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Abstract

Background: Understanding how biodiversity is shaped through time is a fundamental question in biology. Even

though tropical rain forests (TRF) represent the most diverse terrestrial biomes on the planet, the timing, location

and mechanisms of their diversification remain poorly understood. Molecular phylogenies are valuable tools for

exploring these issues, but to date most studies have focused only on recent time scales, which minimises their

explanatory potential. In order to provide a long-term view of TRF diversification, we constructed the first complete

genus-level dated phylogeny of a largely TRF-restricted plant family with a known history dating back to the

Cretaceous. Palms (Arecaceae/Palmae) are one of the most characteristic and ecologically important components

of TRF worldwide, and represent a model group for the investigation of TRF evolution.

Results: We provide evidence that diversification of extant lineages of palms started during the mid-Cretaceous

period about 100 million years ago. Ancestral biome and area reconstructions for the whole family strongly

support the hypothesis that palms diversified in a TRF-like environment at northern latitudes. Finally, our results

suggest that palms conform to a constant diversification model (the ‘museum’ model or Yule process), at least

until the Neogene, with no evidence for any change in diversification rates even through the Cretaceous/

Paleogene mass extinction event.

Conclusions: Because palms are restricted to TRF and assuming biome conservatism over time, our results suggest

the presence of a TRF-like biome in the mid-Cretaceous period of Laurasia, consistent with controversial fossil

evidence of the earliest TRF. Throughout its history, the TRF biome is thought to have been highly dynamic and to

have fluctuated greatly in extent, but it has persisted even during climatically unfavourable periods. This may have

allowed old lineages to survive and contribute to the steady accumulation of diversity over time. In contrast to

other plant studies, our results suggest that ancient and steady evolutionary processes dating back to the mid-

Cretaceous period can contribute, at least in part, to present day species richness in TRF.

Background
Tropical rain forests (TRF) are the most biodiverse ter-

restrial ecosystems on the planet [1]. They are charac-

terised by a closed, multilayered canopy dominated by

flowering plants (angiosperms [1]) and occur only in

frost-free areas with high mean monthly temperatures

and precipitation, and low seasonality [2]. Today, TRF

covers just 7% of the Earth’s surface [3] in equatorial

zones of the Americas, Africa and the Indo-Pacific, and

is highly threatened by human activity [4]. The origin

and evolution of species-rich biomes raises fundamental

questions in evolutionary biology [5] and, as such, the

diversification of TRF has been much debated [3,6].

Even though it is generally agreed that TRF is a relatively

old biome, the location and timing of its origin remain

uncertain mainly because the fossil record for tropical

regions is highly incomplete, especially during the Cretac-

eous [7,8]. Some direct [9] and indirect [10] evidence sug-

gests that TRF was present in the mid-Cretaceous period

(100 million years ago (Ma)) at middle paleolatitudes (for

example, Laurasia) while other studies indicate that the

* Correspondence: thomas.couvreur@ird.fr; W.baker@kew.org
1The New York Botanical Garden, 200th Street and Kazimiroff Boulevard,

Bronx, NY 10458-5126, USA
2Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK

Full list of author information is available at the end of the article

Couvreur et al. BMC Biology 2011, 9:44

http://www.biomedcentral.com/1741-7007/9/44

© 2011 Couvreur et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:thomas.couvreur@ird.fr
mailto:W.baker@kew.org
http://creativecommons.org/licenses/by/2.0


first paleoflora attributable to modern day TRF are found

in the Early Paleocene of North America [11] and Late

Paleocene of South America [7,8,12] and Africa [13-15].

Whereas previous views suggested that the TRF biome

has been ecologically stable over long periods of time

[16], more recent data indicate that it is highly dynamic

[17] having fluctuated both in extent [14,18] and in the

diversity of plants that it sustains [7,8]. These views

have led to three general evolutionary hypotheses that

explain the high levels of present day species diversity

found within TRF: (i) early, rapid speciation in response

to favourable climatic conditions followed by a decelera-

tion of diversification rates due to global cooling [19]

and contraction of TRF (referred to here as the ‘ancient

cradle model’, see [10,20,21]); (ii) constant diversification

rates coupled with low extinction rates leading to a gra-

dual accumulation of lineages in response to a long-last-

ing and stable tropical ecosystem (the ‘museum model’,

see [16,22]); and (iii) an increase in diversification rates

towards the present in response to climatic, tectonic or

biotic changes (the ‘recent cradle model’, see [23-25]).

