Direct repeats (DR) or inverse repeats (IR) Gene/protein* Position in contig 

   ORF 44510-45121 

   ORF 45150-46352 

   Hypothetical protein 1: 73.14% AB505628 (SCCmec IX-J2) 46433-46954 

   Hypothetical protein 2: 97.47% AB505628 (SCCmec IX-J2) 46972-47367 

   Hypothetical protein 3: 94.07% CP002120 (SCCmec II-J2) 47368-47721 

   ccrB3 48187-49818 

   ccrA1 49839-51188 

   Hypothetical protein 4: 76.9% AB705452 (SCCmec IX-J1) 51380-51721 

   Hypothetical protein 5: 73.14% LK02544 (SCCmec XI-J1) 51724-53538 

   Hypothetical protein 6: 61.81% AB097677 (SCCmec IV-J2) 53949-55019 

   Hypothetical protein 7: 79.28% AB097677 (SCCmec IV-J2) 55019-56548 

   ORF 56548-57501 

402567 (S. 

fleurettii) 

SCC 402567 

(17929) 
AAAAAACCGACTCATTTATGT ORF 4731-6800 

   ORF 6801-8126 

   ORF 7420-7740 

   ORF 8263-10338 

   ORF 10968-12395 

   Hypothetical protein 1: 75% AB705452(SCCmec IX-J2) 12521-14311 

   ORF 12976-13287 

   ccrA new type 2: 77% ccrA1 14793-16160 

   ccrB5 16180-17808 

   Hypothetical protein 2: 96% CP005288 (SCCmec III-J2) 18279-18629 

   Hypothetical protein 3: 77.53% CP005288 (SCCmec III-J2) 18630-19025 

   ORF 19041-19547 

   ORF 20460-21422 

   ORF 21454-22404 

401946 (S. 

vitulinus) 

SCC 401946 

(32443) 
AAAAAACCGCATCATT ORF 446-1519 

   Type I restriction/modification system 4045-5676 

   ORF 5661-6221 

   ORF 6230-7261 



 

 

Strain 

(species) 
Element (bp) Direct repeats (DR) or inverse repeats (IR) Gene/protein* Position in contig 

   ORF 7194-8234 

   ORF 8235-8795 

   Hypothetical protein 1: 51.26% HF569109 (SCCmec IV-J3) 8780-10462 

   Type I restriction/modification system DNA methyltransferase subunit M 15060-16514 

   Type I restriction/modification system DNA methyltransferase subunit S 16504-17763 

   hsdR 17741-20869 

   ORF 21448-21954 

   ORF 21970-22287 

   ccrB new type 1: 76% ccrB1 23189-24829 

   ccrA new type 1: 82% ccrA1 24838-26187 

   Hypothetical protein 2: 75.86% AB063173 (SCCmec IX-J1) 26690-28480 

   Hypothetical protein 3: 81.89% KM369884 (SCCmec V-J1) 31355-32257 

CH10 (S. 

vitulinus) 

SCC CH10 

(11684) 
ATTATTAGATTTTTT ORF 243-2318 

   Hypothetical protein 1: 97.20% AB705452 (SCCmec IX-J2) 2949-4376 

   Hypothetical protein 2: 95.20% AB705453 (SCCmec IX-J1) 4502-6292 

   ccrA new type 2: 82.74% ccrA3 6465-7832 

   ccrB new type 4: 81% ccrB4 7852-9486 

   Hypothetical protein 3: 89.97% AB705452 (SCCmec IX-J1) 9960-10298 

   Hypothetical protein 4: 83.33% AB705452 (SCCmec IX-J1) 10394-10705 

   Hypothetical protein 5: 56.61% AB705452 (SCCmec IX-J1) 10721-11233 

   ORF 11615-12034 

   ORF 12485-13579 

   ORF 13621-15297 

* when the gene is not identified, only the most similar protein present in the NCBI database is shown. 
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Supplementary Table S3. Predicted ORFs of the orfX-containing contig of ccr-negative strain K22. Nucleotide sequences of the 

predicted ORFs were compared with the ones available at http://www.ncbi.nlm.nih.gov/. 

 

Position in 

contig 
Gene * Species * 

10..846 Similar to MCCL_1950/parB M. caseolyticus 

1415..2521 
Similar to A284_11420/cysthathione gamma 

synthase 
S. warneri 

2518..3690 Similar to SERP0036/trans-sulfuration enzyme S. epidermidis 

3647..5485 Similar to SSP2415/methyltransferase S. saprophyticus 

5482..7728 
Similar to 

SAMSHR1132_03290/methyltransferase 
S. aureus 

7745..8488 
Similar to A284_11440/metal dependent 

hydrolase 
S. warneri 

8602..10056 Similar to SSP2440/cstA Bacillus sp." 

10208..11071 Similar to MCCL_1952/ParB protein homologue M. caseolyticus 

11088..11807 gidB M. caseolyticus 

11809..13683 gidA S. pasteuri 

13699..15078 
Similar to SAEMRSA15_26100/tRNA 

modification GTPase 
S. aureus 

15192..15989 
Similar to MCCL_1956/single stranded DNA 

binding protein 
M. caseolyticus 

16019..16369 
Similar to rnpA/ribonuclease protein 

component 
S. epidermidis 

16461..16598 Similar to SPSINT_0001/ribosomal protein S. pseudointermedius 

17150..18490 dnaA S. haemolyticus 

18657..19790 dnaN S. carnosus 

20152..21051 Similar to MCCL_0003/Na efflux pump M. caseolyticus 

24025..24246 Similar to X998_0003/S4 domain protein S. aureus 

24250..25365 recF S haemolyticus 

25388..27310 gyrB S. warneri 

27344..29944 Similar to A284_00030/DNA gyrase S. warneri 

30018..30614 Similar to SH0007/hyp core protein S. haemolyticus 

31050..31487 hutP Bacillus sp." 

31582..33066 Similar to STP1_1390/histidina ammonia lyase S. pasteuri 

33094..34404 Similar to SCA_1829/hyp core protein S. carnosus 

34422..36089 Similar to hutU/urocanate hydratase" S. carnosus 

36082..37323 Similar to STP1_0815/imidazolepropionase S. pasteuri 

37631..38908 
Similar to SAMSHR1132_00090/seryl tRNA 

synthase 
S. aureus 

39033..39548 Similar to CH52_05575/hyp core protein S. aureus 

39824..40468 
Similar to SAMSHR1132_00100/membrane 

protein 
S. aureus 

41027..41998 
Similar to SERP2541/homoserine-o-

acetyltransferase 
S. epidermidis 

43012..44976 
Similar to STP1_1384/DHHA1 domain 

containing protein 
S. pasteuri 

45513..46922 Similar to CH52_05370/DNA helicase S. aureus 

47209..48495 purA S. aureus 

49483..50367 Similar to MCCL_0020/hyp core protein M. caseolyticus 



Primordial SCCmec assembly  

Chapter IV | 161  

Position in 

contig 
Gene * Species * 

50808..51509 Two-component response regulator S. sciuri 

51519..53360 Two-component sensor kinase S. sciuri 

53335..54675 yycH S. sciuri 

54675..55466 hypothetical protein SA_21 S. sciuri 

55498..56289 Zn-dependent hydrolase S. sciuri 

56584..5706 orfX S. sciuri 

57138..58442 
Similar to SAKOR_01992/potassium uptake 

protein 
S. aureus 

58611..58955 arsC S. sciuri 

59027..60316 arsB S. sciuri 

60845..63874 putative phage infection protein S. sciuri 

64173..65006 Similar to SERP2401/serine protease S. epidermidis 

70703..72076 Similar to deoxyribodipyrimidine photolyase" S. xylosus 

72122..72541 hyp core protein S. xylosus S. xylosus 

72701..73741 putative alcohol dehydrogenase S. sciuri 

74151..75131 dus/tRNA synthase S. aureus 

75352..76749 Similar to SCA_2443/hyp core protein S. carnosus 

77115..78032 
Similar to SAMSHR1132_20200/putative 

exported protein 
S. aureus 

78488..79813 Similar to SPSINT_2422/hyp core protein S. pseudointermedius 

80071..83217 Similar to SSP0074/hyp core protein S. saprophyticus 

84623..86254 xylB/xylulokinase S. carnosus 

86223..86918 Similar to M7W_2352/epimerase E. faecium 

86932..88353 Similar to araA2/arabinose isomerase E. faecium 

88409..89815 Similar to T256_00940/sugar transporter Pediococcus sp. 

89882..90736 blaZ S. aureus 

90874..91191 Similar to SCA_2438/hyp core protein S. carnosus 

91286..92236 Similar to SSP1638/putative lipase S. saprophyticus 

92431..93354 Similar to SCA_2436/hyp core protein S. carnosus 

93356..94051 Similar to SCA_2435/hyp core protein S. aureus 

94280..95605 Similar to SSP0521/hyp core protein S. saprophyticus 

95602..96618 Similar to SSP0520/putative oxidoreductase S. saprophyticus 

96960..97487 
Similar to 

SAMSHR1132_22300/acetyltransferase 
S. aureus 

97503..98294 Similar to lin2443/ABC transporter Listeria sp. 

98313..99026 
Similar to LMOSLCC2376_2243/ABC 

transporter/permease 
Listeria sp. 

99038..99742 
Similar to AX10_05710/cystheine ABC 

transporter/permease 
Listeria sp. 

99743..100525 
Similar to yecC/ATP transporter permease ATP 

binding protein 
Listeria sp. 

100720..101481 Similar to SSP2181/transcriptional regulator S. saprophyticus 

101546..102784 
Similar to SSP2180/alpha-ketoglutarate 

permease 
S. saprophyticus 

102808..103878 Similar to A284_10560/dehydrogenase S. warneri 

104040..105671 Similar to A284_10555/ribulokinase S. warneri 

105831..106085 
Similar to STP1_1355/prevent host death 

protein 
S. pasteuri 

106900..107373 Similar to MC28_F090/acetyltransferase Bacillus sp 

112374..113495 FAD-dependent oxidoreductase S. haemolyticus 
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Position in 

contig 
Gene * Species * 

113489..114829 feoB+putative membrane protein S. haemolyticus 

115380..116267 SERP2386/colabamin synthesis protein S. epidermidis 

116528..117478 
SPSINT_2071/uroporphyrinogen 

methyltransferase 
S. pseudointermedius 

117469..117786 nirD S. pseudointermedius 

117789..120194 SPSINT_2073/nitrite reductase S. pseudointermedius 

121609..123039 
Similar to Pcryo_0766/dicarboxylate anaerobic 

carried 
Psychrobacter sp. 

124183..126057 Similar to Cbei_0699/phosphotransferase Clostridium sp. 

126054..127472 Similar to Cbei_0700/glycoside hydrolase Clostridium sp. 

127687..128667 Similar to STP1_1330/alpha-β family hydrolase S. pasteuri 

128682..129251 Similar to STP1_1331/acetyltransferase S. pasteuri 

129372..130241 
Similar to STP1_1332/LysR transcriptional 

regulator 
S. pasteuri 

130979..132601 Similar to SCA_2062/hyp core protein S. carnosus 

132890..134380 Similar to SCA_2061/allontoin permease S. carnosus 

134370..135731 Allantoinase S. xylosus 

* nucleotide sequences with the highest BLAST score; hyp: hypothetical 
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Supplementary Figure 1. Phylogenetic tree reflecting the number of SNP differences among the genomes of the isolates studied. S. 

fleurettii 402567 was used as a reference. A. All genomes (S. sciuri, S. fleurettii, S. vitulinus). B. S. sciuri genomes. Phylogenetic groups 

were defined according with the number of single-nucleotide polymorphisms (SNPs) differences. Phylogenetic group 1: new 

subspecies group 1; phylogenetic group 2: S. sciuri sciuri; phylogenetic group 3: new subspecies group 3; phylogenetic group 4: S. 

sciuri rodentius; phylogenetic group 5: S. sciuri carnaticus. The distribution of SCCmec and SCC elements among the isolates 

belonging to each phylogenetic group (1-5) is also shown; black: SCCmec; grey: SCC; white: no carriage of SCCmec/SCC. C. S. vitulinus 

genomes. The distribution of mec homologues, SCC and SCCmec elements is shown. D. S. fleurettii genomes. 
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ABSTRACT 

The emergence of the human skin colonizer Staphylococcus epidermidis as a 

pathogen related to medical devices-associated infections occurred relatively recently. 

However, how the pressure of the nosocomial setting drove S. epidermidis evolution, 

remains to be clarified. To identify the genomic events associated with the recent 

evolutionary history of S. epidermidis we compared by whole genome sequencing early 

and contemporary nosocomial S. epidermidis strains collected in Denmark.  

Early and contemporary isolates had a conserved genetic background, related 

to clonal complex 2 (67% and 79%, respectively). Early isolates carried antibiotic 

resistance genes (aaD, 9.5%; ermA, 9.5%; fusB, 9.5%, tet(K), 14.3%; cat, 14.3%; blaZ, 

67%, norA, 100%, fosA, 100%);  a single isolate carried mecA, disrupted by IS431, 

within a staphylococcal cassette chromosome mec (SCCmec) IV-like element. Biofilm-

associated genes (ica 5%; aap 38%), the arginine catabolic mobile element (ACME I and 

II, 38% each) and insertion sequences (IS) were common and a high frequency of 

prophages (95%) was found. In contrast, in contemporary strains, resistance 

determinants (including SCCmec IV, 57%; tet(L), 5%; lnu(B), 5%; ermC, 14%; aac(6')-

aph(2''), 19%; fusB, 43%; blaZ, 100%, norA, 100%, fosA, 100%), biofilm-associated 

genes (bap, 7%; sdrF, 14%; ica, 21%; aap, 64%) and ACME-I (57%) were more 

represented and additional IS were identified. However, the frequency of prophages 

was lower (50%). 

We propose that the continued exposure of S. epidermidis to hospital 

environment led to accumulation of genes associated to antibiotic resistance, 

colonization, biofilm formation, genome plasticity and to phage loss what might have 

contributed to its success as a pathogen.  
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INTRODUCTION 

Staphylococcus epidermidis is the main colonizer of human skin, playing an 

important role in the protection against pathogenic bacteria through the stimulation of 

immune responses (60). For this reason for many years S. epidermidis was regarded as 

a harmless commensal. Coagulase-negative staphylococci (CoNS) like S. epidermidis 

were first recognized as the probable cause of a septicemia in 1958 (227). But it was 

only when the first death due to a CoNS infection was reported in 1964 that these 

bacteria became recognized as potential human pathogens (47). However, until the 

1980s, CoNS were frequently regarded as contaminants of clinical products and were 

rarely identified at species level. The remarkable progresses made in the last decades 

in staphylococcal taxonomy and the development of phenotypic and genotypic 

identification methods contributed to the recognition of S. epidermidis as a pathogen. 

Moreover, other factors like the increase of the use of intravascular catheters and 

medical devices as well as the rise in the number of immunocompromized patients 

inside the hospital associated to a higher life expectancy, prolongation of 

hospitalization periods and use of immunosuppressive therapies and antibiotics, 

contributed greatly for the growing incidence and clinical significance of S. epidermidis 

as an infectious agent.  

Today S. epidermidis is recognized as one of the most frequent pathogen 

related to medical device-associated infections worldwide (2). Most of the infections 

are believed to be endogenous, wherein bacteria from patient’s own flora gain access 

to bloodstream through the impairment of skin barrier occurring during medical 

procedures, like inoculation of needles, insertion of catheters or implantation of 

foreign bodies. The success of S. epidermidis as a pathogen is dependent mainly on its 

ability to adhere to host or foreign body surfaces and form biofilms (51), which is 

known to be achieved by numerous adhesins, proteins, DNA and the polyssacharide 

intercellular adhesion (PIA) (51). Another factor that is highly frequent in S. epidermidis 

(100, 101) and was described to be important for colonization and dissemination of 

community-associated S. aureus (98) is the arginine catabolic mobile element (ACME), 

but the associated mechanism is still elusive.  
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The molecular epidemiology of S. epidermidis has been well-studied using 

different molecular typing techniques. The application of multilocus sequence typing 

to a diverse collection of isolates in terms of clinical and geographic origin showed that 

there was a high genetic diversity (www.mlst.net) (17, 198). Nonetheless, it was 

observed that a single clonal complex, clonal complex 2 (CC2), comprised the great 

majority of isolates independently from its origin, including hospital and community 

(17, 198, 228) and that a particular sequence type, ST2, was preferentially associated 

to disease (77). More recently, the analysis of S. epidermidis population structure by 

whole genome sequencing showed that S. epidermidis was composed of two well-

separated clusters, one containing CC2 isolates and the other containing minor clonal 

complexes and sporadic isolates (42). However, the factors associated to the increased 

epidemicity and pathogenicity of this clonal lineage are unknown. 

Another key feature of nosocomial S. epidermidis is its resistance to a multitude 

of antimicrobials (2), of which the most epidemiologically relevant are β-lactams. 

Resistance to β-lactams in staphylococci is encoded by the mecA gene, which is carried 

in a mobile genetic element called the staphylococcal cassette chromosome mec 

(SCCmec)(109). The mecA gene encodes an additional penicillin-binding protein, that 

has low affinity to β-lactams (7). By acquiring SCCmec, β-lactam susceptible strains 

become resistant and MRS (methicillin resistance staphylococci) have emerged. Since 

its finding in a Staphylococcus aureus isolate in 1961, in the UK (69), eleven different 

types of SCCmec have been described in this species (111-114) and many more appear 

to be present in coagulase-negative staphylococci (2). In S. epidermidis, SCCmec IV is 

the most frequent type (124), but other types have been described.  Although in the 

community environment strains colonizing the anterior nares were found to be mostly 

susceptible to β-lactams, contact with hospital environment was shown to promote 

acquisition and amplification of SCCmec in S. epidermidis (198). Nonetheless, it is not 

known when in S. epidermidis history was SCCmec acquired. 

In this study, we aimed to identify the genomic events associated to the 

emergence and establishment of S. epidermidis as a nosocomial pathogen. To 

accomplish this we studied S. epidermidis evolutionary history by comparing by whole 

http://www.mlst.net/
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genome sequencing early and contemporary nosocomial S. epidermidis strains 

collected in Denmark. 
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METHODS 

Bacterial collection: a collection of 21 S. epidermidis isolates collected from nasal 

swabs in hospitalized patients in Denmark, in 1965, was assembled. Each sample was 

obtained from a single patient. The samples were stored at the Statens Serum Institut, 

Copenhagen, Denmark, until their inclusion in this particular study. In addition, a 

collection of 14 S. epidermidis isolates, collected in Denmark in five hospitals in Greater 

Copenhagen between 1997 and 1998 was included for comparison. The great majority 

of these isolates (11 out of 14) have been obtained from blood cultures, and 

correspond to infection isolates. Two of the remaining isolates were considered to be 

colonization isolates (one of these was collected from a wound and for the other no 

information was available regarding the clinical product). Finally, for one isolate there 

was no information available regarding its origin. All isolates were obtained from 

inpatients. These isolates have been previously characterized by molecular typing 

techniques (17, 79) and their genome sequence has been previously published (42). 

