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	is paper presents two origin-destination 
ow estimation models using sampled GPS positions of probe vehicles and link

ow counts. 	e �rst model, named as SPP model (scaled probe OD as prior OD), uses scaled probe vehicle OD matrix as
prior OD matrix and applies conventional generalized least squares (GLS) framework to conduct OD correction using link
counts; the second model, PRA model (probe ratio assignment), is an extension of SPP in which the observed link probe ratios
are also included as additional information in the OD estimation process. For both models, the study explored a new way to
construct assignment matrices directly from sampled probe trajectories to avoid sophisticated tra�c assignment process. 	en,
for performance evaluation, a comprehensive numerical experiment was conducted using simulation dataset. 	e results showed
thatwhen the distribution of probe vehicle ratios is homogeneous among dierentODpairs, both proposedmodels achieved similar
degree of improvement compared with the prior OD pattern. However, under the case that the distribution of probe vehicle ratios is
heterogeneous across dierent OD pairs, PRA model achieved more signi�cant reduction on OD 
ow estimations compared with
SPP model. Grounded on both theoretical derivations and empirical tests, the study provided in-depth discussions regarding the
strengths and challenges of probe vehicle based OD estimation models.

1. Introduction

	eorigin-destination 
owmatrix (referred to asODmatrix)
is one essential input tomany dynamic tra�c assignment and
tra�c simulation systems. Conventionally, a prior ODmatrix
(or seedODmatrix) is estimated from a large-scale travel sur-
veywhich is usually conducted every several years due to pro-
hibitively high cost. As a result, survey of both sampling rate
and update frequency of travel is constrained which some-
times leads to a biased estimation of OD matrix. To contend
with such problem, researchers developed various OD cor-
rection models using link 
ow counts which are collected
routinely by detectors. According to Cascetta and Nguyen
[1], most popular OD estimation models utilizing link 
ow
counts can be formulated as an optimization problem taking
the following generalized form:

min
�

�1 (�, �̂) + �2 (�, �̂)
s.t. � = 	 (�) , � ∈ Ω, (1)

where � is the unknown OD 
ow matrix and �̂ is the prior
OD matrix (or seed matrix) representing modeler’s prior
belief regarding the temporal and spatial distribution of the

travel pattern. � and �̂ are the estimated and observed link

ow vectors, respectively; �1 (�2) is distance metric function

to measure the discrepancy between � and �̂ (� and �̂). In
the �rst constraint of (1), the abstract function 	 essentially
represents the tra�c assignment process through which OD

ows � are mapped to estimated link 
ows �. 	 is usually
referred to as assignment matrix. Ω is the feasible domain of�.

Depending on the form of metric functions, previous
studies can be categorized into three groups: (1) generalized
least squaresmodels (GLS) studied by Bell [2, 3], Cascetta [4],
Cascetta et al. [5], and Cascetta et al. [6]; (2) maximum like-
lihood models (ML) such as Spiess [7] and Cascetta and
Nguyen [1]; and (3) Bayesian inferencemodels (BI) studied by
Maher [8]. In the abovemethods, the reference time period is
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divided into a sequence of uniform intervals and OD 
ows of
all intervals are estimated simultaneously. 	is type of mod-
eling approach is called simultaneous OD estimationmethod
which is developed primarily for o�ine applications. Mean-
while, for online applications, sequential OD estimation tech-
nique based on Kalman �lter technique received intensive
research attention during the last several decades. Starting
from Okutani and Stephanedes [9], subsequent studies along
this direction include Nihan and Davis [10], Chang and Wu
[11], Ashok and Ben-Akiva [12, 13], and Antoniou et al. [14].
	e major dierence between sequential and simultaneous
OD estimation is that sequential estimation performs OD
adjustment recursively at each interval based on measure-
ments of current interval and estimated results from previous
intervals. Consequently, sequential estimation methods are
more suitable for online tra�c state estimation applications
due to higher computational e�ciency.

Recently, the application of emerging surveillance tech-
nologies in theODestimation �eld has drawn increasing con-
cerns from the research community. Many researchers devel-
oped their ownmodels to combine the information fromcon-
ventional detectors and emerging sensing technologies. Rep-
resentative studies along this line include AVI system (Dixon
and Rilett [15], Zhou and Mahmassani [16], and Chen et al.
[17]), vehicle plate scanning (Castillo et al. [18]), sporadic
routing data (Parry and Hazelton [19]), GPS probe vehicles
(Eisenman and List [20], Cao et al. [21]), 
oating car data

(Ásmundsdóttir [22], Yang et al. [23]), and cell phone data
(Sohn and Kim [24], Calabrese et al. [25], and Iqbal et al.
[26]). 	e basic idea behind these studies is to improve OD
estimation accuracy using extra information which was not
available before. ConventionalOD estimationmodel given by
formulation (1) faces three major challenges: (1) the under-
speci�ed nature of OD estimation problem; (2) reliability
of prior OD matrix; and (3) accuracy of assignment matrix
estimation.

First of all, in most transportation networks, the number
of OD pairs exceeds the number of sensors. 	erefore,
without specifying additional constraints, such as prior OD
matrix, the OD estimation problem is an underspeci�ed
problem. And through both laboratory experiments and real
world dataset, Marzano et al. [27] and Cascetta et al. [6] con-
cluded that “a satisfactory updating, regardless of the quality
of the prior estimate, can be obtained generally only when
the ratio between the number of equations (independent
observed link 
ows) and the number of unknowns (i.e., OD

ows) is close to one.” Hence, increasing the amount of
observation is a major motivation of exploiting those emerg-
ing data sources. A second challenge is the availability and
accuracy of the priorODmatrix. BothMarzano et al. [27] and
Cascetta et al. [6] demonstrated the importance of the prior
OD matrix; also Frederix et al. [28] discussed the possibility
of falling into local optimal solutions given an inappropriate
seed OD matrix. Besides, depending on the area of analysis,
the prior OD matrix with acceptable level of reliability may
not even exist. 	e third challenge is the computation of the
assignmentwhich usually involves tra�c assignment process.
A benchmark study in this regard is the bilevel optimization

model proposed by Yang et al. [29, 30]. Although the method
can to some extent capture the impact of congestion on
drivers’ route choice, some of the assumptions (such as
perfect information) of user equilibrium condition may not
be satis�ed in reality. And to the best of our knowledge, no
systematical way has been proposed to correct such potential
bias with observed data due to the low observability of the
assignment matrix.

