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Telomeres are basic structures of eukaryote genomes. They distinguish natural

chromosome ends from double-stranded breaks in DNA and protect chromosome

ends from degradation or end-to-end fusion with other chromosomes. Telomere

sequences are usually tandemly arranged minisatellites, typically following the formula

(TxAyGz)n. Although they are well conserved across large groups of organisms, recent

findings in plants imply that their diversity has been underestimated. Changes in telomeres

are of enormous evolutionary importance as they can affect whole-genome stability. Even

a small change in the telomere motif of each repeat unit represents an important

interference in the system of sequence-specific telomere binding proteins. Here, we

provide an overview of telomere sequences, considering the latest phylogenomic

evolutionary framework of plants in the broad sense (Archaeplastida), in which new

telomeric sequences have recently been found in diverse and economically important

families such as Solanaceae and Amaryllidaceae. In the family Lentibulariaceae and in

many groups of green algae, deviations from the typical plant telomeric sequence have

also been detected recently. Ancestry and possible homoplasy in telomeric motifs, as well

as extant gaps in knowledge are discussed. With the increasing availability of genomic

approaches, it is likely that more telomeric diversity will be uncovered in the future. We also

discuss basic methods used for telomere identification and we explain the implications of

the recent discovery of plant telomerase RNA on further research about the role

of telomerase in eukaryogenesis or on the molecular causes and consequences of

telomere variability.
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INTRODUCTION

Telomeres are nucleoprotein structures at the very ends of linear eukaryotic chromosomes. They

solve two major end-problems at the same time. The first is about chromosome end protection. It is

estimated that normal human cells must repair at least 50 endogenous double-stranded breaks

(DSBs) per cell per cell-cycle (Vilenchik and Knudson, 2003). Telomeres distinguish the natural

chromosomal ends from harmful DSBs and prevent their ectopic repair, e.g., by end-to-end fusions
of chromosomes (vanSteensel and deLange, 1997). The second is the end-replication problem that
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deals with the maintenance of proper telomere lengths. This was

recognized independently by two researchers (Watson, 1972;

Olovnikov, 1973). Since replicative DNA-dependent DNA

polymerases cannot complete DNA synthesis at the very ends

of chromosomes, compensation for replicative telomere

sequence loss must come from an RNA-dependent DNA
polymerase. This enzyme, called telomerase, together with the

first telomere minisatellite sequence, was discovered in the ciliate

Tetrahymena (Blackburn and Gall, 1978; Greider and Blackburn,

1985). However, this is only one aspect of telomere length

maintenance. The epigenetic regulation of telomere length

homeostasis, including interaction of long noncoding telomeric
repeat containing RNA and exonuclease activity pathways, have

also been extensively studied due to its therapeutical potential

(Wellinger et al., 1996; Polotnianka et al., 1998; Pfeiffer and

Lingner, 2012).

Telomerase, the enzyme in charge of adding telomere repeat

sequences to the 3' end of telomeres, is a conserved complex
enzyme with numerous components [its structure has been

recently reviewed by (Wang et al., 2019), and specifically for

plants, by (Majerska et al., 2017)]. In principle, only two main

components are essential for telomerase enzymatic activity, a

catalytically active protein component, called telomere reverse

transcriptase (TERT), and a template component, formed by the

telomerase RNA subunit (TR). While TERT is evolutionarily
quite well conserved, TR is very variable, with lengths ranging

from ca. 150 nt (Tetrahymena) to more than 2,000 nt (fungi from

genus Neurospora). Only a short region in the whole TR

molecule serves as a template for newly synthesized telomere

DNA (Greider and Blackburn, 1985; Qi et al., 2013). This region

in TR is usually formed by a complete telomere motif followed by
a partial one, the latter serving as an annealing region for the

existing telomere DNA. Although, in principle, only a single

extra nucleotide is needed (as a partial motif), usually more than

one is found. For example, two extra nucleotides form the

annealing motif in mice or five in human (Blasco et al., 1995;

Feng et al., 1995). In plants, however, the size of the template

region is variable, e.g., two in Arabidopsis thaliana, seven in

Arabis sp. or six in Nicotiana (Fajkus et al., 2019). The other TR

regions have structural, regulatory and protein interactive
functions [reviewed in (Podlevsky and Chen, 2016)]. See also a

schematic depiction of telomerase and its activity cycle in

Figure 1.

