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Abstract

Many of the world’s most important vegetables and medicinal crops, including carrot, celery, coriander, fennel, and cumin, belong
to the Apiaceae family. In this review, we summarize the complex origins of Apiaceae and the current state of research on the
family, including traditional and molecular breeding practices, bioactive compounds, medicinal applications, nanotechnology, and
omics research. Numerous molecular markers, regulatory factors, and functional genes have been discovered, studied, and applied to
improve vegetable and medicinal crops in Apiaceae. In addition, current trends in Apiaceae application and research are also briefly
described, including mining new functional genes and metabolites using omics research, identifying new genetic variants associated
with important agronomic traits by population genetics analysis and GWAS, applying genetic transformation, the CRISPR-Cas9 gene
editing system, and nanotechnology. This review provides a reference for basic and applied research on Apiaceae vegetable and
medicinal plants.

Introduction
Apiaceae contains 434 genera and nearly 3780 species,
including many important vegetables, such as carrot
(Daucus carota), coriander (Coriandrum sativum), and celery
(Apium graveolens) [1], which are mainly distributed in
northern temperate regions [2]. Apiaceae also contains
important medicinal plants, including Angelica sinensis,
Peucedanum praeruptorum, and Angelica dahurica, which are
aromatic herbs with alternating feathered leaves that are
sheathed at the base of a shortened stem [3]. The flowers
of Apiaceae plants are usually bisexual and include five
sepals and petals, as well as an enlarged disk at the base
of the style, and form a conspicuous flat-topped umbel
[4, 5]. The cremocarp consists of two parts that split open
in Apiaceae seeds [6].

Previous studies have revealed that the Apiaceae fam-
ily is rich in secondary metabolites that have medicinal
value [7, 8]. The Apiaceae family includes many vegetable
crops that are rich in flavonoids, carotenoids, coumarin,
coumarin derivatives, vitamins, and minerals [8], such as
celery, carrot, parsley (Petroselinum crispum), and fennel
(Foeniculum vulgare) [9]. Apiaceae plants are also used
as herbs and spices, including dill (Anethum graveolens),

coriander (Coriandrum sativum), caraway (Carum carvi),
and cumin (Cuminum cyminum) [10, 11]. Moreover, some
species were used as herbal folk remedies in ancient
times, including gum ammoniac (Dorema ammoniacum),
goutweed (Aegopodium podagraria), Peucedanum luxurians,
and Seseli devenyense [12–15]. Some Apiaceae species are
grown as ornamental flowering plants, such as master-
wort (Astrantia) [16], blue lace flower (Trachymene caerulea)
[17], and sea holly (Eryngium maritimum) [18]. In addi-
tion, the Apiaceae family includes many toxic peren-
nial plants, such as poison hemlock (Conium maculatum),
which contains the toxin coniine [19, 20], water hemlock
(Cicuta maculata), which contains the toxin cicutoxin [21],
and fool’s parsley (Aethusa cynapium), which contains
the toxin coniine [22, 23]. The major Apiaceae vegetable
species and medicinal species are summarized in Table 1.

In recent years, Apiaceae plants have been studied
with respect to bioactive compounds, medicinal appli-
cations, omics, and traditional or modern separation
techniques for rare compounds. Many important sub-
stances and mechanisms of Apiaceae plants have been
fully revealed, and summarizing these research advances
can further promote the application of Apiaceae plants.
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Table 1. Medicinal applications of major compounds in Apiaceae vegetable and medicinal species.

Common name Latin name Edible parts Main compounds Use

Anise Pimpinella anisum Seed Trans-anethole, p-anisaldehyde, estragole,
farnesol, limonene,
4′-methoxypropiophenone [24, 25]

Edible

Asafoetida Ferula assafoetida Root Quercetin, gallic acid, phenol, arsine
triethyl,
8-acetoxy-5-S-hydroxyumbelliprenin,
asadisulfide, vanillin, β-sitosterol [26, 27]

Antifungal, antidiabetic,
anti-inflammatory, antimutagenic,
antiviral [28]

Bei Chaihu Bupleurum chinense Root Saikosaponin-D, 1-O-caffeoylglycerol,
esculetin, scopoletin, α-spinasterol [29, 30]

Antioxidant, hepatoprotective,
anti-inflammatory, antipyretic, analgesic,
immunomodulatory [31, 32]

Caraway Carrot Carum carvi Daucus
carota

Seed, root Limonene, carvacrol, carvone, carvenone,
linalool, p-hydroxybenzoic acid,
kaempferol, naringenin [33, 34],
β-carotene, quercetin, luteolin,
kaempferol, myricetin [35, 36]

Antispasmodic, carminative, astringent
[33], edible

Celery Apium graveliens Petiole, leaves Apigenin, luteolin, kaempferol, caffeic
and ferulic acids [37, 38]

Edible

Chinese angelica Angelica sinensis Root Ferulic acid, Z-ligustilide,
Z-butylidenephthalide,
N-butylidenephthalide, E-ligustilide,
p-hydroxybenzoic acid [39–41]

Anti-inflammatory, immunostimulatory,
anticancer, neuroprotective,
antihepatotoxic,
antioxidative,anticardiovascular [42]

Chuanminshen Chuanminshen violaceum Root Bergapten, ficusin, 2,3-dihydro-3,5-
dihydroxy-6-methyl-4H-pyran-4-one,
falcarinol [43]

Antioxidant, immunomodulatory,
anti-inflammatory, antitussive [44, 45]

Cnidium Cnidium monnieri Fruit Osthol, osthenol, imperatorin,
isopimpinellin, bergapten, xanthotoxol,
isoporalen, isopimpinelline [46, 47]

Anthelmintic, anti-allergic,
anti-atherosclerosis, analgesic,
antibacterial [48]

Coral vegetable Glehnia littoralis Root α-Pinene, limonene, β-phellandrene,
germacrene B, spathulenol [49]

Antioxidant, antitumor, anti-amnesic,
immunomodulatory, antimicrobial,
allelopathic [50, 51]

Coriander Coriandrum sativum Stem, leaves β-Carotene, β-cryptoxanthin epoxide,
lutein-5,6-epoxide, violaxanthin,
neoxanthin [52]

Edible

Cumin Cuminum cyminum Seed p-Cymene, thymoquinone, α-thujene,
gallic and vanillic acids, luteolin, catechin,
coumarin, eugenol [53, 54]

Edible

Dill Anethum graveolens Seed Carvone, trans-dihydrocarvone, dill ether,
α-phellandrene, limonene [55]

Edible

Dwarf pennywort Hydrocotyle
sibthorpioides

All Quercetin, isorhamnetin,
6-caffeoylgalactoside, stigmasterol,
daucosterol [56]

Antihyperglycemic, antioxidant,
antitumor [57, 58]

Fennel Foeniculum vulgare Stem, leaves,
seed

Trans-anethole, estragole, fenchone,
limonene, rosmarinic acid [59]

Edible

Ferula Ferula sinkiangensis Stem, leaves Coumarins, sesquiterpenes, sesquiterpene
lactones, sesquiterpene coumarins,
glucuronic acid [60]

Antineuroinflammatory, antibacterial,
antimicrobial, anti-inflammatory,
anticancer, antioxidant, antileishmanial
[61]

Gotu kola Centella asiatica All Chlorogenic acid, madecassoside,
asiaticoside, madecassic acid, asiatic acid
[62]

Antidiabetic, wound-healing,
antimicrobial, memory-enhancing,
antioxidant, neuroprotecting [63]

Japanese parsley Cryptotaenia japonica Stem, leaves Luteolin, apigenin, p-coumaric acid,
caffeic, ferulic acid [64]

Antioxidant, antibacterial,
anti-inflammatory [64]

Lovage Levisticum officinale Leaves Falcarinol, (Z)-ligustilide,
(Z)-3-butylidenephthalide,
trans-β-farnesene, β-phellandrene [65]

Edible

Notopterygium Notopterygium incisum Stem, root Notopterol, bergapten, imperatorin,
isoimperatorin, cnidilin, pabulenol,
alaschanioside C [66, 67]

Analgesic, antioxidant, anti-inflammatory,
antiviral, anti-arrhythmic,
immunosuppressive [66]

Parsley Petroselinum crispum Petiole, root,
stem, leaves

Apigenin, phenylpropanoids apiol,
oleanolic acid, furanocoumarins,
isoimperatorin, oxypeucedanin [68, 69]