 

Antimicrobial susceptibility testing: susceptibility to two β-lactams (oxacillin and 

cefoxitin) was assessed by eTest (Oxoid, Basingstoke, United Kingdom) for all the 

isolates. In addition, cefoxitin (Sigma, St. Louis, United States of America) susceptibility 

population analysis profiles were performed for the early isolates, as described before 

(211). Isolates were considered susceptible for oxacillin MIC values <0.25 µg/ml or for 

cefoxitin MIC values <4 µg/ml.  

 

DNA preparation and whole genome sequencing: DNA was extracted for S. 

epidermidis isolates collected in 1965 with a phenol/chlorophorm extraction protocol, 

as described in (25). Sequencing libraries were prepared by sonic fragmentation and 

adapter ligation and then sequenced on the Illumina HiSeq 2000/2500 platform, 

producing paired 100 bp reads. The DNA of the 14 contemporary S. epidermidis 

isolates have been prepared and sequenced as described in (42). 
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SNP analysis: the raw reads of all strains collected in 1965 were mapped against the 

reference S. epidermidis strain ATCC12228. SNP analysis was performed using Stampy 

(version 1.0.11) where reads were mapped to the reference genome. SNP calling was 

performed using SAMtools (version 0.1.12). Phylogenies were reconstructed using 

Neighbor Joining (NJ) and drawn in FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/).  

 

Comparative genome analysis: the core genome of all strains was predicted with 

Mugsy (229), using no reference strain. The resulting alignment file was used to 

perform a NJ tree based on the similarity of the homology blocks found with Mauve 

(34).  

 

Assembly de novo and MLST: the raw reads of each strain were assembled into 

contigs using VELVET (33). To further study the clonal relatedness between the strains, 

a multilocus sequence type was defined for each strain by extracting the 

corresponding allele sequence from the resulting contigs according to (17). In addition, 

eBURST (230) was used to estimate the clonal relatedness of the isolates using the 

allelic profiles of each sequence types. 

 

Manual annotation: the entire contig containing orfX was annotated. The orfX was 

identified by BLAST analysis of the orfX sequence carried by the reference S. 

epidermidis strain RP62A (NCBI accession number NC_002976.3). The remaining ORFs 

of the contig were identified using GeneMark-hmm 

(http://exon.gatech.edu/GeneMark/) and annotated by BLAST. The sequences of the 

predicted ORFs were compared with the nucleotide sequences available at 

http://www.ncbi.nlm.nih.gov/. BLAST was performed with a minimum of 70% of 

nucleotide identity. Only scores comprising at least 30% of the size of the gene were 

considered.  

 

http://exon.gatech.edu/GeneMark/
http://www.ncbi.nlm.nih.gov/
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ccr allotypes: ccr types were assigned when the nucleotide sequence shared more 

than 85% identity with known ccr types, as previously suggested (111).  

 

Identification of ψSCCmec: the contigs containing SCCmec elements of the early strain 

DNK22 were aligned with SCCmec IV (NCBI accession number AB063172) using the 

Microbial Genome Finishing Module of the CLC Genomics Workbench (Qiagen, Venlo, 

The Netherlands). The sequence of the IS431 disrupting mecA was confirmed by 

sequencing a DNA fragment obtained by long-range PCR between orfX and mecRI (13 

kb). The primers used for primer walking are listed on Supplementary Table 1. Manual 

annotation of the resulting contig containing the ψSCCmec structure was performed 

by BLAST analysis of the predicted ORFs with the nucleotide sequences available at 

http://www.ncbi.nlm.nih.gov/. WebACT was used to compare the sequence of 

ψSCCmec and SCCmec IV (http://www.webact.org/).  

 

SCC/SCCmec nucleotide sequence comparison: the homology blocks carried by the 

SCC and SCCmec elements identified delimited by direct and/or inverted repeats were 

identified and aligned with Mauve (34). The most frequently found SCCmec types in S. 

epidermidis, SCCmec types I (NCBI accession number AB033763.2), II (NCBI accession 

number D86934), III (NCBI accession number AB037671), IV (NCBI accession number 

AB063172.2), V (NCBI accession number AB121219) and VI (NCBI accession number 

AF411935.3) were also used in the alignment. 

 

Assessment of the carriage of antibiotic resistance genes: the online version of 

ResFinder (231)(https://cge.cbs.dtu.dk//services/ResFinder/) was used to search for 

the presence of antibiotic resistance genes in the contigs obtained with VELVET for all 

strains. 

 

http://www.ncbi.nlm.nih.gov/
https://cge.cbs.dtu.dk/services/ResFinder/
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Assessment of the carriage of virulence genes: virulence genes were identified in the 

contigs obtained with VELVET by BLAST analysis of genes involved in biofilm formation, 

as described in (51). In addition, the two operons that are part of ACME-I (98), arc and 

opp, were searched by BLAST analysis. 

 

Determination of the mobilome: the mobilome was considered to include insertion 

sequences, plasmids and intact prophages. Several online based servers were used to 

search for the presence of these elements for all strains, using the contigs obtained 

with VELVET; specifically, insertion sequences were searched with IS finder (232) 

(https://www-is.biotoul.fr/), rep genes with Plasmid finder (233) 

(https://cge.cbs.dtu.dk/services/PlasmidFinder/) and intact prophages with PHAST 

(234) (http://phast.wishartlab.com/). 

 

Statistical analysis: Statistical significance of differences between proportions was 

evaluated by the Chi-square (χ2) test using a confidence interval of 95%.  

 

Data deposition: the raw data was deposited in ENA. 

  

https://www-is.biotoul.fr/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
http://phast.wishartlab.com/
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RESULTS 

S. epidermidis of the early-antibiotic era belong to 16 different clonal types 

The earliest S. epidermidis isolates characterized so far were isolated in the 

1970s (110). In this study we analyzed 21 S. epidermidis isolates collected in Denmark 

five years earlier, in 1965, which coincides with the beginning of the large-scale use of 

antibiotics in clinical practice.  

The genomes of these 21 early S. epidermidis isolates were sequenced and 

single-nucleotide polymorphism (SNP) analysis of the genomes using ATCC12228 as a 

reference strain was performed. Considering a threshold value of 50000 SNPs, the 

isolates were included into three different clusters (Figure 1). Inside each cluster, the 

highest SNP difference was 5000-12000 SNPs. This huge degree of genetic diversity in 

the SNP tree was concordant with the MLST results: the MLST alleles of the seven 

housekeeping genes that compose the S. epidermidis MLST scheme (arcC, aroE, gtr, 

mutS, pyrR, tpi and yqil) were extracted and the 21 isolates were found to belong to 16 

different sequence types (STs). Moreover, the majority was not present in the MLST 

database, and new STs were assigned (STs 409, 410, 411, 412, 413, 414, 417, 500, 501 

and 502).  

On the other hand, we found that isolates with the same ST (ST5, DNK3 and 

DNK8; ST6, DNK2 and DNK20; ST8, DNK11 and DNK12; ST225, DNK15 and DNK18; 

ST500, DNK1 and DNK13) clustered together in the SNP tree, confirming that they are 

related to each other. In addition, the core genome of these isolates with the same ST 

showed a low number of SNP differences (ST5, 103 SNPs; ST8, 6 SNPs; ST225, 150 

SNPs; ST500, 76 SNPs), except for ST6 isolates with 5191 SNPs between their core 

genomes, indicating that this particular ST includes more distantly related isolates.  
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Figure 1. SNP tree of the predicted core genome of S. epidermidis isolates collected in Denmark in 1965. The tree 

reflects the number of SNP differences among the isolates. The average number of SNPs between the genomes of 

each cluster is shown. The reference strain used was S. epidermidis ATCC12228. Sequence types (STs) of each isolate 

is also shown. 

 

The main contemporary S. epidermidis clonal lineage, CC2, was also prevalent in the 

early-antibiotic era 

Most of the early isolates belonged to new sequence types, but although new, 

the STs identified were related with contemporary hospital-associated isolates, 

including ST2 (STs 5, 6, 8, 86, 190, 225). Interestingly, no isolate of the 1965 collection 

belonged to the presently most successful hospital-associated ST2. The relatedness of 

early and contemporary isolates was further evidenced when we compared the 

sequence types found among the early isolates to all sequence types available at 

www.mlst.net, through eBURST analysis (data not shown). Actually, the majority of the 

sequence types found among early isolates belonged to CC2 (ST5, -6, -8, -86, -190, -

409, -411, -412, -413, -414 and -417). In addition, we found that ST5, a single-locus 

variant of ST2, was the only ST shared by early and contemporary isolates (17). This 

observation corroborates a previous suggestion that ST5 might correspond to the 

founder of CC2 and be the ancestral of the highly successful hospital-associated clonal 

type, ST2 (198).  
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http://www.mlst.net/
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To further understand the level of relatedness between early and contemporary 

strains, we predicted their core genome, by aligning the contigs obtained by VELVET 

with Mugsy, without a reference genome (Figure 2) and estimated the homology 

between them using Mauve. Our analysis showed that in fact the average degree of 

homology between the core genomes of early and contemporary isolates was 

extremely high, reaching 92.7%. When we considered only early isolates, the 

homology of the core genome of these isolates with the core of the entire collection 

(early and contemporary genomes) was lower, 89.4%, which reflects their primordial 

genome. Accordingly, if we consider the homology of the core of contemporary 

isolates with that of the entire collection, it increases to 97.5%. 

 

Early S. epidermidis isolates had a susceptible heterogeneous profile to β-lactams 

Contemporary hospital-associated S. epidermidis have been described to be 

highly resistant to β-lactams (2), associated with a high frequency of carriage of 

SCCmec. Nevertheless, the susceptibility to β-lactams in early S. epidermidis isolates 

has never been studied. We have determined the susceptibility of the early S. 

epidermidis isolates to two β-lactams, oxacillin and cefoxitin (Supplementary Figure 1). 

All isolates were highly susceptible to both β-lactams by eTest: the MIC to oxacillin 

ranged from 0.023 to 0.19 µg/ml and the MIC to cefoxitin, from 0.38 to 1.5 µg/ml. To 

determine in detail the resistance profile, cefoxitin population analysis profiles were 

performed and the great majority (18 out 21) strains showed a slightly hetereogeneous 

susceptibility profile, indicating that a small proportion of the population was able to 

grow at higher concentrations of cefoxitin (0.75-3 µg/ml). As expected, the 

contemporary isolates showed low susceptibility profiles to oxacillin as determined by 

disk diffusion (published before in (17, 79)). 



 

 

A. 

 

 

Figure 2A. Comparison between the genetic backgrounds of S. epidermidis isolates collected in Denmark in 1965 and 1997/1998. A. Phylogenetic reconstruction of the core genomes of S. 

epidermidis isolates as defined by Mugsy. The distance as predicted by Mauve is shown. In addition, the frequency of virulence genes and mobile genetic elements are highlighted for each 

strain in black. The strain ID of contemporary isolates is highlighted in bold. In addition, the cluster englobing a higher number of virulent strains is highlighted in blue.  
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B. 

 

Figure 2B. Comparison between the genetic backgrounds of S. epidermidis isolates collected in Denmark in 1965 

and 1997/1998. Radial representation of the tree showed in A. Isolates belonging to clonal complex 2 are 

highlighted in bold. DNK: early strains; DEN: contemporary strains. 

 

SCC and ψSCCmec elements related with SCCmec were present in early S. 

epidermidis  

The most frequent SCCmec type in S. epidermidis is SCCmec type IV, suggesting 

this species could have been the origin of this SCCmec element, but the contribution of 

S. epidermidis to SCCmec evolution is not known. On the other hand the acquisition of 

SCCmec was previously shown to be promoted in the hospital environment, suggesting 

this element could help S. epidermidis to adapt to this setting, but is still not clear 

DNK1
DEN22
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when was SCCmec first acquired by this species. To further explore the possible 

associations between S. epidermidis and SCCmec, we searched for the presence of 

SCCmec elements in the genome of early S. epidermidis isolates. The vicinity of orfX 

was annotated for 16 isolates collected in 1965. In the remaining five isolates, the 

elements were scattered among several small contigs or the orfX was located at the 

end of a long contig, which hindered the analysis.  

The annotation of the orfX region of S. epidermidis strains collected in the pre-

antibiotic era revealed a very complex and diverse genetic region (Supplementary 

Table 1, Figure 3A). Out of the 16 strains that were annotated, seven (DNK2, DNK3, 

DNK4, DNK14, DNK16, DNK20 and DNK22) (44%) had SCC and ψSCC elements flanked 

by direct and/or inverse repeats (DR/IR) and in two isolates, the elements were 

inserted in the chromosome in tandem (DNK3 SCC/DNK3 ψSCC; DNK20 ψSCC 1/ 

DNK20 ψSCC 2). 

The comparison of the sequence of SCC and ψSCC found among early S. 

epidermidis isolates with SCCmec cassettes most often carried by contemporary S. 

epidermidis isolates (Figure 3C) showed that one strain, DNK22, carried a ψSCCmec 

that was closely related with SCCmec IV and SCCmec I. The regions of homology 

corresponded to mec complex and the J3 region (100% nucleotide identity of the 

elements carried in the same orientation and synteny as the ones found in SCCmec IV). 

The remaining ψSCC carried by early S. epidermidis isolates were less related with 

contemporary SCCmec cassettes, despite the finding of genes encoding SCCmec-

associated hypothetical proteins inside these elements (Supplementary Table 2). On 

the other hand, the SCC carried by early S. epidermidis were more related with SCCmec 

II, having in common ccrAB2 and related J1 regions, composed by genes encoding 

hypothetical proteins that were found to be carried in SCCmec II and SCCmec II 

composite islands identified in several staphylococcal species (Figure 3C and 

Supplementary Table 2).  



 

 

 

Figure 3A. Examples of SCC elements carried by ancestral S. epidermidis strains. Green arrows: orfX; blue arrows: elements related with SCCmec structures; pink arrows: elements related with 

housekeeping genes. 
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Figure 3B. Comparison of SCCmec IV and the ψSCCmec IV-like carried by DNK22 strain, with WEBACT. Red blocks: regions with high homology; blue blocks: regions with high homology and 

inverse sinteny. Green arrows: mec complex; grey arrows: ccr complex; pink arrows: IS431; light blue arrows: orfX. The remaining ORFs of each cassette are shown in yellow.  
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Figure 3C. Phylogeny reconstruction of the first SCCmec cassettes described until the early 2000s and the SCC cassettes carried by ancestral S. epidermidis strains. 
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From the nine isolates that had no DR/IR in the vicinity of the orfX, seven 

isolates contained several different SCCmec-associated structural elements, such as ccr 

and J1/J2/J3 genes encoding hypothetical proteins (data not shown). The genes 

encoding hypothetical proteins identified have been found mainly in contemporary 

SCCmec II, III, IV and V (Table 1). Moreover, some SCCmec-associated genes encoding 

hypothetical proteins were found in elements that belonged to distinct genetic 

backgrounds in the same chromosomal region, suggesting that they could be part of 

the core genomes of early isolates. The remaining two isolates did not carry any 

SCCmec structural elements in the vicinity of orfX. Noteworthy, as many as 29% of the 

early strains carried ccr genes, including those within a SCC or within orfX, outside any 

delimited element. The ccrAB4 and related alotypes were the most frequent ccr types 

found among early S. epidermidis isolates (19%, four out of 21, DNK2, DNK11, DNK12 

and DNK14), followed by ccrAB2 (DNK3) and ccrC (DNK7) (5%, one isolate out of 21 

each).  

The great majority of the contemporary isolates included in this study (57%, 

eight out of 14) carried SCCmec IV in the orfX region. Regarding the remaining 

contemporary isolates, four isolates carried SCCmec (SCCmec I, III, V and a combination 

of ccrAB2 with mec complex C2) and two isolates (MSSE) did not carry any SCC in their 

orfX region. In addition, the orfX region of MSSE did not carry any other structural 

SCCmec elements. 

Overall, we found a high number of SCCmec IV structural elements among early 

S. epidermidis (Table 1); specifically, genes encoding hypothetical proteins carried in 

the J regions of the element. The nucleotide sequence of the genes found had 76-100% 

of nucleotide identity with the genes carried in SCCmec IV, which suggests that early 

strains might have played a role in the assembly of SCCmec IV or of a related 

intermediate structure.  
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Table 1. Distribution of SCCmec IV (reference sequence, NCBI accession number AB063172.2) structural elements 

among early S. epidermidis genomes. 

Genes % Nucleotide identity Element 

Hypothetical proteins (J3) 
97.22-100% hypothetical protein KF234240 (S. aureus SCCmec 

IVa-ACME, upstream mecA) 
orfX vicinity 

Hypothetical proteins (J3) 
100% hypothetical protein AB063172 (SCCmec IV J3 reference 

sequence) 
ψSCCmec 

Hypothetical proteins (J3) 

87.46% hypothetical protein (BA000017 S. aureus SCCmec J3 

IV) 

75.77-81.83% hypothetical protein (HF569109 S. aureus J3 

SCCmec IV) 

97.78-100% hypothetical protein J3 SCCmec IVa S. aureus 

USA300 (KF234240) 

ψSCC 

IS431 100% SCCmec IV reference sequence ψSCCmec 

mecA 99% SCCmec IV reference sequence ψSCCmec 

mecR1 99% SCCmec IV reference sequence ψSCCmec 

IS1272 100% SCCmec IV reference sequence ψSCC; ψSCCmec 

Hypothetical proteins (J2) 

100% hypothetical protein J2 SCCmec (SCCmec IVa+ACME 

composite island – S. aureus KF175393) 

94.12% hypothetical protein J2 SCCmec (SCCmec IVh – S. 

aureus HE681097) 

SCC 

Hypothetical proteins (J2) 
100% hypothetical protein AB063172 (SCCmec IV J2 reference 

sequence) 
ψSCCmec 

ccrA2 98.2% ccrA2 SCCmec IV reference sequence SCC 

Hypothetical proteins (J1) 
98.44-100% hypothetical protein J1 SCCmec IVa/ACME S. 

aureus USA300 (KF175393) 
ψSCC 

Hypothetical proteins (J1) 
85.8-100% hypothetical protein J1 SCCmec (SCCmec IVa+ACME 

composite island – S. aureus FR753166) 
SCC 

 

An interrupted mecA gene was carried by a single early isolate  

The single early isolate that carried mecA gene, in the vicinity of the orfX, was 

DNK22. To our knowledge, this is the earliest description of a S. epidermidis carrying 

mecA. DNK22 strain carried a ψSCCmec element, flanked by DR/IR repeats but without 

ccr genes. In spite of the presence of the mecA gene in the chromosome of this strain, 

DNK22 was fully susceptible to the two β-lactam antibiotics tested. The mecA gene 

sequence was very conserved, showing 99% nucleotide identity with the sequence 

carried by the reference MRSE strain RP62A. However, DNK22 mecA nucleotide 

sequence was disrupted at position 727 with a copy of IS431. IS431 was flanked by 

direct 8 bp repeats. In the vicinity of mecA, mecRI was identified upstream; a second 

copy of IS431 was carried downstream mecA. In addition, we could identify a copy of 

mecR1 disrupted by IS1272, downstream mecA (Supplementary Table 2). Therefore, 

DNK22 ψSCCmec carried mec complex B. BLAST analysis of the remaining ORFs of the 
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element with the nucleotide sequences available at http://www.ncbi.nlm.nih.gov/ has 

revealed several hits with genes carried by SCCmec IV. We performed a comparison of 

SCCmec IV with DNK22 ψSCCmec with WEBACT and we found that these elements 

were closely related (Figure 3B). Therefore, these results suggest that a SCCmec IV-like 

element was already carried by early S. epidermidis isolates, collected in the beginning 

of the antibiotic era.  