In view of the above challenges and potential of GPS
location data, this study discusses two GLS based estimation
frameworks for OD 
ows.	e basic idea is to take full advan-
tage of the sampled probe vehicle trajectory data to tackle
all three above-mentioned di�culties. First of all, by aggre-
gating the origin and destination zones of each probe vehicle
trace, one can obtain observed probe vehicle OD 
ows. 	en
by scaling up the probe OD matrix using certain set of
penetration ratios (the proportion of probe vehicles among
the entire vehicle population), a crude estimation ofOD
ows
can be obtained. Such scaled probe ODmatrix can serve as a
perfect supplement or replacement of the target OD matrix.
Eisenman and List [20] conducted an exploratory study in
which the scaled probeODmatrix is used in conjunctionwith
prespeci�ed target OD matrix in the GLS formulation with
externally computed assignment matrix. Van Aerde et al. [31]
focused on the computation of probe penetration ratios by
averaging the observed probe ratios at dierent sensor loc-
ations across the network. Although the model does not
require target OD matrix as input, unsatisfactory estimation
results were reported even under 20% probe penetration rate.

Another relevant study was conducted by Iqbal et al. [26]
using mobile phone call records.	e phone call records were
�rst used to generate tower-to-tower transient OD matrix
which is then scaled up using an optimization model in
conjunction with microscopic simulation model. Also, Cao
et al. [21] proposed a two-step framework to incorporate
probe vehicle data: in the �rst phase, link 
ows without tra�c
sensors are estimated based on observed link speed (from
probe vehicles) and precalibrated macroscopic speed-density
relationship; in the second phase, a bilevel GLS estimator is
formulated to estimate OD 
ows. Similarly, Tan et al. [32]
developed a dynamic OD estimation model using Automatic
Vehicle Location information, where DTA is used for obtain-
ing tra�c assignment matrix. An important issue that is
overlooked by above studies is the heterogeneity of probe
penetration ratios among dierent OD pairs. Such situation
may occur especially when probe vehicles are certain type of
commercial vehicles. In practice, both delivery vehicles and
taxi vehicles could be used as probes. When using delivery
vehicles as probes, their restricted OD distribution in a given
network would inevitably be an issue and it may aect the
accuracy of OD estimation. So taxis would be a better choice.
However, the proportion of taxi trips between distant OD
pairs may still signi�cantly dier from the other OD pairs.
Such probe ratio heterogeneity is considered explicitly in this
study. Another key concept proposed in this study is to esti-
mate the assignment matrix directly from sampled trajectory
data instead of running some complex tra�c assignment
process.	ere are two bene�ts in doing so: �rst is by replacing
tra�c assignment with map matching and data processing,
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one can avoid sophisticated tra�c assignment computation
and parameter calibration; moreover, the model does not
depend on any theoretical assumption regarding drivers’
behavior.

Based on above discussions, two models are presented
in this paper. 	e �rst model, SPP model (stands for scaled
probe OD matrix as prior OD), uses scaled probe vehicle
ODmatrix as prior ODmatrix and applies conventional GLS
framework to conduct OD correction using link counts; the
second model, PRA model (stands for probe ratio assign-
ment), is an extension of SPP in which the observed link
probe ratios are included as additional information in order
to explicitly account for heterogeneity of probe penetration
ratios. 	e remaining part of this paper is organized as
follows: Section 2 explains basic concepts and notations.
Section 3 contains detailed model speci�cations and is orga-
nized into three subsections: the development of SPP and
PRA model and computation of assignment matrices. Sec-
tion 4 discusses the solution algorithm. Section 5 presents
the numerical experiment. Finally, Section 6 summarizes the
conclusions.

2. Some Definitions and Notations

Considering a road network represented by a direct graph⟨, �⟩ where  is the node set and � is the link set, the
analysis period is divided into � uniform intervals. Each
interval is called a demand interval. Let � denote the origin-
destination pair set; then the travel demand pattern of the
network during the analysis period is represented by the OD

ow matrix ��,� � = 1, 2, . . . , � and � = 1, 2, . . . , �. Let �
denote a collection of links installed with sensors; � is a subset
of �. �̂�,� � = 1, 2, . . . , �, � = 1, 2, . . . , � are observed tra�c


ow counts of all vehicles at sensor locations.

It is assumed that there are two types of vehicles travel
in the network: probe vehicles and regular vehicles. Each
probe vehicle is able to actively report its position in the form
of GPS coordinates. And through map matching algorithm,
those GPS coordinates are transformed to corresponding
locations in the network. In reality, the actual locations of
probe vehicles usually cannot be determined fully due to
measurement error of GPS. Since this study emphasizesmore
on the theoretical aspects, it is assumed that the exact location
information is available whenever a probe vehicle reports its
GPS coordinate.

	enumbers of probe vehicles traveling between dierent
OD pairs within each interval are called probe vehicle OD

ows (simpli�ed as probe OD 
ows) and are denoted by�̂�,�, � = 1, 2, . . . , � and � = 1, 2, . . . , �; for each OD
pair, the proportion of probe vehicle in the total vehicle
population within the same interval is called OD probe
vehicle penetration ratio (simpli�ed as OD probe ratio) and
is denoted by ��,�, � = 1, 2, . . . , � and � = 1, 2, . . . , �. Note that
OD probe ratios are both time- and OD-dependent.

	e observed numbers of probe vehicles passing each
sensor location are called probe vehicle link 
ows (simpli�ed

as probe link 
ows) and are represented by ℎ̂�,�, � =1, 2, . . . , � and � = 1, 2, . . . , �. 	e ratio of probe link 
ow to

corresponding link tra�c 
ow during each interval is called
link probe vehicle penetration ratio (simpli�ed as link probe

ratio) and is represented by �̂�,�, � = 1, 2, . . . , � and � =1, 2, . . . , �.
3. Model Specifications

	is section introduced two dierent models for OD estima-
tions. It is noticeable that tra�c congestion may bring great
challenge to the estimation process. For simplicity, this study
does not account for the dynamic routings issue which may
have happened in practice.