Antioxidant, hepatoprotective, brain
protective, antidiabetic, analgesic,
spasmolytic, immunosuppressant,
antiplatelet [70]

Parsnip Pastinaca sativa Leaves, root Xanthotoxin, bergapten, isopimpinellin,
imperatorin [71]

Edible

(Continued)
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Table 1. Continued

Common name Latin name Edible parts Main compounds Use

Radix changii Changium smyrnioides Root 4-Methoxycinnamic acid, 7-hydroxy
coumarin, cafeic acid, α-terpinene,
β-patchoulene [72]

Antitussive, eliminating phlegm,
anti-asthmatic, immunoregulatory,
antioxidant, antitumor, antifatigue,
antihypoxia, anti-atherosclerotic [72]

Slender celery Apium leptophyllum Seed β-Sitosterol, apigenin, quercetin, luteolin,
kaempferol, isorhamnetin, β-selinene,
p-cresyl iso-valerate [73–75]

Edible

Water Dropwort Oenanthe javanica Petiole, leaves Persicarin, apigenin, isorhamnetin,
quercetin, hyperoside, azelaic acid,
myristic acid, catechol,
3,5-dihydroxybenzoic acid [76, 77]

Edible

Water dropwort Ostericum sieboldii Petiole, leaves Myristicin, α-terpineol, α-cadinol,
β-farnesene, linalool [78]

Analgesic, anti-inflammatory [78]

Wild chervil Anthriscus sylvestris Stem, leaves,
root

β-Phellandrene, Z-β-ocimene, α-pinene,
(−)-deoxypodophyllotoxin, chlorogenic
acid, luteolin-7- O-glucoside, isoflavone,
picropodophyllotoxin, falcarindiol [79–83]

Antitumor, antimicrobial,
anti-inflammatory, antioxidant [80]

In this review, we summarize the complex origins of
Apiaceae and the current state of research on the family,
including traditional and molecular breeding practices,
bioactive compounds, medicinal applications, omics
research, molecular markers, regulatory factors, func-
tional genes, genomics research, functional gene mining,
and molecular breeding, and discuss future perspectives.

Apiaceae origin
The complex origins of vegetables and medicinal
plants in Apiaceae
Although >70% of Apiaceae family genera are distributed
in the Northern Hemisphere [84], biogeographical and
molecular phylogenetic studies demonstrated that the
Apiaceae family originated in the Southern Hemisphere
[84, 85]. Furthermore, Australasia was estimated to be the
place of origin of crown Apiaceae plants during the early
Paleogene [86].

The Apiaceae family has been mainly divided into four
subfamilies: Azorella, Centella, Apioideae, and Eryngium
[87, 88]. Apioideae subfamilies include several impor-
tant vegetable crops: celery, carrot, parsley, water drop-
wort, and coriander [89–91]. However, each of these Api-
aceae species has distinct origins. Carrot and celery orig-
inated in Middle Asia around Afghanistan [8, 75, 92],
and slowly spread into the Mediterranean area [93]. The
earliest recorded carrots were mainly purple or yellow,
with some white or black species, instead of orange [94].
Parsley originated in the late third century BC on the
Mediterranean coast [95], where it was used for deco-
ration and seasoning [96]. Water dropwort originated in
Europe and the Mediterranean region, whereas corian-
der originated in the Middle East region [97, 98]. The
Apiaceae family also contains many important Chinese
herbal plants [99]; the origins of many of these plants
remain unclear. For example, recent studies revealed
that the Angelica group has been cultivated for food and
medicine since at least 800 AD [100], and originated in the

Middle East [101], possibly Syria, or northern European
countries [102]. Although the Apiaceae family contains
many species, most of the members of this family have
not been comprehensively investigated, especially veg-
etables and medicinal species.

Bioactive compounds in vegetables and
medicinal plants in Apiaceae
All vegetables and medicinal species in Apiaceae have
effective secretory systems involving different organs,
including roots, stems, leaves, flowers, and fruit [103–
105]. According to previous studies, the biologically active
compounds of Apiaceae plants can be divided into two
groups: nutrients and nutraceuticals [106]. Nutrients are
important plant growth regulators that mainly include
minerals, proteins, fiber, carbohydrates, and lipids [107].
In contrast, nutraceuticals, a portmanteau word derived
from ‘nutrition’ and ‘pharmaceutics’, are non-nutritive
plant compounds with high antioxidant activity [108–
110]. Nutraceuticals, which mainly include polyphenolic
compounds, polyacetylenes, and terpenoids [106], are
thought to promote health and are used in the food
processing and pharmaceutical industries [111–113].

Phenolic compounds
Phenolic compounds, such as phenolic acids, sim-
ple phenols, flavonoids, and hydroxycinnamic acid
derivatives [114], are responsible for the flavor, color,
and sensory properties of plant-derived foods and
beverages [112, 115], and they also contribute to the
nutritional qualities of vegetables and medicinal plants
[116]. Several studies have pointed out the value of
phenolic compounds in some Apiaceae plants [117–
119]. The phenolic compounds, such as flavonoids,
phenolic acids, coumarin and tannins in fennel, apiin
and malonylapiin in parsley, and apiin in celery, are
responsible for organoleptic characteristics, such as
bitterness, astringency, color, flavor, and odor [117]. The
antioxidant activity of many Apiaceae plants has also
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been attributed primarily to phenolic compounds [120,
121]. Celery contains the flavonoids apigenin, luteolin,
kaempferol, isorhamnetin, and quercetin, and extracts of
celery have antibacterial, anti-inflammatory, antioxida-
tion, antitumor, and cardiovascular protective activities
[75]. The luteolin-7-O-β-d-glucoside (cynaroside) from
Anthriscus sylvestris displays biological activity, especially
against Gram-negative bacteria, exhibits antimutagenic
activity, suppresses biofilm formation of Pseudomonas
aeruginosa and Staphylococcus aureus, and increases the
frequency of mutations leading to ciprofloxacin resis-
tance in Salmonella typhimurium [122]. Moreover, phenolic
compounds can be used to extend the shelf life of foods,
delay the oxidation of inclusions [123], and reduce the
risk of cancer and cardiovascular, cerebrovascular, and
nervous system diseases [124]. Ferulic acid from Angelica
sinensis and Ferula teterrima exhibited a therapeutic
effect on membranous nephropathy-induced proteinuria
and breast cancer [125, 126]. In addition, the content
of various bioactive substances in plants is regulated
by many factors, including environment, cultivation
techniques, varieties, and harvest time [127–129].

Polyacetylenes
Recent studies demonstrated that several polyacetylenes
isolated from Apiaceae plants have high toxicity to
bacteria, fungi, and mammalian cells [130–132], as
well as neurotoxicity, an inhibitory effect on platelet
aggregation, and the potential to cause allergic skin reac-
tions [131]. In mammalian experiments, polyacetylenes
inhibited tumor formation [131, 133], indicating that
these compounds may have clinical applications. A
group of aliphatic C17 polyacetylenes in carrot, cel-
ery, parsley, and parsnip have revealed interesting
antitumor (namely antileukemic), anti-inflammatory
and antiplatelet aggregatory effects in mammals [134].
However, polyacetylenes have a negative impact on the
taste of the roots of Apiaceae vegetables and medicinal
plants, such as parsnip, celeriac, parsley, carrot, and
fennel bulbs, because they increase bitterness [135].
In addition, some conjugated polyacetylenes (cicutoxin,
oenanthotoxin, virol A, virol B, and virol C) produced by
species of the Oenanthe (O. crocata) and Cicuta genera (C.
virosa, C. maculata, and C. douglasii), have been identified
amongst the strongest plant neurotoxins [134].

Terpenoids
Terpenoids, such as aromatic and essential oils, are the
largest group of specialized metabolites in plants [136].
Some terpenoids are specifically distributed in the Api-
aceae plants, such as carotol in carrot, trans-anethole in
anise and fennel, and carvone in caraway and dill. These
species are commonly used as food supplements for their
aromatic qualities, which can enhance the smell and
taste of foods [137, 138]. Terpenoids possess antioxidant
and antimicrobial activities and are the main compo-
nents of essential oils [139]. The antioxidant effects of
terpenoids have led them to be used to improve and

treat some diseases, such as cancer, cirrhosis, rheuma-
toid arthritis, and arteriosclerosis [140]. Asiaticoside in
Centella asiatica suppressed the viability of colorectal can-
cer and increased cell apoptosis by inhibiting the activa-
tion of the NF-κB signaling pathway by downregulating
IκBα phosphorylation [141]. Moreover, the antimicrobial
activities of terpenoids have led them to be used to make
efficient antibiotics and antimycotic agents [142, 143].