These hypothetical processes result in alternative lineage

accumulation through time and thus different patterns

of inferred branch length distributions (Figure 1). Sev-

eral phylogenetic studies of TRF plant groups have pro-

vided evidence in support of the recent cradle model of

diversification [25-27]. However, these studies were

restricted to low taxonomic levels (species) and thus do

not enhance our understanding of how these hypotheses

might apply throughout the entire history of TRF, for

example, on the long-term diversification dynamics of

TRF. In contrast, studies of the early diversification of

TRF plant lineages that permit tests of the above

hypotheses are rare.

In the absence of a complete fossil record for tropical

rain forests, family-level diversification analyses of large

pantropical angiosperm groups that are ecologically char-

acteristic of TRF can provide important insights into the

historical construction of the biome [5]. In this respect,

the pantropical palm family (Arecaceae/Palmae) presents

an ideal study group. First, palms are among the most

important and characteristic components of TRF ecosys-

tems worldwide in terms of species diversity (approxi-

mately 2,400 species), abundance of individuals and

impact on the environment [28-30]. Based on the excel-

lent taxonomic knowledge for this family [28], we calcu-

lated that over 90% of its species diversity is restricted to

TRF (Figure 2). Water and energy-related variables are
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Figure 1 Lineage-through-time (LTT) plots for three alternative

hypothetical diversification models of tropical rain forest (TRF)

evolution. (1) Decrease in diversification rates since origin with

early radiation; ‘ancient cradle model’; (2) constant diversification

rate, ‘museum model’; (3) increase in diversification rates since origin

with recent radiation; ‘recent cradle model’.

Figure 2 Example of an understory lowland tropical rain forest

in the Parque National do Amazonia (near Itaituba, Pará state,

Brazil) dominated by palms. Foreground Bactris acanthocarpa var.

exscapa, upper right corner Attalea sp., middle left Euterpe precatoria,

background: Astrocaryum gynacanthum. Photo: TLPC.
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strong determinants of palm diversity [31,32] and funda-

mental anatomical constraints inhibit palms from colo-

nising cold environments [33,34]. Second, the known

history of palms extends far back into the Cretaceous

although the details of the spatiotemporal origin of the

family remain controversial [28]. Direct evidence from

unambiguous fossils associated with palms suggest that

the family was already present during the Turonian (89-

93.5 Ma, [35-37]) while more doubtful fossils have been

recorded since the Aptian (112 Ma, [28]). More recently,

several molecular clock estimates based on angiosperm

wide phylogenies suggested a stem age for the family ran-

ging from 91 to 120 Ma [38-41]. These studies were

based on a very limited sampling within the family and

thus do not provide reliable approximations for the

crown node age and early diversification history. To date,

most estimates of palm ages have focused on subfamily

[42,43] or tribal levels [44-46].

Here we investigate the origin and diversification of

palms in space and time using the first complete generic-

level sampling for any important TRF-restricted plant

family [47]. We estimated speciation events under a Baye-

sian framework using a relaxed molecular clock approach

(BEAST, [48]), while the spatial origin of the family was

inferred under a maximum likelihood method that imple-

ments the dispersal-extinction-cladogenesis model [49,50].

Finally, we use palms as a model to explore the evolution

of TRF biodiversity by testing which of the three TRF

diversification hypotheses outlined above corresponds to

the diversification history of the family.

Results and discussion
Evolutionary origin of palms

The fossil-calibrated molecular dating of a complete

genus-level palm supertree [47] provides for the first

time minimum age estimations for all major groups of

the palm family (Table 1). The resulting chronogram

(Figure 3b) suggests that the diversification of extant

lineages of palms started in the mid-Cretaceous period

at the Albian-Cenomanian boundary (crown node: 100

Ma, 95% highest posterior density (HPD) 108-92 Ma).

The Cretaceous represents an important period for

plant evolution as it witnessed the rise and diversifica-

tion of flowering plants [51,52]. The fossil record indi-

cates that from the Albian to the middle Cenomanian

angiosperms diversified extensively, becoming more

abundant relative to other plants and establishing them-

selves as a major part of paleofloras by the end of that

period [53]. Our maximum likelihood analysis of geo-

graphic range evolution indicates that the most likely

distribution of the most recent common ancestor of

palms was centred on present day Central/North Amer-

ica and Eurasia, which corresponds to the Laurasian

landmass at that time (Figure 3a). Notably, the oldest

reliable palm fossils (Turonian to Campanian) have all

been discovered in Europe and North America [28]. A

Laurasian origin for palms was previously suggested by

Uhl and Dransfield [54] based on the prevalence of

putatively primitive lineages in the northern hemisphere.