 

Early hospital-associated S. epidermidis carried genes associated with antibiotic and 

heavy metal resistance  

Contemporary hospital-associated S. epidermidis are resistant to several classes 

of antimicrobial agents. To determine if early hospital-associated isolates already 

carried genetic determinants of resistance, searches were performed using web-based 

software and BLAST analysis of the assembled de novo contigs (Table 2). Interestingly, 

most of the antibiotic resistance determinants carried by contemporary isolates were 

already present in early S. epidermidis isolates (Table 2). In fact, early isolates carried 

genes associated to resistance to several different antibiotics commonly used in clinical 

practice in the 1960s; some were highly prevalent (blaZ, 67%, fosA, 90%; norA, 100%) 

and others were found in a low frequency (aaD, 9.5%; ermA, 9.5%, fusB, 9.5%; cat, 

14.3%, tet(K), 14.3%). 

A higher frequency of genetic determinants involved in antibiotic resistance 

was found among the contemporary isolates; specifically, blaZ (100%) and fusB (43%). 

Moreover, additional resistance determinants were identified exclusively among the 

contemporary isolates: aac(6')-aph(2'') (19%), ermC (14%), tet (L) (5%) and lnu(B) (5%). 

The resistance determinants cat (14.2%) and tet(K) (14.2%) were also carried by the 

contemporary isolates; in addition, norA and fosA were also found in the genomes of 

all contemporary isolates (100%). 

In addition, the accumulation of such elements in a single strain, leading to 

multi-resistance (resistance to four or more antimicrobial agents), was more 

frequently found among contemporary isolates (Table 2) (11 of 14, 79%) than early 

http://www.ncbi.nlm.nih.gov/
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isolates (7 of 21, 33%). Moreover, at least in two multiresistant early strains, DNK11 

and DNK12, the majority of the antimicrobial resistance determinants, namely aadD, 

cat and tet (K), were identified in the vicinity of a rep gene, indicating that these two 

particular strains might be carrying a multi-resistance plasmid. However, we did not 

find any plasmid with the same genes deposited in the NCBI database. 

In addition to antibiotic resistance genes, we searched for genes conferring 

resistance to heavy metals. We found that at least four early S. epidermidis isolates 

(DNK2, DNK5, DNK14 and DNK22) carried heavy metals resistance genes, such as copA 

(conferring resistance to copper) and yozA (conferring resistance to arsenic). In early 

strains, these elements were found inside SCC cassettes, flanked by direct repeats, 

being putatively mobile (Supplementary Table 1), but they were not identified among 

any of the contemporary S. epidermidis genomes. 

 

Early hospital-associated S. epidermidis carried genes associated with virulence 

The search for the presence of virulence genes was focused on the genes that 

were previously described to be associated to biofilm formation, namely, ica, aap, bap, 

bhp, sdrG, sdrH and sdrF. In addition, we searched for the autolysin atlE, the capsule 

operon cap, and the proteases geh-1, geh-2, sepA, sspB and sspC, that have been 

described to also influence biofilm formation in S. epidermidis (51). 

The atlE, sdrG, sdrH, geh-1 and geh-2 were present in all 35 isolates analyzed, 

including early and contemporary isolates. The cap operon was also almost ubiquitous 

in our collection, since a single early isolate, DNK5, did not carry this element. In 

addition, sspB and sspC were absent from the genomes of all isolates. Regarding the 

remaining genes, we found that bap and sdrF were exclusively carried by 

contemporary isolates (7%, one isolate out of 14; 2 out of 14 isolates, respectively). 

bhp was equally abundant among both collections (early, 28.5%, 6 out of 21 isolates; 

contemporary, 21.4%, three out of 14 isolates). The sepA was ubiquitous among early 

isolates, while it was only carried by 10 out of 14 contemporary isolates (71.4%). The 

ica operon (all five genes, icaR, icaA, icaB, icaC and icaD) was carried by a single early 
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S. epidermidis isolate, DNK14 (5%) (Table 3), but its frequency was higher in 

contemporary isolates (21%, three out of 14 isolates). Also an increase in frequency 

was observed for aap that raised from 38% (eight out of 21 isolates) in early isolates to 

64% (nine out of 14 isolates) in contemporary isolates. ACME-I is composed by two 

operons, arc and opp-3, while ACME-II is composed by the arc operon alone. Among 

the early isolates, 38% (eight isolates out of 21) carried ACME and half of these strains 

carried ACME-I while the other half carried ACME-II. Interestingly, the frequency of the 

ACME I in contemporary isolates was found to be much higher (57%, eight out of 14 

isolates) and ACME II was not found at all among this population. 

Statistical significance between the different proportions observed regarding 

the distribution of virulence factors was tested with the Chi-square test. We found that 

the only significant differences (p<0.05) were observed regarding the higher frequency 

of sdrF among contemporary isolates and the higher frequency of sepA among the 

early isolates.  

To understand how virulence factors might be associated to evolution of S. 

epidermidis, we analysed the distribution of these virulence factors among the 

different genetic backgrounds (Figure 2B). Interestingly, we found that the genetic 

background of contemporary isolates, that carried biofilm-associated genes and ACME, 

clustered more frequently with the genetic background of early isolates carrying also 

these elements (highlighted in Figure 2B in blue). This result might indicate that the 

genetic backgrounds that later adapted to the hospital environment were already 

present in the 60s. Moreover, this adaptation might be related with the maintenance 

and accumulation of virulence factors in the genetic background of the strains.  

 



 

 

Table 2. Genetic background of the S. epidermidis isolates collected in Denmark in 1965 and 1997/1998. The presence of antibiotic resistance genes and virulence genes is also shown. 

Strain 
Year of 

isolation 

Colonization/

infection 
ST Antibiotic resistance genes Predicted antibiotic resistance profile 

SCCmec 

type 
Virulence genes* 

DNK1 1965 Colonization 500 blaZ/norA/fosA PEN
R
FQL

R
FOS

R 
- sepA/bhp 

DNK2 1965 Colonization 6 norA/fosA FQL
R
FOS

R
 - aap/sepA 

DNK3 1965 Colonization 5 blaZ/norA/fosA PEN
R
FQL

R
FOS

R 
- aap/sepA 

DNK4 1965 Colonization 409 norA/fosA FQL
R
FOS

R
 - ACME I/sepA/bhp 

DNK5 1965 Colonization 410 str/blaZ/norA/fosB AMN
R
PEN

R
FQL

R
FOS

R
 - sepA/bhp 

DNK6 1965 Colonization 411 norA/fosA FQL
R
FOS

R
 - ACME II/sepA 

DNK7 1965 Colonization 412 blaZ/norA/fosA PEN
R
FQL

R
FOS

R
 - sepA 

DNK8 1965 Colonization 5 blaZ/norA/fosA/tetK/tetM PEN
R
FQL

R
FOS

R
TET

R 
- aap/sepA 

DNK9 1965 Colonization 413 blaZ/norA/fosA/fusB/cat PEN
R
FQL

R
FOS

R
FUS

R
CHL

R 
- sepA 

DNK10 1965 Colonization 414 blaZ/norA/fosA PEN
R
FQL

R
FOS

R
 - aap/ACME II/sepA 

DNK11 1965 Colonization 8 aadD/spc/blaZ/norA/fosA/ermA/cat/tet(K) AMN
R 

SPE
R
PEN

R
FQL

R
FOS

R
TET

R
CHL

R
MLS

R 
- aap/ACME II/sepA 

DNK12 1965 Colonization 8 aadD/spc/blaZ/norA/fosA/ermA/cat/tet(K) AMN
R 

SPE
R
PEN

R
FQL

R
FOS

R
TET

R
CHL

R
MLS

R
 - aap/sepA 

DNK13 1965 Colonization 500 blaZ/norA/fosA PEN
R
FQL

R
FOS

R
 - sepA/bhp 

DNK14 1965 Colonization 86 norA/fosA FQL
R
FOS

R
 - ica/aap/ACME I/sepA 

DNK15 1965 Colonization 225 norA/fosA FQL
R
FOS

R
 - ACME I/sepA/bhp 

DNK16 1965 Colonization 502 norA/fosA/fusB FQL
R
FOS

R
FUS

R 
- sepA 

DNK17 1965 Colonization 190 str/blaZ/norA/fosB AMN
R
PEN

R
FQL

R
FOS

R
 - ACME II/sepA 

DNK18 1965 Colonization 225 norA/fosA FQL
R
FOS

R
 - ACME I/sepA/bhp 

DNK20 1965 Colonization 6 blaZ/norA/fosA PEN
R
FQL

R
FOS

R
 - aap/sepA 

DNK21 1965 Colonization 501 blaZ/norA/fosA PEN
R
FQL

R
FOS

R
 - sepA 

DNK22 1965 Colonization 417 ΔmecA/blaZ/norA/fosA PEN
R
FQL

R
FOS

R
 ψSCCmec - 

DEN19 1997 Infection 1 aac (6')-aph (2'')/blaZ/mecA/norA/fosA AMN
R
OXA

R
PEN

R
FQL

R
FOS

R
 IV aap/sepA 

DEN22 1997 Infection 4 blaZ/mecA/norA/fosA/fusB OXA
R
PEN

R
FQL

R
FOS

R
FUS

R 
IV sepA 

DEN61 1997 Colonization 22 blaZ/mecA/norA/fosA/fusB/ermC OXA
R
PEN

R
FQL

R
FOS

R
FUS

R
MLS

R 
III ica/aap/ACME I 

DEN62 1997 Infection 11 aac (6')-aph (2'')/blaZ/mecA/norA/fosA/fusB AMN
R
OXA

R
PEN

R
FQL

R
FOS

R
FUS

R 
IV - 

  



 

 

Strain 
Year of 

isolation 

Colonization/

infection 
ST Antibiotic resistance genes Antibiotic resistance profile 

SCCmec 

type 
Virulence genes 

DEN69 1997 Infection 56 blaZ/mecA/norA/fosA/fusB/cat/tetL OXA
R
PEN

R
FQL

R
FOS

R
FUS

R
CHL

R
TET

R
 V ica/aap/ACME I/sepA 

DEN73 1997 Infection 21 blaZ/mecA/norA/fosA OXA
R
PEN

R
FQL

R
FOS

R
 C/2 aap/ACME I/bhp/sepA 

DEN76 1997 Infection 14 blaZ/norA/fosA PEN
R
FQL

R
FOS

R
 - aap/ACME I/sepA 

DEN107 1998 Infection 40 aac (6')-aph (2'')/blaZ/mecA/norA/fosA/fusB/cat/tetK AMN
R
OXA

R
PEN

R
FQL

R
FOS

R
FUS

R
CHL

R
TET

R
 IV sdrF/sepA 

DEN110 1998 Colonization 68 aadD/blaZ/mecA/norA/fosA/fusB/ermC AMN
R
OXA

R
PEN

R
FQL

R
FOS

R
FUS

R
MLS

R
 IV bap/sepA 

DEN116 1998 Infection 42 aac (6')-aph (2'')/blaZ/mecA/norA/fosA/ermC/cat AMN
R
OXA

R
PEN

R
FQL

R
FOS

R
MLS

R
CHL

R
 I sepA 

DEN161 1998 Infection 85 blaZ/mecA/norA/fosA/fusB OXA
R
PEN

R
FQL

R
FOS

R
FUS

R
 IV ica/aap/ACME I 

DEN178 1998 Infection 5 blaZ/mecA/norA/fosA OXA
R
PEN

R
FQL

R
FOS

R
 IV aap/ACME I/bhp/sepA 

DEN185 1998 Infection 21 blaZ/mecA/norA/fosA/fusB/tetK OXA
R
PEN

R
FQL

R
FOS

R
FUS

R
TET

R
 IV aap/ACME I/bhp/sepA 

DEN189 1998 NA 55 blaZ/norA/fosA/fusB/lnuA PEN
R
FQL

R
FOS

R
FUS

R
MLS

R
 - aap/ACME I/sdrF/sepA 

 

* all isolates carried in addition atlE, sdrG, sdrH, geh-1, geh-2 and cap (with the exception of DNK5 that did not carry cap). 

PEN: penicillin; OXA:oxacillin; FQL: fluoroquinolones; FOS: fosfomycin; FUS: fusidic acid; MLS: macrolides; AMN: aminoglycosides; CHL: cloranphenicol; TET: tetracycline; SPE: spectinomycin 
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Distinctive mobilomes of early and contemporary S. epidermidis isolates  

The frequency of mobile genetic elements, namely plasmids, prophages and 

insertion sequences (IS), was compared for early and contemporary S. epidermidis 

isolates. The proportion of isolates carrying plasmid sequences, as indicated by the 

presence of rep genes, was similar in both collections (71%, 15 out of 21 early isolates; 

79%, 11 out of 14 contemporary isolates). On the other hand, the presence of intact 

prophages was markedly different between both collections. While for the early 

isolates, intact prophages were carried by almost all isolates (95%, 20 out of 21), in the 

contemporary isolates, only half (7 out of 14) carried these elements (Figure 2B). By 

analyzing the predicted size and G+C content of the prophages, we found that the pool 

of prophages was very diverse (29 different phages in 20 early strains and seven 

different phages carried by seven contemporary strains). In fact, we were able to 

identify the same phage in only a pair of early strains (DNK11 and DNK12) and 

contemporary strains (DEN73 and DEN185).  

In addition, we looked at the highest BLAST hit of the proteins encoded by the 

majority of the predicted phage genes. Based on this analysis, we found that the 

majority of the prophages that seemed to carry the same or related phage genes were 

restricted to early or contemporary genomes. However, we found some exceptions. 

Early strains DNK15 and DNK18 carried two related phages that were also identified in 

the contemporary strain DEN110 (similar to NCBI database entry NC_022758); and 

early strain DNK18 carried a prophage related with the one carried by contemporary 

strains DEN22, DEN73 and DEN178 (similar to NCBI database entry NC_008723). These 

prophages contained solely genes associated to the phage cycle.  

The presence of different IS sequences was searched using the IS finder 

database. All strains carried a core set of IS elements in their genome, composed by 

ISSep1, ISSep2, ISSep3, ISSau3 and IS1272 (Figure 2B). ISSau4 was also almost 

ubiquitous (a single isolate out of the 35 studied did not carry this element). The high 

frequency of IS1272, a S. haemolyticus IS element and ISSau3/ISSau4, S. aureus IS 

elements, in early S. epidermidis isolates, indicates high frequency of genetic exchange 

between these species and raises the question on the source of these elements. 



Early MRSE and hospital adaptation 

Chapter V | 194  

Interestingly, IS431 and related IS sequences (IS257 and ISSau6) were also almost 

ubiquitous in our collection. Only two early isolates did not carry these elements 

(DNK1 and DNK3). 

By comparing the distribution of different IS elements in both collections, we 

found that contemporary isolates have a higher number of different IS elements in 

their genomes than the early isolates. As many as 14 different IS elements in a single 

isolate were identified in the contemporary isolates, while in early isolates the 

maximum number of different IS elements per isolate was ten. In fact, specific IS 

elements were only identified in contemporary isolates, such as S. aureus IS1182, 

Enterococcus faecium IS1542, Enterococcus faecalis ISEnfa4 and Campylobacter coli 

ISCCo2. Interestingly, all of these bacteria from which IS were putatively originated are 

nosocomial pathogens, like S. epidermidis. The accumulation of these IS elements in 

the genome of contemporary S. epidermidis isolates might be related with their 

interaction with other nosocomial pathogens at the hospital environment. 

We analysed the number of copies of IS elements in a proportion of the early 

and contemporary strains (six out of the 35 strains) and we did not find an overall 

alteration of the number of copies of each IS element per genome (each IS is found on 

average in single copy, two or three copies). The IS elements were we found a great 

variation were IS431 and IS1272, that ranged from none to until four copies per 

genome, but we did not find a correlation between number of copies and year of 

isolation of the strain. 

Of particular interest was the finding of IS256 exclusively among contemporary 

genomes (six out of 14 strains, 43%). This IS element has been associated with 

modulation of biofilm formation and resistance to aminoglycosides, which are 

particularly relevant among strains associated with infection in the hospital 

environment, such as the ones collected in the post-antibiotic era (78, 235). 

 

  



Early MRSE and hospital adaptation 

Chapter V | 195  

DISCUSSION 

Staphylococcus epidermidis, a harmless commensal, has established recently as 

a human pathogen associated to medical-devices associated infections (2, 51). In 

recent years, several studies have addressed its pathogenic potential (52, 84, 100, 236) 

and epidemiology (17, 228, 237). A single genetic background, the clonal complex 2 

(CC2), was described to be predominant in colonization and infection in the 

community and hospital (17, 198, 228). However, how nosocomial setting 

environmental pressures contributed to S. epidermidis evolution towards a more 

pathogenic lifestyle, remained to be clarified.  

To address this question we compared the genomes of nosocomial strains 

collected in the same geographic region in the beginning of the 1960s, wherein S. 

epidermidis was still rarely identified as etiological agent of infection, with strains 

collected in the end of the 1990s, wherein S. epidermidis was already a recognized 

infectious agent.  