Applications of edible organs from representative
Apiaceae species
The purpose of this review is to investigate edible organs
containing nutraceuticals and having medicinal value in
representative plants of the Apiaceae family. Nutraceu-
ticals and medicinal value in the Apiaceae family play
an important role in food safety and have health ben-
efits [144, 145]. The seed is the characteristic reproduc-
tive body of both angiosperms and gymnosperms. The
seeds of Apiaceae plants, which are actually dried fruit,
are used as natural food additives for spices and sea-
sonings [146]. Acimovic and Milic [103] have summa-
rized the types and uses of nutraceuticals in 12 Api-
aceae plants in detail. For example, the dried fruit of
Apium graveolens, Carum sativum, and Foeniculum vulgare
are used in salads, cakes, sausages, curries, soups, veg-
etables, and other foods [103]. Moreover, essential oil may
be extracted from the seeds of some plants of the Api-
aceae family [118]. For example, Carum carvi, Petroselinum
crispum, Cuminum cyminum, and Daucus carota may be
used to produce essential oils for use in food process-
ing [8], and as additives in candy, chewing gum, soft
drinks, and beer [147]. Parsnip has a sweet taste simi-
lar to nutmeg and cinnamon, as well as a unique aro-
matic character [148]. Previous studies have revealed that
the seeds of other vegetables and medicinal plants in
Apiaceae, such as dill, coriander, and fennel, also con-
tain many different types of nutraceuticals with impor-
tant medicinal value at varying concentrations [149]. For
example, dill seeds are used to relieve colic pain and
treat diarrhea, asthma, neuralgia, diabetes, cardiovascu-
lar diseases, gallbladder disease, and other conditions
[150, 151]. Cumin seeds have been used widely in tradi-
tional Chinese medicinal practices to treat toothaches,
diarrhea, epilepsy, dyspepsia, and jaundice [152]. Carrot
seeds were shown to improve memory when adminis-
tered to Alzheimer’s patients and were found to have
hypoglycemic and hypolipidemic properties [153].

The leaves, stems, and roots of Apiaceae family plants
are important vegetative organs that are used for pick-
ling, as well as being consumed fresh. The fresh leaves
of dill, coriander, parsley, and celery are used in many
countries as garnishes and to flavor salads, dips, snacks,
and soups [103, 154]. Petioles, such as celery, are used
for the preparation of salads, juices, soups, stews, and
sauces [155]. The roots of Apiaceae members are used
as food and medicine. For example, Angelica and lovage
roots are used to flavor meat and canned vegetables, but
they can also be used as raw material for the production
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of herbal liqueurs and bitter spirits [106, 156]. The fresh
roots of carrot and parsnip are the most widely con-
sumed Apiaceae root vegetables, and they are primarily
eaten raw in juices or salads, or for pickling, soups, and
cakes. More importantly, carrot taproots contain effective
anti-inflammatory and anticancer compounds, as well
as constituents with hypoglycemic and hypolipidemic
properties [157].

Genetic breeding
Male sterile breeding
Genetic male sterility and cytoplasmic–nuclear male
sterility (CMS) have been utilized for the production
of hybrid cultivars in Apiaceae [158]. A male-sterile
line was also used in the mechanization of hybrid
seed production, which simplified the procedure and
reduced its cost [159, 160]. The difficulty of obtaining
F1 hybrid seeds in vegetables and medicinal plants in
Apiaceae is due to a lack of emasculation methods.
Thus, male-sterility breeding is used for Apiaceae
crop breeding, including carrot, celery, coriander, and
others [161]. Male sterility can be genetically or/and
cytoplasmically determined [162, 163]. Currently used
cytoplasmic male sterility (CMS) systems include the
‘brown anther’ type and ‘petaloid’ type [164]. The
progress of carrot male sterile breeding research were
summarized by many researchers in various years
[165–167].

F1 hybrid celery seeds are difficult to obtain, because
celery flowers are small, numerous, and easily self-
pollinate [163]. The first sterile male celery line was
the Iranian accession P1229526, in which sterility
is conferred by a single recessive ms-1 gene [168].
Furthermore, Quiros et al. [168] found unstable celery
CMS in an unidentified wild celery plant, and Gao et al.
[169] identified a sterile male celery plant (01-3A) from
the inbred line 01-3.

Disease resistance breeding
Three main methods, (i) selecting disease-resistant
varieties, (ii) strengthening cultivation management, and
(iii) applying fungicides, are commonly used to prevent
and control the occurrence and spread of plant diseases
[170]. Selection of disease-resistant germplasm resources
has been the most effective method of reducing the
occurrence of diseases in vegetables and other food
crops [171].

Numerous studies have shown that powdery mildew
infects a wide range of Apiaceae plants, including carrot,
parsnip, celery, dill, and fennel [172]. Powdery mildew
(Blumeria graminis f. sp. hordei) mainly occurs in leaves
and petioles, and can cause fatal damage to Apiaceae
vegetable crops. The first report of powdery mildew in
Apiaceae vegetables was a report about carrot and pars-
ley crops in the state of Washington in the USA [173]. In
addition, Alternaria radicina, a seed-borne fungal disease,
can decrease seed quality [174].

Early blight, caused by Cercospora apii, is a highly trans-
missible disease of Apium [175]. The celery ‘Floribelle
M9’ cultivar with superior resistance to early blight was
developed in the 1990s and used to develop early blight-
resistant cultivars, such as ‘FBL 5-2 M’ [169]. Late blight,
caused by Septoria apiicola, is an important leaf disease
that infects celery, celeriac, and carrot [176]. In addi-
tion, two Septoria-resistant celery species (Apium chilense
and A. panul) have been crossed to generate plants with
enhanced disease resistance [177].

Fusarium oxysporum is a soil-borne fungus that causes
fusarium yellows disease in celeriac, celery and carrot
[169]. UC1 is a fusarium yellow disease-resistant celery
breeding line that has been backcrossed with elite vari-
eties to create the resistant lines UC8-1, UC10-1, and
UC26-1 [178]. Somaclonal variation has been used to
select Fusarium-resistant celery plants, such as the MSU-
SHK5 line, during regeneration from cell suspensions
[179]. In 2017, three potentially resistant celeriac acces-
sions from Turkey and an additional resistant accession
from China were identified as sources of F. oxysporum
resistance [180].

Leaf blight, caused by Alternaria dauci, is a fungal leaf
disease that negatively impacts carrot and coriander cul-
tivation [174, 181]. Gugino and colleagues [182] research
identified five carrot cultivars (‘Bolero’, ‘Carson’, ‘Cal-
gary’, ‘Ithaca’, and ‘Fullback’) with relatively low suscep-
tibility to A. dauci, as well as three cultivars (‘Bolero’,
‘Carson’, and ‘Bergen’) that showed relatively low sus-
ceptibility to Cercospora carotae. However, carrot cultivar
‘Fontana’ was found to be highly susceptible to these
two diseases [182]. Infection of coriander plants becomes
apparent when they bloom, the flowers turn yellow and
are generally taller than those of uninfected plants [183].
Moreover, infection of coriander plants becomes appar-
ent when they bloom, the flowers turn yellow, and
the plants are generally taller than uninfected plants
[184].

Sclerotinia disease, caused by Sclerotinia sclerotiorum,
S. minor, and S. trifoliorum, can cause severe damage
to stored Apiaceae vegetables, especially carrot [185,
186]. Jensen et al. [186] revealed that Daucus carota,
as a susceptible host to Sclerotinia sclerotiorum, can
obtain disease-resistance genes from disease-resistant
cultivated species during flowering to produce resistant
offspring. Although sclerotinia disease also occurs in
celery and parsley, the impact on these species is
minimal. Aster yellows, caused by a bacterium-like
organism called a phytoplasma, is a common destructive
disease worldwide [184].