From this ancestral area several subsequent dispersal

events are inferred into the equatorial regions of South

America, Africa and South East Asia, the present day

distribution of palms. Finally, our ancestral biome analy-

sis suggests that the earliest palm lineages were

restricted to TRF (P = 0.984; Figure 3b and Table 1), a

result that was further supported by a test of phyloge-

netic signal of the biome. In fact, adaptation to non-

TRF biomes did not arise until the Paleocene within the

fan palm subfamily Coryphoideae. Thus, our results sup-

port the notion that palms originated in a TRF-like

biome and started to diversify during the mid-Cretac-

eous period in Laurasia.

Origin of tropical rain forests

The presence of TRF during the mid-Cretaceous period

is controversial because pre-Cenozoic fossils associated

with TRF are notoriously sparse [8,11,55,56] in contrast

to the relatively well documented fossil evidence of TRF

during the early Cenozoic from equatorial to relatively

high palaeolatitudes [11-14,20,57]. The earliest fossil

Table 1 Mean estimated ages, 95% confidence intervals and ancestral ecologies for the family and subfamilies

Clade Age in Ma 95% HPD Proportional likelihoods of ancestral
ecology of branch leading to nodea

Arecaceae, crown 100.1 92-108.7 0 = 0.984/1 = 0.0/2 = 0.0

Calamoideae, crown 80.2 70.3-90.3 0 = 0.999/1 = 0.0/2 = 0.0

Nypoideae, stem 93.5 87.5-100.6 0 = 0.982/1 = 0.0/2 = 0.0

Coryphoideae, crown 66.0 51.35-80 0 = 0.716/1 = 0.28/2 = 0.0

Ceroxyloideae, crown 52.1 30-74.2 0 = 0.979/1 = 0.0/2 = 0.0

Arecoideae, crown 73.6 66.1-81.3 0 = 0.999/1 = 0.0/2 = 0.0

Bold entries indicate values significantly different from other states.
a0 = Tropical rain forest restricted; 1 = mangrove restricted; 2 = non-rain forest restricted.

HPD = highest posterior density; Ma = millions of years.
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Figure 3 Area, tempo and mode of palm diversification. (a) Paleomap representing the distribution of landmasses in the mid-Cretaceous

period, dark grey upland land, light grey lowland (100 million years (Ma), adapted from Beerling and Woodward [60]). Laurasia, which is the

most likely ancestral area reconstructed for the crown node of palms, is highlighted. (b) Chronogram showing the three different biomes

assigned to each genus. Red: tropical rain forest; green: mangrove; blue: not tropical rain forest; grey: ambiguous. Yellow circles indicate fossil

calibration points. The vertical black lines highlight the five subfamilies of palms with an illustration (drawings by Marion Ruff Sheehan, L.H. Bailey

Hortorium, Cornell University, except top one (Arecoideae), which is reproduced with permission from Springer from Kahn and de Granville [30].

(c) Semilogarithmic mean lineage-through-time (LTT) plot averaged over 1,000 posterior trees from the Bayesian analysis (left axis, triangles) and

percentage of missing taxa as a function of time (right axis, grey line). Short dashed line = upper 95% confidence interval; long dashed line =

lower 95% confidence interval; filled square = extant number of palms species. Vertical black line indicates threshold up to which the LTT plot is

considered reliable even under incomplete taxon sampling. Palm fossil indicates time of earliest known unequivocal fossil for the family

(Sabalites fossil leaf image reproduced by permission of the Board of Trustees, National Museums Liverpool, Liverpool, UK).
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flora interpreted as characteristic of TRF was found in

the early Cenomanian from several formations in North

America, for example, the Dakota formation of Kansas

(99 Ma, [9,53,58]), which is consistent with our results.

However, these conclusions, which were based on the

physiognomy of leaf characters, such as shape and size,

that are generally associated with megathermal vegeta-

tion [20,53], have been questioned by some authors (see

personal communication from Johnson in Morley [20]).

Several studies have suggested that during the Cretac-

eous plant biodiversity was highest at mid paleolatitudes

where the climate was more favourable while equatorial

latitudes were exposed to a drier and hotter climate

unlikely to have supported TRFs [20,59]. In addition,

simulations of major vegetation distributions during the

mid-Cretaceous period (100 Ma) indicate that the pre-

sence of TRF in the Cenomanian of North America and

Eurasia as well as other parts of the world is plausible

[14,60]. Finally, indirect evidence is provided by a diver-

sification study of Malpighiales, a large plant order

mainly restricted to TRFs. Using a molecular clock

approach, it was estimated that the origin of this order

dates to around 114 Ma with subsequent diversification

during the Cenomanian [10], implying the presence of

TRF at that time.