The characterization of the genetic background of early and contemporary S. 

epidermidis isolates by both MLST and phylogenetic analysis showed that isolates 

collected almost 40 years apart were surprisingly highly related regarding their core 

genome, belonging almost all to the so-called CC2. This homogeny might result from 

the fact that recombination between similar S. epidermidis isolates belonging to CC2 is 

favored over recombination with different strains, as previously suggested (42). 

Notwithstanding, some differences between the two collections were observed. One 

of the most striking observations was the absence from the early collection of ST2, the 

ST most frequently associated to infections nowadays. Although our study is the first 

to describe the population structure of S. epidermidis in the 1960s, a previous study 

analyzed isolates collected in the 1970s, in Canada, by multilocus sequence typing 

(110). In this former study, a different typing scheme was used, but one of the main 

sequence types carried by 1973/76 isolates identified was that correspondent to ST2 

(former ST27), suggesting that ST2 might have emerged between 1965 and 1973.  

Actually, although belonging to CC2, the great majority of sequence types 

identified in early isolates were new sequence types, which might indicate that they 
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correspond to ancestral genetic backgrounds that no longer exist in circulation. Only 

one sequence type, ST5, was found both in the early and in the contemporary 

collection, which was a single-locus variant of ST2. Although ST2 was initially 

considered as the founder of CC2, when MLST analysis was extended from the hospital 

settings to the community, ST5 has been suggested to be the founder of CC2 instead 

(198). The fact that ST5 was already present in the early isolates and ST2 was not 

further supports this hypothesis.  

In contrast with the conservation observed in the core genome, we observed a 

high number of differences in the mobilome of early and contemporary isolates. In 

particular we found a much higher frequency of intact prophages in the early 

population. Excision and loss of prophages have been described to be induced by 

hospital-associated stresses such as contact with antibiotics, like it was described for 

Enterococcus faecalis, when exposed to fluoroquinolones (238). Also, loss of prophages 

has been associated to increased virulence features, like increase in colonization 

capacity and biofilm formation. Actually, recent studies have highlighted the role of 

prophages in the modulation/inhibition of biofilm formation in S. epidermidis (239-

241). Since biofilm formation constitutes the main virulence factor of S. epidermidis, it 

is tempting to speculate that the loss of intact prophages, possibly promoted by 

antibiotics, might have resulted in the emergence of strains with increased biofilm 

formation ability in contemporary isolates.  

Another mobile genetic element that showed to be differentially distributed 

between the two collections were insertion sequences, that varied overtime not only 

in diversity but also in the type of IS carried. In particular, we observed that the 

number of different IS elements in the genome of early isolates was lower than in the 

contemporary isolates and that some IS elements, like IS256, IS1182, IS1542, ISEnfa4 

and ISCCo2 were exclusively present in contemporary strains. IS elements have been 

previously described to be related to an increased ability to acquire and maintain 

antibiotic resistance genes and can be part of transposons, carrying antibiotic and 

heavy metal resistance genes into mosaic multi-resistance plasmids (242). The 

accumulation of antibiotic resistance genes that we observed to have occurred 

overtime in this study may have been facilitated by the expansion of IS during 
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evolution of S. epidermidis. Another known possible activity of IS elements is their 

ability to control gene expression through insertion into promotors or through gene 

disruption. In particular, in S. epidermidis it has been demonstrated that IS256 could 

modulate the biofilm formation (78, 86, 235). The acquisition of IS256 by 

contemporary strains might have enabled a refined tuning and regulation of biofilm 

formation, which is an added value in a medical device related infection situation, in 

the hospital environment. On the other hand, previous comparative genomic studies 

have previously documented the loss of prophages and accumulation of IS elements 

during adaptation of Bordetella genera to the human host (243). As suggested by 

Parkhill and co-authors these events might occur together with loss of coding 

sequences and the consequent loss of regulatory functions that can result in 

alterations in the regulation of virulence.  

We have also found that the distribution of different SCC elements, like ACME 

and SCC carrying heavy-metal resistance genes was remarkably different between the 

early and contemporary populations. Our data showed that in particular ACME I was 

already part of S. epidermidis chromosome in the 1960s, however it only became 

widely disseminated in the contemporary collection. This finding is in accordance with 

previous studies wherein ACME I was found to be the most frequent among a 

representative population of nosocomial S. epidermidis from different countries (100, 

101). The increased prevalence of this element in contemporary strains might provide 

a higher capacity of dissemination to S. epidermidis, like was previously shown to occur 

in S. aureus (98), a characteristic that is highly advantageous for a nosocomial bacteria. 

On the other hand, SCC carrying heavy metal resistance genes were exclusively found 

in early isolates. The existence of these genes probably resulted from prolonged 

contact with a heavy-metal rich environments created by humans. In the context of 

human skin and hospital, the frequent use of antiseptics and desinfectants might have 

been the environmental pressure driving the maintenance of heavy-metal resistance 

genes. The existence of heavy metal resistance genes in early populations of other 

bacteria, like S. aureus was previously reported (244) and their loss in the 

contemporary isolates might result from changes in hygiene practices in the hospital 

environment (245).  
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As expected and as previously described (2), the contemporary nosocomial S. 

epidermidis isolates were found to carry genes conferring resistance to multiple 

antibiotics and have accumulated a higher number of antibiotic resistance 

determinants; however, most of these genes were already found among early isolates. 

In particular, early S. epidermidis isolates carried resistance determinants to penicillin, 

erythromycin, tetracycline, fusidic acid and spectinomycin which were antibiotics 

already used in clinical practice by 1965 (246-248). This same antimicrobial resistance 

pattern was previously found among early MRSA and MSSA isolates collected in 

Denmark in a similar time period (1960s) (249). Our genomic analysis revealed that 

some of these determinants were likely located in a plasmid. We hypothesize that the 

dissemination of this plasmid among S. epidermidis and S. aureus might have been 

promoted by contact with antibiotics in the hospital environment and provide a means 

a survival and persistence in this setting. 

We found that fosA, encoding resistance to fosfomycin and norA, encoding 

resistance to fluoroquinolones were ubiquitously found among our collection of S. 

epidermidis; none of these genes were found in the close vicinity of a rep gene, which 

is an indication that they are part of S. epidermidis core genome. fosA encodes a 

glutathione S-transferase that inactivates fosfomycin and it has been described to be 

plasmid-encoded (250). Fosfomycin was introduced in the clinical practice in 1969 

(251) and resistance to this antibiotic has been reported to be around 20-30% among 

coagulase-negative staphylococci (2). However, studies on the distribution of fosA 

gene among these fosfomycing-resistant isolates have not been performed. norA 

encodes an efflux pump and it usually chromosomally-encoded (252). 

Fluoroquinolones such as ciprofloxacin were introduced in the clinical practice later, in 

the late 1980s. Resistance to ciprofoloxacin has emerged in S. aureus soon after its 

introduction in the clinical practice (253) and among coagulase-negative staphylococci, 

resistance to this antibiotic has been described to be high (60-70%)(74). Taking 

together the high rates of resistance to fluoroquinolones, as well as to fosfomycin, 

among hospital-associated coagulase-negative staphylococci and the ubiquitous 

nature of fosA and norA among S. epidermidis collected in a period of 40 years, led us 
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to hypothesize if this species could be a reservoir for these genes and resistance to 

these particular antibiotics. 

In our collection of early isolates we found that all isolates were fully 

susceptible to oxacillin and cefoxitin. However, the majority of strains contained a 

heterogeneous profile of susceptibility to cefoxitin, having subpopulation of cells able 

to grow to higher concentrations (up to 3 µg/ml). In spite of all early isolates in our 

collection being susceptible to β-lactams, we found that one isolate carried mecA that 

was disrupted by a copy of IS431, which probably explains the oxacillin susceptibility 

profile of the strain. In addition, IS431 was flanked by 8 bp repeats, an indication that 

this IS was still mobilizable (254). The acquisition of mecA has been previously 

described to be dependent on the adaptation of the strain genetic background (255). 

The interruption of mecA by IS431 might have been a strategy of early S. epidermidis to 

accommodate mecA in its chromosome. Alternatively, it could function as a switch on-

off mechanism that enables mecA activation, when necessary. Annotation of the SCC 

element carrying this interrupted mecA copy has revealed that this was a ψSCCmec, 

highly similar to contemporary SCCmec IV, but missing ccr-encoded recombinases. 

SCCmec IV has been found in S. aureus isolates in the early 1980s only (123, 138), but it 

is the most frequent cassette carried by contemporary nosocomial S. epidermidis (79), 

and has been identified among isolates collected in 1973 (110). In addition, SCCmec IV 

carries ccrAB2, which is the ccr type most frequently carried among methicillin-

susceptible S. epidermidis isolates (198)(Rolo and Miragaia, unpublished data). 

Moreover, in this current study we found that early MSSE in the orfX region and 

outside any SCC also carried genes encoding hypothetical proteins that are usually part 

of SCCmec III, IV and V. Interestingly, according to our own studies, these are the 

SCCmec types that are most frequently found among contemporary MRSE (79). 

Overall, our results suggest that the SCCmec IV element might have been first 

assembled in S. epidermidis, possibly through acquisition of an element containing mec 

complex B into an already formed SCC carrying ccrAB2 and SCCmec IV genes encoding 

hypothetical proteins. The emergence of SCCmec IV might have occurred by 

recombination, which has been showed to occur very frequently in this species (42). 
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In this study, we found that S. epidermidis have suffered a high number of 

evolutionary events since they entered the hospital environment until they became 

important major nosocomial pathogen. These included, the selection of strains 

belonging to CC2, the acquisition of genes related to biofilm-formation and antibiotic 

resistance, the expansion of IS and the deletion of prophages from the chromosome. 

On the other hand we provided evidence that point towards a key role of S. 

epidermidis in the assembly of the first SCCmec type IV that later became widely 

disseminated in the contemporary population.  
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SUPPLEMENTARY DATA 

 

Supplementary Table 1. List of primers used for sequencing a DNA fragment of the early S. epidermidis strain 

DNK22, obtained between orfX and mecRI. The fragment was obtained by long-range PCR and the sequencing was 

performed by primer walking. 

Primer sequence Target gene Reference 

orfXF1: GAAAAATATTGGAAGCAAGC orfX (124) 

mecR4: GTCGTTCATTAAGATATGACG mecRI (125) 

IS2: TGAGGTTATTCAGATATTTCGATGT IS431 (127) 

IS431 P1: AAGGAGTCTTCTGTATGAAC IS431 unpublished. Oliveira. 

IS431 P4: CAGGTCTCTTCAGATCTACG IS431 (160) 

promF1: GATAACACCTTCTACACCTCC Promoter region of mecA This paper 

mecA P4: TCCAGATTACAACTTCACCAGG mecA (160) 

mecA P7: CCACTTCATATCTTGTAACG mecA (160) 

GLR2: CGAAGGTATCATCTTGTACCC mecA This paper 

mecA GL F: TATGAGATAGGCATCGTTCC mecA This paper 

mecA GL R: TTACCAATAACTGCATCATC mecA This paper 

termR1: GCAACCATCGTTACGGATTGC mecA This paper 

termF1: GGAATGGCTAGCTACAATGCC mecA This paper 

 

 



 

 

Supplementary Table 2: Genes carried by SCC and ψSCC elements found in the orfX region of early S. epidermidis isolates. 

Element (size, bp) Direct/inverted repeats Region (size, bp) Genes 

SCC DNK3 (13546) CTTGCATAGTATTGTATA 

J1 (7058 bp) 

36852-37349: Hypothetical protein 1: 100% hypothetical protein J1 SCCmec 

(SCCmec IVa+ACME composite island – S. aureus FR753166) 

37818-38195: Hypothetical protein 2: 100% hypothetical protein J1 SCCmec 

(SCCmec IVa+ACME composite island – S. aureus FR753166) 

38620-39552: Hypothetical protein 3: 100% hypothetical protein J1 SCCmec 

(SCCmec IVa+ccrAB1 SCC – S. aureus HF569115) 

39624-41207: Hypothetical protein 4: 85.8% hypothetical protein J1 SCCmec 

(SCCmec IVa+ccrAB1 SCC – S. aureus HF569115) 

41379-41675: Hypothetical protein 5: 100% hypothetical protein J1 SCCmec 

(SCCmec IVa+ccrAB1 SCC – S. aureus HF569115) 

41676-43468: Hypothetical protein 6: 100% hypothetical protein J1 SCCmec 

(SCCmec IVa+ccrAB1 SCC – S. aureus HF569115) 

ccr  
43702-45051: ccrA2 

45073-46701: ccrB2 

J2 (3489 bp) 

47223-47573: Hypothetical protein 1: 100% hypothetical protein J2 SCCmec (SCCmec 

IVa+ACME composite island – S. aureus KF175393) 

47566-47658: Hypothetical protein 2: 100% hypothetical protein J2 SCCmec (SCCmec 

IVa+ACME composite island – S. aureus KF175393) 

47660-47971: Hypothetical protein 3: 100% hypothetical protein J2 SCCmec (SCCmec 

IVa+ACME composite island  – S. aureus KF234240) 

47983-48489: Hypothetical protein 4: 94.12% hypothetical protein J2 SCCmec 

(SCCmec IVh – S. aureus HE681097) 

48787-49065: Hypothetical protein 5: 66.67% hypothetical protein J3 SCCmec 

(SCCmec III – S. aureus CP006838) 

49072-49569: Hypothetical protein 6: 60.68% hypothetical protein J3 SCCmec 

(SCCmec III – S. aureus CP006838) 

ψSCC DNK3 (12690) CTTCATACGATATACATA - 

50414-51009: galU  (UTP-glucose-1-phosphate uridylyltransferase) 

54334-55007: IS1272 

55364-57631: tarF S. aureus (teichoic acid biosynthesis protein F) 

58516-59997: glycosyl transferase 

60010-60936: NAD dependent epimerase/dehydratase S pseudointermedius 

61187-61438: hsdM truncrated 

61572-62678: transposase 

SCC DNK2 (14363) AAAAACCGCCTCACTTACGATA J1 (5412) 
38029-36104: copA (copper transporting ATPase) 

38685-38359: yozA (arsenical resistance operon repressor) 



 

 

Element (size, bp) Direct/inverted repeats Region (size, bp) Genes 

39251-38892: Hypothetical protein 1: 100% hypothetical protein J2 SCC266 – 

SCC266+SCCmecII composite island S. aureus AB774374) 

39638-39363: truncrated ccrA: 78.3% ccrA1 

40339-39725: Hypothetical protein 2: 100% hypothetical protein J2 SCC266 – 

SCC266+SCCmecII composite island S. aureus AB774374) 

ccr 
40526-41887: ccrA4 

41884-43512: New type ccrB (77% nucleotide identity with ccrB4) 

J2 (5936) 

44363-44013: Hypothetical protein 3: 100% hypothetical protein J2 SCC266 – 

SCC266+SCCmecII composite island S. aureus AB774374) 

44448-44356: 98.92% USA300HOU_0063 (hypothetical protein region between 

SCCmec IVa and ACME) 

44761-44450: Hypothetical protein 4: 98.4% hypothetical protein J3 SCC4610 – 

SCC4610+SCCmecV composite island S. aureus AB773816) 

45279-44776: Hypothetical protein 5: 76.59% hypothetical protein J3 SCC4610 – 

SCC4610+SCCmecV composite island S. aureus AB773816) 

45514-45293: Hypothetical protein 6: 80.56% hypothetical protein J3 SCCmec –mec 

complex A+ccrAB1 S. aureus HF569114) 

46290-45793: Res (spermidine acetyltransferase) 

48846-46579: tarF (teichoic acid biosynthesis protein F) 

49155-49337: SE_0024 (hypothetical protein ATCC12228, downstream orfX) 

SCC DNK14 (17089) CTAATCTAATCAAACAAAAA J1 (4422) 

4703-6628: copA 

6757-6855: Hypothetical protein 1: 100% hypothetical protein J1 HE858191 (S. 

aureus composite island SCCmecIIE-SCCM1) 

6959-7284: yozA 

7491-7850: Hypothetical protein 2: 99.72% hypothetical protein J1 AB774374 (S. 

aureus composite island SCC266 upstream yozA) 

7962-8237: truncrated ccrA: 78.3% ccrA1 

8324-8938: Hypothetical protein 3: 100% hypothetical protein J1 AB774374 (S. 

aureus composite island SCC266 upstream yozA) 

  ccr 
9125-10486: ccrA4 

10483-12111: New type ccrB (77% nucleotide identity with ccrB4) 

  J2 (8489) 

12614-12955: Hypothetical protein 4: 95.16% hypothetical protein JQ746621 (S. 

aureus composite island SCCmecV-SCCccrAB2 upstream ccrAB2) 

12957-13046: Hypothetical protein 5: 37.5% hypothetical protein J1 AB121219 (S. 

aureus WIS SCCmec V downstream ccrC) 

13048-13362: Hypothetical protein 6: 99.72% hypothetical protein HF569114 (S. 

aureus hypothetical protein J3 SCCmec –mec complex A+ccrAB1 upstream ccrB1) 

13377-13880: Hypothetical protein 7: 90.67% hypothetical protein KF049201 

(SCC+SCCmec+SCC CRISPR composite island S. capitis, downstream 2
nd

 copy of ccrC) 



 

 

Element (size, bp) Direct/inverted repeats Region (size, bp) Genes 

15373-16881: Hypothetical protein 8: 68.05% hypothetical protein SH0041 

AP006716 (S. haemolyticus SCCmec V upstream ccrC) 

16970-19609: Hypothetical protein 9: 41.81% hypothetical protein SH0040 

AP006716 (S. haemolyticus SCCmec V upstream ccrC) 

20367-20600: Hypothetical protein 10: 97.86% hypothetical protein JQ746621 (S. 

aureus composite island SCCmecV-SCCccrAB2 upstream pls) 

ψSCCmec DNK22 

(20521) 
AAAACCGCATCATTTA 

J2 (10284) 

137314-138786: multicopper oxidase 

138762-140963: copA 

143509-143952: ORF 

mec complex (7495) 

148241-148855: IS1272 

147032:148006: mecRI 

144128-1469332: ΔmecA 

145416-146206: IS431 

14654-144082: Hypothetical protein 2: 100% hypothetical protein AB063172 

(SCCmec IV J2 reference sequence) 

144148-144228: Hypothetical protein 3: 100% hypothetical protein AB063172 

(SCCmec IV J2 reference sequence) 

144179-144922: Hypothetical protein 4: 100% hypothetical protein AB063172 

(SCCmec IV J2 reference sequence) 

153941-154527: IS431 

J3 (2742) 

154647-154798: Hypothetical protein 5: 100% hypothetical protein AB063172 

(SCCmec IV J3 reference sequence) 