Celery mosaic virus (CeMV) is transmitted by aphids
and is the most common viral disease in celery [187].
A single recessive locus and markers linked to CeMV
resistance genes were identified in 2001 [188]. Using post-
transcriptional gene silencing technology, previous stud-
ies attempted to produce celery and carrot plants with
resistance to CeMV and carrot virus Y (CarVY), but resis-
tant celery plants were not obtained [169].
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Root-knot nematodes (RKNs, Meloidogyne spp.) are
major pathogens that affect carrot [189] and other
Apiaceae species, including celery [190] and parsnip
[191]. The roots of carrot plants infected by RKNs
displayed malformed, stubby, hairy roots with tough galls
and thick skin. Moreover, the aerial parts of infected
plants become yellow and display inhibited growth
and development [192]. At the same time, wounds
produced by RKNs on carrots increase the probability of
infection by diseases and other pests. RKNs show strong
adaptability and can adapt to complex and variable
environments. The best carrot RKN-resistant varieties
obtained so far include ‘Brasilia’ and ‘Tropical’, and two
resistance genes (Mj-1 and Mj-2) have been identified
[193–196]. Another resistance locus was identified in the
‘PI652188’ cultivar in 2014 and mapped to a different
position in chromosome 8 [189]. Furthermore, RKNs also
affect production of fennel; infection increases the size
of root galls, decreases plant vigor, and causes a yellow
phenotype [197]. Other methods of reducing nematode
populations in the soil include solarizing the soil and crop
rotation [198].

Breeding for insect pest resistance
The carrot fly (Chamaepsila rosae), a small black-bodied fly,
affects many members of the Apiaceae family, including
celery, parsnip, parsley, carrot, and other carrot-family
herbs [199]. Plant roots attacked by carrot fly larvae are
destroyed, causing fatal damage to affected plants. Bac-
terial diseases that infect plants through wounds (soft rot
or parsnip blight) [200] are the main reason why wounded
roots are difficult to store, especially in carrot production
[201]. Previous studies revealed that breeding resistant
varieties is an effective method of mitigating the effects
of carrot fly infestation [202, 203].

The carrot weevil (Listronotus oregonensis) is a pest of
parsley, carrots, and celery. When carrots are attacked by
the carrot weevil, only the ribs of the leaves and stalks are
left [140]. This pest causes significant damage to agricul-
tural production and cannot be effectively controlled. At
present, no resistant varieties are available [204].

Carrot willow aphid (Cavariella aegopodii) is a widespread
temperate species that feeds on members of the
Apiaceae family [205]. The carrot willow aphid causes
direct and indirect damage to plants. Direct damage
is mainly caused when the aphid draws juice from
plant leaves [206], and indirect damage is caused by
the transmission of viral diseases, such as Carrot red leaf
virus (CRLV), Parsnip mosaic virus (PMV), and Parsnip yellow
fleck virus (PYFV). The main method of controlling carrot
willow aphid infestation in agricultural production is the
application of pesticides.

Celery fly (Euleia heraclei) is a small brown-winged,
green-eyed European fly, whose larvae are leaf miners
that attack celery and parsnips [207]. These pests burrow
inside and destroy the leaves of celery and parsnip, and
infested plants show large yellow or brown blotches that
are approached by a short gallery [208]. Removing the

affected leaves or plants is an effective way of controlling
celery fly infestation.

Aphids (Aphidoidea), armyworm (Mythimna separata),
and cutworms (Agrotis spp.) affect many Apiaceae plants,
especially fennel plants. Aphids are soft-bodied insects
that cause discoloration of leaves, necrotic spots, and
stunted growth. The use of resistant varieties and insec-
ticides can effectively control the spread of aphids [209].
The application of Bacillus thuringiensis efficiently blocked
the spread of armyworm [210]. Cutworms mainly attack
the roots of plants, cutting off the transport of water
and nutrients between the roots and the aboveground
parts. Field management is the main measure used to
prevent and control the occurrence of cutworms. These
three pests also harm parsley [211].

Beet armyworm (Spodoptera exigua) is a pest that
is difficult to control and affects celery and celeriac
[212]. However, celery cultivars ‘K-26[1]’, ‘K-I08[3]2’, ‘K-
I28’, ‘F-128[3]1’, and ‘F-128[4]’ with resistance against
beet armyworm have been identified [213]. Moreover,
plants with resistance to fusarium yellows displayed a
significant increase in beet armyworm resistance [214].
Beet armyworm-resistant cultivars were obtained from
13 cultivars of varieties rapaceum, dulce, and secalinum in
1991 [215].

Late-bolting breeding
Early bolting significantly decreases the quality and yield
of Apiaceae vegetables [216], such as carrot, celery, and
parsley [217]. The demand of Apium species for a cold
period is affected by their environments and genetics
[207]. Wohlfeiler et al. [218] revealed that the vernaliza-
tion requirement of carrot was controlled by a multi-
allelic digene. Previous studies found that annual and
biennial celery cultivars bolt easily, and cultivars with
strong bolting resistance are rare [169, 219]. A single
locus, Hb, was identified from F2 hybrids and found to
control the bolting time of celery [220]. Slow-bolting cel-
ery cultivars ‘Florida Sloblot M68’ [221] and ‘Juventus’
[222] were generated by single selection and crossing,
respectively.

Molecular marker-assisted breeding
Modern molecular markers include amplified fragment
length polymorphisms (AFLPs), simple sequence repeats
(SSRs), PCR-based markers, and inter-simple sequence
repeat (ISSRs) [223]. These molecular markers have
been widely used in breeding members of the Apiaceae
family. Que et al. [8] summarized the application of
molecular markers (polymerase chain reaction (RAPD),
AFLPs, quantitative trait locus (QTL) and SSRs) in
carrot research, including genetic diversity, population
structure, and identification of the difference between
CMS and fertile carrots. In celery, RAPD markers were
used to explore the genetic diversity of 23 celery cultivars
and classify 40 celery varieties from the major regions of
China, which showed that celery may be divided into four
groups, 12 varieties, and three cultivated types (salad,
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turnip, and cutting celery) [224, 225]. AFLP technology
was used to identify 245 polymorphic sites in 24 celery
cultivars using eight AFLP primers [75]. Moreover, five
ISSR primers were used to study the genetic diversity
of 105 celery accessions, which were classified into five
groups [75]. A study of the linkage relationships of 34
markers in celery showed that they were distributed in
eight linkage groups, including 21 restriction fragment
length polymorphisms (RFLPs), 11 isozymes, and 2 mor-
phological traits, and the total covered length was 318
centimorgans (cM) [226]. In 1995, F2 population genetic
linkage maps of two celery varieties were constructed;
these maps contained 29 RFLPs and 100 RAPDs, and
they covered a total length of 803 cM [227]. Expressed
sequence tags (EST)-SSR fingerprinting, including eight
SSR markers, was used to explore the genetic diversity of
11 celery varieties [228]. RNA-seq technology was used to
identify 1939 and 2004 SSRs in the ‘Ventura’ and ‘Jinnan
Shiqin’ varieties, respectively [229, 230]. In coriander
research, many molecular makers, including RAPDs,
ISSRs, and SSRs, were also used alone or in combination
to explore the genetic diversity of coriander varieties
[231–233]. Transcriptome analysis of different tissues
of coriander identified 9746 SSRs [234]. In addition, 120
primers were randomly selected to verify 14 coriander
accessions in India [234]. Apart from the three plants
mentioned above, molecular markers were also widely
used to study other Apiaceae species. For example,
SSRs and AFLPs were used to investigate the genetic
diversity of Eryngium alpinum [235, 236]. Single-nucleotide
polymorphism (SNP) was used to investigate the genetic
diversity and population structure of 78 Western type
open-pollinated carrot cultivars [237]. Transcriptome
sequencing for high-throughput SNPs revealed that
Western carrots may originate from Eastern carrots. The
reduction in genetic diversity in Western cultivars due
to domestication bottleneck/selection may have been
offset by introgression from wild carrot [238]. In addition,
ISSR markers were used to determine the phylogenetic
relationships among the taxa of Johrenia [239–241].