HOW VARIABLE ARE TELOMERE
SEQUENCES?

Telomere sequences are usually short minisatellites tandemly

arranged, typically following the formula (TxAyGz)n. The

minisatellite arrangement originates from the way in which

telomerase synthesizes the DNA, in short, and mostly identical

motifs, one by one. Several hypotheses consider that such an

arrangement is important because it promotes the recognition of
telomere specific proteins by homo- and heterodimers [e.g.,

(Hofr et al., 2009; Visacka et al., 2012)] and for the potential to

form G-quadruplexes that may stabilize chromosome ends or

serve as substrates for telomere-specific proteins (Spiegel et al.,

2020; Tran et al., 2013). Telomere sequences are well conserved

through evolution, and large groups of organisms use the group-

typical telomere motif to build their telomere DNA. A gradually
increasing number of studies and large screenings have shown

that all tested vertebrates and many basal metazoans use

TTAGGG (Meyne et al., 1989; Traut et al., 2007) while

Euarthropoda (arthropods), including Hexapoda (insects), have

TTAGG (Frydrychova et al., 2004; Vitkova et al., 2005). Steadily,

numerous exceptions are accumulating over time, e.g., (A(G)1-8)
in Dictyostelium (Emery andWeiner, 1981), TTAGGC in Ascaris

FIGURE 1 | Schematic representation of the telomerase activity cycle with the Arabidopsis-type telomere template. TERT, Telomere Reverse Transcriptase; TR,

telomerase RNA subunit. Figure based on Sekhri (2014).
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lumbricoides (Nematoda) (Muller et al., 1991), TCAGG in

Coleoptera (beetles) (Mravinac et al., 2011), TAGGG/TAAGG/

TAAGGG in Giardia (diplomonads) (Uzlikova et al., 2017), or

TTNNNNAGGG in Yarrowia clade (yeasts) (Cervenak et al.,

2019). Moreover, telomerase-independent systems, in which the

minisatellite telomere sequence has been lost and substituted by
complex repeats, are represented, for example, by Diptera and

Chironomidae (reviewed in (Mason et al., 2016)). For a general

review on eukaryotic telomere sequence see (Fajkus et al., 2005;

Fulneckova et al., 2013).

Telomere composition in plants is even more diverse. Here

we use the term “plants” in a broad sense, also known as
Archaeplastida or kingdom Plantae sensu lato, and comprising

Rhodophyta (red algae), Glaucophyta, the Chlorophyte algae

grade and the Streptophyte algae grade (altogether known as

green algae), and Embryophyta (land plants) (One Thousand

Plant Transcriptomes Initiative, 2019). The typical telomere

plant sequence is TTTAGGG, also called Arabidopsis-type (or
simply, plant-type) since it was discovered in Arabidopsis

thaliana (Richards and Ausubel, 1988) and now in many other

species across almost all plant orders. Although TTTAGGG is

still the most frequent, there is significant variability in telomere

sequences in red and green algal lineages. As for red algae

(Rhodophyta), telomere sequence information is mostly

missing or fragmentary, although some telomere candidates
have been discovered in silico, such as AATGGGGGG for

Cyanidioschyzon merolae (Nozaki et al., 2007), TTATT(T)

AGGG for Galdieria sulphuraria (Fulneckova et al., 2013);