3.1. Scaled Probe OD Matrix as Prior Matrix (SPP) Method.
SPPmethod consists of two steps: �rstly, the prior ODmatrix�̂�,� is estimated by scaling up the probe OD 
ows �̂�,� with
corresponding OD probe ratios ��,� estimated by averaging
the link probe ratios across the network; then OD 
ows��,� are solved correcting the prior OD matrix with a GLS
formulation.

To make the paper self-contained, the “direct scaling”
method proposed by Van Aerde et al. [31] is summarized
brie
y in this section. To estimate OD probe ratios, the
average link probe ratios across the entire network within
each interval is computed by the following expression:

�� = ∑�∈� ℎ̂�,�∑�∈� �̂�,� � = 1, 2, . . . , �, (2)

where ℎ̂�,� are the observed link probe 
ows, �̂�,� are the

observed link 
ows, and �� is the common value of ��,�.
Equation (2) computes the average ratio of the total number
of probe vehicles to the total number of vehicles observed
across the entire network during one interval. 	erefore
expression (2) implicitly assumes that OD probe ratios are
homogeneous among all OD pairs. 	en �� are used to
compute the priorOD
ows �̂�,� using the following equation:

�̂�,� = �̂�,��� � = 1, 2, . . . , �, � = 1, 2, . . . , �, (3)

where �̂�,� are the observed probe OD 
ows.
It is noticeable that the prior OD 
ows �̂�,� themselves are

an estimator of OD 
ows. Suchmethod is referred to as direct
scalingmodel (DS) in this study. Since the prior ODmatrix is
only a crude estimation, it is then adjusted using the following
GLS formulation:

SPP model:

min��,�

	∑
�=1


∑
�=1

(��,� − �̂�,�)2 2�,� + 	∑
�=1

�∑
�=1

(��,� − �̂�,�)2!2�,� (4a)

��,� = �∑
�=1


∑
�=1
"��,���−�,� ∀�, � (4b)

−$��,� ≤ ��+1,� − ��,� ≤ $��,� ∀�, � (4c)

��,� ≥ 0 ∀�, �, (4d)
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where ��,�, �̂�,� are unknown and prior OD 
ows, respec-
tively; ��,�, �̂�,� are estimated and observed link 
ows,

respectively;  2�,�, !2�,� are, respectively, variances of �̂�,� and�̂�,�; and $ is the maximum percentage change of OD 
ows

between two consecutive intervals.
Constrain (4b) essentially represents the 
ow assignment

process. "��,� are the proportion (or probability) of vehicles

departed during kth interval traveling between OD pair � to
pass link � during (� + ')th interval; "��,� is referred to as


ow assignment fractions in this study. 	e estimated link

ows, ��,�, are then expressed as the weighted sum of all OD

ows departed before interval �. * is the maximum travel
time among all journeys converted to the number of demand
intervals. In this study, the 
ow assignment fractions are
computed directly from probe vehicle trajectories.

	e basic idea of SPP model is to reduce the estimation
bias of the direct scaling method using sensor count infor-
mation. Let d and n be the numbers of OD pairs and tra�c
sensors, respectively; then the total number of unknowns
to independent observations ratio of SPP model is -/(- +3). Note that the target OD 
ows are obtained from GPS
probe vehicle data; no additional targetODmatrix fromother
sources is required by model.

Finally, formulations (4a)∼(4d) constitute a nonlinear
optimization problem with convex objective function and
linear constraints.	erefore the global optimal solution exists
and any solution satisfying local optimality condition is also
the global optimal solution of the problem. A gradient based
searching algorithm as discussed in Appendix A is adopted
to solve SPP model.

3.2. Probe Ratios Assignment Model (PRA). 	e second for-
mulation proposed in this study is called the probe ratio
assignment model (referred to as PRA). 	e underlying idea
of PRA is to explicitly consider the correlation between OD
probe ratios and observed link probe ratios.

	us, there exist some function 5 that links OD probe
ratios ��,� and estimated link probe ratios ��,�:

��,� = 5 (��,�) � = 1, 2, . . . , �, � = 1, 2, . . . , �. (5)

	e structure of 5 is similar to that of 
ow assignment
matrix	; the dierence is that5 represents the assignment of
probe vehicle ratios instead of 
ows. In this study, 5 is called
probe ratio assignment matrix. Based on the discussion, we
can now de�ne the following equation:

��,� = �∑
�=1


∑
�=1
6��,���,� = �∑

�=1


∑
�=1
6��,� ( �̂�−�,���−�,�)

� = 1, 2, . . . , �, � = 1, 2, . . . , �.
(6)

Here 6��,� are probe ratio assignment fractions. 6��,� repre-
sents the contribution of the probe ratio during �th interval
betweenODpairs � on the probe ratio of link j during (�+')th
interval. Note that in above equation, the OD probe ratios are
estimated by taking the ratio between �̂�,�, the observed OD


ows,and ��,�, the OD 
ows we want to estimate. Let �̂�,� be

the observed link probe ratios at all sensor locations. 	en
PRA model can be obtained by extending SPP formulation

by considering �̂�,� and incorporating equation (6):

min��,�

	∑
�=1


∑
�=1

(��,� − �̂�,�)2 2�,� + 	∑
�=1

�∑
�=1

(��,� − �̂�,�)2!2�,�
+ 	∑
�=1

�∑
�=1

(��,� − �̂�,�)2
V
2
�,�

(7a)

��,� = �∑
�=1


∑
�=1
"��,���−�,� ∀�, � (7b)

��,� = �∑
�=1


∑
�=1
6��,� ( �̂�−�,���−�,�) ∀�, � (7c)

−$��,� ≤ ��+1,� − ��,� ≤ $��,� ∀�, � (7d)

��,� ≥ 0 ∀�, �. (7e)

In the above formulations, please note that V2�,� is the

variance of �̂�,�. Other notations are introduced previously.

	e objective function of PRA model (7a) adds a third
term to that of SPP (4a) which is the sum of weighted
distances between estimated and observed link probe ratios.
And the �rst and second terms of (7a) are identical to those
of (4a). Constraints (7b) and (7c) represent the assignment of
OD 
ows and OD probe ratios.

	e primary feature of PRA as given by (7a)∼(7e) is the
utilization of a new set of �eld observations: the observed
link probe ratios which is the combined information of 
ow
counts and probe vehicle trajectories. Also the OD probe
ratio assignment matrix is a new concept introduced in this
study. Let - and 3 be the number of OD 
ows and tra�c
sensors, respectively; then the total number of unknowns to
independent observation ratio of PRA model is -/(- + 2 ∗3) which is lower than that of SPP model. Essentially, each
sensor provides two observations instead of only one a�er
considering the probe vehicle trajectories: the �rst is the 
ow
count of the entire vehicle population and the second is the
proportion of probe vehicles passing the sensor location.	e
computation of 6��,� is discussed in the next subsection.