Transgenic breeding
Agricultural biotechnologies use different techniques to
modify the genetic structure of plants to produce genet-
ically modified plants [242]. Transgenic technology can
be used to improve plant traits (yield and quality) and
solve agricultural problems (biotic and abiotic stresses)
[243]. Transgenic systems have been established for only
a few Apiaceae vegetables, including carrot and celery.
Permyakova et al. [244] established transgenic carrot lines
overexpressing the cfp10, esat6, and dIFN genes (encoding
deltaferon) from Mycobacterium tuberculosis, which pro-
duce CFP10-ESAT6-dIFN protein in the roots of transgenic
carrots, by Agrobacterium-mediated transformation. It is
most important to emphasize that this genetically mod-
ified carrot does not induce immune responses in mice
and has no side effects [244]. In addition, transgenic
carrot plants expressing human interferon α-2b have

been generated [245, 246]. Moreover, in carrot, combined
expression of lipid transfer protein (ltp) and chitinase (chi-
2) genes enhanced resistance to foliar fungal pathogens
[247–249]. Tan [250] revealed that overexpression of the
AgFNS gene from purple celery increased apigenin con-
tent and decreased anthocyanin content in transgenic
celery. Ding et al. [251] found that AgZDS, a gene encoding
ζ -carotene desaturase, increases lutein and β-carotene
contents in transgenic Arabidopsis and celery. Wang et al.
[252] reported that AgMYB12, a novel R2R3-MYB tran-
scription factor, regulates apigenin biosynthesis by inter-
acting with the AgFNS gene in celery. Overall, the applica-
tion of genetically modified Apiaceae species will accel-
erate the breeding of Apiaceae vegetables.

Genome editing in Apiaceae vegetables
The CRISPR/Cas9 system has been used for targeted
mutagenesis in plants, including gene knockout, mul-
tiplex gene editing, and insertion and deletion of large
fragments [253–255]. A previous study knocked out the
carrot gene encoding flavanone 3-hydroxylase (F3H), a
critical gene for anthocyanin biosynthesis, by genome
editing [256]. The results showed that the purple callus
in which CRISPR/Cas9 vectors targeted the F3H gene
became discolored [256, 257]. This gene editing system
was also used to knock out other Apiaceae vegetable
genes, including carrot GGred (geranylgeranyl diphos-
phate reductase), LCYE (lycopene ε-cyclase), CENH3 (cen-
tromeric histone H3), and DcCCD4 (carotenoid cleavage
dioxygenases) [256, 258, 259]. Xu et al. [260] also estab-
lished a stable gene-editing system in carrot, and the
system could be used for generating stable gene-edited
carrot plants.

Nanoparticles in Apiaceae plants
Based on previous studies of nanoparticles, it has become
evident that nanotechnology can play a vital role in
agricultural production, especially regarding gene mod-
ification and pest control [261, 262]. Although fertilizers
are very important to vegetable crops at all stages, most
fertilizers are wasted due to leaching and degradation by
various factors. Thus, it is necessary to reduce nutrient
waste and increase crop yield through the use of nano-
materials [263]. Nanofertilizers could be more effective
than conventional fertilizers because they are capable of
releasing nutrients to plants on demand when necessary
[264, 265]. At present, the application of nanotechnology
is still its infancy in vegetables and medicinal plants
of Apiaceae. However, a recent study found that nano-
enhanced ammonium bicarbonate increased celery yield
and reduced fertilizer requirements [266, 267]. This area
of research also provides a new way to perform gene
manipulation and expression regulation in plant cells
or tissues [268, 269]. In comparison with the widely
used Agrobacterium-mediated transformation method,
nanotechnology can be used to deliver chemicals,
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Table 2. Genome information on five sequenced Apiaceae plants.

Species Source Genus Gene size (Gb) Number of genes Website link

Coriandrum sativum Bio2RDF Coriandrum 2.13 40 747 http://cgdb.bio2db.com/databases.html#
Daucus carota NCBI Daucus 0.41 37 099 https://www.ncbi.nlm.nih.gov/genome/?te

rm=Daucus+carota
Foeniculum vulgare NCBI Foeniculum 0.99 43 936 https://www.ncbi.nlm.nih.gov/genome/?te

rm=Foeniculum+vulgare
Oenanthe javanica NCBI Oenanthe 1.28 42 270 https://www.ncbi.nlm.nih.gov/genome/?te

rm=Oenanthe+javanica
Apium graveolens NCBI Apium 3.25 31 326 https://www.ncbi.nlm.nih.gov/genome/11000

proteins, and nucleotides to confer targeted traits on
non-genetically modified plants [270].

Omics research in vegetables and medicinal
plants of Apiaceae
Genomics
Omics research attempts to comprehensively under-
stand the biological molecules in an organism at
a particular functional level, such as the genome,
transcriptome, or proteome [271–273]. Apiaceae is a large
angiosperm family that includes many medicinal, edible,
and spice species, which play important roles in daily life
around the world [272]. A gene-editing system for carrots
was established and used to determine the inheritance
of anthocyanin sites in carrots, providing new ideas and
methods for transgenic carrot breeding [260, 274].

Although the members of Apiaceae have a wide
geographical distribution and rich nutritional and medic-
inal value, little research has been performed on the
genomes of Apiaceae species [275]. Here, we summarize
genomic information for five representative species that
have been sequenced, assembled, and annotated well,
including coriander (2n = 2x = 22), celery (2n = 2x = 22), and
carrot (2n = 2x = 18). In 2014, Xiong’s group established
CarrotDB, a genomic and transcriptomic database for
carrot [276, 277]. In 2016, Simon’s group published a high-
quality carrot genome sequence assembly (421.5 Mb)
with the N50 scaffold length of 64.5 kb [278]. In 2018,
Feng et al. [279] established CeleryDB, a celery genome
database. Later, Li et al. [280] published the genome
sequence of celery and identified important functional
genes. More recently, a high-quality celery genome
sequence, with N50 scaffold length of 289.78 Mb, was
made available [281]. The coriander genome sequence
was published in 2020. The total assembled coriander
genome size is 2.13 Gb, which is divided over 6186
scaffolds with an N50 scaffold length of 160.99 Mb [282].

In addition to celery, carrot, and coriander, the
genomes of two other Apiaceae plants have been
sequenced. Oenanthe javanica (Blume) DC., a Chinese
herbal medicine, belongs to the Apiaceae family [283].
The O. javanica genome was published in 2021 [284]. The
assembled O. javanica genome contains 149 923 scaffolds,
the size of the assembled genome is 1.28 Gb, and the
N50 scaffold length is 13.093 Mb. Fennel, belonging to

the genus Foeniculum in Apiaceae, is a Chinese herbal
plant used to treat various diseases [285]. The assembled
genome of fennel consists of 300 377 scaffolds, the total
length of the genome is 1010.97 Mb, and the N50 scaffold
length is 18.88 Mb. Many studies have revealed that plant
genomes contain abundant repeat sequences. Genomic
sequences and annotation have provided important
information that has contributed to studies of the func-
tions of genes involved in regulating the yield and quality
traits of horticultural crops [286]. The further study
of important gene functions and breeding, as well as
comparative genomic analysis of Apiaceae, will provide
new methods for genetic and breeding research using
Apiaceae vegetable crops and medicinal plants. Genome
information on five Apiaceae plants is shown in Table 2.

Transcriptomics
Transcriptome data are widely used in gene expression
analysis, gene function discovery, and molecular marker
development [287, 288]. Although the Apiaceae family
has a large number of members, some Apiaceae veg-
etable crops have undergone transcriptome analysis [8,
277–284, 289–290]. Besides, transcriptome technology has
also been applied in research on stress response [291],
root development [292], and lignin biosynthesis in carrot
[293].

Moreover, transcriptome analysis has been used
widely in celery research. Jia et al. [294] revealed the
mechanism of formation of lignin and hormones based
on transcriptome profiles of celery at different develop-
mental stages. Through transcriptome analysis, Liu et al.
[295] found that multiple genes controlling hormone syn-
thesis in celery were associated with leaf development.
Li et al. [296] demonstrated the relationship between
related gene expression profiling and accumulation of
β-carotene in celery leaves and petioles using transcrip-
tome analysis. Jiang et al. [297] identified the response
genes of Oenanthe javanica under abiotic stress through
transcriptome assembly and gene annotation. Tan and
colleagues [298] analyzed temperature stress response
genes by de novo assembly and transcriptome characteri-
zation in Cryptotaenia japonica. Li et al. [299] also identified
abiotic stress-related AP2/ERF transcription factors by
transcriptome sequencing and analysis of parsley.

Transcriptomics have also been applied to study
Apiaceae plants used in Chinese herbal medicine. For
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example, transcriptome analysis of different tissues from
Ferula assa-foetida revealed candidate genes for terpene
and phenylpropyl metabolism [300]. In conclusion, the
application of transcriptomics allows researchers to
explore the phenotypic characteristics of vegetables
and medicinal plants in Apiaceae and the physiological
functions of Apiaceae genes.