155556-155505: Hypothetical protein 6: 100% hypothetical protein AB063172 

(SCCmec IV J3 reference sequence) 

156182-156468: Hypothetical protein 7: 100% hypothetical protein AB063172 

(SCCmec IV J3 reference sequence) 

156878-157269: Hypothetical protein 8: 100% hypothetical protein AB063172 

(SCCmec IV J3 reference sequence) 

ψSCC DNK4 (27016) GAAGTTGAAAATAAAAT - 

12194-14352: Hypothetical protein 1-truncrated: 65.70% hypothetical protein J3 

AB121219 (SCCmec V – WIS) 

14739-14906: Hypothetical protein 2: 90.48% hypothetical protein KF049201 (S. 

capitis SCCmec-SCCCRISPR composite element) 

15546-15758: Hypothetical protein 3-truncrated: 64% hypothetical protein J1 

AB12767 (S. aureus SCCmec V) 

15841-17265: Hypothetical protein 4: 99.72% hypothetical protein SH0069 

(AP006716 S. haemolyticus SCCmec V) 

17333-17506: Hypothetical protein 5: 98.85% hypothetical protein SA957_0061 

(CP003603 S. aureus SCCmec V) 

17986-18300: Transposase SA40_0044 



 

 

Element (size, bp) Direct/inverted repeats Region (size, bp) Genes 

18312-19127: Transposase SA40_0045 

19227-20156: arc 

20176-21174: arcB 

21212-21901: arcR 

21943-23364: arcD 

23450-24685: arcA 

24954-25400: argR 

26210-26569: hsdR-truncrated 

26807-27499: Hypothetical protein ACME 

27514-29049: opp-3A 

29052-30008: opp-3B 

30008-30775: opp-3C 

30742-31509: opp-3D 

31502-32137: opp-3E 

32776-35568: hsdR 

35660-36241: hsdS 

36242-37798: hsdM 

37791-39035: Type restriction/modification protein-truncrated 

ψSCC DNK16 (12354) CAACTTATTTTTTAGTTTTATTTGTGAT - 

20251-21228: Hypothetical protein 1: 87.46% hypothetical protein (BA000017 S. 

aureus SCCmec IV) 

21270-22020: Hypothetical protein 2: 75.77% hypothetical protein (HF569109 S. 

aureus SCCmec IV) 

22054-23127: Hypothetical protein 3: 81.83% hypothetical protein (HF569109 S. 

aureus SCCmec IV) 

23265-23939: tnp 

24066-24281: putative reductase 

24322-25008: protein plasmid S. simulans 

25550-28231: SERP0245 

28255-29199: SERP0246 

29549-30118: SERP0247 

30637-31002: tnp truncrated 

31103-31921: Hypothetical protein 4-truncrated: 98.05% hypothetical protein 

(KF234240 S. aureus SCCmec IV) 

31958-32284: Hypothetical protein 5: 100% hypothetical protein (KF234240 S. 

aureus SCCmec IV) 

ψSCC DNK20 1 
(15049) 

ACCATATGTTTTTTAGTTTTATTTGTGATACGCTTCGCCT - 

15683-17239: arcD 

17365-18312: SE_0102 

18313-19311: arcB 

19349-20044: arcR 



 

 

Element (size, bp) Direct/inverted repeats Region (size, bp) Genes 

20780-21232: argR (ACME) 

22164-22262: Hypothetical protein 1: 98.99% SH0027 J3 SCCmec V (S. haemolyticus 

AP006716) 

22524-23495: Hypothetical protein 2: 98.99% SH0026 J3 SCCmec V (S. haemolyticus 

AP006716) 

24199-25308: Hypothetical protein 3: 58.64% hypothetical protein SCCmec V 

(upstream 2
nd

 copy of ccrC S. aureus GQ902038) 

28066-28191: Hypothetical protein S. aureus plasmid 

28348-28707: Hypothetical protein 4: 97.78% protein J3 SCCmec IVa S. aureus 

USA300 (KF234240) 

28946-29719: Hypothetical protein 5: 100% protein J3 SCCmec IVa S. aureus 

USA300 (KF234240) 

ψSCC DNK20 2 

(6234) 
TTTTAGTTTTATTTGTGATACGCTTC - 

31453-32556: hsdM 

32581-33255: tnp 

33569-33898: Hypothetical protein 1: 99.09% protein J1 SCCmec IVa/ACME S. 

aureus USA300 (KF175393) 

33990-34178: Hypothetical protein 2: 98.44% protein J1 SCCmec IVa/ACME S. 

aureus USA300 (KF175393) 

34275-35240: Hypothetical protein 3: 100% protein J1 SCCmec IVa/ACME S. aureus 

USA300 (KF175393) 

35734-35904: Hypothetical protein 4: 100% protein J1 SCCmec IVa/ACME S. aureus 

USA300 (KF175393) 
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Supplementary Figure 1. Cefoxitin susceptibility population analysis profiles of representative early S. epidermidis strains. MRSE 

RP62A and MSSE ATCC12228 were used as control strains. 
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ABSTRACT 

Objectives. Staphylococcus epidermidis is a harmless commensal but, it can become a 

human pathogen, mainly in the hospital environment. In order to clarify strategies 

used by these bacteria to adapt to hospital environment, we compared the population 

structure and SCCmec contents of S. epidermidis from the community and hospital.  

 

Methods. S. epidermidis were collected from nasal swabs of both healthy military 

draftees (192 isolates) and patients (94 isolates) recovered in the same time period 

and geographic region. S. epidermidis were characterized by pulsed-field gel 

electrophoresis (PFGE), multilocus sequence typing (MLST) and staphylococcal 

chromosomal cassette mec (SCCmec) typing.  

 

Results. Clonal complex 5 (CC5) was predominant in hospital (100%) and community 

(58%), but some clonal types were specific of each environment and others were 

found in both (C/H clones). Methicillin-resistant S. epidermidis (MRSE) colonization 

rate in the community was very low (7%) when compared to the hospital (30%, 

p<0.05). Community-associated MRSE (CA-MRSE) carried mostly SCCmec IV and V 

(Simpson Index of Diversity, SID = 57.52; 95% CI=[38.35-76.69]), whereas hospital-

associated MRSE (HA-MRSE) carried as many as 18 SCCmec structures (SID=82.67; 95% 

CI=[77.38-87.96]). Isolates of the same PFGE type had a much higher number of 

different SCCmec types when collected in the hospital than in the community.   

 

Conclusions. Our data suggests that the S. epidermidis population is composed of 

hospital-associated clonal types, community-associated clonal types and types that are 

able to survive in both environments. Moreover, adaptation to the hospital 

environment in S. epidermidis appears to promote an increase in the frequency and 

diversification of SCCmec. 
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INTRODUCTION 

Staphylococcus epidermidis is one of the main colonizers of the human skin, but 

can turn into a pathogen, if the cutaneous barrier is broken or the host is compromised 

(51). S. epidermidis is one of the most important pathogens in the hospital 

environment, being responsible for 40-90% of infections associated to indwelling 

devices (5). 

The success of S. epidermidis as a pathogen is mainly linked to its capacity to 

form biofilm, a multistep process involving several genetic determinants (atlE, aap and 

ica operon) (51). In addition, S. epidermidis has the ability to accumulate multiple 

antibiotic resistance determinants (5, 51). In particular, the frequency of methicillin-

resistant S. epidermidis (MRSE) can reach 80% in hospitals worldwide,(256) although is 

considerably lower (30-40%) in countries like Denmark and Iceland where methicillin-

resistant Staphylococcus aureus (MRSA) frequency is below 1% (79). 

Methicillin resistance is conferred by the mecA gene, which is carried in a family 

of mobile genetic elements called SCC (staphylococcal chromosome cassette)(109). In 

S. aureus SCCs insert in a unique specific chromosomal site (orfX), have characteristic 

inverted and direct repeats and contain chromosome cassette recombinases (ccr) that 

are responsible for SCC mobility. SCCmec is composed of the mec complex containing 

the mecA and its regulators, and the ccr complex, containing one (ccrC) (193) or two 

recombinases (ccrAB) (109). Up until now eleven major types of SCCmec (I-XI) (111, 

113, 114, 257) and eight subtypes of SCCmec IV (111, 165) have been described in S. 

aureus. The few data available suggest that in S. epidermidis, SCCmec is also inserted in 

the orfX (52, 124) and has a structure similar to that described for S. aureus (52), (110). 

However several studies have demonstrated that there is a large pool of 

uncharacterized SCCmec types among S. epidermidis and other coagulase-negative 

staphylococci (13, 258). Besides SCCmec, other SCC elements have been described in 

staphylococci that transport genes important for survival and virulence (99, 100, 137).   

The population structure of S. epidermidis in the hospital environment (1996-

2001) was shown to be composed by a major and highly diverse genetic lineage 

disseminated worldwide (clonal complex 2, CC2) and several minor CCs (17). In this 
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population, SCCmec IV (13, 110) was found to be the most frequent type, but other 

SCCmec types (13, 258) and a high number of novel cassettes have been identified as 

well (13, 258). Nosocomial S. epidermidis were described to carry several ccr alleles, 

that were suggested to correspond to the acquisition of multiple SCC in tandem. (124) 

It was also shown that these isolates had a higher estimated rate of 

recombination/mutation (2.5:1) and a higher frequency of SCCmec acquisition than S. 

aureus (17). Additionally, nosocomial isolates, particularly those belonging to CC2 were 

found to be associated to the presence of the ica operon (77) and the arginine 

catabolic mobile genetic element (ACME I.02),(100) considered a virulence factor in 

the community-associated S. aureus (CA-MRSA) strain USA300. 

Much less is known on the epidemiology of community-associated S. 

epidermidis (CA-SE). The few studies available describe frequencies of nasal 

colonization with CA-MRSE of 20% among children (80) and military personnel (82). 

The molecular characterization of CA-SE, showed a high genetic diversity as illustrated 

by the high number of types of PFGE (pulsed-field gel electrophoresis) found; however 

dissemination of S. epidermidis epidemic strains was also observed to occur in this 

setting (82). Regarding SCCmec distribution, the few studies available showed that 

SCCmec type IVa was the most prevalent among CA-MRSE, but other types were also 

found (80, 236). However, the population structure of S. epidermidis in the community 

and hospital and the frequency of antibiotic resistant genes have never been 

compared before.  

In the study described here, we addressed this question by comparing S. 

epidermidis from the hospital and the community, collected from the same ecological 

niche, same time period and geographic location, in terms of genetic background and 

contents of SCCmec.  
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METHODS 

Study population. A total of 1,483 Air Force draftees from different regions in Portugal 

and attending Centro de Formação da Ota (Lisbon, Portugal) were swabbed in the 

anterior nares. This study was conducted in four consecutive years (1996-1999). Each 

draftee filled a questionnaire assessing demographic data and the presence of risk 

factors for carriage of antibiotic resistant staphylococci (namely, recent antibiotic 

consumption, reason for antibiotics prescription, and contact with animals) and recent 

contact with the hospital (specifically, recent emergency department attendance and 

previous hospitalization or surgery) (see supplemental data S1). A group of 1,160 

draftees did not take any antibiotics and had no contact with the hospital in the three 

months prior to sampling and were considered as being “healthy draftees”.  

In addition, 253 patients attending the Medicine (160 patients) and 

Orthopedics services (93 patients) of Hospital da Força Aérea (Lisbon, Portugal) were 

swabbed in the anterior nares during two sampling periods (2000-2001). This hospital 

is a private hospital with only 86 beds and presents particular characteristics: it does 

not contain an emergency department, the surgeries are all scheduled, the average 

period of internment is of 11 days and the prevalence of MRSA is extremely low: 3% in 

Medicine and 0.9% in Orthopedics (I. Santos-Sanches, FCT/UNL, personal 

communication).  

 

Ethical statement. The nasal screening of patients from Hospital da Força Aérea, 

(Lisbon, Portugal) was performed with approval from Local Medical Ethical Committee 

and the screening of draftees attending Centro de Formação da Ota (Lisbon, Portugal) 

was performed with written informed consent. Patient records were de-identified and 

analyzed anonymously and the strains, not human subjects, were studied. 

 

Bacteria isolation. The swabs obtained from the 1,160 “healthy draftees” were 

streaked onto Mannitol Salt Agar (MSA, Difco, BBL, Becton Dickinson, Franklin Lakes, 

New Jersey, USA) and incubated 24h at 37ºC. Bacterial isolates were further tested for 
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coagulase production using the Staphytec Plus assay (Oxoid, Cambridge, United 

Kingdom). A total of 736 healthy draftees were colonized with coagulase-negative 

staphylococci (CoNS) of which 199 were selected for further study to include the 

highest diversity in terms of geographic origin, gender and smoking habits. A total of 

170/199 draftees were colonized with S. epidermidis, from whom 192 S. epidermidis 

isolates were collected (some draftees were colonized with more than one strain). 

These 192 S. epidermidis isolates were considered as having a community origin (CA-

SE) and were included in this study. 

Additionally, Staphylococcus were isolated from the nasal swabs obtained from 

253 patients by growth on mannitol salt agar as previously described (259). The 

presence of the coagulase enzyme was assessed for all staphylococcal isolates by the 

Staphytec Plus assay (Oxoid, Cambridge, United Kingdom). A total of 94 hospital 

patients out of 253 were colonized with S. epidermidis. These isolates were considered 

as being associated to the hospital (HA-SE). 

 

Species identification. S. epidermidis strains were identified by internal transcribed 

spacer PCR (ITS-PCR) (260). 

 

mecA detection. The presence of the mecA gene was detected by PCR amplification 

for all isolates (124). S. epidermidis isolates carrying the mecA were considered as 

methicillin-resistant S. epidermidis (MRSE) and those lacking the mecA were 

considered methicillin-susceptible S. epidermidis (MSSE), regardless of the oxacillin 

susceptibility results obtained.  

 

S. epidermidis nasal colonization rate in the community. S. epidermidis colonization 

rate in the community analyzed in this study was estimated by calculating: (i) the rate 

between the number of draftees colonized with S. epidermidis and the total number of 

draftees selected for study – colonized with CoNS (170/199=0.854) (85.4%); (ii) the 

number of draftees colonized with S. epidermidis in the total of healthy draftees 
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colonized with CoNS (736), considering that the rate is the same as obtained in (i) 

(0.854x736=628 draftees). The rate between the number obtained in (ii) and the total 

of healthy draftees screened (1,160) was considered the CA-SE colonization rate 

(628/1160x100=54.1%). The same approach was applied to estimate CA-MRSE nasal 

colonization rate (see sections Study population and Bacteria isolation above). 

 

Antimicrobial susceptibility testing. Antimicrobial susceptibility testing was performed 

to penicillin, oxacillin, erythromycin, clindamycin, vancomycin, tetracycline and 

ciprofloxacin (Oxoid, Cambridge, United Kingdom) according to the guidelines of the 

Clinical and Laboratory Standards Institute (CLSI) (194). 

 

DNA preparation. Agarose disks for PFGE and DNA for PCR were prepared as described 

(79, 124, 201). 

 

PFGE. The SmaI DNA restriction fragments were separated by PFGE (201) and resulting 

patterns were analyzed using the BioNumerics software (version 4.61 of Applied 

Maths, Saint-Martens-Latem, Belgium) with previously optimized settings for S. 

epidermidis (13).  

 

MLST. Multilocus sequence typing (MLST) was performed for one isolate of each PFGE 

type in the case of CA-SE isolates  and for one isolate of each of the most 

representative PFGE types (containing more than four isolates) in the case of HA-SE. 

The MLST data was analyzed using the goeBURST algorithm 

(http://goeBURST.phylowiz.net).  

 

SCCmec typing.  The SCCmec type was determined by the combination of the class of 

mec complex and the type of ccr complex as previously suggested (111). In the 
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detection of ccr genes, the following strains were used as positive controls: S. aureus 

COL (ccrAB1),(261) S. epidermidis RP62A (ccrAB2),(52) S. aureus ANS46 (ccrAB3),(261) 

S. epidermidis ATCC12228 (ccrAB4),(99) and S. aureus WIS (ccrC) (127). To determine 

the class of mec complex, the strains S. aureus N315 (mec complex A)(193), COL (mec 

complex B) (125) and WIS (mec complex C) (127) were used as controls.  

The subtype of SCCmec IV was determined by multiplex PCR as described by 

Milheiriço et al (165). SCCmec was considered non-typable when either mec complex 

or ccr complex, or both, were non-typable by the methods used or when the isolate 

carried more than one ccr type. SCCmec was considered to be new if a new 

combination of mec complex and ccr complex was found. 

Clonal type definition. S. epidermidis clonal types were defined by the association of 

PFGE type and SCCmec type for MRSE as previously proposed (13) and by PFGE type 

alone for MSSE (13). 

 

Statistical analysis. The degree of genetic diversity was assessed by the Simpson’s 

index of diversity, using a confidence interval of 95% (215). In this analysis, each PFGE 

type or SCCmec subtype was considered a “type or a species”. Statistical significance of 

differences between proportions was evaluated by the Chi-square (χ2) test using a 

confidence interval of 95%.  
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RESULTS 

Frequency of nasal colonization of S. epidermidis and methicillin-resistant S. 

epidermidis in the community  

Out of 199 draftees selected, 170 were colonized with at least one S. 

epidermidis isolate (n=192 isolates), which corresponds to a colonization rate of S. 

epidermidis among healthy people of 54%. However, we found a low number of MRSE 

(18 isolates carrying the mecA) in the community, which corresponds to a colonization 

rate of 7%. Moreover, we observed that the rates of resistance to non--lactam 

antibiotics among this population were also low: 33% were resistant to erythromycin, 

18% to clindamycin, and 9% to tetracycline. In addition, only 19% (36 out of 192 

isolates) of CA-SE isolates, both MRSE (17 isolates) and MSSE (19 isolates) were 

resistant to three or more classes of antimicrobial agents and as many as 17% of the 

isolates were susceptible to all antimicrobials.. Resistance to penicillin was high and 

reached 72%. 

In contrast, in the hospital we found a much higher number of MRSE (75 out of 

94 isolates), which corresponds to a nasal colonization rate of 30% (p<0.05). This rate 

is comparable to the ones obtained in countries with a low frequency of MRSA (79). 

 

Population structure of S. epidermidis isolated in the community 

A total of 50 PFGE types were identified among the 192 CA-SE isolates studied, 

which corresponds to a high level of genetic diversity (Simpson’s Index of Diversity, SID 

=94.71%, 95% CI=[92.94-96.48]). A major PFGE type (PFGE type 10) comprised 17% of 

the isolates, 45% belonged to 11 minor PFGE types and 38% were sporadic (43 

different types).  