Note that the PRA formulation is no longer a convex
optimization problem due to the existence of (7c); there-
fore solving the problem using gradient based searching
algorithm faces the possibility of being trapped in local
optimums.	e solution algorithm of PRAmodel is discussed
in Section 4.

3.3. Computation of Assignment Matrices Using Probe Vehicle
Trajectories. In this study, both 
ow assignment fractions"��,� and probe ratio assignment fractions 6��,� are estimated

through analyzing the GPS trajectories of probe vehicles.
Compared with conventional methods (i.e., tra�c assign-
ment model), the main feature of the proposed approach is
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that it replaced dynamic tra�c assignment process with map
matching procedure of GPS coordinates.

	e underlying concept is relatively straightforward. 	e
entire vehicle population is divided into two groups: probe
vehicles and regular vehicles. And all the assignment fractions
of probe vehicle population can be obtained from their time-
dependent location information. 	en one can use those to
approximate the assignment fractions of the entire vehicle
population assuming that probe vehicles are randomly sam-
pled.

De�ning �̂�,�+��,� as the observed number of probe vehicles

traveling between OD pair � and departed during interval �
passed sensor � during interval �+', then the 
ow assignment
fractions of probe vehicles can be computed as

"��,� = 1�∑� (
�̂�,�+��,��̂�,� ) ' = 1, 2, . . . , *. (8)

In the above equation, the denominator is essentially the
total number of probe vehicles departed during interval �
between OD pairs �. 	erefore the fraction inside the paren-
thesis is the proportion of vehicles passing link � a�er ' inter-
vals counted from their departure time interval. Note that
probe vehicles departed at dierent time intervals are aggre-
gated together to obtain a single estimation of the assignment
matrix. 	e underlying assumption is that there exists some
time period during which drivers’ route choice behavior
and network tra�c condition remain approximately stable,
and one can use a single 
ow assignment matrix (or OD
probe ratio assignment matrix) to represent the correlation
between OD 
ows and link 
ows (or OD probe ratios and
link probe ratios). 	e purpose is to increase the estimation
accuracy of assignment matrix by aggregating probe vehicles
from multiple demand intervals. Extending (8) into a time-
dependent form is also straightforward. Essentially probe
vehicles are grouped according to their departure time. Con-
sider the fact that the entire period of analysis is divided into< assignment intervals. Each assignment interval contains� demand intervals. 	en let ",��,� , > = 1, 2, . . . , < be the

assignment matrices; then ",��,� can be estimated based on

probe data collected during assignment interval > using
",��,� = 1�∑�� (

�̂�� ,��+��,��̂�� ,� )
� = 1, 2, . . . , �, > = 1, 2, . . . , <, ' = 1, 2, . . . , *,

(9)

where � is the �th demand interval during >th assignment
interval. It is noticeable that tra�c congestion level on the
network would directly aect the value of *.

	e probe ratio assignment fractions can be computed
using the following equation:

6,��,� ≈ 1�∑�� (
�̂��−�,���,���� ,� )

� = 1, 2, . . . , �, > = 1, 2, . . . , <, ' = 1, 2, . . . , *.
(10)

Table 1: Summary of sensor locations passed by probe vehicles.

Interval

Sensor locations passed

OD pair 1 OD pair 2 OD pair 3

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 — 2 2 4 — 3 3 — 5

2 4 3 4 1 5 — — 4 5 5 5 —

3 — 5 — 4 — 5 — — — — — —

Similar to (9), the estimation of probe ratio assignment
fractions in (10) can be approximated by using the observed
number of probe vehicles departed during interval �-'
passed sensor � during interval � and sensor detected link

ows.

	is section provides an illustrative example to show
how (9) and (10) work. Consider a hypothetical network
consisting of four nodes and �ve links (shown in Figure 1(a)),
among all the nodes, nodes 1, 2, and 3 are demand generation
nodes and node 4 is a demand absorption node. 	erefore
there are three OD pairs, i.e., 1-4, 2-4, and 3-4. It is assumed
that tra�c sensors are installed at the middle of each link.
A total of 12 probe vehicles departed during one demand
interval (therefore � = < = 1); the distribution of the three
OD pairs is 6, 4, and 2 vehicles, respectively.

Note that the initial locations of all probe vehicles are
plotted in Figure 1(b).

Suppose that all vehicles �nished their trip within the
following four time intervals and each vehicle is observed at
least once during each interval.	e positions of all vehicles at
the end of each subsequent interval are visualized by Figures
2(a)∼2(d). Note that vehicles traveling between dierent OD
pairs are painted with dierent patterns.

According to observed vehicle positions at the end of each
interval, one can identify, from individual vehicle’s viewpoint,
the sensor location passed by each probe vehicle during each
interval which is summarized in Table 1.

According to Table 1, �̂�,�+��,� are computed and summa-

rized in Table 7. 	en the 
ow assignment fractions and
probe ratio assignment fractions are computed according to
(9) and (10). 	e results are summarized in Table 8.

4. Computation Procedures

	is section presents the numerical solution algorithm for the
proposed models. Our objective is a nonlinear optimization
problem with equality and inequality constraints. Mathemat-
ically, such optimization problem takes the following general
form:

min�1 ,�2,...,��
@ (�1, �2, . . . , ��)

s.t. �∑
�=1
"�,��� = A� B = 1, 2, . . . , C
�∑
�=1
"�,��� ≤ A� B = C + 1, 2, . . . ,D.

(11)
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(a) Network topology and sensor locations

1

2

3

4

p1
p2
p3
p4
p5
p6

p7
p8
p9
p10

p11
p12

Vehicles travel between 2 and 4

Vehicles travel between 1 and 4

Vehicles travel between 3 and 4

(b) Initial network condition

Figure 1: Network topology and initial probe vehicle locations.
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(c) Probe vehicle locations at the end of interval 3
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(d) Probe vehicle locations at the end of interval 4

Figure 2: Illustration of probe vehicle locations captured at the end of each interval.
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In formulation (11), the objective function f is an 3-
dimensional scalar function. Since @ is continuous and
dierentiable in this study, the gradient of @ can be obtained
analytically. Also there are C linear equality constraints andD-C linear inequality constraints. 	e gradient vector of @ is
denoted by ∇@:

∇@ (�1, �2, . . . , ��) = [ G@G�1 , G@G�2 , . . . , G@G�� ]
� . (12)

	e solution algorithm is summarized as follows.