Even though molecular dating methods have been cri-

ticised in relation to interpretations of TRF origins [12]

and are not assumption free, such approaches have

played important roles in understanding the construc-

tion of other species rich biomes (for example, the Cape

flora [61,62]) and provide important insights when the

fossil record is sparse or incomplete. Molecular dating

of palms, one of the most characteristic TRF plant

families, provides additional evidence that modern TRF

might have already been in place 100 Ma, significantly

earlier than suggested by unequivocal fossil evidence

[13,57]. It is most likely that formation of the TRF

biome was a gradual process and thus the precise time

at which modern TRFs can be recognised may be

impossible to pinpoint. However, our results and other

evidence discussed above [9,10,53] imply that the assem-

bly of the TRF biome had already started during the

mid-Cretaceous period and was not just a strictly Ceno-

zoic process. It is puzzling that, to our knowledge, no

macrofossil of palms has been recovered in Cenomanian

deposits of North America [9]. However, our results

suggest that palms were just starting to diversify at this

time and may not have been widespread, thus reducing

the frequency of fossilization and probability of later dis-

covery. Interestingly, studies of other species-rich TRF

plant families yield timings for the earliest extant lineage

diversification events (that is, crown node estimates)

that largely post-date palms, for example Leguminosae

(59 Ma, [63]), Annonaceae (89 Ma, [64]) and Rubiaceae

(86 Ma, [65]). This would imply that palms represent

one of the first extant plant families to have diversified

within TRF since its origin. Thus, palms not only play a

major role in present day TRF [28-30], but also appear

to have been a key component in the assembly and

diversity of this biome since the earliest stages of its

evolution.

Early diversification of tropical rain forests

To depict global diversification at the family level and

test the hypotheses of TRF diversification, we generated

a semilogarithmic lineage-through-time (LTT) plot as

well as 95% confidence intervals based on 1,000 ran-

domly selected posterior trees from the BEAST output

(Figure 3c). LTT plots are widely used to characterise

the diversification of clades as a function of time

[66-68], but they are sensitive to incomplete taxon sam-

pling [69,70], as is the case here (183 species sampled

out of circa 2,400, approximately 7.6%, see Additional

file 1). However, our sampling is phylogenetically repre-

sentative and non-random as we included 100% of all

described palm genera. Such a sampling strategy has the

advantage of representing all the deeper nodes of the

phylogeny and can provide a good estimation of diversi-

fication history up to a point in time after which under-

sampling at shallower nodes biases the inference [71,72].

In order to restrict the interpretation of our LTT plot to

the more accurately estimated parts we used a novel

approach to identify a threshold after which the poten-

tial impact of incomplete taxon sampling becomes too

important to permit accurate analyses of diversification

rates (see Methods). Based on the chronogram, the per-

centage of total missing palm species increased sharply

from 12% to 28% after circa 24 Ma (Figure 3c). Interpre-

tation of the LTT plot was thus restricted to the period

prior to that point in time (from 100 Ma to 24 Ma) and

all nodes occurring after the 24 Ma threshold were

excluded from subsequent analyses.

Between 100 Ma and 24 Ma, the LTT plot forms an

almost straight line, which suggests that the palm family

underwent a constant rate of diversification without any

major shifts or radiations [67,68]. This is also statisti-

cally supported by the better fit of the pure-birth model

of diversification (constant diversification rates with no

extinction) on the LTT plot than any other model tested

(∆AICRC = -1.421 between the pure birth model and the

second best fitting model (the density-dependent or

‘DDX’ model); AIC = Akaike Information Criterion).

Moreover, the ∆AICRC was not significantly different

under the null hypothesis of diversification rate consis-

tency when calculated from 10,000 phylogenies simu-

lated under the pure-birth process (P value = 0.739).

Finally, the g statistic [70] also supported a constant rate

hypothesis as it was not significantly different from zero
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(g = -0.318, P value = 0.379). These results lend support

to the museum model (Figure 1) in which diversification

rates remain constant and extinction rates are low

[16,22]. This hypothesis was thought to be the conse-

quence of the old and ecologically stable conditions of

TRF over millions of years. Even though such views

have now been replaced by the notion of greater dyna-

mism in TRF evolution [14,17,73], the biome itself has

never completely disappeared [14,20] and has persisted

in refuges during unfavourable climatic times. The exis-

tence of such refuges may have allowed comparatively

old lineages to persist and contribute to present day

species diversity. For example, lineages of another

diverse TRF plant family, Annonaceae, were shown to

have persisted in possible TRF refuges of East and West

Africa for over 30 million years [74] even during clima-

tically unfavourable times (for example, the global cool-

ing of the Eocene/Oligocene boundary). We suggest

here that TRF refugia may have played a similar role

throughout the history of the palm family and, as a

result, global palm species diversity is at least partly the

result of a gradual accumulation of ancestral lineages

through time, and cannot be attributed to ancient or

recent speciation bursts alone.