TTAGGG has been found in genomic reads of Porphyra

umbilicalis (Fulneckova et al., 2013), but more evidence is

needed to confirm their terminal position on chromosomes.
Telomere diversity in green algae reflects both dynamic

changes and its paraphyletic character. Although TTTAGGG

prevails in Chlorophyta, such as in genera Ostreococcus (Derelle

et al., 2006) and Chlorella (Higashiyama et al., 1995), many other

divergent motifs have been detected there too, such as TTAGGG

in genus Dunaliella and Stephanosphaeria (Fulneckova et al.,

2012), and TTTTAGGG in Chlamydomonas (Petracek et al.,
1990). In basal Streptophyta (Klebsormidiophyceae) progressive

changes in motifs from TTTAGGG to TTTTAGGG and

TTTTAGG have been described. The presence of TTAGGG in

Rhodophyta and Glaucophyta leads to the hypothesis that this is

the ancestral motif in plants (Archaeplastida) (Fulneckova

et al., 2013).
Concerning land plants, one of the first screenings performed

showed that the Arabidopsis-type sequence was the most

common and was mostly conserved through their phylogeny

(Cox et al., 1993; Fuchs et al., 1995), although some of these

authors had already detected several exceptions in the family

Amaryllidaceae (former Alliaceae), in which the Arabidopsis-

type sequence was absent in several species. Later, the first
telomere sequence unusual for land plants, the vertebrate-type

TTAGGG, was characterized in Aloe and in some other

Asparagales (Weiss and Scherthan, 2002; Puizina et al., 2003;

Sykorova et al., 2003c). A hypothesis about repeated losses and

recoveries of the TTTAGGG and TTAGGG telomere sequence

in Asparagales was formulated (Adams et al., 2001). With the

postrefinement of order Asparagales in the APGIII (Angiosperm

Phylogeny Group 2009) (Bremer et al., 2009), it was shown that

only two major evolutionary switches in telomere sequence

composition occurred (rather than several repeated losses and

gains), in the following order: the first one in family Iridaceae, in
which a shift from the plant-type TTTAGGG to the vertebrate-

type TTAGGG happened, followed by families Xeronemataceae,

Asphodelaceae and the core Asparagales (including

Amarillidaceae s.l and Asparagaceae s.l.); and the second one

within subfamily Allioideae (formerly treated as a separate

family, Alliaceae) in which a completely new telomere
sequence emerged, CTCGGTTATGGG (Fajkus et al., 2016).

Outside Asparagales, new telomere sequences have also been

detected in land plant groups as disparate as (i) Solanaceae, in

which the telomere sequence of Cestrum elegans TTTTTTAGGG

was described (Sykorova et al., 2003a; Sykorova et al., 2003b;

Peska et al., 2008; Peska et al., 2015) and (ii) Lentibulariaceae,
where genus Genlisea showed a remarkable diversity with some

species characterized by the Arabidopsis-type telomere repeats

while others exhibited intermingled sequence variants TTCAGG

and TTTCAGG (Tran et al., 2015).

Despite all the telomere motif exceptions detected, the real

diversity in telomeric sequences in land plants is probably greatly

underestimated. A recent publication (Vitales et al., 2017), in
which a screening of land plant telomere sequences was

performed, found that telomere sequences were only known

clearly for less than 10% of the species and 40% of the genera

contained in the Plant rDNA database (www.plantrdnadatabase.

com), a resource providing molecular cytogenetics information

on land plants (Garcia et al., 2012). A summary of telomere
sequence distribution in plants, following APG IV (The

Angiosperm Phylogeny Group, 2016) (Byng et al., 2016), as

well as the most recent plant phylogeny (One Thousand Plant

Transcriptomes Initiative, 2019) is found in Figure 2.

FROM SCREENINGS TO DISCOVERY:
HOW TELOMERIC MOTIFS CAN BE
IDENTIFIED?

The evidence that a given candidate sequence is a real telomeric

one includes several steps that properly declare its localization at

all chromosomal termini, and eventually the involvement of

telomerase in its synthesis. Molecular cytogenetics (mostly by

Fluorescence in situ Hybridization, FISH) has become important

for visualizing the terminal localization of labeled probes of

candidate sequences at all chromosomal termini. However,
standalone FISH it is not enough to prove the very terminal

position. For example, AcepSAT356 [a 356bp-long satellite from

Allium cepa, (Peska et al., 2019)] was proposed in onion as the

telomere candidate, based on results from FISH analysis (Pich

and Schubert, 1998). Nevertheless, its apparent terminal location

by in situ has never been convincingly linked to telomere
function. Actually, the discovery of the Allium minisatellite
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FIGURE 2 | Telomere motifs in Archaeplastida (plants in the broad sense), based on the APG IV (The Angiosperm Phylogeny Group 2016) and on the One