A total of 53 CA-SE isolates, were analyzed by MLST and forty different STs 

were found. ST184 was the most prevalent ST (five isolates), followed by ST59 (three 

isolates) and ST402 (two isolates). The remaining STs were detected in single isolates 

only, with the great majority of the isolates (72%, 38) being new. 
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The application of the algorithm goeBURST to MLST data obtained in this study 

and the data available online (www.mlst.net), allowed the identification of a change in 

the ancestor of the major clonal complex from ST2 to ST5. This occurred as a result of 

the increase in the number of isolates belonging to ST5 and of SLVs of ST5 in the S. 

epidermidis MLST database. Consequently, the previously clonal complex 2 (CC2) is 

now called CC5. This CC5 is now composed of 27 subgroup founders, including ST2 (see 

Figure 1). 31 out of the 53 isolates (58%) analyzed in this study belonged to the major 

clonal lineage (CC5) (see Figure 1). In addition, two isolates belonged to CC171, one 

isolate was related with CC19 and another one with CC212. The remaining 18 isolates 

(34%) were singletons.  

In comparison to CA-SE, HA-SE isolates were more clonal. Twenty PFGE types 

were determined among the 94 nosocomial isolates analyzed (SID=81.79, 

95%CI=[76.57-87.01]) and 70% of the isolates belonged to three major PFGE types: 10 

(33%), 12 (25%) and 11 (12%). The remaining 17 PFGE types corresponded to less than 

5%.The analysis of 16 representative isolates (one of each major PFGE type) by MLST 

showed that they all belonged to previously described STs and to the major CC, CC5. 

When we compared the population structures of CA- and HA-SE we found some 

PFGE types that were hospital specific (class H: eight different types) or community 

specific (class C: 37 different types). Noteworthy, we also found that the most 

prevalent genetic lineage in both environments was CC5 (see Table 1) and that isolates 

within this lineage belonging to specific STs and PFGE types were frequently sampled 

in the hospital and community (class C/H).  

The clones identified as C/H were more frequently found in the hospital (85%) 

than in the community (35%) and had particular genetic features that may be related 

to their capacity to survive in both environments. Specifically, all the isolates (except 

one) belonging to C/H clones, were from CC5 and contained a high number of different 

SCCmec types when collected in the hospital environment (see PFGE types 10 and 12 

in Table 1). In addition, they carried ACME with ClaI-arcCB type 4 or 6 (43%), (similar to 

the ACME I from USA300) and the ica genes (50%) (data not shown).  



 

  

 

Figure 1. Analysis of MLST data with go-EBURST. The most prevalent STs are represented by a bigger font. Light green STs indicate probable ancestors (group founders) and dark green STs 

constitute subgroup founders. Blue STs correspond to STs that share the same background (clonal clomplex). Dark circles indicate STs that were found exclusively in the community. Green 

circles indicate STs exclusively associated with the hospital setting. Red circles indicate STs that were found in both environments. 
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Table 1. Molecular characterization of S. epidermidis isolates that belong to PFGE types identified both in 

community and hospital. STs: sequence types; CCs: clonal complexes. 

PFGE 

pattern 

(no of 

isolates) 

STs CCs SCCmec types (no of isolates) 

  Community Hospital 

10 (66) 

16, 22 

2, 17, 60, 

210, 212 

5 

5, 212 

2&5A (1) 

MSSE (34) 

2&5A, 4A, 5A, NTA, 5B, 2&5C1, 3&5C1, II, IVa, 

IVc, IVg, 2&5NT (25) 

MSSE (6) 

12 (32) 
20, 22, 194 

73, 228 

5 

5 

IVg (1) 

MSSE (8) 

2&4&5A, 5A, NTA, 2NT, II, IVg (21) 

MSSE (2) 

16 (15) 184, 90 5 MSSE (13) MSSE (2) 

11 (13) 23 5 MSSE (2) IVa, IVc, IVd, IVg, IVnt (11) 

9 (12) 
59 

88 

5 

5 

IVa, IVnt (6) 

MSSE (2) 

5A, IVa (3) 

MSSE (1) 

24 (7) 57 5 MSSE (6) IVa (1) 

13 (5) 
20 

- 

5 

- 

5D (1) 

MSSE (3) 

IVa (1) 

- 

30 (5) 
- 

278 

- 

5 

- 

MSSE (2) 

3&5A (2) 

MSSE (1) 

8 (4) 
297 

- 

5 

- 

IVa (1) 

MSSE (2) 

IVa (1) 

- 

31 (3) 89 5 MSSE (2) MSSE (1) 

4 (2) 57 5 MSSE (1) MSSE (1) 

32 (2) 200 5 MSSE (1) MSSE (1) 

 

 

Genetic diversity of SCCmec among CA-MRSE  

From the 18 CA-MRSE isolates, 16 carried either SCCmec IV (11 isolates) or 

SCCmec V (five isolates), one isolate carried a new combination of mec complex and 

ccr type (5D) and one was non-typeable (4&5A) (see Table 2). From the 11 isolates 

carrying SCCmec type IV, six isolates carried subtype IVa, and two carried subtype IVc. 

Subtypes IVg, IVh and a non-subtypable variant were identified in single isolates each. 



S. epidermidis adaptation to community and hospital 

Chapter VI | 222  

Overall the genetic diversity of SCCmec, considering the SCCmec subtypes, in the 

community environment was relatively low (SID = 57.52; 95%CI=[38.35-76.69]). 

 

Table 2. Comparison of community-associated S. epidermidis (CA-SE) and hospital-associated S. epidermidis (HA-SE).  

Feature CA-SE HA-SE Statistical 

validation 

MRSE nasal colonization 7% 30% p<0,05 

Frequency of C/H clones 35% 85% p<0,05 

Multiple ccr 7% 17% p <0,05 

SCCmec types IV, V, 5D, NT1 IV, II, VIII, 4A, 5A, 5B, 5D, VIII, NT2-

NT8 

- 

Diversity in SCCmec types
a
 (SID) 57%, 95%CI= (38,35-76,69) 83%, 95%CI=(77,38-87,96) 95%CI do 

not overlap 

Diversity in genetic backgrounds (SID) 95%, 95%CI =(92,94-96,48) 82%, 95%CI=(76,57-87,01) 95%CI do 

not overlap 

    a
considering SCCmec subtypes 

 

A much higher genetic diversity in SCCmec was observed among hospital 

isolates (SID=82.67; 95%CI=[77.38-87.96]). Of the 75 HA-MRSE isolates studied, 25 

(33%) carried SCCmec IV and 23 (31%) carried non-typable structures (NT) (see Table 

2). In addition, 12 of the isolates (16%) carried new associations between the class of 

mec complex and the ccr type (see Table 2). Of the remaining isolates, 13 (17%) carried 

SCCmec II and two (3%) SCCmec VIII. The most prevalent subtype of SCCmec IV was 

subtype IVa (11 isolates), followed by SCCmec IVc (six isolates), SCCmec IVg (three 

isolates) and SCCmec IVd (one isolate). We also identified four isolates with SCCmec IV 

not subtypable by the methods used.  
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Evidence for the role of hospital environment on SCCmec amplification and 

diversification  

We observed that SCCmec frequency and genetic diversity in the hospital was 

significantly higher than in the community (see Table 2). In order to understand in 

detail the impact of hospital environment on SCCmec diversification and amplification 

we compared the SCCmec content of isolates with the same PFGE type collected either 

in the community or in the hospital (C/H). Interestingly we observed that in several 

cases CA- and HA-SE with same PFGE type differed significantly in the contents of 

SCCmec. In particular, isolates belonging to PFGE type 10 collected in the community 

environment carried the SCCmec type with mec complex class A associated to ccrC and 

ccrAB4 only, whereas isolates with PFGE 10 collected in the hospital carried as many as 

12 different SCCmec structures (see Table 1). Similarly, isolates of PFGE type 12 that 

originated in the community carried only SCCmec type IVg, whereas isolates from the 

hospital carried six different SCCmec structures.  The same type of results was 

obtained when we compared CA-MSSE and HA-MRSE with exactly the same PFGE type. 

For example, isolates with PFGE type 11 collected in the community were all MSSE, 

whereas isolates collected in the hospital were all MRSE and carried five different 

SCCmec IV subtypes (see Table 1). Similar observations were made for isolates 

belonging to PFGE types 24 and 30. Overall we observed a positive correlation 

between MRSE sample size and the number of different SCCmec types in the hospital 

environment and the same was not observed in the community (see Table 1). 

Moreover, we observed that multiple ccrs were present in a higher frequency among 

hospital isolates when compared to community isolates (HA: 17%, CA: 7%, p<0,05). 

Overall, the results suggest that this may represent new acquisitions of SCCmec/SCC, 

but the selection of isolates followed by recombination at the SCCmec level occurring 

in the hospital environment cannot be disregarded.  

Interestingly, SCCmec types II, III, IVd, and VIII, as well as new (5A, 5B) and non-

typeable (2&4&5A; 3&5A; 2&5C1; 3&5C1; 2&5A; NTA; NTNT; 2New; 2&5New) SCCmec 

structures were detected among hospital-associated isolates only, suggesting that 

these SCCmec types most probably were acquired and/or assembled in the hospital 

environment.  
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The two sets of isolates analyzed in this study are not exactly contemporary (CA 

isolates were collected between 1996-1999 and HA isolates were collected in 2000-

2001). In order to exclude the hypothesis that time could be a factor influencing the 

results obtained, we analyzed SCCmec diversity in isolates from community and 

hospital in two-year time blocks. The results obtained from block to block were 

comparable to the entire time period suggesting that time should not be a factor 

contributing to the differences observed between the two environments.  

Overall, the results obtained suggest that hospital environment promotes 

SCCmec diversification and amplification - either by SCCmec acquisition or by selection 

of MRSE strains. 

  



S. epidermidis adaptation to community and hospital 

Chapter VI | 225  

DISCUSSION 

In the present work we compared the population structures and the frequency 

and diversity of SCCmec in S. epidermidis collected in two different environments from 

the same geographic region and comparable time periods. The molecular 

characterization of such collections showed that S. epidermidis strategies to adapt to 

hospital and community environments involved the divergent adaptation or selection 

of specific genetic backgrounds and SCCmec elements.  

We found a low nasal colonization rate with MRSE (7%) in healthy Portuguese 

draftees. Other studies concerning different healthy populations have found a higher 

MRSE colonization rate, like among military personnel (20%) (82) and children 

attending day care centers (80). However, these two populations present risk 

behaviors for MRSE dissemination and colonization like frequent physical contact, and 

higher antibiotic consumption, which are not observed in the population under study 

here that is constituted by unrelated healthy young individuals.  

In addition, we also found a low frequency of multiresistance to antibiotics (7%) 

among isolates originated in the community. This scenario contrasts sharply to what 

was observed in the hospital environment where MRSE colonization rates obtained 

were higher (30%, p<0.05) and multiresistance is frequent (51, 79). As a whole these 

results suggest that CA-SE are probably not functioning as the primary reservoirs of 

SCCmec and other antibiotic resistance determinants to other more pathogenic 

species like S. aureus. Nevertheless, we cannot exclude the hypothesis that certain CA-

MRSE when introduced into the hospital may become amplified due to selective 

pressure and become reservoirs of SCCmec for S. aureus.  

The difference observed in the frequencies of SCCmec and multiple ccr in the 

community and hospital, suggests in addition that specific physiological conditions 

during infection and stresses imposed by the hospital environment can promote 

SCCmec excision/acquisition and dissemination in the S. epidermidis hospital 

population. This hypothesis is further sustained in our study, by the existence of 

isolates with the same PFGE type that either lack or contain several different SCCmec 

types, depending on whether they were isolated in the community or hospital. 
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Additionally, the discovery by others of S. epidermidis subpopulations with 

spontaneously deletion of mecA locus in isolates from persistent infection (262) and 

the finding that β-lactams and vancomycin upregulate ccrA expression, (263) further 

supports the hypothesis that the hospital environment may promote SCCmec excision 

and transfer. Likewise, it is possible that SCCmec transfer is promoted during biofilm 

formation, which is the most important virulence propriety of S. epidermidis, as was 

previously proved for other mobile genetic elements (264). However, we cannot 

exclude the hypothesis that the higher frequency of SCCmec observed in the hospital 

result from the occurrence of selection of MRSE strains originated either in the 

community or in the hospital.  

Besides promoting SCCmec acquisition, the hospital environment appears also 

to contribute to generate genetic diversity in the SCCmec elements. This hypothesis is 

supported by the very high number of SCCmec structures with new combinations of 

classes of mec complex and ccr types and non-typable SCCmec found in nosocomial 

isolates belonging to a single PFGE type (PFGE type 10 or 12), when compared to 

isolates of the same PFGE type originated in the community. Previous studies analyzing 

HA-MRSE also described a high number of new SCCmec structures (124, 258). 

However, only in this study by comparing hospital and community isolates it was 

possible to envision that the genetic diversity previously observed in SCCmec should be 

mostly created by factors associated to hospital environment. One of the factors that 

probably contribute to this diversity is the recombination between SCC elements that 

might occur in the same strain upon multiple SCC acquisitions. Also the increased 

expression of ccr genes, after antimicrobial exposure, as previously observed (263) 

may increase the opportunities for recombination between several excised SCC 

elements. Moreover, we should not disregard the fact that in the hospital a large 

reservoir of SCCmec types exist in other coagulase-negative species, what may be 

contributing to the overall genetic diversity observed in S. epidermidis. The high 

number of different SCCmec types present in S. epidermidis together with the ones 

present in other CoNS build up a large reservoir of new SCCmec types for S. aureus. 

The acquisition of an additional SCCmec type (type IV) by S. aureus in the beginning of 
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the 1990s could have resulted from the acquisition of this element from this highly 

diverse pool of SCCmec.  

Although the genetic diversity appears to be higher among hospital isolates 

than among community isolates, we cannot rule out the possibility that if a higher 

number of MRSE would be collected in the community, a higher diversity in terms of 

SCCmec would also be found. The analysis of SCCmec structure under stress conditions 

promoted in the hospital environment, like sub-inhibitory concentrations of 

antibiotics, would probably contribute to the clarification of this question  

The comparison of S. epidermidis in the hospital and community, showed that 

both populations had a high genetic diversity, but the community population was 

more diverse than hospital population, meaning that certain S. epidermidis clones are 

probably more fit to hospital-associated stresses and spread easily in those 

surroundings. In spite of the high number of different PFGE types and STs in the two 

collections analyzed, the great majority of the isolates from both community and 

hospital belonged to a single clonal complex - CC5 (former CC2). This clonal complex 

has been previously described as the most prevalent clonal complex in the nosocomial 

population of S. epidermidis (17) being characterized by a large genetic diversity, an 

increased recombination/mutation rate and a high number of acquisitions of SCCmec 

elements (17). The fact that this lineage was identified in this study also as 

predominant in the community, suggests it is well adapted to the host and that it has 

also the capacity to adapt to environments with distinct characteristics. In spite of 

belonging to CC5, CA-SE and HA-SE isolates presented specific PFGE types and STs 

according to their origin, suggesting divergent evolution.  

Moreover, we also identified among CC5, clones with the capacity to survive in 

both environments. These clones appear to adapt to different environments by 

modulating the acquisition of SCCmec and their level of genetic diversity. Interestingly, 

the great majority of the isolates belonging to these clones carried SCCmec type IV, 

which probably confer advantages and have no fitness cost in either environment. The 

fact that these isolates can survive in community and hospital, provides them with a 

higher capacity of dissemination and accumulation of relevant genetic traits for 
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survival in both settings. Indeed, it is possible that these clones are the ones 

responsible for shuffling genetic traits between the community and hospital, namely 

ACME and SCCmec IV. These clones appear to be, by some means, similar to USA300 

and EMRSA-15 that carry SCCmec IV and gained the ability to survive in both 

community and hospital environments (265-267). 

The collection analyzed in this study is not contemporary, but otherwise 

reflects the S. epidermidis epidemiology in a certain period of time (10-15 years ago) in 

a specific location. Since the time this study was performed some alterations in S. 

aureus epidemiology occurred, namely the emergence of CA-MRSA as an epidemic, 

and additional changes might have also occurred in the epidemiology of S. epidermidis. 

Nonetheless, studies wherein more recent S. epidermidis isolates were analyzed 

continue to report ST2 as the most frequent in hospitals in several different geographic 

location and SCCmec as very diverse in the hospital environment (268-270). These 

observations suggest that the conclusions drawn for the isolates analyzed in our study 

are probably still true in the current reality.  

Our data demonstrated for the first time the role of hospital environment in 

the selection of some genetic backgrounds and diversification and acquisition and/or 

selection of SCCmec in S. epidermidis. Moreover, it enabled us to identify a class of 

clones that is able to move between hospital and community. These features of S. 

epidermidis epidemiology will be critical to take into consideration in any infection 

control program directed to S. epidermidis or evolutionary studies regarding SCCmec. 
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SUPPLEMENTARY DATA 

 

PROJECT: “Dissemination of antibiotic resistance determinants among healthy populations” 

 

The bacteria that cause infections are becoming more resistant to antimicrobial agents, what 

hinders its control and treatment. For that reason studies aiming to better understand these 

infectious agents and their capacity of dissemination are fundamental. 

The nasopharynx, skin and intestinal flora are constituted by a huge number of 

microorganisms of different species that can contain several different antibiotic resistance 

determinants.  

The study we are performing aims to assess the frequency of resistance to antimicrobial agents 

among bacteria colonizing healthy populations. In order to accomplish this objective your 

participation is indispensable. 

We appeal to your collaboration in this study by allowing the collection of samples from the 

nasal cavity, nasopharynx and skin. 

The sample collection does not involve any risk or danger to your health. 

In case you agree to collaborate in this study, we ask you to answer to the following questions. 

The filled questionnaire should be delivered during sample collection. 