MicroRNAs
MicroRNAs (miRNAs) are endogenous small RNAs that
play important roles in regulating plant growth and
development [301, 302]. In the process of plant develop-
ment, miRNAs play key roles at every major stage [302–
304]. Drikvand et al. [305] identified three miRNAs (csa-
miR162, csa-miR169, and csa-miR399) in coriander and
found that the target genes of these miRNAs displayed
differential expression in seed and leaf samples. A total
of 431 and 346 miRNAs were identified in celery varieties
‘Ventura’ and ‘Jinnan Shiqin’, respectively, and 6 of
these miRNAs were found to be involved in responses
to cold and heat stresses [229]. Najafabadi et al. [306]
identified the top five miRNAs (2919, 5251, 838, 5021,
and 5658) involved in the biosynthesis and regulation of
terpenes in Ferula gummosa. Jia et al. [307] identified 344
conserved miRNAs associated with leaf development in
celery. Jiang and colleagues also identified microRNAs
affected by abiotic stress in celery [308]. Bhan et al.
(2019) surveyed the miRNAs in two carrot variants with
different colors (orange-red and purple) using RNA-
seq, leading to the validation of 2 novel miRNAs and
11 known miRNAs [309]. Recently, the responses to
water stress were investigated using integrative genome,
transcriptome, miRNA and degradome analysis in
O. javanica [284].

Proteomics
Proteomics is now considered one of the most important
‘post-genomic’ approaches to help us understand the
function of genes. In fact, some genomics companies
have launched large-scale proteomics projects [310]. Pro-
teomics, of course, is widely used to study the Apiaceae
plants. Huang et al. [311] performed proteomic analysis of
temperature stress-responsive proteins in celery leaves
and identified 71 temperature-responsive proteins. Kho-
dadadi et al. [312] elucidated the response mechanism
in drought-sensitive and -tolerant genotypes of fennel
leaf using a gel-free/label-free proteomic technique, and
further analysis revealed that drought stress may limit
photorespiration by reducing the activity of cobalamin-
independent methionine synthase in drought-sensitive
genotypes. Bai et al. [313] reported the precise mechanism
by which asafoetida extract influenced the growth of
Pleurotus ferulae mycelium using comparative proteomic
analysis, and the results showed that asafoetida extracts
significantly affected the growth and metabolism of
P. ferulae [313]. Comparative proteomic analysis also
provides new insights into gene mining in carrot
plants [314, 315].

Metabolomics
Metabolomics encompasses all chemical reactions
occurring in cells. GC–MS technology has been used for
metabolite profiling since the early 1990s [316]. Plant
metabolites have been used as chemical markers to
distinguish differences among vegetables and medicinal
plants of the Apiaceae family [317]. In carrot research,
metabolomics analysis revealed that wild and cultivated
carrots showed differences in metabolites [318] that were
consistent with their genotypes. Identification of the
WtDcTPS1 gene, which is involved in the synthesis of
geraniol in wild carrot, was achieved by metabolomics
analysis [319].

NMR-based metabolomics has been used to discrimi-
nate celery from different geographical origins [320, 321].
Based on UHPLC–QTOF–MS/MS metabolomics analysis,
nine chemical markers were used to distinguish Radix
Angelica sinensis samples from different regions [322, 323].
Radix bupleuri is one of the most popular traditional
Chinese herbal drugs [324–326]. Studies have shown that
R. bupleuri protects the liver by interacting with various
metabolic processes [327–329]. DG (Danggui, A. sinensis)
products were found to significantly relieve blood stasis
syndrome in rats, and Jiu Danggui was the most effective
type [330]. In addition, plant metabolites are involved in
the color, taste, and scent of fruits and flowers, and they
also contribute to the regulation of various resistance
and stress responses [331].

In recent years, environmental scientists have devel-
oped practical applications for metabolomics. In carrot
research, Koutouan et al. [181] reported a link between
leaf secondary metabolites and resistance to Alternaria
dauci. Another recent study identified genes and metabo-
lites in important biological pathways that may regulate
selenium tolerance in celery [332]. Many plants of the
Apiaceae family are used as condiments or vegetables,
and some of them have medicinal properties that may
be related to secondary metabolites [333]. In summary,
metabolomics analysis is an important method for the
in-depth study of the physiological and biochemical pro-
cesses of vegetables and medicinal plants in Apiaceae,
and could provide new possibilities for human use.

Functional genes involved in the synthesis of
nutraceuticals in Apiaceae vegetables and
medicinal plants
Vegetables and medicinal plants in the Apiaceae family
are good sources of many secondary metabolites, such
as carotenoids, anthocyanins, terpenes, and dietary fiber
[118, 334]. Information on identified functional genes in
some Apiaceae plants is shown in Table 3.

Carotenoids

Carotenoids are natural pigments that are widely
distributed in photosynthetic organisms and may
provide health benefits [335, 336]. The first commit-
ted step in carotenoid biosynthesis is catalyzed by
phytoene synthase (PSY) [337–339]. Overexpression of

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/doi/10.1093/hr/uhac076/6566412 by guest on 29 Septem

ber 2023



10 | Horticulture Research, 2022, 9: uhac076

Table 3. Information on identified functional genes in some Apiaceae plants.

Species Gene name Gene expression
status

GenBank Function

Daucus carota

PSY Overexpression NM_001329177.1 Increased content of carotenoids [340]
PDS Overexpression NM_001329175.1 Produced β-carotene and α-carotene [341]
ZISO Overexpression XM_017363269.1 Produced β-carotene and α-carotene [341]
ZDS Overexpression NM_001329165.1 Produced β-carotene and α-carotene [341]
CRTISO Overexpression XM_017392673.1 Produced β-carotene and α-carotene [341]
LCYB Overexpression NM_001329160.1 Produced β-carotene and α-carotene [342]
LCYE Overexpression NM_001329163.1 Produced β-carotene and α-carotene [342]
CYP97A3 Overexpression JQ655297.1 Decreased content of α-carotene in roots [345]
F3H Overexpression XM_017385173.1 Regulated biosynthesis of anthocyanins [256]
UCGalT1 Overexpression KP319022.1 Regulated biosynthesis of anthocyanins [371]
MYB6 Overexpression XM_017379690.1 Regulated biosynthesis of anthocyanins [368]
MYB7 Overexpression XM_017385289.1 Regulated biosynthesis of anthocyanins [274]
MYB113 transcriptome XM_017383803.1 Regulated biosynthesis of anthocyanins [271]
USAGT1 Overexpression KT595241.1 Regulated biosynthesis of anthocyanins [370]
bHLH Overexpression QEA09235.1 Colored with carrot taproot anthocyanin [372]
GST Overexpression XM_017389912.1 Colored with carrot taproot anthocyanin [372]
TPS04 Overexpression XM_017390437.1 Produced α-terpineol, sabinene, β-limonene,

β-pinene, myrcene [388]
TPS26 Recombinant protein

expression in
Escherichia coli

XM_017390438.1 Regulated monoterpene production [289–291]

TPS27 Recombinant protein
expression in
Escherichia coli

KZM99345.1 Regulated monoterpene production [289–291]

TPS54 Recombinant protein
expression in
Escherichia coli

KZM99341.1 Formed sabinene [388]

TPS55 Recombinant protein
expression in
Escherichia coli

KZM99344.1 Regulated monoterpene production [387–389]

TPS1 Recombinant protein
expression in E. coli

DcTPS58617 Synthesized (E)-β-caryophyllene α-humulene
[390]

TPS2 Recombinant protein
expression in
Escherichia coli

XM_017389213.1 Synthesized monoterpene synthase with
geraniol [390]

atp6 Overexpression JQ248574.1 Associated with carrot male sterility [160]
atp9 Overexpression AJ009982.1 Associated with carrot male sterility [165]
DFR2 Overexpression AF184272_1 Involved in anthocyanin synthesis [8]
UFGT Overexpression XM_017392428.1 Involved in anthocyanin synthesis [8]
FLS1 Overexpression XM_017372509.1 Involved in anthocyanin synthesis [8]
LDOX2 Overexpression AF184274.1 Involved in anthocyanin synthesis [8]
MYB2 Overexpression Participated in anthocyanin synthesis

regulation in purple celery [373]
Apium graveolens γ TRPS Recombinant protein

expression in
Escherichia coli

KF700699.1 Catalyzed the conversion of geranyl
diphosphate [392]

FNS Overexpression AY817676.1 Increased content of apigenin, decreased
content of anthocyanin in petiole of
transgenic celery [252]