Step 1 (initialization). Determine an initial feasible solution
that satis�es all constraints. Let �0 be the initial feasible
solution and set the current iteration ℎ = 0; then enter the
main optimization loop consisting of Steps 2∼6.
Step 2 (gradient computation). Based on �ℎ, compute the
gradient of objective function ∇@(�ℎ). 	e speci�c formulas
used for gradient computation of SPP and PRA model are
given by equations (A.3) and (B.3) in Appendices A and B,
respectively.

Step 3 (optimal search direction calculation). Based on the
current gradient, compute an optimal search direction con-
sidering all constraints. Let Iℎ = [-ℎ1, -ℎ2, . . . , -ℎ�] be the
search direction of current iteration; Iℎ is computed by
solving the following LP model:

min
�ℎ

∇@ (�ℎ)�Iℎ
s.t. J��Iℎ = 0 B ∈ K

J��Iℎ ≤ 0 B ∈ ��− 1 ≤ -ℎ� ≤ 1 L = 1, 2, . . . , 3.
(13)

In the above LP problem, J� is the coe�cient vector ofBth constraint, J� = ["�,1, "�,2, . . . , "�,�]; K and �� are the
equality constraint set and bounded inequality constraint set.

Step 4 (optimal search step length calculation). According to
the optimal search direction Iℎ, perform the following line
search to determine optimal step length Mℎ:

min
0≤�ℎ≤�max

@ (�ℎ + MℎIℎ)
Mmax = min{A� − J���ℎJ��Iℎ | J��Iℎ > 0, B ∉ ��} . (14)

	is algorithm follows an iterative procedure and it is quite
similar to traditional Frank-Wolfe algorithm.

Step 5 (update�ℎ). �ℎ+1 = �ℎ + MℎIℎ.
Step 6 (check convergence criteria). If |@(�ℎ+1)−@(�ℎ)| < S,
then terminate the computation; otherwise repeat the process
from Step 2 to Step 6.

5. Numerical Examples

5.1. Simulation Setup and Results. To evaluate eectiveness of
the proposed models, numerical experiments are conducted
using VISSIM as a laboratory experiment tool. 	e use of
synthetic dataset is due to the lack of real world dataset. A
road network in the northern part of Maryland State (near I-
495 beltway) is selected as the test site. 	e network consists
of 28 nodes and 74 links.	e bird viewmap of the target area
and the network topology constructed in VISSIM are shown
by Figures 3 and 4.

	e simulation period is set to 3 hours which is divided
into 18 demand intervals (each interval is 10 minutes). To
simplify the simulation process, 39 major OD pairs are
selected in the simulation. As shown in Figure 4, 10 out
of 38 links are installed with tra�c sensors for tra�c data
collection. Table 10 summarizes the origin and destination
nodes of eachODpair alongwith its time-dependent demand
volumes; Table 11 summarizes the route choice probability of
all paths between all OD pairs. For convenience of study,
between each OD pair shown in Table 11, we only selected
those paths whose lengths are obviously shorter than the
others. Given theOD
ows and route choice in the simulation
network, it shall be noted that congestion v/c ratios on all
links are below 0.4. By running the simulation network in
VISSIM, we collected the GPS trajectory of each vehicle and
tra�c 
ow rate on those links with sensors. Notably, the GPS
trajectory of each vehicle can directly yield the ground truth
of OD 
ows. For model evaluations and comparisons, this
study uses a part of trajectory dataset (based on the preset
probe ratio in each scenario) asmodel inputs which represent
the probe vehicles.

To reveal the model property under dierent network
conditions, two scenarios are simulated. 	e �rst scenario
(referred to as scenario A) represents the situation in which
the probe vehicle penetration ratios are approximately homo-
geneous among dierent OD pairs; and the second scenario
(referred to as scenario B) represents the heterogeneous
probe ratios across multiple OD case. For both scenarios,
the average probe vehicle penetration ratio is set as 15%. 	e
probe ratios across dierent OD 
ows in scenarios B rages
from 5% to 30%.

For each model (DS, SPP, and PRA), the estimation
accuracy of four sets of parameters is examined: (1) OD

ows; (2) OD probe ratios; (3) link 
ow counts at sensor
locations; and (4) link probe vehicle ratios at sensor locations.
	e estimated values are compared with ground truth values
extracted from the simulator. 	e estimated qualities are
then quanti�ed by the following �ve performance indicators:
MSE (Mean Square Error), RMSE (RootMean Square Error),
MAPE (Mean Absolute Percentage Error), MSPE (Mean
Square Percentage Error), and RMSPE (Root Mean Square
Percentage Error). 	e de�nitions of performance indicators
are summarized by the following equation.

Performance Indicators

MSE = 1
�∑
�=1
(�� − �̂�)2
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RMSE = √ 1
�∑
�=1
(�� − �̂�)2

MAPE = 1
�∑
�=1

UUUUUUUU�� − �̂��̂�
UUUUUUUU

MSPE = 1
�∑
�=1
(�� − �̂��̂� )2

RMSPE = √ 1
�∑
�=1
(�� − �̂��̂� )2.

(15)

�� and �̂� are estimated and ground truth values.  is the
number of estimates.

Tables 2∼5 summarize all the performance indicators for
OD 
ows, OD probe ratios, link 
ows, and link probe ratios
given by DS, SPP, and PRA models under scenarios A and B.
Also using SPPmodel as the benchmark, the improvement of
PRA in estimations is also presented. By using the proposed
solution algorithm, the estimations with all models can be
completed within 3 minutes.

5.2. Results Interpretation. Figures 5, 6, and 7 show the
comparison between estimated and ground truth values of
dierent parameters displayed in the form of scatter plots.
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Table 2: Estimation accuracy of OD 
ows.