At finer time scales, palm species diversity and diversi-

fication rates most likely fluctuated with extinction rates

possibly increasing and decreasing at specific time

frames in the past, perhaps in relation to climatic and

geological changes. For example, studies of the palyno-

flora through the Late Paleocene-Eocene Thermal Maxi-

mum in Colombia indicate an increase in palm

morphospecies after this time (56.3 Ma, [8]). Thus, it is

probable that different clades within palms underwent

alternative diversification scenarios leading to a hetero-

geneous pattern of diversification among the lineages

within the family. However, our study implies that over

a larger time scale these changes did not influence the

overall global pattern of diversification in palms, at least

until 24 Ma. This is also apparent during the major

extinction episode at the Cretaceous/Paleogene bound-

ary (K/Pg; [75]), which had no statistically significant

effect on diversification rates (Figure 3c).

To date, relatively few family-level studies have pro-

vided evidence for the museum model of tropical plant

diversification (Annonaceae [64], liverwort family Lejeu-

naceae [76]). This pattern contrasts with the study of

Malpighiales evolution, which indicated that all major

lineages originated within a short timeframe suggesting

an early rapid speciation of the order, although no

detailed diversification analysis was undertaken for this

group [10]. Interestingly, meta-analyses based on a large

number of species-level dated molecular phylogenies of

a range of plants and animals have also underlined the

importance of the constant rate diversification model

[77,78]. Indeed a large number of phylogenies fitted the

simplest model of diversification. For example, Morlon

et al. [78], using a novel coalescent-based approach,

found that 87 out of 289 phylogenies studied (30%) bet-

ter fitted the Yule process (time constant rates with no

extinction) than alternative models. Even though these

results were obtained from a wide range of organisms

occurring in different ecosystems, it nevertheless under-

lines the importance of such a simple process for

explaining present day diversity.

Given the threshold of 24 Ma imposed on our LTT

plot (Figure 3c), there is little indication about recent

(Neogene) diversification patterns. However, it is clear

that in order to attain present day species diversity

(Figure 3c), rates must have increased, which suggests a

shift in diversification that occurred after 24 Ma. This

could have been achieved either by accelerating diversi-

fication rates, consistent with the ‘recent cradle’ model,

or simply by higher overall constant rates. Recent high

speciation rates within other TRF plant genera have

been documented [13-15] and it seems likely that rapid

speciation occurred within some species-rich palm gen-

era given the very young stem node age estimations we

inferred for them (for example, Pinanga, approximately

130 species, stem node approximately 12 Ma; Dypsis,

approximately 140 species, stem node approximately 13

Ma). In fact, the ‘museum’ and ‘recent cradle’ hypoth-

eses are not mutually exclusive; both mechanisms could

be at work, possibly within different palm lineages and

different time frames. For example, both the ‘ancient’

and ‘recent’ cradle models of diversification have

been identified within the TRF-restricted leaf beetle

family [79].

Conclusions
Our results from one of the most important TRF plant

families suggests that present day TRF biodiversity can

at least in part be explained by a steady accumulation

of lineages dating back to the mid-Cretaceous period

and is not just the result of rapid radiations, either

recent [25] or ancient [10]. The analysis of additional

family-level diversification patterns of other TRF

restricted plant groups will undoubtedly shed more

light into the evolutionary forces that have led to the

immense diversity of species found within modern TRF

today.

Methods
Taxon sampling

This study builds upon the complete generic-level

supertree analyses of palms by Baker et al. [47], the

most extensive phylogenetic study of the family pub-

lished to date. Here, the sampling is updated to be con-

sistent with the latest family-wide monograph [28,80],
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in which 183 genera are accepted (see Additional file 1

for the list of genera used). This was performed by

repeating the supertree analyses of Baker et al. [47]

with the addition of published plastid DNA sequence

data for the recently described genus Tahina [81] (see

below). Three commelinid monocot outgroup taxa (Cos-

tus, Dasypogon, Zea) were selected from the sampling

of Baker et al. [47].

Fossil calibration

Palms have a rich fossil record dating from the Late

Cretaceous onwards. Although the record is unusually

rich among angiosperms, only a small fraction of palm

fossils can be identified to specific taxonomic groups

with confidence. Drawing on recent surveys of the palm

fossil record [28,82,83], we selected the most reliable

fossils (Table 2), judged on the basis of the credibility of

their purported taxonomic affinities and reported ages.

Nevertheless, none of these fossils is sufficiently infor-

mative to justify allocation to crown nodes [84]; they are

thus applied conservatively to stem nodes throughout.

Where authors provide a range of age estimates, we

have used the most recent date. Where a geological

time period alone is specified, we have used the date of

the upper end of that period [85].