Thousand Plant Transcriptomes Initiative (2019). Branch lengths do not express real time scales. For simplicity and to save space, certain polyphyletic “groups”

(grades) marked with an asterisk in the tree have been represented by a single branch; for the same reason, several minor orders (listed in the blue square at the left

upper side of the figure) are not depicted on the tree. The first tip label usually refers to plant orders and in a few cases, to divisions, grades and even families; the

second label displays representative families and in a few cases, representative orders or genera.
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telomere sequence CTCGGTTATGGG and telomerase would

mean that AcepSAT356 is subterminal (Fajkus et al., 2019).

Positive FISH telomeric signals can also mask tiny changes in

telomere motifs such as single nucleotide polymorphisms, or

false-negative results may result from short telomeres being

beneath the detection limit of the technique.
There are two additional approaches that determine the

terminal position at greater resolution than FISH; these are

based on exonuclease BAL31 activity. The first is the classical

Terminal Restriction Fragment (TRF) analysis, in which samples

treated by BAL31 show progressive shortening of terminal

fragments and a decrease in signal intensity with increasing
time of exonuclease treatment. The subsequent analysis of

fragment lengths is performed by Southern-blot hybridization

(Fojtova et al., 2015). The second is comparative genome

skimming (NGS data) of nondigested and BAL31-digested

genomic DNA, in parallel. In the BAL31 treated dataset, there

is a significant under-representation of telomere sequences,
therefore the terminal sequences are identified by comparison

with the untreated dataset, using bioinformatics tools

RepeatExplorer or Tandem Repeats Finder [a pipeline called

BAL31-NGS (Benson, 1999; Novak et al., 2010; Peska

et al., 2017)].

The other important test of a given telomere sequence

candidate in a species is the demonstration of telomerase
activity. In this, a useful experimental approach, developed first

for human cells, is the Telomere Repeat Amplification Protocol

(TRAP) (Kim et al., 1994), followed by sequencing of the

detected products (Peska et al., 2015; Fajkus et al., 2016),

which is a little less sensitive to false-positive results than

FISH. All these methods, including FISH (Fuchs et al., 1995;
Shibata and Hizume, 2011) and others such as slot-blot

hybridization (Sykorova et al., 2003c), and TRAP (Fulneckova

et al., 2012; Fulneckova et al., 2016), can be used to screen for

telomeres across wide groups of complex organisms, including

plants. However, only a combination of suitably chosen methods

can convincingly lead to a conclusion about the telomere

function of a candidate sequence, since results base on a single
approach might be misleading. A more complete overview of the

strategies for de novo telomere candidate sequence identification,

including the very first attempt in Tetrahymena (Greider and

Blackburn, 1985) are summarised in a methodological article,

with emphasis on the NGS approach used in plants with

extremely large genomes (Peska et al., 2017).

IS THERE HOMOPLASY IN TELOMERE
SEQUENCES?

The ancestral telomere sequence is thought to be TTAGGG and

is the most commonly found across the tree of life (Fulneckova

et al., 2013). Yet, it seems clear that the frequency of homoplasy

in telomere motif evolution is relatively high. For example, short,

simple motifs like the plant-type TTTAGGG have appeared

independently and repeatedly in cryptomonads, oomycete

fungi, and alveolates; similarly, the vertebrate-type TTAGGG

has emerged secondarily in certain groups of plants (Asparagales,

Rodophyta and Chlorophyta algae) (Sykorova et al., 2003c;

Fulneckova et al., 2012; Fulneckova et al., 2013; Somanathan

and Baysdorfer, 2018). The reason some telomere sequences

have emerged more frequently than other, usually more complex

sequences is probably related to selection pressures, which would
favor accuracy for a particular sequence-specific DNA-protein

interaction (Forstemann et al., 2003). If there was a change in

each telomere motif, interference in the telomeric nucleoprotein

structure would necessarily lead to genome instability. This is the

reason telomere sequences are so evolutionary stable, comprising

very few novel and successful sequences, a pattern consistent
with the idea of repeated losses and the emergence of the typical

telomere sequences, as proposed for Asparagales (Adams

et al., 2001).