Scenario Models
Performance indicators

MSE RMSE MAPE MSPE RMSPE

A

DS 1679.4 41.0 55.7% 79.1% 88.9%

SPP 416.6 20.4 29.90% 24.00% 49.00%

PRA 343.1 18.5 29.5% 22.2% 47.1%

PRA improvement −17.6% −9.3% −1.3% −7.5% −3.9%
B

DS 2295.9 47.9 81.9% 156.5% 125.1%

SPP 805.7 28.4 50.1% 58.4% 76.4%

PRA 612.6 24.8 40.2% 37.1% 60.9%

PRA improvement −24.0% −12.7% −19.8% −36.5% −20.3%
Table 3: Estimation accuracy of OD probe ratios.

Scenario Models
Performance indicators

MSE RMSE MAPE MSPE RMSPE

A

DS 0.00598 0.07735 34.9% 19.2% 43.8%

SPP 0.00353 0.05945 25.6% 11.6% 34.0%

PRA 0.00351 0.05926 24.7% 10.0% 31.6%

PRA improvement −0.6% −0.3% −3.5% −13.8% −7.1%
B

DS 0.02176 0.14750 45.4% 29.8% 54.6%

SPP 0.01527 0.12357 35.6% 20.4% 45.2%

PRA 0.01041 0.10204 29.8% 14.5% 38.1%

PRA improvement −31.8% −17.4% −16.3% −28.9% −15.7%

Table 4: Estimation accuracy of link 
ow counts.

Scenario Models
Performance indicators

MSE RMSE MAPE MSPE RMSPE

A

DS 9124.4 95.5 31.76% 18.93% 43.51%

SPP 7356.5 85.8 22.29% 10.48% 32.37%

PRA 7040.4 83.9 20.89% 9.66% 31.08%

PRA improvement −4.3% −2.2% −6.3% −7.8% −4.0%
B

DS 12889.3 113.5 51.0% 55.9% 74.8%

SPP 8133.4 90.2 27.6% 16.3% 40.4%

PRA 7273.0 85.3 24.4% 12.2% 34.9%

PRA improvement −10.6% −5.4% −11.6% −25.2% −13.6%

Table 5: Estimation accuracy of link probe ratios.

Scenario Models
Performance indicators

MSE RMSE MAPE MSPE RMSPE

A

DS 0.00205 0.04523 25.4% 10.5% 32.4%

SPP 0.00160 0.03999 20.4% 7.7% 27.8%

PRA 0.00166 0.04072 18.8% 6.3% 25.1%

PRA improvement 3.8% 1.8% −7.8% −18.2% −9.7%
B

DS 0.00604 0.07770 30.7% 14.3% 37.8%

SPP 0.00290 0.05382 20.2% 7.8% 27.9%

PRA 0.00290 0.05383 17.3% 5.6% 23.6%

PRA improvement 0.0% 0.0% −14.4% −28.2% −15.4%
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(a) DS, scenario A (d) DS, scenario B

(b) SPP, scenario A (e) SPP, scenario B

(c) PRA, scenario A (f) PRA, scenario B
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Figure 5: Scatter plots of estimated and ground truth OD 
ows.



Journal of Advanced Transportation 11

(a) DS, scenario A (d) DS, scenario B

(b) SPP, scenario A (e) SPP, scenario B

(c) PRA, scenario A (f) PRA, scenario B
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(a) DS, scenario A (d) DS, scenario B

(b) SPP, scenario A (e) SPP, scenario B

(c) PRA, scenario A (f) PRA, scenario B
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Figure 7: Scatter plots of estimated and observed link probe ratios.
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Table 6: Estimation accuracy of OD 
ows with dierent probe ratios.

Probe penetration ratio
Performance indicators

MSE RMSE MAPE MSPE RMSPE

5% 1545.3 41.6 75.3% 113.6% 99.5%

10% 754.4 27.4 48.1% 53.2% 71.3%

15% 612.6 24.8 40.2% 37.1% 60.9%

20% 554.4 21.4 38.2% 35.4% 53.1%

30% 415.7 18.2 34.7% 28.7% 50.1%

Table 7: Summary of �̂�,�+��,� in the hypothetical example.

Travel time OD �/link � 1 2 3 4 5

' = 1 1 3 2 0 0 0

2 0 0 2 1 0

3 0 0 0 0 2

' = 2 1 1 0 1 2 1

2 0 0 0 1 2

3 0 0 0 0 0

' = 3 1 0 0 0 1 2

2 0 0 0 0 0

3 0 0 0 0 0

Several important observations made from model out-
puts are discussed in this section. First of all, DS model tends
to produce biasedOD estimation in both scenarios which can
be observed from Table 2 and Figures 5(a) and 5(d). Partic-
ularly when the probe vehicle ratios are not homogeneous
across dierent OD pairs, the percentage error of DS model
reached as high as 82% inMAPE and 125% in RMSPE.	ere-
fore, directly scaled OD 
ows based solely on observed link
probe ratios are not reliable estimator ofOD
ows and require
additional adjustment.

Secondly, in scenario A, both SPP and PRA models
oered signi�cantly higher estimation quality comparing
with the DS model. Using the SPP as the benchmark, in
scenario A, the PRA model reduced the MAPE and MSPE of
the OD matrix, respectively, by 1.3% and 7.5%. Based on the
performance indicators reported by the tables, one can argue
that when the probe ratios are homogeneous across ODpairs,
the two models have similar degree of accuracy.

As for scenario B where the probe ratios are not homo-
geneous, results showed that PRA model is more eective
compared with SPPmodel. According to Table 2, PRAmodel
reduced the MAPE and MSPE of SPP model by 19.8% and
36.5%, respectively. 	erefore it indicates that PRA model
oers additional correction capability compared with SPP
model. Such conclusion can be also inspected visually thro-
ugh Figures 5(e) and 5(f). Similar results can also be found
in Tables 3∼4. In Table 5, both SPP and PRA can outperform
DS in estimating link probe ratios while the MES and RMSE
showed that the two models are almost identical. However,
in terms of MAPE, MSPE, and RMSPE, the PRA model can

yield signi�cant improvement which validates the model’s
eectiveness.

Another important �nding of the experiment is that it
is generally more challenging to correct link probe ratios
comparing with 
ow counts. From Figures 6(b), 6(c), 6(e),
and 6(f), one can observe that the regression line between
estimated and observed link 
ow counts is very close to 45-
degree line for both models, while, in Figures 7(b), 7(c), 7(e),
and 7(f), the dispersions of link probe ratio scatter plots are
obviously larger. One viable explanation is that the compu-
tation of the probe ratio assignment matrix is more di�cult
than 
ow assignment matrix and a better correction of link
probe ratios can be achieved only when the probe ratio
assignment matrix is more precisely speci�ed.