The four selected fossils are widely distributed across

the family and are located in three out of the five subfa-

milies. The earliest fossils that can be assigned unequi-

vocally to a taxonomic group within palms are Late

Cretaceous records of palmate leaves, the earliest of

which is Sabalites carolinensis from the late Coniacian

of South Carolina [86]. Although an affinity with Sabal

is implied by the genus name, the fossil could be linked

with many coryphoid groups and its age is therefore

used conservatively here as a calibration point for the

stem node of subfamily Coryphoideae as a whole with

an age of 85.8 Ma. Hyphaene kapelmanii, a fossil discov-

ered at a late Oligocene site in Ethiopia [87], provides a

further calibration point within the Coryphoideae. This

fossil consists of a petiole fragment with a close resem-

blance to the modern genus Hyphaene due to the mor-

phology of its wide, recurved marginal spines. We use

this fossil as a constraint for the stem node of subtribe

Hyphaeninae with an age of 27 Ma.

In subfamily Calamoideae, the unique structure of the

pollen of subtribe Mauritiinae corresponds closely to

fossil pollen in the genus Mauritiidites, specifically the

clavate monosulcate grains with each spine inset and a

swollen foot layer below. Mauritiidites has been

recorded as early as the Maastrichtian of Africa [88]

with numerous records soon after in the Palaeocene

onwards of South America [89]. We use it here as a

calibration for the stem node of the Mauritiinae with an

age of 65 Ma.

Fossil records of the coconut tribe Cocoseae, particularly

of fossilised endocarps, are numerous [28]. Until recently,

well documented records appeared from the Middle

Eocene onwards (for example, [90,91]), but new research

in the middle to late Palaeocene of Colombia has revealed

compression fossils of large fruits that closely resemble the

modern coconut, Cocos nucifera, both in size and surface

morphology [92]. In the absence of further substantiating

evidence, we allocate this fossil to the stem node of the

Attaleinae, the subtribe of tribe Cocoseae to which Cocos

belongs, with an age of 54.8 Ma.

Finally, a number of other reliable fossils could not be

used because they are made redundant by older fossils

assigned to more distal nodes. Nypa is most notable

here, given its outstanding macrofossil and microfossil

records dating back to the Maastrichtian [28,93]. Also

significant are the distinctive diaperturate fossil pollen

grains, usually referred to the form genus Dicolpopollis,

which can be assigned with confidence to tribe Cala-

meae of the Calamoideae [82,83,94-96]. The earliest

records of this fossil palynomorph are from the Maas-

trichtian and its boundary with the early Palaeocene of

Somalia and Borneo [88,96].

For each fossil we applied an exponential prior, the

parameters of which are given in Table 2. Finally, the

stem node of palms was constrained by a uniform prior

ranging from 110 to 120 Ma. This corresponds to the

earliest monocot fossil [97]. By doing this we imply that

the stem of palms cannot be older than the oldest

monocot fossil.

Molecular dating

Molecular dating was carried out using BEAST 1.5.3

[48,98]. For this analysis the ‘most congruent supertree’,

based on the method and data of Baker et al. [47], was

used as a topological constraint. This topology was

based on extensive data sampling, including DNA

sequence data, restriction fragment length polymorph-

isms (RFLP) and morphology, and represents the best

family-wide estimation of phylogenetic relationships

between palm genera to date. To update the taxonomic

sampling of the supertree, we repeated the supertree

Table 2 Names of fossils used to calibrate the tree, with

the respective exponential prior parameters used

Fossil name Hard lower
bound (Ma)

Soft upper
bound 95% (Ma)

Exponential mean
(uncertainty)

Sabalites
carolinensis

85.8 88.8 1

Mauritiidites 65 69.49 1.5

Attaleinae 54.8 60.79 2

Hyphaene
kapelmanii

27 28.5 0.5

Ma = millions of years.
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analysis of Baker et al. [47]. This study used a matrix

representation with parsimony (MRP) analysis based on

input trees generated from individual partitions and

combinations of partitions with matrix elements

weighted in proportion to bootstrap values of corre-

sponding input tree clades. The strict consensus tree of

this analysis was highly resolved with minor ambiguity

in tribe Trachycarpeae and parts of tribe Areceae only.