The finding of homoplasy across telomere sequences raises

the question, what are the molecular causes and processes taking

place during these shifts? A change in telomere sequence, despite
seeming trivial in some cases (e.g., one extra T), may cause

serious interference with genome integrity, because of a

disturbed balance in the telomere DNA-protein interactions. It

is also unclear whether a change in telomere sequence may have

any evolutionary advantage; in this regard, (Tran et al., 2015)

suggested that the appearance of a “methylatable” cytosine in a

G-rich telomere strand would raise the possibility of regulation
by epigenetic modification.

WHAT ARE THE MOLECULAR REASONS
FOR CHANGES IN THE TELOMERE
MOTIFS?

To explain telomere sequence change, the first candidate is the

template subunit of telomerase, telomerase RNA (TR). The

previously identified TR from yeast and vertebrates belongs to
a different group of transcripts, whose connecting feature was

that they were transcribed by RNA polymerase II (Pol II)—in all

but ciliates; this used to be the single exception from Pol II

transcripts before publication of the land plant TR identification

[reviewed in (Podlevsky and Chen, 2016)]. By using the relatively

long telomere motif of Allium to look for its TR within the total

RNA sequence data pool, Fajkus et al. (2019) showed that a
previously characterized noncoding RNA involved in the stress

reaction in A. thaliana, called AtR8, was indeed the telomerase

RNA subunit (Wu et al., 2012; Fajkus et al., 2019). It was a

transcript of RNA polymerase III (Pol III) containing the

corresponding regulatory elements in its promoter structure.

For a long time, researchers expected that plant TR would be so
divergent that it would be impossible to identify it based on

a homology search (Cifuentes-Rojas et al., 2011). However, a

certain degree of similarity was successfully used to identify a

common TR in several Allium species with comparative Blast.

Surprisingly, sequence homology, the presence of the same

regulatory elements, and a corresponding template region led

to the identification of TRs in Allium, Arabidopsis and more than
70 other distantly related plants, including those with diverged
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telomere motifs like Genlisea, Cestrum, and Tulbaghia. As far as

we know, there is still no data on any algal TR, which would

elucidate whether Pol III transcription of TR is a general feature

for all plants or not. This work (Fajkus et al., 2019), based on

CRISPR knock-out and other experiments, also showed that a

previously identified telomerase RNA candidate in A. thaliana
(Cifuentes-Rojas et al., 2011; Beilstein et al., 2012) was not a

functional template subunit of telomerase, as was also

demonstrated shortly after by (Dew-Budd et al., 2019).

Assuming that the Pol II/Pol III dependency for TR

transcription is a reliable evolutionary marker, future TR

research in other main eukaryotic lineages will probably open
new insights into the origin of eukaryotes. Telomerase genes and

telomere sequences are unrecognized sources of information in

this direction, and the finding of a Pol III dependent TR

biogenesis pathway in ciliate and plant lineages may represent

the first steps in this direction (Greider and Blackburn, 1989;

Fajkus et al., 2019).

HOW DID CHROMOSOMES BECOME
LINEAR?

A vast majority of prokaryotes contain circular chromosomes

while linear chromosomes are the rule in eukaryotes. Therefore

there are two possible scenarios in which either (i) linearization

was performed by a primitive telomerase, preceding other

processes which led to current linear chromosomal features
and functions or (ii) linearization of a pre-eukaryotic circular

chromosome was initially telomerase independent, but just

before current eukaryotes diverged, a primitive telomerase

started to occupy chromosome ends and became essential for

the newly formed linear chromosomes (Nosek et al., 2006).

Villasante et al. (2007) proposed an evolutionary scenario in

which the breakage of the ancestral prokaryotic circular
chromosome activated a transposition mechanism at DNA

ends, allowing the formation of telomeres by a recombination-

dependent replication mechanism: consequences of this

hypothesis led to the surprising conclusion that eukaryotic

centromeres were derived from telomeres.