To summarize, as a direct enhancement of the DS
method, SPP is very eective when the distribution of OD
probe ratios is homogeneous; on the other hand, the PRA
model, by considering additional link observations, generally
outperforms SPP model when the OD probe ratios vary
signi�cantly among dierent OD pairs. However, compared
with SPP and DS models, the PRA method also introduces
several additional complexities. To maximize the bene�t of
PRA, one needs to correctly specify the probe ratio assign-
ment matrix and link probe ratio variances and also take
some care on the solution algorithm in order to avoid being
trapped in local optimal points.

To further evaluate the eectiveness of PRA models in
estimating OD 
ows with dierent probe penetration ratios,
this study conducted a sensitivity analysis, which ranges the
ratio from 5% to 30%. As shown in Table 6, the estimation
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Table 8: Assignment matrix estimated.

Travel time OD �/link � 1 2 3 4 5

' = 1 1 1/2 1/3 0 0 0

2 0 0 1/2 1/4 0

3 0 0 0 0 1/2

' = 2 1 1/6 0 1/6 1/3 1/6

2 0 0 0 1/4 1/2

3 0 0 0 0 1/2

' = 3 1 0 0 0 1/6 1/3

2 0 0 0 0 0

3 0 0 0 0 0

accuracy of PRA is quite sensitive to the average probe ratios.
Higher probe ratios will result inmore accurate OD 
ow esti-
mation. In addition, it is noticeable that when the probe ratio
drops to 5%, the estimation results from PRA are not su�-
ciently reliable. Under such condition, increasing the number
of link sensors would help improve the model’s performance.

6. Conclusions and Future Research

	is paper presented the development of two o�ine OD
estimation models using probe vehicle data: the SPP and
PRA models. Both mathematical formulations and solution
algorithm are discussed in detail. Also the study successfully
explored the possibility of computing assignment matrices
directly fromGPS trajectories to avoid complex tra�c assign-
ment process.

	en, through a comprehensive numerical experiment,
the performances of proposed models are analyzed. It is
shown that the distribution of OD probe ratios can aect the
correction power of dierent models when the probe vehicle
data is used. When the OD probe ratios are approximately
homogeneous across dierent OD pairs, both SPP and PRA
performed equally well by reducing about half of the relative
error of DS method; however when the OD probe ratios
are nonhomogeneous, then PRA model outperformed SPP
model to some extent. 	e results also implied that when the
OD probe ratios are heterogeneous, incorporating observed
link probe ratios into the objective function can improve the
overall estimation accuracy. However, unlike link 
ows, the
correction of link probe ratios turns out to be much more
challenging and one needs to carefully specify the correlation
between OD and link probe ratios which is the probe ratio
assignment matrix 5 in this study.

As for future research, the proposed models can be inte-
gratedwith the quasidynamic approach proposed byCascetta
et al. [6] to further reduce the unknown-to-observation ratio;
also sensitivity analysis can be performed to investigate the
impact of dierent input parameters on the �nal outcomes;
moreover numerical experiment using real world dataset is
another important future work in order to better assess the
model performance. In addition, one can note that the probe
OD ratios are used as the approximates of the 
ow assignment
fractions, which may not be true in practice. Hence, it is also

critical to develop an advanced model to overcome this limi-
tation and apply some state-of-the-artmethod to estimate the
tra�c assignment matrix.

Appendix

A. Gradient Computation of SPP Model

According to the objective function given by (4a), de�ne the
following functions:

@ (��,�, ��,�) = ∑
�∈

∑
�∈	

(��,� − �̂�,�)2 2�,�
+∑
�∈�
∑
�∈	

(��,� − �̂�,�)2!2�,�
@1 (��,�) = ∑

�∈

∑
�∈	

(��,� − �̂�,�)2 2�,� ,
@2 (��,� (��,�)) = ∑

�∈�
∑
�∈	

(��,� − �̂�,�)2!2�,� .

(A.1)

Essentially, original objective function @ is divided into two
parts; therefore @ = @1 + @2.

Taking derivatives of @1 and @2 with respect to ��,�, one
can obtain the following expressions:

G@1 (��,�)G��,� = 2 (��,� − �̂�,�) 2�,� ,
G@2 (��,� (��,�))G��,� = ∑

�∈	
∑
�∈�

G@2G��,�
G��,�G��,�

= ∑
�∈	

∑
�∈�

2"�−��,� (��,� − �̂�,�)!2�,�
��,� = ∑

�∈

∑
�∈�
"��,���−�,� ∀�, �.

(A.2)
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Table 9: Probe ratio assignment matrix estimated.

Travel time OD �/link � 1 2 3 4 5

' = 1 1 1 1 0 0 0

2 0 0 1 1 0

3 0 0 0 0 1

' = 2 1 1 0 1 2/3 1/4
2 0 0 0 1/3 1/2
3 0 0 0 0 1/4

' = 3 1 0 0 0 1 1

2 0 0 0 0 0

3 0 0 0 0 0

Note that the second derivative is computed based on the
correlation between ��,� and ��,� given by constraint (4b). To
summarize,

G@ (��,�, ��,�)G��,� = G@1 (��,�)G��,� + G@2 (��,� (��,�))G��,�
= 2 (��,� − �̂�,�) 2�,�
+ ∑
�∈	

∑
�∈�

2"�−��,� (��,� − �̂�,�)!2�,� .
(A.3)

B. Gradient Computation of PRA Model

According to the objective function given by (6), de�ne the
following three functions:

@ (��,�, ��,�, ��,�) = min��,�
∑
�∈

∑
�∈	

(��,� − �̂�,�)2 2�,�
+∑
�∈�
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V
2
�,�

.

(B.1)

Essentially, the original objective function @ is divided
into three parts; therefore@ = @1+@2+@3. Taking derivatives
of @1, @2, and @3 with respect to ��,�, one can obtain the
following expressions:

G@1 (��,�)G��,� = 2 (��,� − �̂�,�) 2�,�
G@2 (��,� (��,�))G��,� = ∑

�∈	
∑
�∈�

G@2G��,�
G��,�G��,�

= ∑
�∈	

∑
�∈�

2"�−��,� (��,� − �̂�,�)!2�,�
G@2 (��,� (��,�))G��,� = ∑

�∈�
∑
�∈	

G@3G��,�
G��,�G��,�

= ∑
�∈�
∑
�∈	

2 (��,� − �̂�,�)
V
2
�,�

−"�−��,� �̂�,��2�,� .