  



S. epidermidis adaptation to community and hospital 

Chapter VI | 231  

QUESTIONNAIRE (1996) 

1. Are you taking any antibiotic at this moment?  Yes  No 

 If yes, please indicate the antibiotic name___________________________ 

2. Did you take any antibiotic in the last month?   Yes  No 

 If yes, please indicate the antibiotic name____________________________ 

3. If you took any antibiotic, please indicate the reasons why you did it______ 

 ______________________________________________________________ 

4. Have you attended any urgency service at the hospital in the last 3 months? 

        Yes  No 

If yes please indicate the name of the hospital________________________ 

 

5. Have you recently been interned in a hospital?   Yes  No 

 

If yes please indicate the name of the hospital________________________ 

 

6. Do you smoke?      Yes  No 

 

  

 Please fill in the following information 

 

 

 

 Do not write here 

Birthday: ___ /___ /____ 

Residence District:__________________________________________________ 

Academic qualifications:_____________________________________________ 

SAMPLE CODE: _______________________   Collection date:  ___ /___ /____ 
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QUESTIONNAIRE (1997-1998) 

1. Are you taking any antibiotic at this moment?  Yes  No 

 If yes, please indicate the antibiotic name___________________________ 

2. Did you take any antibiotic in the last month?   Yes  No 

 If yes, please indicate the antibiotic name____________________________ 

3. If you took any antibiotic, please indicate the reasons why you did it______ 

 ______________________________________________________________ 

4. Have you attended any urgency service at the hospital in the last 3 months? 

        Yes  No 

If yes please indicate the name of the hospital________________________ 

 

5. Have you recently been interned in a hospital?   Yes  No 

 

If yes please indicate the name of the hospital________________________ 

 

6. Do you smoke?      Yes  No 

 

7. At your residence are you usually in contact with animals? 

        Yes  No 

 If yes, please underline the animals that you have contact with:  

 horses, donkey, cows,  sheeps, pigs, chickens, ducks, rabbits, dogs, cats, or others. 

 

 

  

 Please fill in the following information 

 

 

 

 Do not write here 

  

Birthday: ___ /___ /____ 

Residence District:__________________________________________________ 

Academic qualifications:_____________________________________________ 

SAMPLE CODE: _______________________   Collection date:  ___ /___ /____ 
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QUESTIONNAIRE (1999) 

1. Please indicate the date of your inscription to CFMTA-OTA ___ / ___ /___ 

 

2. Are you taking any antibiotic at this moment?  Yes  No 

 If yes, please indicate the antibiotic name_____________________________ 

 If yes, please indicate the reason why you did it _____________________ 

3. Did you take any antibiotic in the last month?   Yes  No 

 If yes, please indicate the antibiotic name_____________________________ 

 If yes, please indicate the reason why you did it________________________ 

4. Have you attended any urgency service at the hospital in the last 3 months? 

        Yes  No 

If yes please indicate the name of the hospital________________________ 

 

5. Have you recently been interned in a hospital?   Yes  No 

 

If yes, please indicate the name of the hospital________________________ 

If yes, please indicate the reason why________________________________ 

 

6. Do you smoke?      Yes  No 

 

7. At your residence are you usually in contact with animals? 

        Yes  No 

 If yes, please underline the animals that you have contact with:  

 horses, donkey, cows,  sheeps, pigs, chickens, ducks, rabbits, dogs, cats, or others. 

 

 

 Please fill in the following information 

 

 

 

 Do not write here 

Birthday: ___ /___ /____   Gender:  Female   Male 

Residence District:__________________________________________________ 

Academic qualifications:_____________________________________________ 

SAMPLE CODE: _______________________   Collection date:  ___ /___ /____ 
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The SCCmec element, carrying the β-lactam resistance determinant mecA, is 

one of the most important and well-characterized bacterial mobile genetic elements. 

However, its origin and the mechanisms involved in SCC assembly and diversification 

are not well understood. Previous studies have revealed that distinct species of 

Staphylococcus were involved in the evolution of SCCmec, but these included a few 

number of isolates and traditional typing methods, that have been precluding the full 

understanding of the contribution of each species for this process. In this Thesis we 

aimed to approach this issue at the population level using whole genome sequencing 

approaches.  

Evidence gathered prior to this Thesis indicated that the ancestral form of the 

mecA gene corresponds to the Staphylococcus sciuri mecA1 gene, which encodes the 

native penicillin-binding protein PBP4 (172, 176). In Chapters II-IV, we explored the 

role of three species of the phylogenetic sciuri group, in the evolution of this 

housekeeping gene into the resistance determinant mecA and the steps that lead to its 

integration into a mobile genetic element to give rise to SCCmec.  

Since its original assembly, SCCmec was disseminated among the remaining 

staphylococcal species and has diversified into at least eleven different structural types 

(111-113). Coagulase-negative staphylococci (CoNS) appear to have been crucial in this 

diversification process. In particular, Staphylococcus epidermidis displays a highly 

diverse pool of SCCmec types and presents increased ability to acquire SCCmec (17), 

which suggests it could act as an assembly platform of new SCCmec types for the 

remaining population of staphylococci. The resources and mechanisms driving the 

diversification of SCCmec in this species were yet to be described. In Chapters V-VI, we 

explored the specific role of S. epidermidis in the origin and evolution of SCCmec.  

 

The gene mecA evolved from a native to a resistant determinant multiple times over 

phylogeny 

The studies included in Chapter II described, for the first time, the native 

genetic location of mecA homologues in the most primitive species of Staphylococcus, 

S. sciuri. DNA hybridization assays with a mecA probe showed that, in S. sciuri, mecA1 
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was located near the SCCmec integration site, the orfX. These results were further 

detailed in Chapter IV, through a whole-genome sequencing approach that allowed to 

determine that the mecA homologues mecA1 in S. sciuri, mecA2/mecA in S. vitulinus 

(with the exception of three mecA positive S. vitulinus strains) and mecA in S. fleurettii 

were all located 200 kb downstream orfX. This genetic location was the closest to the 

orfX observed for a gene encoding a penicillin-binding protein among sequenced 

staphylococcal genomes (http://www.ncbi.nlm.nih.gov/) and has probably been crucial 

in the incorporation of mecA into SCCmec. Interestingly, and as already described 

(173), we found that the close vicinity of mecA homologues carried by this group of 

phylogenetically related species was very similar, evidencing its vertical inheritance 

from a common ancestor. Phylogenetic analysis of all mecA homologues identified 

mecA1, a native housekeeping gene of S. sciuri, as the most ancient form suggesting it 

was the precursor of mecA; and mecA2 from S. vitulinus as an intermediary form 

between mecA1 and mecA in S. fleurettii and S. aureus.  

On the other hand, in Chapter III, phenotypic data gathered for strains within 

the sciuri group of species showed that during the process of evolution within the 

native location, the mecA homologues evolved from a susceptible towards a resistant 

phenotype. Actually, whereas most of S. sciuri strains carrying only mecA1 and S. 

vitulinus strains carrying only mecA2 were susceptible to β-lactams, all the S. fleurettii 

strains were resistant. However, there were some exceptions, namely we found that 

10% of S. sciuri and 17% of S. vitulinus strains not carrying mecA were resistant to β-

lactams. Investigation of the putative genetic mechanisms behind the expression of β-

lactam resistance in these strains showed that some strains carried mutations in the 

mecA1 promoter, in S. sciuri, and in the mecA2 promoter, in S. vitulinus. This 

phenomenon has been previously described in clinical S. sciuri and in S. sciuri 

submitted to a stepwise exposure to increasing concentrations of methicillin, wherein 

the accumulation of SNPs in the promoter of mecA1 lead to overexpression of mecA1-

encoded PBP4 and consequently to a β-lactam resistance phenotype (177).  

In another group of oxacillin resistant strains we identified the accumulation of 

non-synonymous SNPs in the non-binding domain of the native penicillin-binding 4 

(PBP4) of S. sciuri. Unlike mutations in the promoter, alterations in the non-binding 

http://www.ncbi.nlm.nih.gov/
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domain have never been described to be associated to a resistant phenotype. In fact, 

the active site of mecA-encoded PBP2a is located in the other protein domain, the 

transpeptidase domain (108) and the β-lactam resistance phenotype is achieved by a 

torsion of the protein backbone of the regions surrounding the active site groove that 

results in a decreased acylation rate by β-lactam antibiotics (108). However, through 

the application of in silico structural prediction tools to the aminoacid sequence of the 

proteins encoded by the mecA1 alleles associated to β-lactam resistance, we found 

that aminoacid alterations on the non-binding domain could lead to an overall altered 

folding of PBP4 that result in a “closed groove” near the active site of the protein, 

which may protect the active residues from the antibiotic action. We hypothesize that 

these alleles could originate a PBP4 form that would be resistant to acylation by β-

lactams. To our knowledge, this is the first description of alterations in the non-binding 

domain of a mecA-encoded PBP that may lead to a resistant phenotype. Nonetheless, 

further studies would be needed to confirm this hypothesis. Site-directed mutagenesis 

of mecA1 alleles and assessment of β-lactam resistance of mutants carrying these 

alleles would be a suitable strategy. 

Besides the diversification of the promoter and the accumulation of SNPs in the 

non-binding domain of mecA homologues, our results showed that alterations in the 

genetic background during speciation could also have led to the development of β-

lactam resistance. Evidence for that is the fact that strains of S. sciuri/S. fleurettii and S. 

vitulinus carrying virtually identical regulators, promoters and mecA alleles, were 

either heterogeneously resistant or susceptible to β-lactams. Examples of other 

genetic determinants that were described to influence the expression of mecA and the 

resistant phenotype are the blaRI-blaI regulators of the β-lactamase (blaZ) (224-226) 

and the auxiliary genes (207). However, the susceptibility of S. vitulinus isolates cannot 

be explained by the presence of blaZ locus, because no link was found between the 

presence/absence of β-lactamase and the decreased β-lactam resistance profile of 

isolates belonging to this species. Also, the contribution of auxiliary genes to this 

phenotype is difficult to assess, since the mechanisms that link auxiliary genes to the 

resistance/susceptible phenotype are still poorly understood.  
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Our data implies that the selective pressure driving the evolution of mecA was 

the exposure of species of the S. sciuri group to β-lactam antibiotics as shown by the 

BEAST analysis. Evidence for that come from the estimation that the great majority of 

mecA1 alleles have emerged around the time that penicillin was introduced in the 

clinical practice in humans (1940s). In addition, the highest degree of genetic diversity 

was observed among isolates collected from humans, which suggests that the selective 

pressure imposed by antibiotic use in humans might have triggered the diversification 

of S. sciuri mecA1. Although S. sciuri is not a frequent human colonizer or infecting 

agent, interaction of these bacteria with antibiotics could have occurred through direct 

or indirect contact with contaminated hospital effluents upon its use. BEAST analysis 

also have estimated that emergence of mecA have occurred in the late 1950s, a time 

wherein penicillin became to be largely used as animal feed additives in 

subtherapeutic concentrations (271).  

Our results suggest that the use of penicillin in clinical practice and as animal 

feed additives was probably the driving force leading to an increase in diversity of 

mecA1, which gave rise to the emergence of new mecA homologues with decreased 

susceptibility to β-lactams, including mecA. This is in accordance with the view that 

mecA emerged before the introduction of methicillin in the clinical practice in 1960s. 

 

The assembly of mec complex involved several steps and different species belonging 

to the sciuri group 

All mecA homologues in the native location presented the same close vicinity, 

being flanked downstream by ugpQ and upstream by mecR2 and psm-mec (135). This 

same close vicinity was also observed flanking mecA in contemporary SCCmec types. 

Furthermore, the phylogenetic tree constructed from the alignment of the nucleotide 

sequence of ugpQ, psm-mec and mecR2 genes, showed an identical clustering and 

hierarchy to that of the phylogenetic tree constructed for mecA homologues wherein 

genes of S. sciuri were the most ancestral and those of S. fleurettii, the most recent. 

This type of results had been already observed, for other genes located in the vicinity 

of mecA homologues, like mvaS (173), suggesting that, not only mecA homologues, but 



Concluding Remarks 

Chapter VII | 241 

also their close vicinity, which together are part of the mec complex, have evolved 

across phylogeny in the native location from S. sciuri to S. fleurettii. 

In contrast to mecR2, the other two mec regulators, mecI and mecR1, were only 

associated with mecA in the native location and never with mecA1 and mecA2. In 

addition, the degree of homology between mecI /mecR1 from strains belonging to the 

sciuri group with those found in SCCmec was comparably high (>90% nucleotide 

identity). These results indicate that mecR2 was the most ancient regulatory gene and 

that mecI and mecR1 were incorporated later in evolution, in the chromosome of S. 

vitulinus or S. fleurettii after the evolution of mecA1 into mecA.  

The BEAST analysis (Chapter III) revealed that mecA has first emerged in S. 

fleurettii and only afterwards in S. vitulinus. We hypothesize that recombination 

between mecA and adjacent regions carried by S. fleurettii in the native locus and the 

β-lactamase locus, blaZ-blaR1-blaI, usually carried by plasmids, might have occurred. 

Actually, the nucleotide identities present in these two loci and the similar orientation 

and arrangement of the genes have been previously suggested to reflect an 

evolutionary link between these two loci (223). In addition, a functional link has also 

been demonstrated since the repressor blaI can regulate the expression of mecA (224-

226). However, this hypothesis has yet to be confirmed, since no intermediate 

structures between the two loci were found in our collection.  

Finally, the last step of construction of mec complex would have been the 

introduction of a copy of IS431 upstream of the HVR region. Although in our study 

IS431 was not found in the vicinity of mec complex A in the native locus of S. fleurettii 

or S. vitulinus, a copy of IS431 was found in the vicinity of mecA complex in the orfX of 

S. vitulinus. This result suggests that IS431 integration into the upgQ-mecA-mecR1-

mecI-mecR2-psm-mec structure, occurred either in the orfX region after mobilization 

of mec complex or during its mobilization. The upgQ-mecA-mecR1-mecI-mecR2-psm-

mec structure already formed in S. fleurettii was then probably transferred to some 

strains of S. vitulinus through recombination with the native mecA2, by an unknown 

mechanism.  
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Our results also showed that during this mobilization, mec complex carried 

additionally other regions. These regions, that were located upstream and 

downstream the mec complex correspond to SCCmec J2 and J3 regions and were also 

found in the native location of S. sciuri, S. vitulinus and S. fleurettii. Like other genes in 

the native location, these genes were more frequent and had higher homology with 

SCCmec genes in S. fleurettii and S. vitulinus. Altogether our study showed that mec 

complex and the J2 and J3 regions evolved over phylogeny and were transferred to a 

SCC cassette from S. fleurettii or S. vitulinus. 

Apart from the fact that mecA homologues native location is near the orfX, 

from our data is not obvious how and in which species mec complex has been 

mobilized into a SCC element. Our results showed that this event might include the 

deletion of mec complex from the native location in both S. fleurettii and S. vitulinus. 

Actually, some S. vitulinus strains did not carry any form of mecA homologues in the 

native location and although, in our collection, the mec complex A was ubiquitous 

among S. fleurettii, there have been reports of S. fleurettii strains lacking this locus 

(173). We suggest that after its assembly, mec complex was mobilized from S. fleurettii 

into S. vitulinus and recombined with mecA2 locus to give rise to mecA carrying strains 

in the native locus. In a second step, the mec complex from S. vitulinus was excised 

from the native location and transported to S. sciuri (see below).  

The mobilization of the mec complex A between the different species could 

have occurred in transposons as previously observed in S. haemolyticus (154) and in 

the related species M. caseolyticus (120) or by transduction as previously shown (116-

118). Actually, by using the genome-search tool PHAST (234), we were able to find a 

high frequency of phage DNA in the genomes of S. sciuri, S. vitulinus and S. fleuretttii 

(84%, 77% and 75%, respectively). 

 

The mobile genetic elements SCC originated in S. sciuri 

The next step in the assembly of SCCmec was the integration of the mec 

complex into a SCC element. Our results showed that assembly of SCC elements 

occurred in parallel with the assembly of mec complex and also involved several 
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species of the sciuri group. Moreover, our data provided evidence that indicate that 

the primordial SCCmec, and thus the integration of mec complex into a SCC element 

was accomplished in S. sciuri (see Chapter II and IV).  

We identified for the first time a high frequency, in methicillin-susceptible S. 

sciuri, of ccr genes, responsible for the mobilization of SCC elements (Chapter II). The 

ccr genes were widely distributed among the S. sciuri population, in different genetic 

backgrounds (illustrated by the different PFGE types found among ccr-carrying strains), 

and in strains from different geographic regions and periods of isolation. Furthermore, 

contrarily to other coagulase-negative staphylococcal species – especially the ones that 

are human-associated (124, 131, 167, 198)– we found a high genetic diversity of ccrA 

and ccrB alleles, as well as several different combinations of the allotypes found. 

Noteworthy, all the ccrA and ccrB allotypes related to those carried by contemporary 

SCCmec cassettes identified to date, were found in S. sciuri. In particular, ccrA and ccrB 

alleles related with ccrAB3, occurred in a high frequency. This is in accordance with 

previous studies wherein SCCmec type III, carrying ccrA3B3, was shown to be the most 

prevalent among isolates belonging to the sciuri group (170, 180, 202).  

In Chapter IV, through whole-genome sequencing, the ccr genes were 

confirmed to be highly frequent and diverse among S. sciuri, but rare among related 

species (S. vitulinus and S. fleurettii). Furthermore, as opposed to S. sciuri, most of the 

ccr allotypes carried by S. vitulinus and S. fleurettii were not related with the ones 

carried by contemporary SCCmec cassettes. Moreover, the phylogenetic analysis 

showed that, in general, the ccr allotypes of S. sciuri are the most ancestral among the 

three species. On the other hand, ccr allotypes phylogenetically distantly related with 

those found in staphylococci were previously identified in M. caseolyticus near the orfX 

within a SCC element (120, 146). Altogether these findings suggest that M. caseolyticus 

recombinases could be the ancestral forms of recombinases found in S. sciuri that in 

turn was the first staphylococcal species to acquire ccr. Nonetheless, further studies 

are needed to assess the functionality of the ccr genes carried by S. sciuri, in particular 

if a circular intermediate would be formed upon excision, as has previously been 

described for S. aureus (109) and M. caseolyticus (120). 
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The whole genome sequencing data also showed that besides having a high 

frequency of ccr, S. sciuri also contains a high number of SCC elements, in which these 

ccr genes are delimited by DR/IR junctions. Like what was described for S. aureus, 

these S. sciuri SCCs carried different genetic determinants associated with colonization 

and survival in the host, such as permeases, dehydrogenates, oxidases and genes 

encoding metal resistance and detoxification enzymes. In particular we found that 

some of the genes typically found in the J1 region of SCCmec were found within SCC 

elements. Interestingly, some of these J1 genes in several S. sciuri strains were found 

outside any element in the orfX region, or elsewhere in the chromosome. These 

observations suggest that SCC elements content in S. sciuri is built from the 

incorporation of S. sciuri housekeeping genes into the orfX region and SCC elements, 

probably through recombination events. Although SCC elements could be also found in 

S. vitulinus and S. fleurettii, they were rare; also, the few SCC that existed were not 

composed of genes found in the orfX outside SCC elements or in other parts of the 

chromosome. 

Taken together, our results suggest that S. sciuri have provided two building 

blocks for the assembly of SCCmec, the ccr genes, encoding the recombinases that are 

responsible for the mobility of SCCmec and the J1 region. Also S. sciuri appear to 

function as sources of new SCC elements. We believe that at least one of these S. sciuri 

SCC elements was the recipient of the mec complex previously assembled as described 

before, to give rise to the primordial SCCmec. 