Coriandrum sativum LINS Recombinant protein
expression in
Escherichia coli

KF700700.1 Catalyzed conversion of geranyl diphosphate
[392]

PSY increased the content of carotenoids in transgenic
plants [340]. The PSY product, 15-cis-phytoene, is further
desaturated and isomerized to form all-trans-lycopene by
phytoene desaturase (PDS), 15-cis-ζ -carotene isomerase
(Z-ISO), ζ -carotene desaturase (ZDS), and cis-trans-
isomerization (CrtISO) [341]. Next, lycopene cyclases,
including lycopene cyclase β (LCYB) and lycopene cyclase
ε (LCYE), are involved in producing β-carotene and
α-carotene [342]. β-Carotene, known as the orange-red

pigment in carrots, has been shown to account for
80% of the total carotene content in this vegetable
[343]. Moreno et al. [344] revealed that DcLcyb1 plays an
essential role in the accumulation of β-carotene in carrot
plants. Arango et al. [345] found that overexpression
of CYP97A3 in orange carrots significantly decreased
the content of α-carotene in roots without significantly
changing the content of α-carotene in leaves. Analysis
of domesticated varieties and wild carrot accessions
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revealed a significant genomic region that contains the
Or (Orange) gene, which is a candidate for carotenoid
presence in carrot [346]. Coe et al. [347] have revealed
that Or and CH are likely involved in controlling the
accumulation of β-carotene and modulated carotenoid
flux in carrot. Wang et al. [348] found that the expression
profiles of the genes related to carotenoid biosynthesis
were closely related to carotenoid content in carrots
with different colors. Zhang et al. [349] found that the
carotenoid contents and expression of related genes were
affected by drought stress in carrot taproots. Then, Li
et al. [350] reported that Arabidopsis plants hosting the
DcBCH1 gene, encoding non-heme carotene hydroxylase
(BCH), improves tolerance to drought in transgenic
plants. BCH is a key regulatory enzyme in the β-branch
of the carotenoid biosynthesis pathway. In addition,
multiple paralogs of carotenoid pathway genes have been
identified in carrot, suggesting that different paralogs are
involved in the precise temporal regulation of carotene
synthesis in different tissues, developmental stages, and
environmental conditions [351].

The expression of carotenoid pathway genes also
increases the accumulation of other pigments in Api-
aceae vegetables [352–356]. In celery, the relative expres-
sion levels of AgPSY1 and AgLCYE in the ‘Ventura’
cultivar were significantly higher than those in the
‘Liuhe Yellow Heart Celery’ cultivar [357]. Furthermore,
transcriptome profiling of biosynthesis genes and
β-carotene content in the leaf blades and petioles
of celery demonstrated that AgPSY1, AgCRTISO2, and
AgBCH1 may play important roles in the accumulation
of β-carotene [296]. Similar results have been reported
in carrot [290, 358, 359]. Ding et al. [360] found that
the expression levels of AgLCYB and AgPSY2 genes
were significantly correlated with lutein and β-carotene
contents in yellow celery. Yin et al. [361] and Ding
et al. [360] demonstrated that overexpression of the
genes AgLCY-ε and AgZDS, encoding lycopene epsilon
cyclase and ζ -carotene desaturase, increased lutein and
β-carotene accumulation in transgenic Arabidopsis.

Anthocyanins

Anthocyanins are phenolic compounds that are synthe-
sized via the phenylpropanoid pathway and add pigmen-
tation to several organs and tissues of many plant species
[362]. Anthocyanins protect plants from UV radiation,
contribute to plant adaptation to different abiotic and
biotic stresses, and delay plant senescence [363, 364]. In
addition, anthocyanins promote various health benefits
due to their antioxidant effects and anti-inflammatory
properties [365]. Research on anthocyanins in Apiaceae
has mainly focused on a few species, including carrot and
purple celery.

In carrot research, previous studies have provided
many sources of information on anthocyanins in carrot,
such as the content of anthocyanins of different vari-
eties (purple, yellow and orange carrots), structural
genes encoding key enzymes, and transcription factors

regulating anthocyanin biosynthesis [274, 366–371].
Furthermore, Chialva et al. [253] identified long non-
coding RNAs (lncRNAs) involved in regulating antho-
cyanin biosynthesis in taproots. A transcriptome analysis
strongly suggested that transcription factors bHLH and
GST are involved in anthocyanin pigmentation in carrot
roots [372].

Recent studies found that transcription factors
AgMYB1/AgMYB2 and OjMYB1 are involved in the
regulation of anthocyanin biosynthesis in purple celery
(Apium graveolens) and Oenanthe javanica, respectively
[373–376]. AgMYB12, a R2R3-MYB transcription factor,
regulates apigenin biosynthesis in transgenic celery.
Overexpression of AgMYB12 in celery improved the
accumulation of apigenin by interacting with the AgFNS
[252, 377]. Feng et al. [378] demonstrated that the gene
AgUCGalT1, encoding galactosyltransferase, regulated
anthocyanin galactosylation in purple celery.

Terpenes

Terpenes are an important group of secondary metabo-
lites that affect taste and flavor [379]. Terpene synthases
(TPSs) are catalysts responsible for the formation of
sesquiterpenes, monoterpenes, and diterpenes [380–
382], which are widely distributed in many plants
[382–385]. In carrot research, Keilwagen et al. [386]
identified 65 putative TPS family genes. A previous study
identified a carrot TPS gene cluster on chromosome 4
that was found to be related to monoterpene production,
including DcTPS04, DcTPS26, DcTPS27, DcTPS54, and
DcTPS55 [387–389]. In vitro enzyme assays of DcTPS54
and DcTPS04 showed that DcTPS54 is responsible for
the formation of sabinene, whereas DcTPS04 is involved
in producing the major products α-terpineol, sabinene,
β-limonene, β-pinene, and myrcene [388]. Analysis by
Yahyaa et al. [390] revealed the function of two TPSs, the
sesquiterpene synthase DcTPS1 and the monoterpene
synthase DcTPS2. DcTPS1 is responsible for the synthesis
of (E)-β-caryophyllene and α-humulene in carrot [391].
In Coriandrum sativum, two TPSs, the recombinant
proteins Csγ TRPS and CsLINS, were found to catalyze
the conversion of geranyl diphosphate [392]. Song et al.
[282] first systematically identified TPS family genes in
C. sativum.

Dietary fiber

Dietary fiber in plants is classified as soluble or insol-
uble. Soluble fiber is found in many plants, including
carrots, broccoli, onions, barley, bananas, berries, apples,
and pears. Insoluble fiber is found in whole grain, wheat,
bran, nuts, seeds, and some fruits and vegetables [393,
394]. Dietary fiber plays an important role in moderating
the postprandial insulin response and reducing choles-
terol and the incidence of heart disease, among other
beneficial effects [395]. The plant cell wall, including the
primary and secondary wall, which contain lignin and
cellulose, is the source of most of the dietary fiber in
plants [396].
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Figure 1. Molecular structure of main bioactive compounds of Apiaceae plants.

Hormones play important roles in lignin biosynthesis
in celery [397–399] and carrot [400–403]. Transcription
factors were important regulators of lignin biosynthe-
sis in celery and carrot [404, 405]. Hypoxia, caused by

elevated CO2 concentration also affected lignin content
in celery and carrot [315, 406, 407]. The chemical molec-
ular structures of the main bioactive compounds in Api-
aceae plants are shown in Fig. 1.
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Conclusions and future perspectives
Vegetables and medicinal plants are essential foods
in human diets and health care, and can provide
various necessary nutrients and nutraceuticals. With
the strengthening of people’s health consciousness, the
diversification, quality, nutritional value, and medicinal
value of vegetables and medicinal plants are increasing.
Vegetable and medicinal plant research has become
increasingly important. In this review, we summarize
the origin of Apiaceae plants, common vegetables, and
medicinal plants of Apiaceae, bioactive compounds,
medicinal applications, traditional and molecular breed-
ing, functional genes, omics analysis, and other aspects.
Although a number of Apiaceae plants have been
discovered, few members have been utilized for the
specific compounds they contain. In the future we
should collect Apiaceae germplasm. Omic analysis
(transcriptome, genome, and metabolome) is used to
explore gene information and bioactive substances in
Apiaceae plants. Integration of DNA molecular markers
and genome-wide association analysis (GWAS) explores
the relationship between genotypes and phenotypes
and mine the variation in genomic loci associated with
the important agronomic traits. Molecular breeding,
including genetic transformation and the CRISPR-Cas9
gene editing system, will be widely used in Apiaceae
plant breeding.