(B.2)

	erefore, to summarize,

G@ (��,�, ��,�, ��,�)G��,�
= 2 (��,� − �̂�,�) 2�,� + ∑

�∈	
∑
�∈�

2"�−��,� (��,� − �̂�,�)!2�,�
+∑
�∈�
∑
�∈	

2 (��,� − �̂�,�)
V
2
�,�

−"�−��,� �̂�,��2�,� .
(B.3)

C. Assignment Fractions of Example

See Tables 7, 8, and 9.
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Table 10: Time-dependent OD 
ows (veh/hr).

Node pair
Time period (hour)

0–0.5 0.5–1 1–1.5 1.5–2 2–2.5 2.5–3

1→6 1440 1800 2400 2800 2400 1800

1→26 240 480 600 720 600 480

1→8 360 600 840 1080 840 600

1→25 120 180 240 360 240 180

1→28 120 240 360 480 360 240

10→9 60 72 96 144 96 72

10→8 72 96 120 180 120 96

10→26 60 72 84 132 84 60

6→1 1320 1700 2300 2800 2300 1700

6→26 360 480 600 960 600 480

6→10 60 96 120 180 120 96

6→8 360 480 720 960 720 480

6→28 120 240 480 720 480 240

19→1 120 240 360 480 360 240

19→8 120 180 240 360 240 180

19→27 72 96 120 180 120 96

9→28 120 180 240 360 240 180

9→25 96 120 180 240 180 120

9→8 72 96 120 180 120 96

9→19 120 156 180 216 180 156

9→1 72 96 120 180 120 96

9→26 60 96 144 180 144 96

9→27 12 24 36 48 36 24

28→8 180 240 300 360 300 240

28→7 240 360 480 600 480 240

27→9 120 144 216 240 216 144

27→1 180 240 300 420 144 120

26→10 96 120 144 180 144 120

26→8 120 180 240 360 240 180

26→19 96 120 180 240 180 120

7→28 240 300 350 400 350 300

7→25 96 120 144 180 144 120

7→9 120 156 180 216 180 156

8→25 96 120 144 180 144 120

8→26 240 300 360 480 360 300

8→1 120 180 240 360 180 120

8→28 60 96 120 180 120 96

8→9 120 180 360 480 360 180

8→19 240 240 300 480 300 240

25→9 240 480 600 720 600 480

D. OD Flows and Turning Ratios in
the Network

See Tables 10 and 11.

Table 11: Turning ratios via dierent paths.

OD Path Ratio

1→6

1→2→3→15→16→17→18→5→6 0.05

1→2→3→15→14→16→17→18→5→6 0.05

1→2→3→4→5→6 0.9

1→26

1→2→11→12→13→23→22→26 0.3

1→2→11→20→21→22→26 0.3

1→2→3→15→14→13→23→22→26 0.4

1→8 1→2→3→8 1.0

1→25

1→2→11→12→13→23→22→24→25 0.3

1→2→3→15→16→17→24→25 0.3

1→2→11→20→21→22→24→25 0.4

1→28 1→2→11→20→28 1.0

10→9

10→11→2→3→4→5→9 0.4

10→11→12→13→14→15→3→4→5→9 0.3

10→11→12→13→14→16→17→18→5→9 0.3

10→8 10→11→2→3→8 0.5

10→11→12→15→3→8 0.5

10→26
10→11→12→13→23→22→26 0.5

10→11→20→21→22→26 0.5

6→1
6→5→4→3→15→14→13→12→11→2→1 0.1

6→5→4→3→2→1 0.9

6→26

6→5→18→17→16→14→13→23→22→26 0.3

6→5→18→17→24→22→26 0.3

6→5→4→3→15→14→13→23→22→26 0.4

6→10 6→5→4→3→15→12→11→10 0.5

6→5→18→17→16→14→13→12→11→10 0.5

6→8 6→5→4→8 1.0

6→28

6→5→4→3→2→11→20→28 0.4

6→5→4→3→15→12→11→20→28 0.3

6→5→18→17→16→14→13→12→11→20→28 0.3

6→1
19→18→17→16→15→3→2→1 0.5

19→18→4→3→2→1 0.5

19→8 19→18→4→8 1.0

19→27 19→18→17→16→14→13→23→21→27 0.4

9→25 9→5→18→17→24→25 1.0

9→8 9→5→4→8 0.5

9→5→18→4→8 0.5

9→19 9→5→18→19 1.0

9→1 9→5→4→3→2→1 1.0

9→26 9→5→4→3→15→14→13→23→22→26 0.4

9→5→18→17→16→14→13→23→22→26 0.3

9→5→18→17→24→22→26 0.3

9→27 9→5→18→17→24→22→21→27 0.5

9→5→4→3→15→14→13→23→21→27 0.5

28→8 28→20→11→2→3→8 0.6

28→20→11→12→13→14→3→8 0.2

28→20→11→12→15→3→8 0.2

28→7 28→20→11→2→7 1.0

27→9 27→21→23→13→14→15→3→4→5→9 0.6

27→21→22→24→17→18→5→9 0.4

27→1 27→21→20→11→2→1 1.0
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Table 11: Continued.

OD Path Ratio

26→10 26→22→23→13→12→11→10 0.3

26→22→21→20→11→10 0.7

26→8 26→22→23→13→14→15→3→8 1.0

26→19 26→22→23→13→14→15→3→4→18→19 0.3

26→22→24→17→18→19 0.7

7→28 7→2→11→20→28 1.0

7→25 7→2→3→4→18→17→24→25 0.4

7→2→11→20→21→22→24→25 0.3

7→2→3→15→14→16→17→24→25 0.3

7→9 7→2→3→4→5→9 1.0

8→25 8→3→15→16→17→24→25 0.5

8→4→18→17→24→25 0.5

8→26 8→3→15→14→13→23→22→26 1.0

8→1 8→3→2→1 1.0

8→28 8→3→2→11→20→28 0.5

8→3→15→14→13→12→11→20→28 0.5
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