 

The primordial SCCmec element was assembled in S. sciuri 

In Chapter IV, we describe the results that support the hypothesis that an 

ancestral SCCmec type was assembled in S. sciuri, with the contribution of the related 

species S. vitulinus and S. fleurettii. 

The main evidence for that is the fact that we found in S. sciuri a SCCmec-like 

structure (SCCmec III-like structure A) that is similar (but not identical) in content and 

synteny to SCCmec type III, but that contains ancestral forms of the SCCmec III genes. 

This included mainly a ccrAB type related with ccrAB3 and genes that are part of the 
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SCCmec III J1, J2 and the J3 regions, as well as mec complex A. Moreover, we found 

that this structure is a mosaic composed of part of one SCC carried by several S. sciuri 

in our collection (specifically the ccrAB genes and J1 region) and part of a 25 kb 

fragment encompassing the J2 region, the mec complex A and part of the J3 region, 

which are very similar to SCCmec type III and to mec complex vicinity in the native 

location. We suggest that SCCmec III-like structure A corresponds to an ancestral 

SCCmec that was assembled in S. sciuri through the incorporation of mec complex and 

adjacent J2 and J3 regions from S. fleurettii/S. vitulinus into a resident SCC element.  

SCCmec III could have been though the first SCCmec type to emerge. Although 

it has been firstly identified in a S. aureus strain recovered in New Zealand in 1985 

(138), SCCmec III could already exist among CoNS isolates. SCCmec III is one of the 

most widely distributed SCCmec types, found among several staphylococcal species 

(180, 181). It is also frequently carried by the most relevant human pathogens S. 

aureus (106) and S. epidermidis (124). Due to its high frequency and wide distribution 

among staphylococcal species, it is plausible that SCCmec III is ancient.  

Based in all our findings, we propose the following model for the assembly of 

SCCmec (Figure 3 of Chapter IV): (i) SCC elements emerged in S. sciuri by incorporation 

of ccr and core genes within DR/IR, probably through recombination; (ii) mecA 

homologues and genes in their vicinity (J2 and J3 genes) evolved over phylogeny; (iii) 

mecA homologues evolved towards a resistant phenotype from S. sciuri mecA1 to S. 

fleurettii mecA and the main driving force was the use of penicillin in humans and 

animals; resistance to β-lactams emerged several times during evolution, through 

accumulation of mutation in the mecA homologues promoters and non-binding 

domain and culminated in the emergence of mecA; (iv) a parallel adaptation of 

staphylococcal genetic background to the expression of resistance took place; (v) the 

mec complex A has emerged in S. fleurettii through recombination with the bla 

operon; (vi) mec complex A was excised from S. fleurettii and transferred to S. vitulinus 

where it recombined with mecA2 in the native region; (vii) mec complex and adjacent 

regions were excised from S. vitulinus by the action of transposases, as the one carried 

by IS431, and transferred to S. sciuri, where it recombined with a resident SCC; (viii) 

SCCmec III disseminated among the sciuri group. 
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S. epidermidis has contributed to the assembly of SCCmec IV 

The results described above provided evidence for the emergence of SCCmec 

type III, but failed to provide an explanation for the origin and evolutionary steps 

leading to the assembly of the remaining SCCmec types.  

Our analysis showed that S. sciuri contained ancestral forms of all the ccr 

allotypes described to date, suggesting it could be their origin. On the other hand, it 

has been previously observed that different CoNS are enriched in particular ccr 

allotypes (124, 131, 167, 198), irrespective of the fact that strains are resistant or 

susceptible to methicillin, indicating that SCC elements carried by methicillin 

susceptible (MS)-CoNS carry the same ccr allotypes than SCCmec carried by methicillin 

resistant (MR)-CoNS of the same species. It is though tempting to speculate that during 

staphylococcal speciation each ccr allotype was fixed in each species. And that SCCmec 

types emerged by a mechanism similar to that described above for SCCmec III, wherein 

mec complex was integrated into resident SCC carrying different ccr allotypes in each 

species. 

To try to prove this hypothesis we decided to study early CoNS isolates that 

could carry primordial forms of other types of SCCmec. We focused in the study of S. 

epidermidis, a species enriched in ccrAB2 in which the most frequent SCCmec is 

SCCmec IV (17, 110, 237, 258). The earliest report of a MRSE strain corresponds to a 

strain isolated in 1973, in Canada (110). However, reports of S. epidermidis strains with 

decreased susceptibility to methicillin date back to 1960s, in Denmark (70). In Chapter 

V, we provide the results obtained from the analysis of the orfX region in a collection 

of S. epidermidis isolated in the 1960s, in Danish hospitals.  

The analysis of 21 S. epidermidis isolates collected in 1965, from nasal swabs 

obtained from hospitalized patients, by whole-genome sequencing, showed that a 

single strain (1/22, 4.5%) (DNK22) carried the mecA copy. This strain carried a 

ψSCCmec-IV-like element, that did not contain ccr genes, but carried mec complex B 

and regions of homology mainly with SCCmec IV. The ψSCCmec IV-like element 

identified among early S. epidermidis had a singularity: the mecA gene was interrupted 

by a copy of IS431. Since a second copy of IS431 was identified downstream of mecA, 



Concluding Remarks 

Chapter VII | 247 

we hypothesize that the mobilization of mec complex B to the orfX vicinity has 

occurred by the action of the transposases present in IS431. An inaccurate insertion 

event would have placed IS431 in the coding frame of mecA. Alternatively, the 

interruption of mecA by IS431 may have been a strategy to accommodate mecA in the 

chromosome. In strain DNK22, the IS431 interrupting mecA was flanked by 8 bp 

repeats, indicating that its integration was recent and that the element is probably still 

mobilizable (254). The ψSCCmec element observed could be though an intermediate 

structure between a SCC carried by S. epidermidis and SCCmec IV. In fact, among our 

collection of isolates from 1965, we identified a high frequency of SCC carrying SCCmec 

IV-associated genes encoding hypothetical proteins. Therefore, it is possible that the 

ψSCCmec IV-like element emerged from the integration of mec complex B and 

adjacent regions in an already assembled ψSCC.  

This observation, together with the low frequency of mecA in our collection of 

early S. epidermidis, suggests that the introduction of mec complex B in the orfX 

vicinity of S. epidermidis from 1965 was a rare event, probably because the genetic 

background was not yet adapted to allow the expression of a novel penicillin-binding 

protein. The interruption of mecA by IS431 could have been a strategy to provide time 

for adaptive mutations to occur in the genetic background. Finally, the interruption of 

mecA by IS431 could be a strategy to regulate the expression of mecA; IS431 

mobilization could function as a switch to turn on the expression of β-lactam 

resistance only when necessary. However, we were not able to excise IS431 from 

mecA, when we incubated the strain with subinhibitory concentrations of penicillin 

and oxacillin or high salt concentrations. This could be due to the fact that the genetic 

background of DNK22 was not yet adapted to cope with the expression of mecA or 

because the conditions tested were not the most appropriate to induce the excision of 

IS431. 
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The evolution of S. epidermidis and SCCmec was promoted by contact with the 

hospital environment 

S. epidermidis is the main commensal of the skin flora in humans, and most of 

its life time lives in the absence of antibiotic pressure. However, in the hospital 

environment, S. epidermidis can become a pathogen, mainly due to its capacity to 

accumulate antibiotic resistance genes and form biofilms. In spite of this duality, the 

majority of S. epidermidis studied are nosocomial strains. In fact, not much was known 

regarding the epidemiology of strains isolated in the community. Moreover, the impact 

in S. epidermidis evolution of the contact with environmental pressures imposed inside 

hospitals, such as antibiotics or the human immune system during infection, was also 

not fully understood. These issues were explored in Chapter VI of this Thesis. 

The comparison of the population structure of contemporary S. epidermidis 

isolates from the community and hospital obtained in the same time period and in the 

same geographical area showed that the genetic backgrounds of community-

associated S. epidermidis were more diverse as illustrated by the higher number of 

PFGE types and STs. However, eBURST analysis indicated that the majority of S. 

epidermidis strains, irrespective of being isolated in the community or the hospital 

belonged to the same lineage, clonal complex 2 (CC2). We also found that although 

belonging to the same lineage, the frequency of MRSE strains in hospital was much 

higher than in the community, suggesting that hospital contact promoted either the 

acquisition and/or amplification of SCCmec or spread of MRSE. On the other hand 

when we compared closely related strains (with the same PFGE type) from the two 

settings we found that the genetic diversity of SCCmec elements within hospital 

isolates was much higher than among community isolates, which carried almost 

exclusively SCCmec IV. This suggests that in addition to promoting the acquisition of 

SCCmec, hospital contact also appears to promote its diversification. These results are 

in accordance with previous studies that show that CC2 strains have an increased 

ability to acquire SCCmec and recombine (17, 42). Furthermore, the expression of ccr 

has been described to be upregulated by subinhibitory concentrations of antibiotics 

(263), a condition associated with the hospital environment. The increased expression 

of ccr genes in the hospital environment, may promote not only SCCmec 
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excision/insertion events, but also recombination between different SCC elements, 

leading to SCCmec diversification.  

Another approach that we used to study the impact of hospital environment on 

S. epidermidis evolution was to compare early and contemporary strains. Since the 

1960s until the present, the use of medical devices has sharply increased, the 

hospitalization periods have become longer and exposure to antibiotics more frequent 

and extended. Due to these dramatic changes in the nosocomial setting, early strains 

(collected in the 1960s) could be considered as strains that have had less contact with 

the hospital and associated stresses than contemporary strains. 

In Chapter V, we compared the population structure of early (1965) and 

contemporary (1990s) hospital-associated S. epidermidis isolates collected in Denmark. 

Several differences were observed both in population structure and in the content of 

virulence genes and mobile genetic elements between these two types of isolates.  

We observed that no isolate of sequence type ST2 was present among the early 

S. epidermidis, but several sequence types that belonged to CC2, were found. The 

single ST that was shared between both collections was ST5, a single-locus variant of 

ST2 that contains, as ST2, a large number of single-locus variants (www.mlst.net). 

When the predicted core genomes of early and contemporary isolates was compared 

in a phylogenetic tree, we found that their genetic background was not very different. 

Both early strains belonging to ST5 and virulent contemporary isolates (carrying 

antibiotic resistance determinants, virulence factors and associated to infection) 

belonging to CC2, clustered together, suggesting that the genetic background that 

allowed a full adaptation to the hospital environment was already present by 1965. 

Due to the fact that ST5 appears to have emerged first than ST2, and due to its 

relatedness with ST2 and isolates within CC2, we suggest that ST5 is the founder of 

clonal lineage CC2, instead of ST2. 

Although, the core genomes of isolates collected in Danish hospitals over a 

period of 30 years did not change considerably, striking differences were found 

between these collections, when we analyzed their mobilome. Specifically, we found a 

http://www.mlst.net/
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significant higher frequency of intact prophages in the early collection, and a higher 

frequency of insertion sequences (IS) and SCCmec in the contemporary collection.  

The high frequency of prophages among S. epidermidis genomes collected in 

1965 might have provided to these strains a mechanism of genetic transfer that 

allowed for the accumulation of the antibiotic resistance determinants, heavy metal 

resistance genes and SCCs in these genomes. On the other hand, the decrease in 

frequency of intact prophages in contemporary S. epidermidis could be a strategy to 

maintain and regulate the expression of biofilm, which is the most well recognized S. 

epidermidis virulence factor. In fact, the negative impact of prophages in the biofilm 

formation ability of S. epidermidis is well-documented (239, 241).  

Besides having a higher frequency, we observed that the diversity of IS was also 

slightly higher in contemporary than in early genomes. Namely, contemporary isolates 

could carry as many as 14 different IS elements while early isolates would carry only as 

many as 10 different IS. The higher accumulation of IS in the genome of contemporary 

isolates might be related with the incorporation of antibiotic resistance determinants 

and other genes important for survival in the hospital environment, since IS are often 

transported as transposons, which typically carry antibiotic resistant genes (272). Also 

they could have had impact in the expression of virulence factors, such as biofilm 

formation, through inactivation of ica genes or their regulators, as previously reported 

(90, 235, 243). 

On the other hand, the contemporary Danish isolates had a higher frequency of 

SCCmec than the isolates collected in 1965. Most of the contemporary isolates carried 

SCCmec IV (67%), but other types were also found (SCCmec type I, III, V and a 

combination of mec complex C2 with ccrAB2). Therefore, the introduction of SCCmec, 

particularly SCCmec IV, in S. epidermidis genetic backgrounds must have been a crucial 

event in the adaptation of S. epidermidis to the hospital environment. Studies with 

MRSA have described a link between the presence of SCCmec and the ability to 

produce biofilm, namely hospital-associated (HA) strains carrying SCCmec II and III, 

produced more biofilm than community-associated strains carrying SCCmec IV (123). 

Further studies have shown that the increased ability of HA-MRSA to form biofilm was 
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associated with the presence of psm-mec, a cytolysin carried by SCCmec II and III (273). 

Such studies have not been performed in S. epidermidis, but it would be interesting to 

verify if like in MRSA, MRSE carrying these SCCmec types have increased biofilm 

formation. 

In addition we observed that the S. epidermidis collected in 1965 showed a high 

frequency of carriage of both types of ACME: ACME-I, composed by arc and opp3 

operons and ACME-II, which is composed by the arc operon alone. In contrast, in 

contemporary Danish isolates, exclusively ACME-I was found in high frequency. This is 

in accordance with previous studies that have reported the dissemination of ACME-I in 

contemporary S. epidermidis (100, 101). In a S. aureus rabbit model of bacteremia, it 

has been demonstrated that ACME-I can potentiate colonization and dissemination of 

the strains carrying it (98). Similarly, the selection of ACME-I in contemporary strains 

could have provided S. epidermidis with enhanced epidemic features, which are 

convenient characteristics to harbor in a nosocomial environment. 

Besides varying in the content of mobile genetic elements early and 

contemporary S. epidermidis varied in the distribution of genes associated with biofilm 

formation. In particular the contemporary isolates had a higher frequency of the genes 

ica and aap and carried in addition bap and sdrF, which were not found among the 

early population. On the other hand, in the early collection, the metalloprotease SepA 

was widely spread, in contrast with contemporary isolates. Biofilm formation is one of 

the key features of S. epidermidis that is directly responsible for its success in the 

hospital environment nowadays (51, 71, 89, 91, 92). Our results showed that the 

accumulation of genes involved in biofilm formation was part of the strategy of 

adaptation of S. epidermidis to the hospital environment. SepA is described to 

promote biofilm formation by mediating the release of extracellular DNA through 

upregulation of the activity of the autolysin AtlE (274). These results suggest that early 

S. epidermidis had already the potential to form biofilm, however its structure and 

composition was certainly different from the biofilms formed by contemporary 

isolates. This may have had important implications in the resistance of the biofilms to 

antibiotics and immune system. Moreover, the establishment of ica operon in 

contemporary S. epidermidis may have complicated the infections caused by this 
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bacteria, due to the known immunogenic activity of ica-encoded PIA (60). The 

comparison of pathogenesis of early and contemporary strains belonging to ST5 in a 

mouse catheter model could be used to prove this hypothesis. 

We found a wide distribution of antibiotic resistance genes among the 

nosocomial S. epidermidis genomes. Interestingly, we found that most of these genes 

were already present among early isolates. In particular, early S. epidermidis isolates 

carried resistance determinants to antibiotics already used in clinical practice by 1965 

(246-248) (penicillin, erythromycin, tetracycline, fusidic acid and spectinomycin). This 

antimicrobial resistance pattern was previously found among early MRSA and MSSA 

isolates collected in Denmark in a similar time period (1960s) (249). The same kind of 

observation was obtained regarding the distribution of SCC elements carrying heavy 

metal resistance genes, which were carried exclusively by the early isolates. Likewise, 

genes conferring heavy metal resistance have been observed in early populations of S. 

aureus (244). Therefore, we hypothesize that acquiring resistance to these particular 

antibiotics and heavy metals was beneficial for the population of nosocomial 

staphylococci at that time. 

Taking into account the results described in Chapters V and VI, we suggest the 

following model of evolution and adaptation of hospital-associated S. epidermidis 

(Figure 1). The clonal types of early S. epidermidis were different from those of 

contemporary isolates, but the ancestral ST5 was already present and they virtually all 

belonged to the same genetic lineage. blaZ was very frequent among the early 

collection, so we suggest that this gene was obtained by plasmid acquisition soon after 

the introduction of penicillin in the clinical practice, as described for S. aureus (68, 

275).  

Through phage acquisition and dissemination, the early hospital-associated S. 

epidermidis acquired genes important to survive in the increasingly harsh hospital 

environment: antibiotic resistance determinants, SCCmec IV and other elements such 

as ACME and heavy metal resistance genes. As the development of medical invasive 

techniques increased, S. epidermidis genetic lineages carrying biofilm-associated genes 

disseminated, and most likely the highly invasive and well-adapted ST2 increased its 
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frequency in the population structure of S. epidermidis. In addition, IS elements that 

would regulate the expression of the biofilm phenotype and possibly other genes, 

were acquired and maintained in the genome. Finally, multiple acquisition of SCCmec 

led to diversification of this structure. 

. 

 

Figure 1. Model for the evolution of hospital-associated S. epidermidis genetic backgrounds. The early S. epidermidis 

population structure was composed by ancestral sequence types, namely ST5 (light blue circles) and others 

(remaining circles). The acquisition and dissemination of phages in this early population possibly allowed the 

acquisition of antibiotic and heavy metal resistance determinants, SCCmec IV and ACME. Among the highly genetic 

diverse population structure of S. epidermidis, ST2 (dark blue circles) frequency would increase, since expansion of 

clones carrying biofilm-associated genes and IS elements would be favored. Finally, optimized adaptation to the 

hospital would be achieved through SCCmec acquisition and diversification. 

 

 

In conclusion, in this Thesis we clarified the role of S. sciuri as the origin of the 

two building blocks of the staphylococcal mobile genetic element SCCmec and 

provided a model for the assembly of the first SCCmec element. The origin of SCCmec 

was revealed for the first time and might help to understand the mechanisms used by 

Staphylococcus to generate an efficient and mobile mechanism of resistance to an 

antimicrobial. On the other hand, we shed light on the contribution of S. epidermidis 

for the emergence of SCCmec IV and found that S. epidermidis adaptation to the 

hospital environment involved the accumulation and loss of specific mobile genetic 
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elements and genes involved in antibiotic resistance, colonization and biofilm 

formation. 
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