One most-parsimonious tree was selected at random

and used as a constraint. This tree was pruned to

include only the 183 genera accepted by Dransfield et

al. [28]. All DNA sequence datasets utilised by Baker et

al. [47] were included in our molecular dating analysis

(plastid DNA regions: atpB, matK, ndhF, rbcL, rps16

intron, trnD-trnT, trnL-trnF, trnQ-rps16; nuclear DNA

regions: 18S, ITS, ms, prk, rpb2). The completeness of

taxonomic sampling for each of these regions varies

from 12% to 100%, with an average of 48%. Moreover,

sampling for the chloroplast markers was much more

complete than for the nuclear markers. Morphological

and RFLP datasets used by Baker et al. [47] were

excluded. The supertree topology was used as constraint

by deleting in the XLM BEAST input file the following

commands: subtreeSlide; narrowExchange; wideEx-

change; wilsonBalding. Each marker was individually

partitioned in BEAUTi 1.5.3 http://beast.bio.ed.ac.uk/

BEAUti and assigned the General Time Reversible

model (GTR) with gamma-distributed rate variation (G).

model of sequence evolution. Prior to our full analysis,

we investigated the effect of missing data on the estima-

tion of ages. We undertook a preliminary analysis on 2

datasets: 1 with all the 13 markers (missing data pre-

sent) and 1 where the 5 nuclear markers were removed

(missing data of 10%). A regression analysis between the

ages obtained for all nodes was highly significantly posi-

tive (R = 0.88; t test: P < 0.001) indicating that missing

data in our dataset are likely to have little influence on

age estimations in molecular dating. We then undertook

the full-scale analysis on the full 13-marker dataset.

In total, 8 individual analyses were carried out, 5 with

20 million generations and 2 with 30 million genera-

tions, resulting in a total of 160 million generations, and

sampling every 1,000th generation. Individual analyses

were performed in order to test for convergence of the

results. Tracer 1.4 [99] was used to check for conver-

gence of the model likelihood and parameters between

each run. Results were considered reliable once the

effective sampling sizes (ESS) of all parameters exceeded

200. The resulting independent log and tree files were

then combined using LogCombiner discarding 10% of

generations as burn in per independent run.

Finally, deviation from a strict molecular clock was

tested by running the analysis a second time with the

strict clock enforced. We used the Bayes Factor as

implemented in Tracer 1.4 [99] to select the best-fitting

model under the smoothed marginal likelihood estimate

and with 100 bootstrap replicates [100]. This test

strongly supported the data as being non-clock like (ln

BF = 1,158.2 ± 3.2 in favour of relaxed clock hypoth-

esis), and thus the results under the relaxed clock are

presented here.

Diversification analyses

To explore diversification rates in the family, we gener-

ated a semilogarithmic LTT plot. The mean LTT plot as

well as the 95% confidence intervals was generated from

a random selection of 1,000 posterior trees resulting

from the BEAST analysis. LTT plots are sensitive to

incomplete taxon sampling [70]. However, the full gen-

eric sampling of palm genera (100% of genera included)

means that sampling of extant lineages is complete in

the older parts of the phylogeny, becoming progressively

more incomplete towards the present [71,101]. In order

to avoid misinterpretation of the plot we restrict our

analyses to the accurately estimated part of the LTT,

which will be least influenced by the missing taxa. We

do this by finding the point at which incomplete taxon

sampling will likely begin to have a significant effect on

the LTT plot. Under the assumption that all genera are

monophyletic, speciation events within each genus will

always be found after the stem node of that genus.

Given the known age of each stem node for each genus,

we calculated a cumulative total for the number of miss-

ing species as a function of time. By doing this we gen-

erated a time-dependent curve representing the increase

of missing taxa from the origin of the family until the

present that quantified the amount of uncertainty each

part of the LTT plot contains (Figure 3c). In this study,

the proportion of missing taxa was less than 12% from

100 Ma to 24 Ma, at which time a dramatic increase

occurred with missing species rising to 24% and on to >

92% at the present time. This point represents the stem

age of the genus Calamus, the most species-rich genus

in palms [28]. All nodes occurring after this 24 Ma

threshold were deleted from subsequent diversification

analyses.

Two different approaches were used to test for signifi-

cant changes in diversification rates. First, we used a

maximum likelihood method for fitting alternative diver-

sification models to the LTT plot [102] using the R

package LASER 2.2 [103]. The test statistic for diversifi-

cation rate constancy ∆AICRC is calculated as ∆AICRC =

AICRC - AICRv, where AICRc is the AIC score for the

best fitting rate-constant diversification model, and

AICRv is the AIC for the best fitting variable-rate diver-

sification model. A negative value for ∆AICRC indicates

that the data is best approximated by a rate-constancy

model. We fitted five different diversification models: (1)
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the constant-rate birth model (the Yule process; [104])

with the speciation rate (l) being constant and the

extinction (μ) set to zero; (2) the constant-rate birth-

death model with two parameters, speciation (l) and

extinction (μ); (3) a pure birth rate-variable model

where the speciation rate l1 shifts to rate l2 at time ts,

with three parameters (l1, l2, ts); (4) an exponential

density-dependent speciation rate ‘DDX’ model; and (5)

a logistic density-dependent speciation rate ‘DDL’

model. The significance of the observed ∆AICRC was

evaluated by simulating 10,000 trees under a pure birth

constant diversification rate.