Improving breeding level
In crop breeding, excellent varieties have been selected
and planted for quality, size, and biotic and abiotic
tolerances. Although a few members of the Apiaceae,
such as carrot, coriander, and celery, are the most widely
grown vegetable crops in the world, their cultivars
are insufficient to meet the demand from health-
conscious consumers looking for more vegetables and
medicinal plants among the Apiaceae. China is rich in
wild germplasm resources of Apiaceae. In the future,
the purpose of research is to collect and domesticate
wild germplasm resources, and increase the exploration
and utilization of wild germplasm resources to create
more cultivated varieties. In addition, more effective
breeding platforms and technology fully combine
traditional breeding programs with modern molecular
technologies should be established. Molecular markers,
GWAS, genetic modification (usually using CRISPR-Cas9
technology to create non-transgenic mutant plants),
and nanotechnology should be widely used to guide
traditional breeding or molecular breeding.

Mining functional genes
Plant genomes and transcriptomes have been used to
explore gene information. Combined transcriptome and
metabolome analysis has explored bioactive compounds,
functional genes, and transcription factors. The yeast
one-hybrid and yeast two-hybrid systems are widely
recognized as valuable and straightforward techniques

to study interactions between transcription factors and
between DNA and transcription factors. Integration
of DNA molecular markers and GWAS explore the
relationship between genotypes and phenotypes, and
mine the variation in genomic loci associated with the
important agronomic traits and detected key genes.

Extraction and utilization of bioactive ingredients
Vegetables and medicinal plants in Apiaceae are an
excellent source of secondary metabolites, which specif-
ically modulate health-maintaining processes. How-
ever, the sample extraction techniques severely block
the isolation and extraction of individual secondary
metabolites in Apiaceae plants, which severely restricts
the development of traditional Chinese medicine. In
addition, the pharmacological mechanisms of active
ingredients in many vegetables and medicinal plants of
Apiaceae are still unclear due to the lack of the animal
studies and clinical trials. With the innovations of new
technology and the development of molecular biology,
research on bioactive ingredients mainly focuses on their
isolation and extraction, structure analysis, metabolic
pathway analysis, and molecular mechanisms.

Omics of vegetables and medicinal plants in
Apiaceae
The family Apiaceae is in the major group flowering
plants, and contains >3700 species in 434 genera. How-
ever, there are only a few species with available genomes.
Innovations in sequencing technology and reduction of
sequencing costs provide a great opportunity for study-
ing Apiaceae plant genomes. High-quality genomes of
Apiaceae plants contribute to faster and more accurate
understanding of genome structures, functional gene
information, and other sequences. Moreover, compara-
tive genomics research is commonly used to explore the
origin and evolution history of vegetables and medicinal
plants in Apiaceae. The applications of GWAS help us
identify SNPs and InDels among the different varieties
of Apiaceae crops. In addition, comprehensive transcrip-
tome, proteome, and metabolome analysis promotes dis-
coveries in expression patterns and gene function and
structure, as well as metabolite components in vegeta-
bles and medicinal plants in Apiaceae.

Acknowledgements
This work was supported by the National Natural Science
Foundation of China (31872098; 32072563); the Guizhou
Science and Technology Support Project [Qiankehe Sup-
port (2019) 2257]; the Jiangsu seed industry revitaliza-
tion project [JBGS (2021) 068]; the Guizhou Academy of
Agricultural Sciences Support Project (Qian Nongkeyuan
Support [2021] No. 05); Construction of Modern Agricul-
tural Technology System in Guizhou Province [GZCYTX
(2011-0101)]; the Guizhou Academy of Agricultural Sci-
ences Support Project [Qian Nongkeyuan Science and
Technology Innovation (2022) No. 07], and the Priority

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/doi/10.1093/hr/uhac076/6566412 by guest on 29 Septem

ber 2023



14 | Horticulture Research, 2022, 9: uhac076

Academic Program Development of Jiangsu Higher Edu-
cation Institutions Project (PAPD).

Author contributions
X.J.W., G.F.T., and A.S.X. conceived the outline of the
manuscript; X.J.W., G.F.T., and A.S.X. wrote the manuscript;
Q.L., T.L., P.H.M., Y.T.P., J.X.L., J.Z., and H.L. provided
revisions. All authors read and approved the final
manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

References

1. McCormick N. RNA-mediated virus resistance for carrot (Daucus
carota var. sativum) and celery (Apium graveolens var. dulce). Ph.D.
Thesis, University of Melbourne, 2006.

2. Affolter JM. A monograph of the genus Lilaeopsis (Umbelliferae).
Syst Bot Monogr. 1985;6:1–140.

3. Sahebkar A, Iranshahi M. Biological activities of essential oils
from the genus Ferula (Apiaceae). Asian Biomed. 2010;4:835–47.

4. Ajani Y, Bull-Herenu K, Claßen-Bockhoff R. Patterns of flower
development in Apiaceae–Apioideae. Flora. 2016;221:38–45.

5. Ellis PR, Hardman JA. Pests of umbelliferous crops. In: McKinlay
RG, ed. Vegetable Crop Pests. Palgrave Macmillan: London, 1992,
327–78.

6. Qiu YX, Hong DY, Fu CX et al. Genetic variation in the endan-
gered and endemic species Changium smyrnioides (Apiaceae).
Biochem Syst Ecol. 2004;32:583–96.

7. Pollastro F, Gaeta S. Apiaceae, a family of species rich in
secondary metabolites: aromatic compounds and medicinal
attributes. In: Geoffriau E, Simon PW, eds. Carrots and Related
Apiaceae Crops, 2nd ed. CABI Publishing: London, UK, 2020, 35–46.

8. Que F, Hou XL, Wang GL et al. Advances in research on the
carrot, an important root vegetable in the Apiaceae family.
Hortic Res. 2019;6:69.

9. Yan J, Yu L, Xu S et al. Assay and evaluation of flavonoid content
in Chinese celery. Agr Sci Technol. 2014;15:1200–4.

10. Saleem F, Eid AH, Shetty K. Potato–herb synergies as food
designs for hyperglycemia and hypertension management. In:
Paliyath G, Bakovic M, Shetty K, Functional Foods, Nutraceuticals,
and Degenerative Disease Prevention. John Wiley & Sons Inc.
(NYSE:JW.A): Hoboken, USA, 2011, 325–40.

11. Ferrie AMR, Bethune TD, Waterer GCA. Field evaluation of
doubled haploid plants in the Apiaceae: dill (Anethum graveolens
L.), caraway (Carum carvi L.), and fennel (Foeniculum vulgare
mill.). Plant Cell Tissue Organ Cult. 2011;104:407–13.

12. Sepanlou MG, Ardakani MM, Mannan H et al. Ethnobotanical
and traditional uses, phytochemical constituents and biologi-
cal activities of Eryngium species growing in Iran. Tradit Med Res.
2019;4:148–59.

13. Tovchiga O. Metabolic effects of goutweed (Aegopodium poda-
graria L.) tincture and metformin in dexamethasone. J Dis Med
Plants. 2016;2:117–26.

14. Widelski J, Luca SV, Skiba A et al. Isolation and antimicrobial
activity of coumarin derivatives from fruits of Peucedanum lux-
urians Tamamsch. Molecules. 2018;23:1222.

15. Widelski J, Luca SV, Skiba A et al. Coumarins from Seseli
devenyense Simonk.: isolation by liquid–liquid chromatography

and potential anxiolytic activity using an in vivo zebrafish
larvae model. Int J Mol Sci. 2021;22:e1829.

16. Borgen L, Guldahl AS. Great-granny’s garden: a living archive
and a sensory garden. Biodivers Conserv. 2011;20:441–9.

17. Wick RL, Rane KK, Sutton DP. Two new ornamental hosts
for Phytophthora cactorum: Trachymene caerulea and Gypsophila
paniculata. Plant Dis. 1987;71:281–4.

18. Wei Z, Chunfeng S, Baocheng W et al. Wild ornamental plant
resources of Apiaceae in China and their application to land-
scaping. Chin Wild Plant Resour. 2017;36:68–70.

19. Hotti H, Seppänen-Laakso T, Arvas M et al. Polyketide syn-
thases from poison hemlock (Conium maculatum L.). FEBS J.
2015;282:4141–56.
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