Interestingly, the opposite process to linearization, i.e.,
formation of circular chromosomes (also termed ring

chromosomes) has emerged from time to time during the

evolution of eukaryotes, although being highly unstable. For

example, in the case of Amaranthus tuberculatus, ring

chromosomes appeared as a stress-induced response, carrying

resistance against a herbicide (glyphosate); these extra ring

chromosomes did not show hybridization with telomere probes
in the karyotype analysis (Koo et al., 2018). The almost universal

telomerase system and the exceptionality of circular chromosomes

in eukaryotes do not allow us to support one hypothesis over the

other. However, the recombinational machinery used in the

alternative lengthening of telomeres (ALT), a telomerase-

independent pathway, associated with certain human cancers

(Zhang et al., 2019), is already present in prokaryotes. In

addition, there is evidence of chromosome linearization

occurring independently in distinct prokaryote lineages (Ferdows

and Barbour, 1989; Nosek et al., 1995; Volff and Altenbuchner,

2000). Therefore, the hypothesis that the first linear eukaryotic

chromosome (originating from a prokaryote ancestor) was
telomerase-independent seems more likely. There are some

examples that show that the telomerase-based system is not

essential for telomere maintenance in all eukaryotes:

retrotransposons in Drosophila telomeres, satellite repeats in

Chironomus, another insect (Rubin, 1978; Biessmann and

Mason, 2003), and ALT in telomerase-negative human cancers
(Hu et al., 2016; Zhang et al., 2019). Yet, some of these systems may

not be as different, and may perhaps share a common origin: in

Drosophila, the telomere maintenance, based in retrotransposition,

is not too distinct from the telomerase-based mechanism

(Danilevskaya et al., 1998), leading to the hypothesis that the

telomerase itself may be a former retrotransposon. But certainly,
telomerase-negative plant species have not been discovered to date

and all exceptions, in which the typical plant-type telomere was

absent, were later shown to have different, but still telomerase-

synthesized, motifs. Nevertheless, the ALT machinery is present in

plants in parallel to the telomerase activity (Watson and Shippen,

2007; Ruckova et al., 2008). Interesting questions about the role of

telomerase, telomeres and their maintenance in plant tumors arise
from that. An attractive one is about the absence of metastasis in

plants, despite the presence of ALT, perhaps related with plant

tissue rigidity or different immune systems than in animals

(Seyfried and Huysentruyt, 2013).

Although we are gaining increasing knowledge of telomere

biology, we are still unable to explain the emergence of
telomerase in eukaryotes. Current evidence supports the

hypothesis that the emergence of eukaryotes together with

their linear chromosomes, telomeres, and telomerase was

related to the appearance of spliceosomal introns in archaeal

hosts (Koonin, 2006; Fajkus et al., 2019). The similarity between

TERT and other retroelements has been discussed for some time

(Pardue et al., 1997). Remarkably, a relatively recent study
showed that TERT, as a probable member of progeny group II

introns, is sequentially close to Penelope-like element

retrotransposons (Gladyshev and Arkhipova, 2007). But TERT

is only one of the two essential telomerase components, and TR

is, in its origin, even more enigmatic due to its low sequence

conservation across all eukaryotes [see review (Podlevsky and
Chen, 2016; Fajkus et al., 2019)].

CONCLUSION

At the beginning of the plant genomics era, the telomere

sequence was considered almost changeless. The general

conservation of telomeres and the telomerase system suggested

that all plants may have the TTTAGGG plant-type telomere. The
identification of unusual telomere sequences in complex plant
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genomes, in many cases with giant C-values (such as in Cestrum

and Allium sp.), was worth the effort, since the exceptionally long

Allium telomere motif was the clue in looking for a genuine TR

in land plants. The newly described TR in plants and further

telomere/telomerase research in basal clades of algae might

reveal valuable information about early evolution, therefore
plant telomere research can significantly contribute to

hypotheses on the emergence of eukaryotes.
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