Second, we calculated the g statistic of Pybus and Har-

vey [70], which provides a summary of the distribution

of nodes in the phylogeny: if the internal nodes are clo-

ser to the root then g < 0; if they are closer to the tips

then g > 0; if the nodes are equally spread out then g =

0. The observed g statistic was compared with the distri-

bution of the g statistic of 1,000 simulated phylogenies

under a pure-birth model using the LASER package 2.2.

Ancestral areas

A presence-absence matrix was built representing the

global distribution of palm genera (see Additional file 1

for the original data used to perform this analysis). We

defined seven, non-overlapping major palm areas that

reflect the distribution and endemism of genera as well

as broad scale geological units, as follows: (A) South

America, (B) North America (including Central Ameri-

can and the Caribbean), (C) Africa (including Arabia);

(D) Indian Ocean (Madagascar, Mascarenes, Comoros

and Seychelles), (E) India (including Sri Lanka), (F) Eur-

asia (including west Malesia to the west of Wallace’s

Line) and (G) Pacific Ocean (including east Malesia to

the east of Wallace’s Line, Australia and the Pacific

Islands). Each genus was assigned to one or more of the

major palm areas based on its known current distribu-

tion [28,105].

Ancestral areas (AA) were reconstructed using a maxi-

mum likelihood method under the dispersal-extinction-

cladogenesis model [49,50] as implemented in the soft-

ware Lagrange build 20091004 [50]. We tested our

ancestral area reconstruction under two different bio-

geographic models (see Additional file 1 for the para-

meters used to perform these analyses). The first model

(M0) was unconstrained and we assigned an equal prob-

ability (P = 1.00) of dispersal between all areas during

the whole time period considered. This model assumes

that spatial relationships among areas have no effect on

biogeographical patterns. For the second model (M1),

we applied a more complex biogeographic scenario

incorporating prior information on range evolution as

well as dispersal probabilities between areas given dis-

crete periods of time. This model was based on past

climatic data, tectonic history and presence/absence of

postulated land bridges [14,19,20,106-108]. Five time

frames were delimited and dispersal probabilities were

assigned between all adjacent areas (see Additional file

1). Dispersal probabilities were set as following: low or

no dispersal = 0.01; low dispersal = 0.25; medium dis-

persal = 0.5; high dispersal = 0.75; areas adjacent or very

close = 1. Scripts in the programming language Python

http://www.python.org/ were generated using the online

helper http://www.reelab.net/lagrange. Because of the

large surface of each area (continent-level areas), the

maximum number of ancestral areas was limited to two.

The genus Cocos presented a special problem because

it is widely distributed across all areas. Such highly poly-

morphic states generally inject a high level of ambiguity

into the analyses, as was the case in preliminary analyses

here. Following the recommendations of Ronquist [109],

we allocated a putative ancestral area coding to Cocos

(area A) based on the findings of Meerow et al. [110].

Ancestral biome

The probable ancestral biome at the crown node of

palms was reconstructed under a maximum likelihood

method using the Markov k-state 1 parameter model

(Mk1) model of character evolution implemented in

Mesquite version 2.74 [10,111]. We assigned genera into

three different biome state categories following Olson

et al. [112]. State 0: predominantly ‘tropical and subtro-

pical moist broadleaf forests’ biome (that is, TRF); state

1: ‘mangrove’; state 2: a general category that contains

genera not belonging to any of the two first categories

(that is, not TRF-restricted). State 2 is broad in its defi-

nition encompassing all other biomes for palms. When

a genus occurred in both TRF and non-TRF biomes it

was coded as ambiguous (see Additional file 1 for the

original data used to perform this analysis). The man-

grove category was included to take into account the

ecology of Nypa. The phylogenetic signal of the biome

character was tested by randomising the tips of the phy-

logeny 1,000 times in Mesquite [111] in order to create

a null distribution of the number of steps under the

maximum parsimony criterion and the 99% confidence

intervals. This null distribution was compared to the

observed number of steps necessary to explain the

occurrence of each character on the phylogeny. In this

case, the observed value fell outside the 99% confidence

interval confirming that the biome category is phylogen-

etically conserved.

Additional material

Additional file 1: Additional tables. Table S1: Genera sampled with

total number of species per genus, biome coding used in Mesquite and

area coding used in the Lagrange analysis. Table S2: Alternative dispersal
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models between areas used in Lagrange. This file presents the names of

all officially recognised palm genera, with the coding for present day

biome and area, as well as the details of the two alternative

biogeographical models used in the analysis.
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